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Abstract Increasingly, the geographically weighted regression (GWR) model is be-
ing used for spatial prediction rather than for inference. Our study compares GWR as
a predictor to (a) its global counterpart of multiple linear regression (MLR); (b) tra-
ditional geostatistical models such as ordinary kriging (OK) and universal kriging
(UK), with MLR as a mean component; and (c) hybrids, where kriging models are
specified with GWR as a mean component. For this purpose, we test the performance
of each model on data simulated with differing levels of spatial heterogeneity (with
respect to data relationships in the mean process) and spatial autocorrelation (in the
residual process). Our results demonstrate that kriging (in a UK form) should be the
preferred predictor, reflecting its optimal statistical properties. However the GWR-
kriging hybrids perform with merit and, as such, a predictor of this form may pro-
vide a worthy alternative to UK for particular (non-stationary relationship) situations
when UK models cannot be reliably calibrated. GWR predictors tend to perform more
poorly than their more complex GWR-kriging counterparts, but both GWR-based
models are useful in that they provide extra information on the spatial processes gen-
erating the data that are being predicted.
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1 Introduction

Spatial prediction is of great interest in many areas of applied science, and has an
extensive history of development. The ability to predict values at unknown locations
is useful not only for scientists who attempt to model spatial processes, but also for
policy makers who need to plan and manage the outcomes of spatial processes at
regional or local levels. Despite the longevity of the subject matter, there is always
an element of uncertainty concerning what type of prediction method is most appro-
priate in different situations. Much depends on the nature of the sample data and the
decisions made by the analyst when parameterising the predictor. Often the concept
of external objectivity (Matheron 1989, p. 38) is invoked, for which the worth of a
given predictor can be gauged by its performance in the long run through an increas-
ing number of applications.

Kriging (Matheron 1963, 1969) is a best linear unbiased predictor, and this sta-
tistical property ensures that it is frequently preferred. To allow for different ways
of modelling the mean (or trend) in kriging, it is common to decompose the spatial
process into a mean and residual component, where all the randomness of the data is
associated with the residual component. For ordinary kriging (OK), the mean com-
ponent is taken as some constant, whereas for universal kriging (UK), it is taken as
some non-constant, such as that found with a multiple linear regression (MLR) fit.
The MLR fit can be a function of the coordinates in the univariate case, or a func-
tion of external covariates in the multivariate case. In the latter instance, UK is often
re-named kriging with external drift (KED) or regression kriging (RK) depending
on whether an implicit (mean and residual components found simultaneously in a
single-stage procedure) or explicit (mean and residual components found separately
in a two-stage procedure) solution to the UK model is adopted, respectively (Hengl et
al. 2007). Often the mean component of UK is just as accurate as UK itself, reflecting
a residual process that exhibits little or no spatial autocorrelation. Here, the simpler
MLR component fit can be preferred. Thus in our study, standard predictors such
as MLR, OK and UK are calibrated and compared to the geographically weighted
regression (GWR) model (Fotheringham et al. 2002), in which the influence of ex-
planatory data is modelled locally via many localised MLR fits. As with our MLR
and UK models, our GWR models are only calibrated using external covariate data.

Furthermore, kriging can be approximated with the use of local neighbourhoods
(i.e. only using data that are close to target locations), which in the implicit form
of UK allows the MLR component fit to be calibrated locally. In this respect, we
calibrate this particular UK model to act as a standard geostatistical alternative to
GWR, as it can similarly account for relationship nonstationarity between a depen-
dent variable and its covariates. This UK specification can be viewed as an implicit
GWR-kriging hybrid, since its mean component is GWR specified with a box-car ker-
nel. Similarly, it is also possible to specify an explicit GWR-kriging hybrid, where
the GWR mean component can be more generally defined with any kernel func-
tion (e.g. a distance-decay, exponential kernel, etc.). In this kriging construction, the
mean component is globally nonparametric and globally non-linear. Kriging studies
have experimented with nonparametric (e.g. Cressie 1986; Genton and Furrer 1998;
Kanevski and Maignan 2004) and non-linear (e.g. Gambolati and Volpi 1979;
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Neuman and Jacobson 1984; Haas 1996) mean components before, and in this re-
spect, we also aim to investigate the value of this particular GWR-kriging hybrid
(named GWRK, which acts as our third non-stationary relationship model). Again,
if a GWR mean component is just as accurate as GWRK itself, the simpler GWR fit
should be preferred.

The use of GWR as a predictor has only recently attracted attention (e.g. the em-
pirical evaluations of Zhang et al. 2005; Gao et al. 2006; Bitter et al. 2007). However,
only Pdez et al. (2008) and Lloyd (2010) are known to specifically compare GWR
to kriging in this respect. In the former study, GWR performed favourably against
UK (in its full, global neighbourhood form) and against a UK-based moving win-
dow kriging (MWK) model (local neighbourhoods and local spatial autocorrelation,
as in Haas 1990, 1996), when predicting house price data. In the latter study, a more
extensive collection of GWR and kriging models were investigated, including GWR-
kriging hybrids, some of which are similar in construction to that used in this study.
Here a UK-based MWK model performed the best of all, when predicting monthly
precipitation across the United Kingdom. Our study now adds to such literature where
we compare the prediction performance of five core techniques (MLR, GWR, OK,
UK, and GWRK), highlighting the utility (if any) of those techniques based on GWR
via simulated data comparisons. Here we not only assess prediction accuracy, but,
unlike previous studies, we also assess estimates of prediction uncertainty accuracy.

2 Prediction Techniques

All models can be defined using Z(x) = m(x) + R(x), where the random function
Z(x) is decomposed into a mean m(x) and residual R(x) component. Here R(x)
describes fluctuations about the mean (i.e. second-order variation); X is any spatial
location (observed or unobserved); and z(x;) is the data with i = 1,...,n. MLR
and GWR model m(x) assuming that R(x) is a stationary random function with
E{R(x)} = 0 and VAR{R(x)} = X, where the elements of the diagonal (n x n) matrix
¥ reflect a pure nugget covariogram (i.e. no spatial autocorrelation, with ¥ = o2I).
OK, UK, and GWRK each model m(x) as some constant, some MLR fit or some
GWR fit, respectively. However, for kriging, the elements of X reflect a structured
covariogram C (h), where h is the separation distance vector h = x; — x; (i.e. spatial
autocorrelation exists). As is standard practice, the elements of X are found from the
variogram y (h) and using the relationship C(h) = o> — y (h). Accordingly, ¥ is a
function of variogram parameters and can be denoted by X, where for this study,
0 is a variogram parameter vector consisting of a (small-scale) nugget variance cy;
a (large-scale) structural variance c¢; (where cg 4 ¢; = o2); and a correlation range a.

2.1 MLR and GWR
For the case where there are several independent covariates yi, y2, ..., Yk, the MLR
model can be written as Z = YB + R, where Z is the (n x 1) sample (dependent) data

vector, Y is the (n x (k + 1)) covariate matrix, 8 is a ((k + 1) x 1) vector of unknown
parameters, and R is a (n x 1) residual vector. Here the ordinary least-squares (OLS)
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parameter estimates /§ are found from fi = (YTY)~'YTZ, and the MLR prediction at
X (where y(x) is a ((k + 1) x 1) vector of covariates at X) is

Emr(%) = y(x) 8. (1)

The corresponding GWR model results in the (location-specific) parameter estimates
ﬁ (x) being found from ﬁ x) = (YTW®)Y) 'YTW(x)Z where W(x) is a (n x n)
diagonal matrix of spatial weights (i.e. parameters are estimated using weighted least
squares (WLS) with weights changing according to location x). The GWR prediction
atx is

Zawr(%) = y(x) "B (x). )

MLR and GWR prediction variances at X, UI\Z/ILR (x) and aéWR (x), are estimated using
0 o 0 O
VAR Z(x) —z(x) =d6° 1+S(x) . 3)

Here, an unbiased estimate of the residual variance is taken as 6> = RSS/(n — ENP),
where RSS is the residual sum of squares and ENP is the effective number of para-
meters of the MLR or GWR model. Further, for MLR

O 0
S® =y®" YTY 'y, )
and for GWR
TD T L Tyo2 0 T Ly
S® =y®T YW®Y 'YW XY YWxY 'y®x), )

respectively. For details, use Leung et al. (2000).

In this study, the weighting matrix in GWR is specified using either a (discontin-
uous) box-car or (continuous) exponential kernel. The use of a box-car kernel results
in the simpler, moving window regression model, where weights at location x accord
to w(x) =1 if d; <t and w(x) =0 if d; > t. Here the bandwidth parameter is the
distance t and d; is the distance between x and a sample location i. An exponential
kernel is defined as w(x) = exp(—d;/b) where the bandwidth parameter is the dis-
tance b. For this study, an optimal bandwidth is found in an adaptive form (i.e. the
bandwidth reflects a fixed local sample density instead of a fixed distance) using two
techniques.

Firstly, it is found using leave-one-out cross-validation, where the root mean
squared error (RMSE) is calculated for a range of bandwidths and the bandwidth
that gives the minimum RMSE is considered optimal. At each cross-validation point,
RMSE= (1/(n—1)) | f':_ll {z(x;) — Z(x;)}?, where Z(x;) is the GWR prediction at
sample point i when z(x;) is omitted from the computation. Secondly, it is found us-
ing the (bias corrected) AIC procedure outlined in Fotheringham et al. (2002, p. 61,
p- 96), as there is a risk that a GWR model using an RMSE-defined bandwidth may
over-fit the calibration data, resulting in poor model information when it comes to pre-
diction at validation sites. Adopting this second technique allows us to gauge whether
or not there are instances of over-fitting in our simulation experiment. Here the band-
width that results in the smallest model AIC is considered optimal. An AIC approach
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is ideal to investigate over-fitting issues with GWR, as it penalises model complexity,
providing a bandwidth that reducing instances of under-smoothing (i.e. AIC-defined
bandwidths will tend to be larger than RMSE-defined ones). Throughout this study,
all bandwidths are presented as a percentage, which for a box-car kernel relates to
local sample size, whilst for an exponential kernel reflects a local sample size that
exerts the greatest influence on each local regression fit.

2.2 OK and UK

Here we briefly outline the standard UK model where m(x) is modelled using MLR.
The OK model is not presented, as it is a straightforward simplification of UK where
m(x) is modelled as an unknown constant (e.g. Schabenberger and Gotway 2005,
p- 241-243). For unbiased variogram estimation in UK, it is necessary to find the
variogram of the residual process Z — Y 8. However, f is unknown and can only be
estimated efficiently with generalised least squares (GLS) which itself needs to be
calibrated using unbiased variogram information, via Xg. This is the well-known an-
alytical impasse of UK, which is commonly addressed via the use of a restricted (or
residual) maximum likelihood (REML) approach to first identify relatively unbiased
estimates of Xg and then in turn, relatively unbiased estimates of 8 (e.g. Schaben-
berger and Gotway 2005, pp. 259-263). Such an approach is adopted in this study to
parameterise both OK and UK, where only exponential variogram models are con-
sidered, i.e. y(h) =co + c1(1 —exp(—h/a)).

Thus, for UK, Bgrs = (YT [Zg]~'Y) "' YT[Z4]~'Z provides the (best linear un-
biased) parameter estimates and the (best linear unbiased) prediction at X is

Suk(®) =y BgLs + 04 [Tl (Z — YBgLs)- (6)

Here 0¢ is a (n x 1) vector of spatial covariances between residuals at x and the
sample locations. The UK weights at x are Ayk (X) = [X¢] Lo p and the UK variance
at x is

0J
ook (X) = 62 —ap[Zel oy
] 0J ]
+ Yy —YT[zerl«rfF Y [ze 'Y !
OJ T _1 [
x yx) - Y'[Zgl 'op . (7)

The first part of (7) represents the kriging variance of the residuals and the second part
is a consequence of estimating the trend with MLR. Observe that 62 is the estimate
of the residual variogram sill (cop 4 c1), where cp and ¢ are partial sills.

To find Zyg (x) and a%K(x) both implicit and explicit solutions are possible, al-
though these are identical if a global neighbourhood is specified (Chiles and Delfiner
1999; Rivoirard 2002; Hengl et al. 2007). In this study, an implicit solution is adopted
which allows the MLR component to be calibrated locally when UK is specified
with local neighbourhoods. A neighbourhood size is optimally found using the same
cross-validation procedure as that used to find the bandwidth in GWR. Technically,
local residual variogram parameters should now be estimated that are specific to x

@ Springer



662 Math Geosci (2010) 42: 657-680

(as in a MWK model), but instead, the parameters of the globally-found residual
variogram are retained and this pragmatic modelling decision is usually referred to
as a quasi-stationarity (Journel and Huijbregts 1978, pp. 33-34). When kriging is
approximated in this way, it is no longer a best linear unbiased predictor (Chiles
and Delfiner 1999, p. 201) and poorly chosen neighbourhoods can result in un-
wanted discontinuities. However, the approximation usually has little effect on over-
all prediction accuracy and is routinely used to ease computational burden with
large data sets. For this study, the approximation is specifically used to model non-
stationary relationships via the UK model as it provides an obvious means to im-
prove prediction over a stationary relationship counterpart. It is not so easy to justify
the approximation from a prediction uncertainty viewpoint as the kriging variance
depends on the variogram, except that the reliable estimation of local variogram
parameters is commonly fraught with technical difficulties (e.g. Atkinson 2001;
Schabenberger and Gotway 2005, pp. 425-426).

2.3 GWRK

Unlike the implicit solution, the explicit solution to UK deals with the mean and resid-
ual processes separately in a distinct two-stage procedure where the mean component
is found first and then kriging is performed on the residual data. Only the explicit ap-
proach lends itself to nonparametric or non-linear mean components; therefore, it is
adopted for our hybrid GWRK model. Optimal parameterisation via REML is not
viable for GWRK and as such, the GWR mean component is found as described
in Sect. 2.1, and the corresponding residual variogram yg (h) is estimated using the
usual classical estimator (e.g. Schabenberger and Gotway 2005, pp. 153-154). This
estimator is then modelled with an exponential variogram using the WLS variogram
fitting approach of Zhang et al. (1995).

As with many explicit approaches, GWRK has a focus on an efficient estimation
of the trend and accepts that some residual variogram bias is ever-present. In this re-
spect, explicit approaches are not always built on any theoretical basis, but commonly
provide satisfactory results. In terms of residual variogram bias, nonparametric/non-
linear trend fits that are strongly local can capture most of the variation in the data
resulting in a residual variogram that is either pure nugget or if structured, is highly
biased (much more so than those found with an equivalent linear trend, see Pardo-
Igtizquiza and Dowd 1998). As such, a GWRK prediction at x is defined as

ZGWRK (X) = ZgwR (X) + Fok (X), )

if the residual variogram is structured, and Zgwrk (X) = Zgwr (X) if the residual var-
iogram is modelled as a pure nugget variance. Observe that we have specified OK
with the residual data. If simple kriging (SK) were specified instead, then instances
of Zgwrk (X) = Zgwr (X) would be directly guaranteed as SK with a pure nugget var-
iogram yields zero predictions.

GWRK variances are not so easily found via a simple addition, since (a) there
are complex correlations between the two component processes and (b) the residual
variance estimate 6éWR used in the GWR prediction variance calculation is unlikely
to correspond to the residual variogram sill estimate 6§ILL (it is commonly biased
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downwards) used in the residual OK variance calculation. If the two residual vari-
ance estimates in (b) were equal, then an approximate GWRK variance at x could
be taken as oy pi (X) = {62 — 0§ [Zg]~'og} + {62S(x)}, where the first part of this
expression represents the OK variance of the GWR residuals and the second part is a
consequence of estimating the trend with GWR (i.e. analogous to the UK composite
variance in (7)). Instead, a pragmatic GWRK variance approximation is calculated,
which we define as

2 O A2 0, Trg -1 0 o U
OGwWRK (X) = 0Gwr T 0GwrS(X) + o5, —0g[Xel 06 — o5y . 9

where the first part of this expression is the GWR prediction variance aéWR (x) (see
(3) and (5)), the second part reflects the residual OK variance (see (7)), and the third
part is the residual variogram sill estimate. Here 6SZILL is actually fixed to equal the
sample residual variance for the WLS variogram fit, so that consistent GWRK vari-
ances are found. If the residual variogram is modelled as a pure nugget variance, then
the GWRK variance at x is taken as aéWRK x) = oéWR (x).

2.4 Model Summary

In summary, twelve models are calibrated and assessed. These are OK, MLR, UK-
GN (global neighbourhood), UK-LN (local neighbourhood), GWR-BX-CV (box-car
kernel and bandwidth found by cross-validation), GWR-EXP-CV (exponential ker-
nel and bandwidth found by cross-validation), GWR-BX-AIC (box-car kernel and
bandwidth found by AIC), GWR-EXP-AIC (exponential kernel and bandwidth found
by AIC), GWRK-BX-CV (GWR-BX-CV as a mean component), GWRK-EXP-CV
(GWR-EXP-CV as a mean component), GWRK-BX-AIC (GWR-BX-AIC as a mean
component), and GWRK-EXP-AIC (GWR-EXP-AIC as a mean component). OK is
the only univariate model, whereas all other models use covariate data to inform the
mean component. OK and OK of the residuals in GWRK are specified with a global
neighbourhood. Observe that UK-LN is commonly named a KED model and UK-GN
is commonly named an RK model. Observe also that the difference between UK-LN
and any GWRK model is a subtle one. Both model constructions use (a) a local trend;
(b) a global residual variogram; and (c) some form of approximation. However UK-
LN follows an implicit solution, whilst GWRK follows an explicit solution.

3 Simulated Data

Although empirical data comparisons are useful when evaluating predictors, results
always depend upon the particular properties of the data set used. Sample size, sample
configuration, sample variation, distribution shape, spatial heterogeneity and spatial
autocorrelation are just some of the many factors that determine the utility of a given
predictor. In this respect, it is useful to simulate data sets with known properties and
then assess predictors according to these data. Thus we simulate data sets to solely
investigate issues of spatial heterogeneity (with respect to data relationships in the
mean process) and spatial autocorrelation (with respect to the residual process). In
particular, we follow a hybrid simulation approach based on methods used in Farber
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and Pdez (2007) and Wang et al. (2008) for investigating different GWR models, and
Zimmerman et al. (1999) when comparing inverse distance weighting (IDW) to UK.
A key impasse to using simulated data is that the method used is often based on a
prediction method under scrutiny and as a consequence, this same method tends to
perform unfairly better than others. This drawback has to be borne in mind when
interpreting the results.

3.1 The Simulation Algorithm

The spatial layout for the simulation is a square region with side lengths of 12 units.
To this region, a coordinate system is built with its origin in the bottom left-hand
corner. Here 625 observation points are located on a 25 x 25 lattice with a distance
of 0.5 between any two horizontally or vertically neighbouring points. The spatial
coordinates of the locations (u;, v;) are calculated using

0 0 O O M
(ui,vi) = 0.5mod (i —1)/25,0.5int (i — 1)/25  fori=1,2,...,625, (10)

where mod((i — 1)/25) is the remainder of (i — 1) divided by 25 and int((i — 1)/25)
is the integer part of the number (i — 1)/25.
The data generating process is then defined as

zi = Boui, vi) + Bi(ui, v)yi +ri fori=1,2,...,625, (11)

where Bo(u;, v;) + B1(u;, v;)y; represents the mean process m(x) and r; represents
the residual process R(x) of the decomposed model, Z(x) = m(x) + R(x). The y;
observations of the single independent covariate are randomly drawn from a uniform
distribution over the interval (0, 1). The two regression coefficients By(u;, v;) and
B1(u;, v;) are found according to the following three cases.

e Case 1, zero heterogeneity: Bo(u, v) = 1, B1(ui, v;) =6.5.
e Case 2, low heterogeneity: Bo(u;, v;) =14 (1/6)(u + v), B1(u;, v;) =u/3.
e Case 3, high heterogeneity: Bo(u;, v;) =1+ 4sin[(1/12)u],

O M OJ
Biui,vi) =1+ (1/324) 36 — (6 —u)> 36— (6 —v)> .

For cases 2 and 3, the regression coefficient surfaces are depicted in Fig. 1. Case 2
represents a fairly simple, non-stationary relationship between z; and y;, whilst case 2
represents a more complex, non-stationary relationship.

The resultant mean processes that are generated do not result in the same levels of
variation and, as such, all corresponding residual processes are generated at a fixed
proportion to the levels of variation found for each mean process. Since experience
suggests that the mean component tends to dominate a spatial process, data genera-
tion proceeds such that 66.67% of the variation in the dependent data z; is explained
by the mean component (further investigations could vary this proportion). With this
constraint in place, the residual terms r; are generated for each heterogenic case ac-
cording to the following three cases.
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Fig. 1 Simulated data: True regression coefficient surfaces for heterogeneity cases 2 (A and B) and 3

(C and D). Variograms for the three autocorrelation cases (E) and an example output of the z; data for
simulated class 5 (F)

e Case 1, zero autocorrelation: independent draws from a normal distribution
N (O, (var(m(x))/2)*).

@ Springer



666 Math Geosci (2010) 42: 657-680

Table 1 Simulated classes and heterogeneity/autocorrelation indicators

Mean/residual process Zero heterogeneity Low heterogeneity High heterogeneity

Simulated classes:
Zero autocorrelation 1 4
Low autocorrelation

High autocorrelation 3 6

Indicators of heterogeneity:

Zero autocorrelation 58.29 10.56 3.96
Low autocorrelation 4.84 3.32 2.44
High autocorrelation 2.64 2.51 1.96

Indicators of autocorrelation:

Zero autocorrelation 0.000 0.350 0.331
Low autocorrelation 0.053 0.420 0.411
High autocorrelation 0.068 0.453 0.428

Relatively small heterogeneity indicator values suggest simulated data have strong levels of heterogeneity
Relatively large autocorrelation indicator values suggest simulated data have strong levels of autocorrela-
tion

e Case 2, low autocorrelation: data generated according to an isotropic exponen-
tial variogram model with co = (1/2)(var(m(x))/2), c1 = (1/2)(var(m(x))/2) and
a = 1.5 distance units. This gives a nugget effect (defined as co/(co + ¢1)) of 0.50.

e Case 3, high autocorrelation: data generated according to an isotropic exponen-
tial variogram model with co = (1/4)(var(m(x))/2), c; = (3/4)(var(m(x))/2) and
a = 3 distance units. This gives a nugget effect of 0.25.

Observe how the nugget effects are generated, where further investigations could as-
sess stronger and weaker nugget effects. For clarity, each of the three autocorrelation
cases is depicted in Fig. 1E.

Once all the residual data sets are generated, the corresponding dependent data
z; can be found, which results in nine different data sets, each with different hetero-
geneity/autocorrelation properties (or classes, see Table 1) from the same simulation
run. Thus each simulation run consists of (u;, v;, zs;, y;) data, where s =1,2,...,9.
An example z; surface is given in Fig. 1F. Observe that the nine data sets that are
generated do not have the same mean or variance, but the simulation algorithm is
such that these parameters are broadly similar. Here mean values can range from 4 to
5 and variance values can range from around 2 to 7.

4 Model Calibration and Validation

For each simulated data set, model calibration and validation is conducted using a
set-aside procedure where a random sample of 310 observations is used for model
calibration and the remaining 315 observations are used for model validation (i.e.
an approximate 50:50 split). The same data division is used for data within each
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simulation run, but not for data from different simulation runs. The (five) resultant
data configurations were not considered an important model discriminating factor in
subsequent assessments.

4.1 Model Calibration

For practical and objectivity reasons, all model parameters are found in a fully-
automated fashion. Sensible heuristics are used for the starting parameters of the
REML or WLS variogram fits and pure nugget models can be specified where neces-
sary. Monitoring of the progress of model calibration is also done at strategic points.
For example, the RMSE bandwidth/neighbourhood functions are checked for in-
stances of (a) multiple minima and (b) exact local collinearity where models fail
(although such events are unlikely with our simulated data—see Sect. 6.3). The auto-
mated algorithm performed reliably, where the ability to check model calibration was
considered valuable. However this user-input entailed that data from each of the nine
classes were only simulated five times (i.e. five simulation runs, giving 9 x 5 =45
simulated data sets in total).

4.2 Model Validation: Prediction Accuracy

Due to the nature of the simulation algorithm, a relative prediction accuracy diagnos-
tic is calculated, as this enables a comparison of model performance across all nine
simulated data classes. In particular, a relative RMSE diagnostic is reported, which
is defined as reIRMSE = RMSEwmodel/RMSEMean. The further this ratio falls below
unity, the greater the improvement in precision over using the calibration mean as the
predictor of the corresponding validation data set. RMSE values are calculated in a
similar way to that defined in Sect. 2.1, but now accord to a set-aside procedure. For
each model and simulation data class, relRMSE results are reported as an average of
the individual reIRMSE values found from each simulation run.

4.3 Model Validation: Prediction Uncertainty Accuracy

For all models, an assumption of multivariate normality is adopted. This entails that
the prediction Z(x) and the prediction standard error (PSE) o (x) can be taken as the
two defining moments of a normal distribution at location x, which in turn enables the
calculation of a prediction confidence interval (PCI) whose accuracy can be assessed
using coverage probabilities. For example, if symmetric 95% PCIs were calculated
at each validation location (i.e. using Z(x) & 1.960 (x)) then a correct modelling of
local uncertainty would entail that there is a 0.95 probability that the actual value
z(x) falls within the interval. In other words, 95% of the symmetric 95% PCls should
contain the actual value. Furthermore, if a coverage probability is found for a range
of symmetric PCIs (say from a 1% to a 99% PCI in increments of 1%) and the results
are plotted against the probability interval p, then an accuracy plot is found (Deutsch
1997; Goovaerts 2001). Sample accuracy plots are given for GWR-EXP-CV, OK,
UK-LN, and GWRK-EXP-AIC in Fig. 2, where the results for MLR are shown in all
plots to provide context. For this particular simulation run and class, the performance
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Fig. 2 Accuracy plots for (A) GWR-EXP-CV, (B) OK, (C) UK-LN, and (D) GWRK-EXP-AIC using
simulation data from run three for simulated class 5 (low heterogeneity and low autocorrelation cases)

of GWR-EXP-CV is relatively weak, as its accuracy plot falls furthest from the 45°
line.

Following Deutsch (1997), a complementary goodness statistic is calculated,
which provides value to a model’s accuracy plot. This G-statistic can be defined
asG=1-— 01 [3a(p) — 21[E(p) — pldp, where & is the fraction of actual values
falling in the PCI, and a value of 1 is sought. The indicator function a(p) is defined
1 ifé(p) = p

0 otherwise
ations when &(p) < p. Thus, models with accuracy plots that tend to fall above the
45° line are preferred to models that have accuracy plots that tend to fall below the
45° line. For each model and simulation data class, G-statistic results are reported as
an average of the individual G-statistic values found from each simulation run.

asa(p) = , which entails that twice the importance is given to devi-
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Fig. 3 PCI width plots for (A) GWR-EXP-CV, (B) OK, (C) UK-LN, and (D) GWRK-EXP-AIC using
simulation data from run three for simulated class 5 (low heterogeneity and low autocorrelation cases)

For cases where two models provide similar G-statistics, one model can be pre-
ferred if its PCI widths that contain the actual value are smaller, as this reduces un-
certainty about the actual value falling within the PCI. Therefore, the average width
of the PCIs that include the actual values is calculated for each p and plotted in Fig. 3
for the same models used in Fig. 2. Clearly, MLR provides very poor PCTI’s in this
respect. To cater to this important aspect of a PCI, an average PCI width for all p
(AW) is calculated for each model and simulation data class, and again reported as
an average of the five individual AW values found.

4.4 Model Validation: Ranked Summaries

A general view on model performance across all simulation data classes is found
by presenting the average relRMSE, G-statistic, and AW results in a ranked form.
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Here the mean rank of a model is defined as MRK,, = (1/9) - ?:1 Tms, Where ry;
is the performance rank (via its average relRMSE, G-statistic, or AW value) of the
mth model with simulation data class s. The SD of the ranks can be found using
SDRK,, =[(1/(9 = 1))  o_,(rms — MRK,,)*]%3. Models that perform well should
have a small mean rank and a small SD of ranks, with respect to each assessment
statistic. A large SD of ranks indicates that a model tends to perform either best or
Wworst.

4.5 Ball-park Indicators of Spatial Heterogeneity and Spatial Autocorrelation

To aid in the interpretation of the results, ball-park indicators of spatial heterogeneity
and spatial autocorrelation that are actually present in each (full) simulated z; data
set is provided (Table 1). An indicator of heterogeneity is taken as the bandwidth
for a GWR-BX-CV model averaged over the five simulation runs. An indicator of
autocorrelation is taken as a Moran’s [ statistic (specified with an IDW scheme),
averaged over the five simulation runs. In the former case, (relatively) small values
would suggest simulated data with strong heterogeneity. In the latter case, (relatively)
large values would suggest simulated data with strong autocorrelation. From the be-
haviour of the indicator data, it is clear that each component of the simulation has
a direct effect on the other. Here increasing heterogeneity in the mean component
increases autocorrelation in the simulated z; data; similarly, increasing autocorrela-
tion in the residual component increases heterogeneity in the simulated z; data. Thus
weak or strong levels of heterogeneity tend to coincide with weak or strong levels of
autocorrelation, respectively. This effect is akin to the usual identification problem
of the decomposed model, where it not possible to isolate first- from second-order
effects. However, the problem is further complicated as local non-linear trends are
defined (see Sect. 6.4). Consequently, when interpreting our study results, it is better
to view the indicator data rather than the labels of the simulation class for context.
Furthermore, we should not expect our simulated experiment to distinguish between
data situations when a GWR predictor can be preferred to a kriging predictor (and
vice versa), as both will tend to perform relatively well or poorly within the same
simulated data class.

5 Results

Details of the performance of the twelve models in nine different simulated data
classes (reflecting variations in both spatial heterogeneity and spatial autocorrelation)
are given in Tables 2—4 for the three different goodness-of-fit measures described in
Sect. 4, where each measure (relRMSE, G-statistic, and AW) is averaged over five
simulations. The results are presented in the same format as that given in Table 1,
for each of the twelve models. For example, the relRMSE values (Table 2) for OK
for simulated classes 1, 5, and 9 are 1.001, 0.681, and 0.561, respectively. To aid the
interpretation of the results, the three best performing models within each model-type
are highlighted in bold, and the three best performing models within each simulated
class are filled in. For example, the three best performing MLR models with respect
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Table 2 Validation results for relRMSE
OK MLR UK-GN UK-LN
1.001  0.757 0.694 | 0.589 0.884 0953 | 0.592 0.611 | 0.623 | 0.592 | 0.594 0.620
0.983  0.681 0.599 | 0.567 0.904 0.941 | 0.508 0.531 | 0.490 | 0.508 0.508 0.481
0.975 0.642 0.561 | 0.537 0.885 0.938 [0.392 0.449 | 0.439 | 0.393 0.408 0.415
GWR-BX-CV GWR-EXP-CV GWR-BX-AIC GWR-EXP-AIC
0.592  0.604 0.660 [ 0.590 0.599  0.655 | 0.590 0.604 0.665 | 0.590  0.603 0.687
0.543  0.534 0.544 | 0.524 0.530 0.517 | 0.547 0.537 0.540 | 0.529 0.539 0.576
0.440 0.451 0.485 | 0.427 0.427 0.467 | 0.440 0.449 0.484 | 0.440 0.464 0.547
GWRK-BX-CV GWRK-EXP-CV GWRK-BX-AIC GWRK-EXP-AIC

0.596 0.603  0.656 | 0.593 | 0.598 | 0.654 | 0.594 0.601 0.651 | 0.593 0.601 | 0.644
0.517 0.528 0.518 | 0.517 0.525 0.516 | 0.516 [ 0.523  0.519 | 0.514 0.523 0.501
0.426  0.432  0.460 | 0.422 | 0.425 | 0.465 | 0.421 0.432 0.464 [ 0.410 0.421 0.446

The three best performing models within each model-type are in bold

The three best performing models within each simulated class are highlighted

Each entry of each model’s 3 x 3 sub-table directly relates to those given in Table 1

Table 3 Validation results for G-statistic

OK MLR UK-GN UK-LN
0.776  0.966 | 0.977 | 0.979 0.962 0.967 | 0.976 | 0.972  0.979 | 0.976 | 0.972 0.981
0.937 | 0.956 0.984 | 0.972 0.931 0.955 | 0.961 0.948 0.974 | 0.961 | 0.965 0.968
0.912 | 0.968  0.978 [ 0.974 0.953 0.943 | 0.970 0.975 0.974 | 0.970 | 0.969 0.969
GWR-BX-CV GWR-EXP-CV GWR-BX-AIC GWR-EXP-AIC
0.976 | 0.972 | 0.966 | 0.978 0.953 0.853 | 0.977 0.970 0.967 [ 0.978 0.960 0.944
0.969 0951 0.973 | 0.936 0.885 0.864 | 0.965 0.951 | 0.975 | 0.953 0.925 0.966
0.968 0.966 | 0.980 | 0.872 0.852 0.763 | 0.972 0.965 | 0.981 | 0.956 0.919 0.945
GWRK-BX-CV GWRK-EXP-CV GWRK-BX-AIC GWRK-EXP-AIC

0.964 0958 0.944 | 0.963 0935 0.842 | 0.964 0951 0.949 | 0.963 0.938 0.926
0.974 0949 0973 | 0932 0.887 0.852 | 0.975 0.963  0.974 | 0.954 0.930 | 0.977
0.966  0.965 0.974 | 0.870 0.846 0.751 | 0.967 0.964 0.975 | 0.966 0.948 | 0.980

The three best performing models within each model-type are in bold
The three best performing models within each simulated class are highlighted
Each entry of each model’s 3 x 3 sub-table directly relates to those given in Table 1

to relRMSE (Table 2) are those for simulated classes 1, 2, and 3; the three best per-
forming models within simulated class 1 with respect to relRMSE (Table 2) are MLR,
GWR-EXP-CV, and GWR-EXP-AIC.

Using relRMSE as a performance indicator, three models seem to do consistently
well under varying conditions of heterogeneity and autocorrelation: UK-LN, GWRK-
EXP-AIC, and UK-GN. As expected, MLR only performs reasonably well under con-
ditions of very weak autocorrelation. Conversely, OK performs very poorly in such
cases, but its performance improves with increasing heterogeneity and autocorrela-
tion. As expected, all models (aside from the aspatial MLLR model) perform better
with increased levels of heterogeneity and autocorrelation. Using the G-statistic as
a performance indicator is less useful in discriminating between models. Few if any
consistent conclusions can be drawn from the results and there is little to choose
between the models under a large variety of conditions. AW values can only be
viewed as a performance indicator in conjunction with the G-statistic (and similarly,
a model’s G-statistic is given value when reported with AW). Thus, although GWR-
EXP-CV, GWRK-EXP-CV, and GWRK-EXP-AIC appear to perform well in this
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Table 4 Validation results for AW
OK MLR UK-GN UK-LN
3.659 2425 2724 | 2153 2880 3.674 | 2.146 1.964 2401 | 2.152 1977 2416
3.443 2139 2406 |2.002 2734 3.731 | 1.758 1.602 2.071 | 1.759 1.613 2.086
3315 1.893 2.023 | 1.856 2.616 3.329 | 1.358 1.328 | 1.603 | 1.360 1.338 1.625
GWR-BX-CV GWR-EXP-CV GWR-BX-AIC GWR-EXP-AIC
2.161 1928 2498 | 2.149 | 1.795 1992 | 2.156 1923 2501 | 2.150 1.852 2.417
1.907 1.652 2201 | 1.692 1408 1.650 | 1.909 1.656 2.190 | 1.775 1.546 2.150
1489 1347 1.734 [ 1.193 1.030 1.132 | 1.496 1.336 1.723 | 1.408 1.267 1.756
GWRK-BX-CV GWRK-EXP-CV GWRK-BX-AIC GWRK-EXP-AIC
2.047 1.844 2390 | 2.035 1.734 1.953 | 2.041 1.821 2379 | 2.036 1.760 2.204
1.837 1.627 2.175 | 1.659 1399 1.615 1.835 1.637 2.174 | 1.736 1.510 2.015
1.472  1.327 1.715 | 1.177 1.012 1.108 | 1.468 1.510 1.691 | 1.366 | 1.214 1.623
The three best performing models within each model-type are in bold
The three best performing models within each simulated class are highlighted
Each entry of each model’s 3 x 3 sub-table directly relates to those given in Table 1
Table 5 Ranked performances
Model: 1—relRMSE 2—G-statistic 3—AW value
MRK;, SDRK;; MRK;, SDRK;;, MRK;, SDRK;;,
OK 11.33 0.50 5.67 3.94 11.33 0.50
MLR 10.56 3.61 5.67 3.57 11.44 1.01
UK-GN 4.11 3.26 4.44 2.24 5.11 1.96
UK-LN 1.89 1.96 4.33 2.96 6.56 2.07
GWR-BX-CV 8.22 0.97 4.22 1.56 9.33 0.87
GWR-EXP-CV 5.22 1.86 9.89 3.06 2.56 1.33
GWR-BX-AIC 8.33 1.80 3.78 1.48 9.11 1.17
GWR-EXP-AIC 8.56 2.35 8.33 2.18 6.33 1.87
GWRK-BX-CV 6.11 2.03 6.67 1.94 6.44 1.51
GWRK-EXP-CV 4.78 1.79 11.67 0.71 1.00 0.00
GWRK-BX-AIC 5.33 2.12 5.67 3.00 5.67 1.73
GWRK-EXP-AIC 3.56 2.13 7.67 3.46 3.11 0.93

respect, they each have relatively poor G-statistic results. An example of the use of
AW value would be to distinguish between GWR-BX-CV, UK-LN, and UK-GN for
simulated data class 4 where their G-statistics are the same (at 0.972). Here GWR-
BX-CV has the lowest AW value (at 1.928) and therefore provides the better estimates
of prediction uncertainty for this particular example. Instances where models perform
particularly well in this dual assessment are with UK-GN and GWRK-EXP-AIC for
simulated data classes 3 and 8, respectively.

Ranked summaries (Table 5) provide an alternative guide to each model’s relative
performance. Thus from a prediction accuracy perspective (i.e. reIRMSE), the overall
best model is UK-LN followed by GWRK-EXP-AIC and UK-GN. From a predic-
tion uncertainty accuracy perspective and using the G-statistic only, GWR-BX-AIC,
GWR-BX-CV, and UK-LN are the three best performing models. However, when

@ Springer



Math Geosci (2010) 42: 657-680 673

Table 6 Estimated model parameters: average bandwidths/neighbourhoods (%)

OK MLR UK-GN UK-LN

_ _ - - - - - - - 79.03 2226 23.55
_ — - - - - - - - 94.52 2484 24.84
_ — - - - - - - - 68.71 23.55 13.23

GWR-BX-CV GWR-EXP-CV GWR-BX-AIC GWR-EXP-AIC

54.73  15.68 523 87.48 1.80 036 71.86 16.19 6.61 86.71 2.94 1.75
26.63 5.69 5.87 1.47 0.93 0.33 2945 8.75 5.48 3.18 1.90 1.51
6.02 5.64 4.50 0.63 0.44 0.26 9.93 5.48 4.25 1.87 1.68 1.47

Each entry of each model’s 3 x 3 sub-table directly relates to those given in Table 1

a model’s AW ranked performance is considered jointly with its G-statistic ranked
performance then UK-GN, GWR-BX-AIC, and GWRK-BX-AIC are viewed as the
three best performing models. MLR, OK, and GWR-EXP-AIC are viewed as the
three worst performing models in this respect.

The relatively strong prediction accuracy performances of UK-LN and GWRK-
EXP-AIC should be expected as both models directly account for both heterogeneity
and autocorrelation. Thus, the performance of these models is in part a consequence
of the simulation approach adopted. The performance of UK-GN is commendable
and indicates that substantial first-order effects (via different levels of relationship
heterogeneity) can be successfully modelled as second-order effects instead. Further-
more, and unlike UK-LN and GWRK-EXP-AIC, UK-GN does not suffer from some
form of approximation with respect to its estimates of prediction uncertainty (and
hence its strong performance in this respect).

GWR models are almost always outperformed by their corresponding GWRK
models. Performance difference is greatest between GWR-AIC and correspond-
ing GWRK-AIC models (which reflects their parameterisation as discussed below).
The relatively strong performance of the GWRK-AIC models is expected as their
GWR-AIC mean components will more strongly tend to MLR fits than correspond-
ing GWR-CV fits will, which in turn entails that GWRK-AIC models will more
strongly tend to (the strongly-performing) UK-GN (or RK) models than correspond-
ing GWRK-CV models will. It is difficult to gauge whether the performance differ-
ence between the best GWRK model (GWRK-EXP-AIC) and the best GWR model
(taken as GWR-EXP-CV) is sufficiently large to counteract the differences in model
complexity. For GWRK to be preferred, it must not only show a distinct advantage
over GWR, but also the simpler UK-GN model. Basic models are not only prefer-
able, in the interest of model parsimony, but are also preferable with respect to sta-
tistical inference (i.e. it is difficult to interpret residual variogram bias statistically in
GWRK, whereas for UK-GN it is viable). Pardo-Iglizquiza and Dowd (1998) discuss
such issues when preferring UK-GN to more complicated or highly parameterised
models.

For completeness, average bandwidths or neighbourhoods for the GWR or UK-
LN models are given in Table 6 for the nine simulated data classes. Similarly, aver-
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Table 7 Estimated model parameters: average nugget effects

OK MLR UK-GN UK-LN

0.792 0.006 0.002 - - - 0.769 0.005 0.002 0.769 0.005 0.002
0.387 0.005 0.011 - - - 0471 0.005 0.007 0471 0.005 0.007
0.763  0.008 0.032 - - - 0252 0.005 0.007 0252 0.005 0.007
GWRK-BX-CV GWRK-EXP-CV GWRK-BX-AIC GWRK-EXP-AIC

0.870 0.862 0.870 0.872 0.898 0926 0.869 0.855 0.849 0872 0.867 0.767
0.771 0.857 0.773 0.834 0860 0.899 0.731 0.797 0.799 0.791 0.792 0.658
0.827 0.790 0.806 0.877 0.892 0.899 0.806 0.798 0.826 0.743 0.695 0.583

Each entry of each model’s 3 x 3 sub-table directly relates to those given in Table 1

age nugget effects for the OK, UK and GWRK models are given in Table 7 to give a
partial guide to modelled levels of autocorrelation. Again, these parameter estimates
reflect an intertwined heterogeneity/autocorrelation effect in the data (cf. the indi-
cator data in Table 1). Here bandwidths/neighbourhoods tend to shrink and nugget
effects (for the standard OK/UK models) tend to strengthen, as levels of heterogene-
ity/autocorrelation increase.

Observe that the GWRK models are consistently modelled with a high nugget ef-
fect, which was expected. Observe also that GWRK-CV models tend to have higher
nugget effects than GWRK-AIC models. This reflects the usual stronger fit of a
GWR-CV mean component over a corresponding GWR-AIC mean component (i.e.
view GWR relRMSE and bandwidth results in Tables 2 and 6, respectively), leaving
a weaker (and likely more biased) autocorrelation structure in GWRK-CV residual
data than that found in corresponding GWRK-AIC residual data. Furthermore, such
differences tend to be pronounced when an exponential rather than a box-car kernel
is specified. Observe that there is no evidence to suggest that any of the GWR-CV
models have over-fitted the simulated data. If such events do occur, then the corre-
sponding GWR-AIC models often provide reasonable alternatives.

6 Discussion
6.1 Modelling Decisions

Throughout this study, the decisions taken when parameterising a given model are
taken to be both reasonable and consistent. Some effort was made to look at differ-
ent model forms where, for example, GWR was specified with two different kernel
functions and with different optimised bandwidths. However, a more complete com-
parison of model form could potentially have looked at: GWR with further kernel
options (e.g. bi-square, etc.); GWRK with different residual variogram estimators;
OK/UK/GWRK with different variogram models (e.g. Matérn, etc.); OK/UK/GWRK
with different variogram model fitting techniques; etc. Investigating all such model
forms has the potential to change the results of this study, but clearly such an in-depth
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comparison would soon become rather tedious and unwieldy. Automating modelling
decisions is possible, but some severe computational difficulties may result. As such,
the results of this study have to be viewed in context of the modelling decisions made,
as well as the particular properties of the simulated data generated. In our opinion, it
is felt that the results are reasonable where the most important modelling decisions
were adequately investigated.

6.2 Estimated PSEs

The majority of this study’s models have been shown to provide reasonably accurate
PSE estimates in a global (and statistical) sense (Tables 3 and 4). However, it can also
be useful to assess the value of a model’s PSE estimates spatially and locally. In this
respect, maps of absolute (actual) prediction errors and estimated PSEs are given in
Figs. 4 and 5, for the same four models used in Figs. 2 and 3. Clearly, there is no
relationship between actual errors and those estimated for each of the chosen models;
this result can be more clearly observed from the corresponding scatterplots of Fig. 6.
All that is evident is that kriging provides PSEs that reflect sample configuration (i.e.
PSEs are higher in areas of sparsely sampled data). These results are transferable to
all other study models and are not unexpected.

For kriging, this problem has been a topic of much debate (e.g. Journel 1986;
Goovaerts 2001; Heuvelink and Pebesma 2002), and a common approach to address
it is to specify some non-stationary model that allows the variance and/or variogram
to vary locally. Commonly, such models improve local prediction uncertainty accu-
racy but have little or no effect on prediction accuracy. Models include kriging with
locally varying sills (Isaaks and Srivastava 1989), Box-Cox kriging (Kitanidis and
Shen 1996), kriging with an interpolation variance (Yamamoto 2000) and MWK.
GWR can be similarly adapted and our current research is exploring this issue with
the spatially heteroskedastic models of Fotheringham et al. (2002, pp. 80-82) and of
Péez et al. (2002), where estimates of the residual variance are allowed to vary across
space.

6.3 Empirical Research and Model Calibration Issues with UK-LN

For the combined heterogenic and autocorrelation properties of our simulated data
sets, results suggest that UK-LN should be chosen ahead of GWRK, which itself
should be chosen ahead of UK-GN (where this order reflects a higher weighting
is given to prediction accuracy rather than prediction uncertainty accuracy). Thus,
when it comes to transferring these results to real data sets that have similar spa-
tial properties, UK-LN should be the preferred predictor. However, our own em-
pirical research has routinely confirmed a common problem with the calibration of
UK-LN (and by association GWR-BX and GWRK-BX) models where an optimal
neighbourhood cannot be found when covariates are not particularly continuous (e.g.
Deutsch and Journel 1998, p. 71) and/or are locally collinear (i.e. models fail across a
range of neighbourhoods due to matrix instability). Crucially, GWR/GWRK mod-
els specified with some continuous distance-decay kernel are usually able to cir-
cumvent such problems and as a result, are more flexible than UK-LN when mod-
elling non-stationary relationships. For instances where UK-LN models could not
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Fig. 4 Absolute prediction error maps for (A) GWR-EXP-CV, (B) OK, (C) UK-LN, and
(D) GWRK-EXP-AIC using simulation data from run three for simulated class 5 (low heterogeneity and
low autocorrelation cases). Large dark-coloured filled circles correspond to large errors whereas small
light-coloured filled circles correspond to small errors

be calibrated, GWRK-EXP (and GWR-EXP) models have performed favourably
against UK-GN models, especially from a prediction accuracy perspective. For in-
stances where problems of local collinearity cannot be adequately addressed with
basic GWR constructions, the sophisticated ridge or lasso GWR models of Wheeler
(2007, 2009) can be used instead, as these are specifically designed to counter such
problems.

6.4 Limitations of the GWRK Model

Finally, it is important to stress that there is much uncertainty regarding the GWRK
model. The proposed GWRK variances are (ad hoc) rough approximations (see (9))
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Fig. 5 Estimated prediction standard error maps for (A) GWR-EXP-CV, (B) OK, (C) UK-LN, and
(D) GWRK-EXP-AIC using simulation data from run three for simulated class 5 (low heterogeneity and
low autocorrelation cases). Large dark-coloured filled circles correspond to large estimated errors whereas
small light-coloured filled circles correspond to small estimated errors

and bias in the residual variogram was not investigated; problems that both relate to
a difficult identification problem that is inherent in this model. As a consequence,
the GWRK model is not ready for any inferential analysis, as there are concerns
about it its stability, correlation and statistical consistency. These concerns may be
addressed by further research, possibly borrowing ideas from the formulation of UK
as a random effects model as in Kammann and Wand (2003). Thus for now, GWRK
should be viewed as a useful prediction model only.
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Fig. 6 Actual versus estimated prediction error plots for (A) GWR-EXP-CV, (B) OK, (C) UK-LN, and
(D) GWRK-EXP-AIC using simulation data from run three for simulated class 5 (low heterogeneity and
low autocorrelation cases)

7 Conclusions

In this study, we have compared the prediction performances of MLR, GWR, OK,
UK, and GWRK (GWR used as a mean component of kriging) models using simu-
lated data based on different levels of spatial heterogeneity (with respect to data rela-
tionships) and different levels of spatial autocorrelation. The best performing model
was found to be a UK model specified with local neighbourhoods. This model was
followed by a GWRK model and then by a UK model specified with a global neigh-
bourhood. All UK, GWRK, and GWR models were shown to out-perform the naive
MLR and OK models. For the three best performing models, all three could account
for spatial autocorrelation, but only the first two could additionally account for spa-
tially varying relationships. Although our simulation experiment does not prove a
result, these results can provide a useful guide to empirical research. In this respect,
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it is noted that UK models specified with local neighbourhoods (our preferred choice)
can sometimes suffer from calibration difficulties and if so, a GWRK (or sometimes,
a more pragmatic GWR) model can provide a worthy alternative when predicting
with non-stationary relationships.

Further comparative work could consider using simulated data with different lev-
els (and types) of heterogeneity and autocorrelation to that used here. Investigations
into the effects of sample size and configuration on model performance should also
be considered, as would the simulation of data based on more than one covariate. Fu-
ture research could also incorporate non-stationary relationship models that have not
been investigated in this study, such as the local cokriging (CoK) models of Pereira
et al. (2002); the UK- and CoK-based MWK models of Haas (1996); the Bayesian
spatially varying coefficient models of Gelfand et al. (2003); and the Bayesian local
CoK models of Gelfand et al. (2004).
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