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Abstract This study adds to our ability to predict the
unknown by empirically assessing the performance of a
novel geostatistical-nonparametric hybrid technique to
provide accurate predictions of the value of an attribute
together with locally-relevant measures of prediction con-
fidence, at point locations for a single realisation spatial
process. The nonstationary variogram technique employed
generalises a moving window kriging (MWK) model
where classic variogram (CV) estimators are replaced
with information-rich, geographically weighted variogram
(GWYV) estimators. The GWVs are constructed using ker-
nel smoothing. The resultant and novel MWK-GWV
model is compared with a standard MWK model (MWK-
CV), a standard nonlinear model (Box—Cox kriging, BCK)
and a standard linear model (simple kriging, SK), using
four example datasets. Exploratory local analyses suggest
that each dataset may benefit from a MWK application.
This expectation was broadly confirmed once the models
were applied. Model performance results indicate much
promise in the MWK-GWV model. Situations where a
MWK model is preferred to a BCK model and where a
MWK-GWYV model is preferred to a MWK-CV model are
discussed with respect to model performance, parameteri-
sation and complexity; and with respect to sample scale,
information and heterogeneity.
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1 Introduction

A fundamental problem in geostatistics is that of accurate
prediction and associated measures of prediction uncer-
tainty. Spatial prediction is not only valuable to scientists
who attempt to model spatial processes, but also to policy
makers who need to plan, assess risk and manage the
outcomes of spatial processes at different spatial scales.
Often overlooked in a geostatistical analysis is the impor-
tance of accurate measures of prediction uncertainty. It is
this aspect of geostatistical prediction that the kriging
models of our study particularly focus on, and for which we
aim to demonstrate the utility of our hybrid geostatistical-
nonparametric approach.

In the classical geostatistical framework, uncertainty at a
target location can be accounted for in three distinct ways
by: (i) a conditional distribution defined by the kriging
prediction and kriging variance from (any form of) kriging;
(i) a conditional distribution from a specific nonlinear
method such as indicator kriging (IK) (Journel 1983) or
disjunctive kriging (DK) (Matheron 1976); or (iii) some
conditional simulation approach (Journel 1989). Com-
monly, a method from approach (i) or (iii) is overlooked in
favour of one from approach (ii). A standard method such
as simple kriging (SK) from approach (i) is not recom-
mended as kriging variances are unlikely to vary in
accordance with the variability in the local data used to
provide the kriged predictions. That is, the kriging variance
is a function only of the variogram model and the spatial
configuration of the data and, given a global variogram
model (as in SK), it can only vary locally in this sense. For
point prediction, a method from approach (iii) is not rec-
ommended as it will simply produce broadly similar results
to a much simpler method of approach (ii) on which it is
usually based (Goovaerts 2001). However, for this study
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the concept of approach (i) is retained, but methods are
adapted to allow the variance and/or the variogram to vary
across space. This crucial adaptation provides the neces-
sary conditional distributions that are comparable with
those found from a method of approach (ii), especially
when modelling some heterogenic (or nonstationary) spa-
tial process.

Models that cater for such nonstationarity of the vari-
ance and/or variogram include: Box—Cox kriging (BCK)
(Kitanidis and Shen 1996), kriging with locally varying
sills (Kls) (Isaaks and Srivastava 1989), kriging with an
interpolation variance (Kiv) (Yamamoto 2000), kriging
within strata (StK) (Stein et al. 1988), kriging within
classes (CK) (Cressie 1993), multiple population indicator
kriging (MPIK) (Parker 1991) and moving window kriging
(MWK) (Haas 1990). All models have the potential to
improve estimates of prediction uncertainty, whereas only
BCK, StK, CK, MPIK and MWK are also capable of
improving predictions. The BCK, Kls and Kiv models
address only nonstationarity of the variance and are the
simplest to implement. The Kls model does this directly by
locally correcting the kriging variance, whereas BCK uses
a data transform to achieve the same objective. Commonly,
both Kls and BCK (with respect to its back-transforms)
assume a proportional relationship between local means
and local variances. The Kiv model counters the data-
independent properties of the kriging variance by calcu-
lating an alternative that depends on local data. The Kls,
BCK and Kiv models all rely on one (global and stationary)
variogram fit.

The StK, CK and MPIK models are examples of kriging
within partitions. For StK the partitioning is spatial, for CK
it usually relates to classified contextual data and for MPIK
the partitioning is based on breakpoints in the histogram.
Commonly, partitioned methods use separate variograms
for each partition. For StK, this can account fully for
variogram nonstationarity, but for CK and MPIK vario-
gram nonstationarity will depend on the spatial layout of
the partitions used. In practise, CK and MPIK will account
for only a limited form of variogram nonstationarity. For
MWHK, a variogram is determined at every target location
in this fully-automatic, continuous and locally-adaptive
nonstationary variogram technique. The MWK model
reduces the work-load of the analyst over a StK, CK or
MPIK model, but at a cost of reduced control over the
model calibration.

Existing geostatistical-nonparametric  hybrids  that
account similarly for variogram nonstationarity include
those where local variogram model parameters found from
an initial application of StK (Fuentes 2001; Fuentes et al.
2003) or MWK (Haas 2002; Pardo-Igiizquiza et al. 2005)
and are then kernel smoothed (i.e. KS-StK or KS—-MWK
models, respectively). This use of a kernel weighting
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function allows a global model of spatial dependence to be
defined that represents the spatial process as a whole.
Methods defined using partitions or moving windows can
only provide a collection of individual local models of
spatial dependence (Sampson et al. 2001). Smoothed
parameters can also be robust to outlying data that can
affect local variogram parameter estimation at a given
location.

For the hybrid MWK-based model of this study, a kernel
weighting function is not used to smooth local variogram
parameters (as in KS-StK or KS-MWK), but is used
instead to smooth the individual (empirical) semivariances
of each lag interval according to the distance of these
paired values from a target location. Thus, at any target
location, a geographically weighted variogram (GWYV) is
estimated and modelled, creating the MWK-GWYV tech-
nique. The expected benefit of a GWYV is that it does not
rely on limited local information to be local and reliable, as
that does a local classic variogram (CV) of standard MWK
(i.e. MWK-CV), which is estimated using only data within
some circular window centred at a target location. In fact, a
GWYV can benefit from exactly the same information as the
global variogram estimator used in say, BCK. The first
published account of a GWV can be found in Johannesson
and Cressie (2004) where it was used in a purely explor-
atory fashion. The natural extension and use of a GWV
with kriging was not pursued and in this respect, the
MWK-GWYV model of this study is novel. To demonstrate
the utility of MWK-GWYV, its performance is compared
empirically with MWK-CV, BCK (taken as a benchmark
nonstationary variance model) and SK (the naive model)
using four example environmental datasets.

2 Four datasets

All four datasets are assumed to be representative of a
heterogeneous spatial process that should benefit from a
nonstationary modelling approach. Datasets were chosen to
cover a broad range of environmental processes, where the
data sizes for model calibration could range from the rel-
atively small (n = 78) to the relatively large (n = 808).
Crucially, two of these datasets were chosen blindly, with
little or no prior knowledge of their actual properties.
Experience suggested the other two datasets would benefit
from nonstationary modelling. All four datasets are freely
available.

2.1 Chosen blindly
e The first and second datasets are taken from the spatial

interpolation comparison (SIC) exercises of 1997 and
2004 (e.g. see Dubois 2008) organised through the
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AI-GEOSTATS website (http://www.ai-geostats.org).
Here the first dataset is for SIC97 and consists of daily
rainfall (wet deposited radioactivity) data in Switzer-
land, split into a model calibration data subset of 100
values and a model validation data subset of 367
values.

e The second dataset is for SIC2004 and consists of
natural ambient radioactivity (gamma dose rates)
measured in Germany, split into a model calibration
data subset of 200 values and a model validation data
subset of 808 values. Both SIC datasets are available in
the R gstat package (Pebesma 2004).

2.2 Chosen with some prior knowledge

e The third dataset is the ‘Calcium content in soil sam-
ples’ dataset (Ca20) which is available in the R geoR
package (Ribeiro and Diggle 2001). This dataset is split
into a model calibration data subset of 78 values and a
model validation data subset of 100 values. This dataset
covers three distinct regions, each with different
physical properties. Thus, a nonstationary model may
suit the dataset as a whole.

e The fourth dataset is a freshwater acidification critical
load dataset covering Great Britain (CLAG-Freshwa-
ters 1995). This dataset is split into a model calibra-
tion data subset of 189 values and a model validation
data subset of 497 values. The size and scale of this
dataset should suit a nonstationary modelling
approach. Applications of (different) nonstationary
models to these data can be found in Harris and
Brunsdon (2010). Data similar to those used in this
study can be found at http://critloads.ceh.ac.uk/index.
htm.

2.3 Eight data situations

Simple interpolation maps for the four datasets are shown
in Fig. 1, where each map is shown with its calibration
and validation sites. To enhance the comparisons of this
study and to assess the effect (if any) of sample size and/
or sample variation on model calibration, the roles of the
calibration and validation data subsets are also reversed.
This effectively provides four more datasets (i.e. eight
data situations in total). Here the calibration/validation
datasets given above are referred to as 1S, 2S, 3S and 4S
(for small calibration data subsets of size 100, 200, 78
and 189, respectively); and calibration/validation datasets
referred to as 1L, 2L, 3L and 4L correspond to large
calibration data subsets of size 367, 808, 100 and 497,
respectively.

3 Methods
3.1 Background to MWK

A standard algorithm such as ordinary kriging (OK) is
itself a moving window technique. However, when OK is
specified with local neighbourhoods, variograms are not
found locally as they strictly should be, but instead the
global variogram is retained (i.e. an assumption of quasi-
stationarity, see Journel and Huijbregts 1978, pp. 33-34).
Haas (1990) was the first to counter this approximation and
actually fit a variogram within each OK neighbourhood.
Haas (1990, 1996) proceeded to develop the MWK
approach incorporating lognormal kriging, regression
kriging, and cokriging versions. Other notable exponents of
MWK include the OK version of Walter et al. (2001); the
universal kriging (UK) version of Lloyd and Atkinson
(2002); the UK (KS-MWK) version of Pardo-Igizquiza
et al. (2005); and the IK version of Cattle et al. (2002).
Applications of MWK include those to: acid deposition
data (Haas); soil data (Walter, Cattle); elevation data
(Lloyd); and meteorological data (Pardo-Igiizquiza), where
sample scale and size are commonly large (i.e. situations
that warrant and enable the adoption of a MWK model).

For MWK an improvement in prediction accuracy is
often not sufficiently strong enough to warrant its adoption
by itself. Here, it is useful to refer to the empirical studies
of Walter et al. (2001), Lloyd and Atkinson (2002), Paci-
orek and Schervish (2006), where prediction using a sta-
tionary measure of spatial dependence was just as accurate.
Instead, it is MWK’s ability to provide kriging variances
that reflect local uncertainty accurately that is important.
This latter property of MWK has been demonstrated in Van
Tooren and Haas (1993), Walter et al. (2001) for example;
and this improvement alone can justify its use. Commonly,
the decision of whether or not to apply MWK over a sta-
tionary counterpart (such as BCK) depends on a trade-off
between: (a) many ill-fitted local variograms, but with
(potentially) more accurate model outputs and (b) a well-
fitted (and understood) global variogram with possibly less
accurate model outputs. As MWK is inherently more
complex and approximate, there must be good reason to
favour it. The MWK model will be of little worth if local
variograms are only marginally different from each other
and from the global variogram.

3.2 SK, BCK, MWK-CV and MWK-GWYV: general
specifications

For simplicity, the underlying kriging algorithm for BCK,

MWK-CV and MWK-GWYV is chosen as SK. It is, how-
ever, a straightforward extension to construct these models
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using OK instead. To avoid any distraction from this
study’s primary objectives, all models are designed for a
general robustness without being over-complicated. This
entails that the MWK models are not constructed from
individual BCK (or alternative nonlinear) models. It also
entails that the use of non-constant mean functions and
alternative variogram estimators are similarly avoided in
all model constructions. Furthermore, the kriging neigh-
bourhood is always taken as the same size as that used in
the corresponding variography (i.e. no quasi-stationarity
decisions are made in any model). As MWK necessitates a
fully automated variographic approach, the simpler SK and
BCK models (with their single, stationary variograms) are
calibrated in a similar fully automated manner. Thus, with
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the given modelling constraints in place, it is likely that the
performance of all models in the study could be improved
upon if some judged interaction between the analyst and
model specification were allowed. However, adhering to
these constraints provides a means of comparing models
objectively in a relative sense.

3.3 SK, BCK and MWK-CV: characterisation
of spatial dependence

For SK, BCK and MWK-CV, a two-stage procedure is
adopted where the variogram is first estimated and then
modelled to get a smooth representation of spatial depen-
dence. For SK and BCK this procedure is done once and
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globally, whereas for MWK-CV it is done many times and
locally. For simplicity, only omni-directional (isotropic)
estimators are considered. Therefore, let z (x1),...,z (X,)
denote observations from a constant mean spatial process
at locations Xxi,...,x, and following Johannesson and
Cressie (2004, pp. 27-30), the CV estimator at any location
u can be defined as:

1 X 0 Bpavy

2¢(h;u) = Z(x;)—zx; ; h[ O

IN(E W] o enm)
(1)

where N (h; u) is a set of pairs of indices such that
G HDING w if |x;—x) & h (where this
approximation reflects some user-specified tolerance on
the lag distance /), and x;, X; are both in the neighbourhood
of u. To interpret an estimated variogram, nugget and
Matérn models are specified, which are defined as:

cy(h) =co+c (2)
0 0.0, 0,00
1 h ho
cy(h)=co+c 1— 2V71C(v) . K, PR for h[ O
(3)

where ¢ (h) = 0 for h = 0. Here a is a correlation range
parameter; v is a smoothing parameter; K, is a modified
Bessel function; C is the gamma function; and ¢, and ¢ are
partial sills that reflect small- and large-scale variation,
respectively. The Matérn function offers much flexibility,
where the higher is the value of v, the smoother is the
process. For this study, v is not estimated (or fitted) but is
fixed beforehand at 0.5, 1 or 1.5. This effectively provides
four (not two) variogram models to choose from in total.

For each kriging technique, all four variogram models
are fitted automatically using the weighted least squares
(WLS) approach of Zhang et al. (1995). Here sensible
heuristics are used to define: (a) the lag intervals of the
CV estimator; (b) the minimum number of pairs allowed
at the first lag of the CV estimator; (c) the truncation of
the CV estimator at long (unreliable) lag distances; and
(d) the model starting parameters for the WLS fit. Such
variographic specifications are chosen so as to minimise
the occurrence of a poor (or failed) WLS fit and are
crucial in determining a good kriging model performance
(see Miiller 1999; Lahiri et al. 2002). One variogram
model is chosen that provides the smallest weighted sum
of squares (WSS) and the corresponding parameters are
used to solve an SK system of equations. Optimal
model parameterisation by a maximum likelihood (ML)
approach was discounted from the outset as it does not
suit the MWK comparisons of this study. In any case,
CV/WLS variogram fits have been the usual choice for
most MWK studies (e.g. Haas 1990, 1996).

3.4 BCK: transforms and back-transforms

A simple form of variance nonstationarity can be addressed
by transforming the scale of measurement so that the
sample distribution is approximately Gaussian with a sta-
tionary or stable variance. One such method is BCK, which
transforms the data according to:

: £-1
In(z) k=0’

where z; is the transformed value and z is the value to be
transformed. The parameter k is estimated using ML based
on an assumption that the transformed data are Gaussian.
Variogram inference and kriging with transformed data is
the same as for raw data. In this respect, BCK is not strictly
nonlinear but is instead linear kriging of a nonlinear
transform of the data. A key problem with BCK (and
related methods) is a bias when back-transforming to the
original scale (Cressie 1993, pp. 135-138; Chilés and
Delfiner 1999, pp. 190-193). Thus, the following corrected
back-transforms are defined (Kitanidis and Shen 1996).
When k = 0, an unbiased back-transform for a_pre-

Zr =

diction at location u is taken as, Zgcx(u) =b* b*+
ar3or(w)]; where b =1+ kégexr(u); a = (1/k) — 2;
2pckr(u) is the SK prediction in transformed-space; and
I 2cxr(w) is the SK variance in transformed-space. Alter-
natively when k T 0, an unbiased baclﬁ-tra[nsform results
in 2pcx(u) = exp Zpckr(u) +r3cgr(1) 2. An unbiased
back-transform for the[ﬁorrespondhtg kri%ing variance
is 3ok (W) =1 hexr(w) 1 ek (w)=8 5b2 if k=05
) (1) ) [ o, 0o 0
rpcx (W) = exp 28pekr(w) +pegr(W) X €Xp rpoer(u) — 1
if k =0; and 13-4 (u) = b[(zzk)fz]r%;CKT(u) for all other
values of k. These analytical back-transforms are sensitive
to values of the kriging variance, and as a consequence,
poor or unusual BCK outputs can often be attributed to this.

3.5 MWK-CV: window size

Probably the most important decision in MWK-CV is
window size. That is, at what scale can the usual sta-
tionarity decisions for SK be safely made? Here a cross-
validation approach is adopted as this ensures some
objectivity in model comparison across the four study
datasets. It is, however, not easy to decide on the form that
the objective function should take. For example, should an
optimal window size reflect MWK-CV prediction accu-
racy, MWK-CV prediction accuracy of uncertainty or
some mixture of both? In this respect, Haas (2002) suggests
a weighted sum of model bias statistics where the weights
are user-specified according to relative priorities.

In a similar vein, an optimal window size for this study’s
MWK-CV models is found by first calibrating models across
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abroad range of window sizes. Here a minimum window size
is set at n = 35 (which is consistent with previous studies,
e.g. Haas 1990; Pardo-Igizquiza et al. 2005) and once set,
window size is increased in 10% data increments. Secondly,
three of the four model bias statistics given in Sect. 4 (rel-
RMSE, G-statistic and Error-Corr) are calculated for each
MWK-CV fit. Models are then ranked according to their
average ranking performance for each model bias statistic
(i.e. toreflect a mixture of prediction accuracy and prediction
uncertainty accuracy). The MWK-CV model with the best
ranking is taken to have the optimal window size.

3.6 MWK-GWV: GWYV estimation

For the GWV estimator, a weighting function is used to
smooth the individual (empirical) semivariances (of each lag
interval) according to the distance of these paired values from
a target location. The expected benefit of a GWV is that it is
not so reliant on limited local information to be local and
reliable as that for a local CV. On the downside, the resultant
MWK-GWYV model adds another layer of complexity to the
MWK approach. Empirical variograms have been weighted
before; either to address clustering bias due to preferential
sampling or to address statistical homogeneity for paired
values at each lag interval (Omre 1984; Richmond 2002;
Rivoirard 2002). Goovaerts et al. (2005) applied a weighted
variogram to cancer mortality rate data, where paired values
are weighted according to an increase/decrease in population
size. The use of geographical (as opposed to non-geograph-
ical) weights in variogram estimation can be found in
Johannesson and Cressie (2004), where a GWV estimator was
used to explore local spatial dependence in residual data from
adetrending of a very large ozone dataset sampled across the
globe. This study now develops the use of this GWV esti-
mator with kriging. A GWV can be considered a part of a
wider set of geographically weighted (GW) models that
includes GW summary statistics, GW principle component
analysis and GW regression (Fotheringham et al. 2002).

A GWYV estimator can be constructed in various ways, but
after some experimentation a form that relates closely to that
described in Johannesson and Cressie (2004, pp. 27-30) is
adopted. This GWV estimator can be defined by re-writing
expression 1 in terms of a box—car weighting function:

1 X 0 0 [T
26(h;u) = Wi |, W xixishu z(x) —z2% )
h[ 0O 4)

where W (x;, X; h, w) is a weight taking the value
of 1 if (i', DI N u), and 0 otherwise, and
W (h;u) : W (X;, X;; h, u). Next write W (x;, X;; h, u)
in a more general form, for weights other than and
including 0-1:
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where w; (-) is a box—car weighting function that defines the
lag intervals and wy (-) is a (geographical) weighting func-
tion that defines what is meant to be in the neighbourhood of
u. Expressions 4 and 5 require the calculation of distances d
between location u and each pair of points defining each
(semi)variance value. Each (semi)variance value is then
geographically weighted according to the weight of the first
(say shortest) distance measure w, (||x; — u|) multiplied by
the weight of the second (say longest) distance measure
wq (||x; — u]). Again for simplicity, only omni-directional
(isotropic) GWV estimators are considered.

For this study, inverse distance weighting (IDW) is used
to find the geographical weights, i.e. w, (-) = 1/d9. Other
kernel functions can be used, but an IDW function defined
by distance (i.e. a fixed kernel-type) is chosen where small
values of the controlling parameter q give a weighting
function that decays gradually with distance, whereas large
values result in a weighting function that decays steeply.
All of the semivariance data are always used with this
weighting function and if q is pre-set at 0, the global
variogram would be found at every location u. This type of
GWYV specification also enables the kriging neighbourhood
to be taken as global. Akin to finding an optimal window
size for MWK-CV in Sect. 3.5, an optimal value of q is
found by first calibrating MWK-GWYV models for six pre-
set values of q (taken as: 0.5, 1, 1.5, 2, 2.5 and 3) and then
ranking models with respect to their average ranking per-
formance for each of the same three model bias statistics.
The MWK-GWV model with the best ranking is taken to
have the optimal value of q.

3.7 MWK-GWYV: GWV/WLS variogram fits

Once GWVs have been estimated at every location u, the
resulting MWK-GWYV algorithm is identical to the MWK-—
CV algorithm. That is the same four variogram models are
fitted by WLS and the model that provides the smallest
WSS is used to parameterise a SK system. Furthermore, the
same set of heuristics is used to define the GWV lag
intervals; the minimum number of pairs allowed at the first
GWV lag; truncation at long GWV lags; and starting
parameters for the WLS fit.

Truncation of the GWV estimator at long lags can be
crucial as the GWV tends to behave in a nonstationary
manner at shorter lags (i.e. akin to a local CV) and a sta-
tionary manner at longer lags (i.e. akin to the global CV).
This means that a GWV can sometimes resemble a CV
computed from data where the underlying process has some
form of trend, which in turn can result in problems when
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estimating the (total) sill and range parameters by WLS.
Such problems may not affect prediction accuracy adversely,
but can have a detrimental effect on the accuracy of pre-
diction uncertainty. This behaviour in the GWV is primarily
a consequence of using the same weighting scheme for each
lag interval, where the distribution of weights at any short lag
will often show much variation, whereas the distribution of
weights at any long lag will not (as all pairs separated by a
long lag will tend to lie at a similar distance from any location
u). As is intuitively expected, this behaviour in the GWV is
weakest when the geographical weights decay steeply with
distance (i.e. for a large value of q). All such issues stem from
distance-weighting a statistic that is already a function of
distance and these issues are complicated further when a
GWYV also reflects any true trend in the process being mod-
elled. Aside from (or in addition to) truncation, other pos-
sible approaches to guard against model fitting problems at
long GWYV lags include:

1. Using different weighting schemes for different lag
distances in the GWV estimation. For example, use an
IDW scheme but let the controlling parameter q
increase as the lag distance increases.

2. Fixing the total sill for each GWV/WLS variogram fit
as the GW variance (GWVAR) assigned to the same

location u. Here a GWVAR is found using s*(u) =

T )~ mia)?
local mean at u and the weights w; accord to the same
IDW scheme as that used for the GWV. Effectively,
this approach entails that a GWV is used only to
improve the nugget variance and range estimate over
that found with the usual local CV.

3. Tailoring the (non-geographical) weighting function of
the WLS variogram fit so that less importance is
attached to long variogram lags. Here the chosen WLS
fit uses N,/h>. weights with N, the number of point
pairs, which already reduces the influence of long lags
on the variogram fit. Thus, weights of say, Nh/h3, Nh/h4
can be specified to reduce the influence of long lags on
the variogram fit further.

", w; where m(u) is the

For this study, the two latter approaches were experimented
with, but as neither could offer a noticeable or consistent
improvement over the GWV/WLS variogram fits specified,
they were not pursued any further. Further work on this
issue is considered worthwhile.

3.8 MWK-GWV: example GWV/WLS variogram
fits with dataset four

For clarity, a spatially-representative selection of GWVs at
four target locations are given in Fig. 2 using the small

critical load data subset (dataset four). Here q is set at 0.5, 1
and 3 for GWV estimation in Fig. 2a—c, respectively. All
variogram plots are shown with the complete GWV, but the
WLS fits are to truncated GWVs (in this case set at a dis-
tance that is half the sampled area). For this particular
example, the GW Vs at locations two and three tend towards
the global variogram (Fig. 2e) at their longest lags and this
behaviour weakens as q is increased. For GWVs at loca-
tions one and four, such an effect is only really apparent at
their very longest lags, reflecting the extreme locations of
these example GW Vs in the sample area (i.e. their location
promotes variation in the geographical weights at the longer
lags). For all twelve GWVs shown, the WLS variogram fits
appear reasonable, providing some justification for GWV/
WLS variogram fitting approach adopted.

As q is increased from 0.5 to 1 the GW Vs become rather
erratic, but are little different when q is increased from 1 to
3; and despite this change in behaviour of the estimated
GWVs, the corresponding WLS fits are fairly stable for all
three values of q. This relative stability is reassuring
because if large discrepancies exist between corresponding
WLS fits (at a given location), then it is possible that spu-
rious local variogram structures have been induced by the
geographic weighting schemes specified. In this respect, it
is recommended that MWK-GWYV models should always
be complemented with some standard exploratory variog-
raphy. For reference, Rivoirard (2002), Goovaerts et al.
(2005) discuss the likelihood of such unwanted side-effects
when weighting stationary variograms.

4 Model assessment

Two measures are used to assess the accuracy of the four
kriging models examined. These are the prediction accu-
racy as measured by a relative root mean square error
(RMSE) term and the prediction uncertainty accuracy
measured by: (a) two prediction confidence interval (PCI)
statistics; and (b) the correlation between the actual and
estimated prediction errors. These are now defined briefly.

4.1 Prediction accuracy

defined as rel-

RMSE =

A relative RMSE diagnostic is

Here

(1=(n,)) 2, {z(w) — 2(w;)}* where 2(u;) is the pre-
dicted and z(uy) is the actual value at validation site uy; and
n, is the size of the validation data set. Here we would
expect re]RMSE \ 1 for each kriging model examined,
whereas if relRMSE >1 then the calibration data mean
predicts as well or better.
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(to small data subset), and e the global variogram with WLS fit. All
variograms are shown with all lag distances but where the WLS fit is
to a truncated variogram

Fig. 2 Example GWV/WLS variogram fits at four locations using the
small critical load data subset: a GWV/WLS variogram fits with
q = 0.5, b GWV/WLS variogram fits with q = 1, ¢ GWV/WLS
variogram fits with q = 3, d four locations with IDW mean surface
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Fig. 3 Relationships between
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4.2 Prediction uncertainty accuracy

For all models, the usual assumption of multivariate nor-
mality is adopted at the scale of the kriging neighbourhood.
From a classical geostatistics viewpoint, this entails that
2(u) and its corresponding prediction standard error r (u)
can be taken as the two defining moments of a normal
distribution at location u. This in turn enables the calcu-
lation of a PCI whose accuracy can be assessed using
coverage probabilities. For example, if symmetric 95%
PCIs were calculated at each validation site (i.e. using
2(u) £ 1:96r (wy)), then a correct modelling of local
uncertainty would entail that there is a 0.95 (expected
coverage) probability that the actual value z(uy) falls
within the interval. If the actual (not expected) coverage
probabilities are found for a range of symmetric PCIs (say
from a 1 to a 99% PCI in increments of 1%) and the results
plotted against the (expected coverage) probability interval

P, then an accuracy plot is obtained for a given model (e.g.
see Fig. 7c).

Accuracy plots are not presented for all models, but a
complementary ‘goodness’ statistic is reported that pro-
vides value to a model’sK'iccuracy plot.This G—sﬁatistic can
be defined as G =1 — 01 [3a(p) — 2] n{p) — p dp, where
f'is the fraction of actual values falling in the PCI, and a
value of 1 is sought. The indicator function a (p) is defined
as

O
- LI,
0 otherwise '’

which implies that twice the importance is given to devi-
ations when n(p)\ p. For cases where two models result in
similar accuracy plots and G-statistics, one model can be
preferred if its PCI widths that contain the actual value are
smaller (i.e. a model that consistently provides narrow and
accurate PCIs should be preferred to a model that
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Fig. 4 CoV surfaces for a full
dataset one, SIC97; b full
dataset two, SIC2004; ¢ full
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consistently provides wide and accurate PCIs). Here it is
usual to construct the corresponding PCI width plots to the
given accuracy plots and compare (e.g. see Fig. 7c, d).
However, in this study, only an average PCI width for all p
is reported (M-PCI-W) which acts as a rough guide to this
important aspect of a model’s PCIs. Details of accuracy
plots and associated diagnostics are given in Goovaerts
(2001).

A fourth model bias diagnostic is taken as the linear
correlation coefficient between the absolute (actual) pre-
diction errors and the estimated prediction (kriging) stan-
dard errors (Error-Corr). This correlation should be strong
and positive if the estimated prediction standard errors
actually reflect the local variability that is present in the
sample data. The SK models are expected to perform
consistently badly in this respect, whereas the BCK and
MWK models are expected to perform well.
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5 Results

5.1 Exploratory evidence of a proportional effect (for
BCK)

To assess if a regionalised variable follows a lognormal
distribution, local means can be plotted against the local
standard deviations (SDs). If a linear relationship is evident
then lognormality can be assumed (Chiles and Delfiner
1999, p. 56 and pp. 107-108). Similar relationships can be
used to guide the use of the (more general) Box—Cox
transform and in this respect local means are plotted
against local SDs for each study dataset in Fig. 3. Here
datasets one, two and four show some evidence of an
increasing mean coinciding with an increasing SD and thus
BCK (with k ? 0) may perform relatively well with these
datasets. However, in all three cases, there is a tail-off in
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Fig. 5 Comap (specified using KDE) for the local nugget effect
versus the local correlation range (in logs) for full dataset four
(critical load). The logarithm of the correlation range enables a better
visualisation. The underlying MWK-CV algorithm was specified with
a 5% window size (the minimum allowed)

linearity at high mean values; and there is no discernable
relationship for dataset four.

The spatial nature of a proportional effect can be
explored with a local coefficient of variation (CoV) surface
which should tend to some stationary constant if the mean
scales linearly with the SD for the whole of the sampled
region (i.e. an endorsement of lognormality). If, however,
the CoV is clearly nonstationary in behaviour (i.e. reflect-
ing a nonlinear relationship between means and SDs such
as that observed in all four datasets), then the adoption of a
technique such as MWK (in preference to BCK) may be of
value. The CoV surfaces for all datasets provide evidence
of CoV nonstationarity (see Fig. 4). More in depth inves-
tigations can be useful here. For example with dataset four
(critical load), the tail-off in linearity at high mean values
observed in Fig. 3d relates directly to an unusually low
CoV in SE England (an area of high critical loads that
varies little spatially, see Fig. 1d).

5.2 Exploratory evidence of variogram nonstationarity
with comaps (for MWK)

To gauge the likely worth of a MWK application, vario-
gram nonstationarity can be tested (Haas 1998; Fuentes
2005) or more simply, it can be verified informally using
exploratory data analysis (EDA). Here a useful spatial
representation of local variogram parameters obtained with
MWK is possible with the comap (Brunsdon 2001). The
comap is a spatial variant of the co-plot for assessing

conditional distributions, where the relationship between a
primary and secondary variable is plotted conditional to a
third (secondary) variable (or a third and fourth secondary
variable together). In the comap, geographical location is
the first pair of variables conditioned on the primary vari-
able of interest and a chosen secondary variable. The
comap can be specified showing, (a) the geographic loca-
tions of the conditional data or (b) using kernel density
estimation (KDE) to visualise the clustering of the same
geographic locations.

For MWK, the nugget effect parameter (defined as the
ratio co/(co + ¢)) can be related to the range using a comap.
This not only provides an assessment of variogram non-
stationarity but also identifies regions most suited to kri-
ging (kriging performs well in a relative sense when the
nugget effect is small and the range is large). Such a comap
is given in Fig. 5 for dataset four (critical load) using
parameters obtained from an application of MWK-CV.
There is clear evidence of variogram nonstationarity, as
both the nugget effect and the range vary across space.
Furthermore, critical load prediction accuracy should be
relatively strong in areas that traverse the borders of Wales
and England (bottom-right map), but relatively weak in
areas of W Scotland and NW England (top-left map). In the
latter case, weak spatial dependence is in part, a conse-
quence of outlying (high-valued) critical load observations.
Comaps (not given) using MWK-CV parameters for the
other three datasets also portrayed evidence of variogram
nonstationarity.

5.3 Example GWV/WLS and local CV/WLS
variogram fits with dataset four

Complementing the example and exploratory variography
conducted in Sect. 3.8 with the critical load data, it is
prudent to continue this investigation where GWV/WLS
variogram fits are compared with local CV/WLS variogram
fits at the same four locations (similar investigations should
be conducted using the other datasets also). In this respect,
GWV/WLS and local CV/WLS variogram fits are given in
Fig. 6a and b, respectively; and Fig. 6¢c shows the global
variogram that will be used in SK. Clearly for both local
variogram techniques, there is visual evidence of vario-
gram nonstationarity and as a consequence, a MWK
application may be of value. Again, reassuringly, corre-
sponding GWV/WLS and CV/WLS variogram fits depict a
broadly similar structure to each other, providing little
evidence that spurious variographic structures have resul-
ted from GWYV estimation.

For the GWV/WLS and local CV/WLS variogram fits
shown, the GWVs are specified with g = 0.5 and the local
CVs are specified with a 30% window size; values which
are taken as optimal on application of the corresponding
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Fig. 6 Example local variograms at four locations using the small
critical load data subset (see Fig. 2d): a GWV/WLS variogram fits,
b CV/WLS variogram fits, and ¢ global variogram with WLS fit.

MWK model (see Table 1, dataset 4S). Such controlling
parameters indicate a mildly nonstationary variogram
process (as the GWV weighting function decays gradually
with distance and the local CV window size is fairly large).
Here it is also observed that as the IDW scheme used for
GWYV estimation distance-decays more steeply (see Sect.
3.8) or as the window size for local CV estimation becomes
smaller, the corresponding WLS fits and MWK results tend
to become poorer. Thus, the controlling parameters in
MWK-GWYV and MWK-CV have an analogous influence
on their respective MWK models.

At this stage, it is useful to highlight the differences in
information that is available to a GWV and a correspond-
ing local CV. In Fig. 6, all variograms are shown with the
number of data pairs available at each lag distance. Clearly,
a GWYV benefits from the same information as the global
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GW Vs are specified with g = 0.5 and local CVs are specified with a
30% window size (i.e. optimal values, see Table 1 for dataset 4S). All
variograms are shown with the number of data pairs at each lag

variogram (and continues at all lag distances, i.e. those
above 250 km too). In contrast, the local CVs can suffer
from reduced information at each lag distance and from no
information at all at longer lag distances. For example, the
local CV at location one has information at only five lags
up to distances of around 200 km. Such local CV infor-
mation is of course dependent on (a) the heuristics used to
estimate the local CV and (b) window size. However, (a)
altering the heuristics to provide more information is
counter-productive as poor WLS fits (to local CVs with
much scatter) will invariably result and (b) increasing
window size simply results in local CVs that tend to the
global CV.

Whilst on this subject, observe that the local CV at
location two is modelled as a pure nugget variogram. This
is in part a consequence of the heuristic used to define the
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Table 1 Model performance results
Dataset, calibration Box—Cox trans, window relRMSE G-statistic M-PCI-W G-MPCIW-RANK Error-Corr®
size and model size or IDW exponent
Data 1S-100
SK - 0.532 0.946 89.38 2 0.10
BCK 0.35 0.530 0.977 92.90 1 0.21
MWK-CV 80% 0.526 0.948 89.86 3 0.12
MWK-GWV 1 0.516 0.947 108.66 4 0.20
Data 1L-367
SK - 0.491 0.968 74.23 1 0.34
BCK 0.58 0.474 0.966 82.13 3 0.49
MWK-CV 20% 0.481 0.970 75.68 2 0.37
MWK-GWV 2 0.473 0.722 73.08 4 0.52
Data 2S-200
SK - 0.629 0.983 17.90 2 0.09
BCK 0.80 0.628 0.985 17.92 3 0.30
MWK-CV 90% 0.629 0.975 18.54 4 0.20
MWK-GWV 0.5 0.637 0.986 17.82 1 0.16
Data 2L.-808
SK - 0.593 0.910 13.09 4 0.03
BCK 0.21 0.588 0.910 12.85 3 0.24
MWK-CV 20% 0.576 0.972 16.49 1 0.15
MWK-GWV 0.5 0.570 0.959 16.65 2 0.19
Data 3S-78
SK*® - 0.822 0.930 12.33 2 0.09
MWK-CV 45%° 0.812 0.894 11.08 3 0.16
MWK-GWV 1 0.812 0.929 11.65 1 0.31
Data 3L-100
SK* - 0.694 0.972 12.92 2 0.21
MWK-CV 50% 0.717 0.965 12.13 1 0.41
MWK-GWV 0.5 0.687 0.935 12.56 3 0.35
Data 4S-189
SK - 0.829 0.971 7.00 2 0.07
BCK 0.19 0.840 0.873 6.32 4 0.28
MWK-CV 30% 0.847 0.981 6.20 1 0.37
MWK-GWV 0.5 0.874 0.936 5.52 3 0.37
Data 41.-497
SK - 0.781 0.917 6.83 4 0.11
BCK 0.15 0.816 0.946 6.31 3 0.34
MWK-CV 10% 0.789 0.962 6.54 2 0.39
MWK-GWV 1 0.827 0.960 5.78 1 0.40

Best results are in bold
# No data transformation necessary
® The minimum window size allowed

¢ This correlation is always checked against its corresponding scatterplot to guard against any severe scaling issues

minimum number of pairs allowed at the first lag, where in
this case, the actual number pairs was below the set limit of
ten. This results in the local CV at location two having no
semivariance value at its first lag and in turn, a nugget
variogram is fitted. Conversely, the GWV does not suffer

from such problems, and as a result is fitted with a struc-
tured variogram. Of course, the actual variogram at loca-
tion two is never known, but in this case, one option for it is
much more likely to be representative of the local spatial
process than the other.
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Table 2 Summary of model performance results: best (all models)

Dataset and size Lowest relRMSE

Lowest G-MPCIW-RANK

Strongest Error-Corr Best overall

1S-100 MWK-GWV BCK

1L-367 MWK-GWV SK

2S-200 BCK MWK-GWV
2L-808 MWK-GWV MWK-CV
3S-78 MWK-CVIMWK-GWV MWK-GWV
3L-100 MWK-GWV MWK-CV
4S-189 SK MWK-CV
4L-497 SK MWK-GWV

BCK BCK

MWK-GWV MWK-GWV

BCK BCK

BCK MWK-GWV
MWK-GWV MWK-GWV

MWK-CV MWK-CV
MWK-CV/IMWK-GWV MWK-CV

MWK-GWV MWK-CV/IMWK-GWV

MWK-GWYV models are in bold

Table 3 Summary of model performance results (MWK models only)

Dataset and size Lowest reRMSE

Lowest G-MPCIW-RANK

Strongest Error-Corr Best overall

1S-100 MWK-GWV MWK-CV MWK-GWV MWK-GWV
1L-367 MWK-GWV MWK-CV MWK-GWV MWK-GWV
2S-200 MWK-CV MWK-GWV MWK-CV EQUAL
2L.-808 MWK-GWV MWK-CV MWK-GWV MWK-GWV
3S-78 EQUAL MWK-GWV MWK-GWV MWK-GWV
3L-100 MWK-GWV MWK-CV MWK-CV MWK-CV
4S-189 MWK-CV MWK-CV EQUAL MWK-CV
41L-497 MWK-CV MWK-GWV MWK-GWV EQUAL

MWK-GWYV models are in bold

5.4 SK, BCK, MWK-CV and MWK-GWYV model
performance

Details of the performance of the four study models in the
eight different data situations are given in Table 1 using the
four goodness-of-fit measures described in Sect. 4 (i.e. rel-
RMSE, G-statistic, M-PCI-W and Error-Corr). Here an
additional goodness-of-fit measure is reported to discrimi-
nate better between models with respect to their perfor-
mance in estimating PCIs. As indicated in Sect. 4, for cases
where models provide similar G-statistics, one model can be
preferred if its PCI widths that contain the actual value are
smaller. Thus, to account for this aspect of a model’s PCIs, a
ranked performance diagnostic is reported. Here for each
data situation, the four kriging models are first ranked
according to their G-statistic value. This ranking is then
adjusted for cases when the G-statistics are assumed similar
(in this case, lying within 0.01 units of each of other). In such
cases, the model ranking depends on the M-PCI-W value
instead, and a lower ranking is given to models with the
smaller (tighter) M-PCI-W values. This ranked diagnostic is
named G-MPCIW-RANK (where a rank of 1 is best).

The results of Table 1 are summarised in Table 2 (all
models compared) and Table 3 (only MWK models com-
pared). Here the best performing models are listed with
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respect to the lowest relRMSE, the lowest G-MPCIW-
RANK and the strongest Error-Corr. The best model overall
is also given for each data situation, using a similar ranking
system to that used for finding the optimal controlling
parameter of a MWK model (see Sect. 3). However, in this
ranking system, the G-statistic ranking is replaced by
G-MPCIW-RANK. Ideally, this improved ranking sys-
tem should have been used to discriminate between dif-
ferent MWK—-CV and different MWK-GWYV models, but
G-MPCIW-RANK is awkward to calculate when there are
numerous models to choose from and as such, the initial,
more pragmatic and objective ranking system was followed.

From Tables 1 and 2, it is clear that datasets one and two
appear to benefit the most from a geostatistical approach.
Interestingly, the choice of calibration data subset can have
marked effect on model parameterisation (e.g. see param-
eters found for dataset one). This can be attributable to
changes in sample variation, size and configuration. This
observation alone goes some way to justify the use of eight
different data situations to establish empirically the utility
of our MWK-GWYV approach. From Table 2, it is evident
that most datasets tend to suit a MWK model. This con-
firms the findings of the exploratory investigations of Sects.
5.1 and 5.2, demonstrating the value of a judged EDA for
nonstationary effects.
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Fig. 7 MWK-CV versus (a)
MWK-GWYV for dataset 3S
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From Table 2, a MWK-GWYV, SK, BCK or MWK-CV
model is the most accurate predictor (lowest relRMSE) on
five, two, one and one occasion, respectively. Similarly, a
MWK-CV, MWK-GWYV, SK or BCK model provides the
most accurate estimates of prediction uncertainty (with
respect to G-MPCIW-RANK) on three, three, one and one
occasion, respectively. Alternatively, a MWK-GWV,
BCK or MWK-CV model provides the most accurate
estimates of prediction uncertainty (with respect to Error-
Corr) on four, three and two occasions, respectively.
Thus, a MWK-GWYV model performs well, both in terms
of accuracy of prediction and of prediction uncertainty.
From Table 2, a MWK-GWYV, MWK-CV or BCK model
is the best overall model on four, three and two occasions,
respectively. From Table 3, a MWK-GWYV is the best
overall on four occasions, MWK-CV is the best overall
on two occasions and on two occasions the MWK models
perform equally.

It is also useful to assess the effect (if any) of calibration
sample size on MWK performance. Intuitively, MWK-
GWYV would be expected to out-perform MWK-CV when

Probability interval [p]

sample size is small. For the smallest calibration data
subset (dataset 3S, where sample size is 78), this intuition
is realised and MWK-GWYV performs better than MWK-
CV. However, for the next two smallest calibration data
subsets (datasets 1S and 3L, where sample size is 100),
MWK-GWYV does not perform better than MWK-CV on
both occasions. Closer inspection of the relevant results in
Table 1, does not reveal any reportable pattern and as such,
this perceived benefit of a MWK-GWYV approach is left
unanswered. Example model performance plots are given
for dataset 3S in Fig. 7 for the MWK models only. Here
MWK-GWYV provides a slightly stronger relationship
between its absolute prediction errors and its estimated
prediction standard errors (Fig. 7b). This is in part, a
consequence of MWK-GWYV providing a higher variation
in its estimated prediction standard errors. More accurate
prediction uncertainty estimates are similarly reflected in
the accuracy plot for MWK-GWYV which tends more
strongly to the 45° line than the accuracy plot for MWK~
CV does (Fig. 7c). The PCI width plots are little different
between models (Fig. 7d).
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6 Discussion and conclusions

The results provide a useful guide to the likely value of
MWK-GWYV. For four different datasets and eight differ-
ent data situations, MWK-GWYV performed the best of all
four models. Thus, the MWK-GWYV model has performed
with merit and as such, justifies further development. The
additional complexity of MWK-GWYV is not considered a
problem and it should be viewed as a general form of
MWK, where MWK-CV is MWK-GWYV specified with an
adaptive box—car weighting function for local variogram
estimation. Computationally, MWK-GWYV is slightly more
demanding than MWK—-CV; and both models are affected
by large datasets (a problem routinely encountered with
numerous spatial methods, see Banerjee et al. 2008, for
recent advances).

Additional work could consider the effects of sample
configuration on MWK performance, since if variogram
inference is difficult globally due to nuances in the sample
layout, then locally it is likely to be worse. The model
comparison could also be expanded to include not only the
alternatives listed in Sect. 1 which mainly operate within
the classical geostatistics framework, but also more mod-
ern nonstationary predictors such as the kernel-based
(KS-StK) models of Fuentes (2001), Fuentes et al. (2003),
the (different) kernel-based models of Higdon et al. (1999),
Paciorek and Schervish (2006), and (possibly) the (single
realisation) deformation models of Anderes and Stein
(2005); most of which benefit from a Bayesian viewpoint
to uncertainty.

Only basic MWK-CV and MWK-GWYV models have
been calibrated and assessed in this study. However, for
both MWK forms, more elaborate models could be speci-
fied. For example, models could use: different underlying
variogram estimators (e.g. a robust variogram for outlying
data or a weighted variogram for clustered data); additional
variogram model-types (e.g. a spherical model); different
(least squares) variogram model fitting techniques; differ-
ent statistics to choose the best fitting variogram model
(e.g. AIC); different underlying kriging algorithms (e.g.
OK); techniques to incorporate any anisotropic effects; etc.
Furthermore, just as variogram model-type can be locally-
defined, so can the variogram estimator (e.g. only use a
robust variogram in areas of outlying data) and other MWK
specifications (see below). It is also possible to extend both
MWK forms to a KS-MWK version.

It is useful to observe how the choice of weighting
function in GWYV estimation tends to dictate other specifi-
cations of the MWK-GWYV model. For example, with the
MWK-GWYV model defined in this study, it was natural to
specify a global kriging neighbourhood and it would be
similarly natural to globally-specify any data detrending or
data transform if required (i.e. specifications relate to the
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same scale as the variography). Conversely, fora MWK-CV
model or a MWK-GWYV model where only the closest data
pairs are weighted in the GWV estimation (i.e. use a dis-
continuous distance-decay function, such as a bi-square), it
is natural to specify a local kriging neighbourhood and (if
required) any data detrending or data transform should also
be done at this same local scale (as the variography).

For this study, specifying a global kriging neighbour-
hood with MWK-GWYV may have been detrimental to its
performance relative to the local neighbourhoods of
MWK-CV. However, both MWK models could have been
specified with neighbourhoods smaller than that chosen
(i.e. assume quasi-stationarity). In this respect, the MWK-
GWYV model, as defined in this study, has a much wider
choice of kriging neighbourhood than any MWK-CV
model, which should be considered an advantage.

Issues of data detrending were deliberately avoided in
this study, so as not to over-complicate the model com-
parison. However, future work should consider adapting
the MWK-GWYV model so that both local and global trends
in data are catered for. For some processes, such an
adaptation may improve the WLS variogram model fits to
(better-behaved, residual) GWVs. Adaptations are also
vital to data that are accompanied by explanatory variables
which can inform trend prediction. A recent example of
MWK modelling that caters for both local and global
trends in (precipitation) data can be found in Lloyd (2010).

Finally, one area that is vital to MWK-CV and MWK-
GWYV model performance analysis are the heuristics used to
define: (a) the lag intervals, the minimum number of pairs
allowed at the first lag and the truncation of the variogram
estimator; and (b) the starting parameters for the WLS fit.
Further work could investigate this particular aspect of
MWK model specification more deeply. Ways to counter
any problems here are to specify MWK models using ML fits
(see the KS—-MWK model of Pardo-Igizquiza et al. 2005) or
(possibly) use some nonparametric variogram model selec-
tion method (see Ploner and Dutter 2000) locally.
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