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SUMMARY

Studies investigating associations between air pollution exposure and health outcomes benefit from the estimation of
exposures at the individual level, but explicit consideration of the spatio-temporal variation in exposure is relatively
new in air pollution epidemiology. We address the problem of estimating spatially and temporally varying particulate
matter concentrations (black smoke = BS = PMy,) using data routinely collected from 20 monitoring stations in
Newcastle-upon-Tyne between 1961 and 1992. We propose a two-stage strategy for modelling BS levels. In the first
stage, we use a dynamic linear model to describe the long-term trend and seasonal variation in area-wide average
BS levels. In the second stage, we account for the spatio-temporal variation between monitors around the area-wide
average in a linear model that incorporates a range of spatio-temporal covariates available throughout the study
area, and test for evidence of residual spatio-temporal correlation. We then use the model to assign time-aggregated
predictions of BS exposure, with associated prediction variances, to each singleton pregnancy that occurred in
the study area during this period, guided by dates of conception and birth and mothers’ residential locations. In
work to be reported separately, these exposure estimates will be used to investigate relationships between maternal
exposure to BS during pregnancy and a range of birth outcomes. Our analysis demonstrates how suitable covariates
can be used to explain residual spatio-temporal variation in individual-level exposure, thereby reducing the need
to model the residual spatio-temporal correlation explicitly. Copyright © 2007 John Wiley & Sons, Ltd.

KEY WORDS: dynamic linear model; environmental epidemiology; exposure estimation; particulate matter; spatio-
temporal process

1. INTRODUCTION

Links between long-term or short-term exposure to particulate matter and morbidity or mortality in both
children and adults are now well established (Pope III and Dockery, 2006). In particular, there is growing
evidence of an association between air pollution exposures during pregnancy and adverse birth outcomes
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(Glinianaia et al., 2004b; Sram et al., 2005) or infant survival (Glinianaia et al., 2004a; Ritz et al., 2006),
especially for respiratory-related causes (Woodruft et al., 2006). In order to test hypotheses related to
these associations using observational data, estimates of pollution levels to which each mother was
exposed during different periods of pregnancy are needed. Some previous studies have either assumed
homogeneity of exposure at any one time across large geographical areas (Woodruff et al., 1997; Samet
et al., 2000), or estimated exposure using a crude average (Bobak, 2000). Only recently has modelled
city-wide variation in exposure and its impact on health outcomes been considered (Jerrett et al., 2005).

In this paper, we use data from the UK Particulate Matter and Perinatal Events Research (PAMPER)
study to demonstrate a method for estimating a spatio-temporal exposure surface of black smoke (BS),
equivalent to PMy, concentrations over the city of Newcastle-upon-Tyne for the time period 1961-1992.

We consider data in the form of a set of time series, one for each of a number of monitoring locations
within the spatial region of interest, and not necessarily providing data at a common set of times.
Various approaches have been suggested in the statistical literature for analysing environmental spatio-
temporal data of this kind; for reviews, see Kyriakidis and Journal (1999) and Sahu and Mardia (2005).
Key approaches to such analysis include: directly modelling the joint space-time distribution of the
observations, treating time as an additional dimension (e.g. Brown et al., 2001), modelling the data as
a set of spatial processes correlated in time (e.g. Bogaert and Christakos, 1997) or, more commonly, as
a set of time series correlated in space (e.g. Meiring et al., 1998).

Most of this work has used Gaussian processes as models for the underlying spatio-temporal
phenomenon, S(x,?) say, with a consequent focus on the specification of valid, appropriate and
computationally tractable covariance functions for S(x, ¢) (Gneiting et al.,2007). An exception is Higdon
(2007), who describes a non-Gaussian kernel convolution approach. Stroud et al. (2001) extend state-
space models of time series to the space-time domain in order to avoid making assumptions of stationarity
and separability of the covariance function. In some examples, the relatively weak dependence between
observations either in space or in time has enabled the modelling process to be simplified: for example,
Handcock and Wallis (1994) found a lack of temporal dependence in annual winter average temperatures
in northern U.S.A. In contrast, other examples exhibit long-term temporal dependence, such as the Irish
wind speed data of Haslett and Raftery (1989).

In the field of air pollution, several authors have addressed the simultaneous consideration of spatial
and temporal variations of exposure. Carroll et al. (1997) modelled ozone exposure in Texas, U.S.A.
by splitting the spatio-temporal variation into two components: a deterministic, spatially constant
component and a stationary, zero-mean Gaussian random field. Zidek et al. (2002) modelled the spatial
covariance between residuals using a space deformation approach (Meiring et al., 1998) after first
fitting an AR(3) model to hourly PM| levels in Vancouver, Canada (Li et al., 1999). Sahu et al. (2006)
illustrated one way in which available covariates may be used by modelling PM» s monitoring data
using two random spatio-temporal processes, corresponding to urban and rural areas respectively, and
weighted by population density.

In this paper, we demonstrate a pragmatic, two-stage modelling strategy. We first estimate the
seasonally varying temporal trend using a dynamic linear model, then account for remaining spatio-
temporal variation using temporally and/or spatially varying covariates. We demonstrate that for our data,
residual spatio-temporal correlation is not significant. In principle, we could include a spatio-temporally
correlated residual term, at the cost of a substantial increase in computational complexity. However,
in our view explicit models of spatio-temporal correlation should be used only when the possibility of
obtaining an adequate explanation of spatio-temporal variation using covariate information has been
exhausted. In our application, the key step was not to rely on routinely available covariate information
but instead to construct a suitable surrogate using a combination of land-use information and digital
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images of domestic chimneys which, for the area and time-period in question, constituted a major source
of BS exposure for pregnant women.

2. THE UK PAMPER STUDY

The UK PAMPER study is a historical cohort study to investigate the relationship between adverse
pregnancy outcomes and a range of socio-economic, meteorological and pollution-related factors. In
this paper, we model levels of weekly BS using data routinely, albeit spasmodically, recorded at 20 air
pollution monitoring stations within the city of Newcastle-upon-Tyne (the ‘study area’) between October
1961 and December 1992 (the ‘study period’). The data are available from the UK Air Quality Archive
(http://www.airquality.co.uk/archive/data_and_statistics_home.php). Figure 1 shows the locations of the
20 monitoring stations within the study area, and the locations of five further monitoring stations that
we will use for model validation. Pless-Mulloli et al. (personal communication) provide more details
of the study’s background and setting.

Figure 2 shows the period of time over which each monitor was in operation (‘active’). Over the
whole study period, the number of monitors active during any single week varied from three to ten.

N

25
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24

5 km

Figure 1. Outline of the PAMPER study area, Newcastle-upon-Tyne. Locations of black smoke monitoring stations used for
modelling are numbered 1-20; those used for validation are numbered 21-25
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Figure 2. Diagram showing PAMPER monitoring station activity. Periods of activity are indicated by a black line

In our experience, the relatively sparse spatial coverage of the study area by monitors is typical, and
strongly influenced our approach to the prediction problem.

Our aim is to attach to each of the 109 086 singleton births that occurred in the study area during
the study period, a predicted BS exposure level and associated prediction variance, both for individual
weeks of the pregnancy and time-aggregated over months, trimesters and over the whole pregnancy
period. Each birth is characterised by the date of birth, the estimated date of conception (for births with
available gestational age) and the mother’s residential location (grid reference) at which BS levels are
to be estimated. In future work, we will investigate associations between this modelled exposure and a
range of adverse birth outcomes, including birthweight, low birthweight, preterm birth, stillbirth, infant
mortality and congenital abnormality.

3. MODELLING THE EXPOSURE SURFACE

3.1. Exploratory analysis

In common with other environmental applications (e.g. Brown et al., 2001; Zidek et al., 2002), we found
that a log-transformation approximately stabilises the variance of BS and gives a roughly linear time
trend, i.e. city-wide average BS levels have experienced an approximately exponential decline over the
study period. We therefore model the log-transformed values of BS recorded at each monitoring station.
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Figure 3. Area-wide weekly average black smoke levels, plotted as a time series. The original scale is shown on the left vertical
axis and the logarithmic scale on the right vereical axis

Let Y denote log-transformed BS. Figure 3 shows the area-wide average, ¥; say, in each of the
1631 weeks of the study period, in each case calculated as the average of the observed log-BS levels at
all monitoring stations that were active during the week in question. The scale of the overall temporal
variation in ¥; is much larger than is the spatial variation between different monitors at any given time,
which is typically of the order of 1 unit on the logarithmic scale, although occasional recorded values
fall much further than this from the corresponding city-wide average. For the subsequent modelling,
we use all available data. Re-fitting the final model excluding 74 recorded values (out of 10 174, i.e.
around 0.7%) of log-BS more than 1.5 units away from the area-wide average has only a small impact
on parameter estimates and predictions, and as we have no basis for treating these values as recording
errors, we retain all of the data in the analysis presented below.

Figure 3 also shows that there is a strong seasonal component to average BS levels. Annual peaks
and troughs occur each winter and summer respectively, albeit with some variation from year to year.
This seasonal pattern is also evident from inspection of the data from individual monitors.

3.2. The modelling strategy

Our strategy is first to model the expectation of the area-wide weekly average log-transformed BS levels,
u; = E[Y;], ignoring any spatial variation. This results in an estimate {1;. We then use spatio-temporally
referenced covariates w to account for residual variation between monitors. Hence, if ¢ denotes week
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and x geographical location, we model log-transformed BS, Y;(x), as
Yi(x) = fr + W B+ Zi(x) M

where Z;(x) is a residual term which may or may not exhibit temporal and/or spatial correlation, and
[1; is treated as an offset, provided that its associated prediction variance is negligible. Note that in
Equation (1), time is treated as discrete, with a resolution of 1 week, whereas x is treated as a spatial
continuum, and that w depends implicitly on ¢ and x. This framework acknowledges that, although
our data are confined to a discrete set of monitor locations, our aim is to predict BS at every maternal
residence within the study area.

Our two-stage modelling strategy is informed by two considerations. Firstly, the exploratory analysis
showed that the temporal variation in Y;(x) dominates the residual spatio-temporal variation. Secondly,
and not untypically (cf de Luna and Genton, 2005), our data are temporally rich but spatially sparse.
Together, these features enable relatively precise estimation of the spatially constant component ;.
Other authors have preferred to fit different models to the individual time series obtained from each
monitor, treating periods of inactivity as missing data (Haslett and Raftery, 1989; Meiring et al., 1998).
For our data, the extent of the incompleteness of the time series from individual monitors, as shown in
Figure 2, makes this a less attractive strategy. Finally, construction of the spatio-temporal part of the
model is greatly helped by the availability, at both monitor and residential locations, of a set of spatio-
temporal covariates that are predictive of BS levels. Hence, anticipating the results in Sub-section 3.4,
we do not necessarily need to build an elaborate spatio-temporal stochastic model for the residual
component Z;(x).

3.3. Stage 1: modelling area-wide average BS levels

To model i, we note from Figure 3 the approximately linear decline in log-BS levels over the study
period, and the clear seasonal pattern, with higher levels occurring during the winter months. We
anticipated that the seasonal pattern might be partially attributable to seasonal variation in temperature.
We therefore obtained daily temperature readings from nearby weather recording stations for the whole
study period, and calculated a value d; as the average of the daily minimum temperature readings over
the 7 days in week ¢. Finally, we set w = 27/52 as the frequency corresponding to an annual cycle.

A first, static regression model for the spatial average Y, is

Y, = a4+ Bt + yd, + A cos(wt) + Bsin(wt) + U, )

where «, B, v, A and B are parameters and the U; are mutually independent N(O, cr%/) residuals.

Figure 4a shows that the model (2) captures much of the seasonal variation in Y;; for clarity, the
diagram shows only representative results from years 1984 to 1992. However, the residuals show strong
evidence of short-term and long-term autocorrelation, with small peaks corresponding to one- and
two-year lags indicating that a static seasonal component is inadequate (Figure 4b). Re-examination
of Figure 4a suggests that the lack of fit is primarily due to year-by-year variation in the phase and
amplitude of the seasonal pattern. We therefore consider instead a dynamic regression model (West and
Harrison, 1997),

Y; = o+ Bt + vd; + A; cos(wt) + B; sin(wt) + U, 3)
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Figure 4. a. Fit of static (2) and dynamic (3) regression models for area-wide average black smoke levels, 1984—-1992; b.
Autocorrelation of residuals from static and dynamic models for area-wide average black smoke levels

where o, B, y and U; are as before, but now the static parameters A and B have been replaced by
independent random walks, hence

AlAr—1 ~ N(A_1,03)
B|B;—1 ~ N(B;_1,0%)

Given initial values A and By, the dynamic model (3) can be fitted either by direct maximisation of the
likelihood function, or via a Kalman filter followed by Kalman smoothing using, for example, functions
kfilter and smoot her in the contributed R package sspir (ww. R-project. org).

The estimated parameter values &, ,B and ¥ differ little between models (2) and (3), but the estimated
residual variance 6%/ drops from 0.14 to 0.08 and the corresponding R2-value increases slightly from
0.88 to 0.93. More importantly, the dynamic model provides a qualitative improvement in fit compared
to the static model; the residual autocorrelation largely disappears (Figure 4b) as a result of the more
flexible fit to the seasonal pattern (Figure 4a).

3.4. Stage 2: modelling residual spatio-temporal variation

If we now apply the area-wide fitted values, fi; say, from Equation (3) to the values of log-transformed
BS at individual monitors, the residuals show a strong spatial pattern, with monitors towards the south
of the study area tending to have large, positive residuals. This is consistent with the fact that early in
the study period this part of the study area was dominated by areas of heavy industry.
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As described in Sub-section 3.2, we seek to explain this effect by treating (i, as an offset in a linear
model for monitor-specific log-transformed BS levels Y;(x) that includes spatio-temporally referenced
covariate. Note that to achieve our aim of predicting BS exposure at every residential location, any
covariates in the model must be available not only at monitor locations, but throughout the study area.

3.4.1. Covariates. To account for residual spatio-temporal variation, we constructed the following
candidate covariates:

w1: domestic chimney count within 500 m;

wy: distance to nearest industrial area;

w3: binary indicator of land use, either residential (w3 = 1) or non-residential (w3 = 0);

w4: binary indicator of whether the 1956 Clean Air Act (CAA) had (w4 = 0) or had not (w4 = 1) been
implemented;

ws: area of industry within 500 m.

Covariates w1, wy and ws were derived at a time resolution of 1 year from digitised annual images
of the study area.

Covariate w3 was derived as follows. For any monitoring location x within the study area and a
given value of r > 0, we counted the number of births in each year within a radius r of location x. We
then identified, by trial-and-error, a range of values of r for which the resulting count distribution was
strongly bimodal, suggesting a classification of monitoring locations with high counts as residential and
locations with low counts as non-residential. Using this criterion with » = 150 m provided the clearest
distinction between residential and non-residential locations. Moreover, by this criterion the residential
status of each monitoring location did not appear to change over time. We therefore considered w3 to be
time constant, and defined a residential area to be one for which at least 50 births occurred within a 150-
m radius throughout the study period. The majority of monitors classified in this way as non-residential
were in known industrial areas, although one was in a known commercial area.

Covariate w4 was obtained from local government records. The CAA was implemented in stages
across administrative sub-areas of the city between 1959 and 1978. The assumption that implementation
within a sub-area took place at a fixed date, rather than gradually over a longer period of time, is
questionable. However, in the absence of more detailed information, we took the pragmatic decision to
define w4 as a binary factor, changing from 1 to 0 at the nominal implementation date for the sub-area
in question.

For a preliminary assessment of the importance of each candidate covariate, we compared monitor-
specific average residuals and covariates as follows. For each monitor, at location x say, we defined the
average residual as a time average of Y;(x) — [, over those weeks ¢ in which the monitor was active, and
the average covariate as the corresponding time average of the covariate at the same location. For the
binary covariates, w3 and w4, we compared the two distributions of average residuals corresponding to
w = 0 and w = 1. For wy, wy and ws, we examined scatterplots of monitor-specific average residuals
against average covariate values.

On this basis, we discarded the industry variable w5 because it showed a relatively weak relationship
with monitor-specific average residuals and a strong relationship with the other covariates. The other
covariates all showed a potentially useful relationship with the monitor-specific average residuals,
and were therefore retained. Figure 5 shows the plot for the chimney count variable, w;. Each point
represents a monitor, and is labelled according to its residential status. The plot shows a positive
relationship with chimney count for monitors in residential areas, and a negative relationship in non-
residential areas, suggesting a strong interaction effect between chimney count and residential status.
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Figure 5. Monitor-specific average residual from dynamic model (3), plotted against average chimney count within 500 metres.
Points are labelled according to the monitor’s residential status (open circle = residential, filled circle = non — residential).

A possible explanation for this is that within industrial areas, very few domestic chimneys would be
found close to the most heavily polluting industries, whereas rather more would be found close to the
lighter industries. In residential areas, there is relatively little variability between levels of emission per
chimney, and pollution levels therefore show a direct relationship with chimney count.

Another important interaction is between chimney count and date of implementation of the CAA.
After the CAA was implemented, the emission of black smoke from any building was prohibited.
Thus, as a surrogate for local levels of black smoke emission, the chimney count could be considered
as being effectively zero after CAA implementation. However, as discussed below, care is needed to
interpret correctly the combined effect of CAA implementation and the estimated area-wide temporal
trend, [i;.

3.4.2. Model formulation. We now consider a single linear model for the data from all monitors. Taking
into account the above remarks, we assume the following model:

Yi(xp) = i + Browio + Briwir + Bowz + Bzws + Baws + Zy(xy) “4)

where x; is the location of monitor k, wy, w3 and w4 are as defined above, and wy; = wil(w3 = 1)
where I(-) is the indicator function. We also assume that Z,(x;) ~ N(0, o*%) independently for all k
and t. However, to preserve the interpretation of [i; as the area-wide average of S;, we also need to
centre each covariate appropriately. We therefore require that, for any given 7, the fitted value from
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the spatio-temporal model (4), averaged over all monitors active att, should equal fi;. To satisfy this
condition, for each covariate w at each time ¢ we calculate @ = (  w)/m,, where the sum is over the
m; monitors active at time #, and subtract each value of @ from the corresponding value of w before
entering into Equation (4).

3.4.3. Assessment of model fit. Including monitor-specific fixed effects would be incompatible with our
goal of spatial prediction. However, as a part of the assessment of the model fit, we did consider the
effect of adding monitor-specific levels ay to the right-hand side of Equation (4). This resulted in only
a small increase in the R? value, from 0.84 to 0.86, and we therefore reverted to model 4).

To test the assumption of independent residuals Z;(x), we calculate a standardised average residual
for each monitor k as

—_ D A
Zie=n" (S — Tilw))
t

where ny is the number of weeks in which monitor £ was active. Under the assumed model, ZZ ~
N(O, 0’%), for all k. Figure 6 shows the standardised residuals plotted at their corresponding monitor
locations. The visual impression is of a concentration of large, negative residuals close to the southern
boundary of the study area. However, visual impressions from sparse spatial data can be misleading. For a
formal test, we compute for each distinct pair (i, j) of monitors u;; = |lx; — x;|| and v;; = (Z}" — 27)2.
We then use the sample correlation between u;; and v;; as a measure of the spatial dependence and
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Figure 6. Map of standardised monitor-specific residuals from model (4). Darker shades indicate larger negative residuals, and
lighter shades larger positive residuals
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Figure 7. 16 replicates of a map of standardized monitor-specific residuals from model (4) with monitor locations randomly
reassigned. Darker shades indicate larger negative residuals, and lighter shades larger positive residuals. The observed map
(Figure 6) appears in the top left

compare the observed value with that obtained after randomly re-labelling the monitoring locations. The
resulting Monte Carlo test, based on 999 independent re-labellings, gives a p-value of 0.7, corresponding
to no significant evidence of spatial structure. Consistent with the result of the formal test, maps of re-
labelled residuals (Figure 7) show chance spatial concentrations of large and small residuals comparable
to those seen in Figure 6. We conclude that the assumption of spatially independent residuals Z;(xy) is
reasonable, and that any differences between monitors are likely to reflect properties of the monitors
themselves, rather than of their locations.

We also examined the temporal pattern of residuals at individual monitoring stations. Time plots of
residuals, shown in Figure 8, reveal clear lack of fit for some monitors over some time periods. Table 1
summarises the fit of the model to individual monitors, including the five validation monitors located
outside the study area. The R>-values for the 20 monitors within the study area vary between 0.21 and
0.87, but the smaller values of R” are generally associated with monitors for which we have relatively
little data.

3.4.4. Validation. To assess the model’s external validity, we used five additional monitors situated just
outside the study area. The locations of these monitors are shown in Figure 1. Historical records were
less readily available for locations outside the study area, for example the aerial photographs needed to
construct the chimney count variable were available only for the years 1966 and 1974. For this reason,
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Figure 8. Observed (grey lines) and fitted (black lines) values from model (4) for six monitors used for model fitting

we consider only data from these years in our assessment of validity. Table 1 summarises the fit for
these five monitors. The fit is rather poor for some monitors, notably Hebburn 3, and we would not
recommend extrapolating the model beyond the study area. Inevitably, imposing a common model on all
available monitor locations within the study area compromises the fit to any individual monitor’s data,
but is a necessary simplification in order to address our goal of spatio-temporal prediction at arbitrary
locations. Extrapolation beyond the study area is likely to exacerbate this effect, for example although
the locations of the validation monitors are geographically close to the boundary of the study area, they
differ in their historical pattern of land use.

3.4.5. Interpretation of the spatio-temporal model coefficients. An alternative interpretation of
Equation (4) is obtained by re-casting the dynamic model (3) to allow different area-wide average
log-transformed BS levels before and after CAA implementation. We denote these by 114, (‘dirty’) and
Mer (‘clean’), respectively, and let p; be the proportion of active monitors at week ¢ that are dirty. Then,
U is a weighted average of log-transformed BS levels in dirty and clean areas,

e = prtar + (1 — popier
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Table 1. Summary of spatio-temporal model fit for each of the 20 monitors used for model fitting and five
monitors used for validation (see Figure 1). n refers to the number of weeks for which the monitor was active.
R? = 1 — (residual variance /raw variance)

Monitor n Mean Standardised Residual Raw R?
residual mean residual variance variance

1 Gosforth 1 676 0.14 3.74 0.17 0.92 0.81
2 Gosforth 2 22 0.22 1.03 0.20 0.34 0.42
3 Newburn 2 1598 —0.02 —-0.78 0.20 1.58 0.87
4 Newcastle 17 1399 0.08 2.84 0.24 0.81 0.71
5 Newcastle 18 670 —0.16 —4.09 0.13 0.66 0.80
6 Newcastle 19 688 —0.09 —2.44 0.19 0.70 0.73
7 Newcastle 20 360 0.08 1.59 0.26 0.66 0.60
8 Newcastle 21 445 —-0.22 —4.66 0.25 0.66 0.63
9 Newcastle 22 321 0.24 4.27 0.20 0.61 0.67
10 Newecastle 23 52 0.09 0.68 0.22 0.53 0.59
11 Newcastle 24 1064 0.20 6.38 0.26 1.61 0.84
12 Newecastle 25 339 —0.08 —1.52 0.14 0.55 0.74
13 Newcastle 26 224 —0.32 —4.86 0.09 0.44 0.79
14 Newcastle 27 1198 —0.12 —4.05 0.15 0.65 0.76
15 Newcastle 28 229 —0.23 —3.55 0.08 0.38 0.78
16 Newcastle 29 89 —-0.23 —2.18 0.20 0.32 0.39
17 Newcastle 30 44 —0.06 —0.37 0.08 0.30 0.73
18 Newcastle 31 527 0.23 5.34 0.19 0.54 0.65
19 Newcastle 32 224 —0.09 —1.40 0.14 0.34 0.58
20 Newcastle 5 5 —0.31 —0.69 0.05 0.06 0.21
21 Blaydon 3 4 —1.27 —2.55 0.28 0.25 —0.11
22 Gateshead 5 77 —0.26 —-2.27 0.11 0.48 0.76
23 Hebburn 3 52 —1.27 —9.17 0.27 0.33 0.18
24 Hebburn 4 52 0.62 4.51 0.26 0.43 0.38
25 Newburn 1 87 0.63 5.85 0.09 0.28 0.67

Now suppose that (g = e + Ar for some function Ay, so that

e = et + Priy
= Wdr + prhr — A

The estimated contribution to the right-hand side of Equation (4) for a clean monitor is fi; — Bap:, whilst
the estimated contribution for a dirty monitor is {1, + ,84 — ,34 p:- These quantities estimate ., and (g,
respectively. Hence, B4 can be interpreted as an estimate of the difference in average log-transformed
BS levels between dirty and clean areas, on the assumption that this difference is constant over time.
The estimate of this difference is B4 = 0.33, with standard error 0.013. Figure 9 shows the observed
average difference in log-transformed BS between dirty and clean monitors at each time, and supports
the assumption that A, is approximately constant.

Direct interpretation of the other B-coefficients in Equation (4) is more difficult, owing to the
necessary standardisation of the covariates w. Nevertheless, we note that in each case the parameter
estimate has the anticipated sign (i.e. negative for 310, 32 and ,33, positive for ,31 1)-
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Figure 9. Difference between average log-black smoke levels in monitors operating in areas before (‘dirty’) and after (‘clean’)
the implementation of the 1956 Clean Air Act

4. PREDICTION OF BS EXPOSURE AT RESIDENTIAL LOCATIONS

Our aim is to predict BS exposure at each maternal residential location, both for individual weeks and
aggregated over time within the pregnancy. Thus, to compute prediction variances we need to consider
not only the prediction variance for a single week, but also the covariance between predictions made for
different weeks. Each birth is associated with a single residential location, x say, so in order to estimate an
individual mother’s exposure we need to only consider prediction at that location. To simplify notation,
we therefore suppress the dependence on x and write S; for the BS level at time ¢, ¥; = log(S;), and w; for
the covariate vector at this location x and week ¢. The following discussion then holds for any location x.

Suppose that our target for prediction is the time-aggregated BS exposure over weeks #1, ..., ;. As
the prediction variance of ji(¢) is small by comparison with that of ¥; (approximately 0.08 vs 0.27), we
treat /1, as known and equal to s,. The predicted value of ¥; — yu; is ¥; — ji; where ¥, = th f%, with
associated prediction variance

V) =V, - 1) = V(Z +w (- B))
= V(Z)+ V(W (B — B))

=0 + W V(R)w,
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Also, for t # u,

Cov(¥;, V) = Cov(w! ' + Z, Wl + Z,)
= Cov(w! B, wl'B)
= w! V(R)w,

Under the fitted model (4), a% > W,T V(f%)wt in any week ¢ (approximately 0.27 and 0.00006,
respectively), and it follows that

tn 0 T
Var v, = va(p+2 Cov, P~  Var(¥)) ~ no’

=1 1=t t<u 1=t

We require predictions on the original scale, rather than on the log-transformed scale. Ata given location,

S; = exp(Y;) and our targets for prediction are of the form 7 = n~! ;”:t S;. Under our assumed model,

each §; follows a log-Normal distribution. Writing & = E[Y;] and ¥, = Cov{Y;, Y, }, it follows that
E(S;) = exp(§; + 2 /2)

Var(S;) = exp(2§; + Z;)(exp(Zy) — 1)

and for t # u,
Cov(S;, Su) = exp(§: + &y + (i + Zuu)/2)(exp(Xn) — 1)
The prediction variance for the average black smoke level T, over weeks 71, . . ., f,,, follows as
0 b 0 1 0 " . 0 |
Var(T) = Var - S, = ) Var(S$;) + 2 Cov($;, S,) =~ ) Var(S;)

=t t=H t<u =n

and approximate prediction intervals can be computed using a Normal approximation. For example, an
approximate 95% prediction interval for T is

1 .
—  exp& +£4/2)£1.96  Var(T)
n

=t

Figure 10 shows a grey-scale image of predicted values on the logarithmic scale for 4 weeks,
corresponding to summer and winter in 1969 and 1982. Non-residential locations, for which prediction
is of no interest, are shown in Figure 10 as white areas. One feature of Figure 10 is the relatively low
spatial variation at any one time, by comparison with the variation either between different seasons
in the same year, or between different years for the same season. This pattern is consistent with our
exploratory analysis of these data as reported in Sub-section 3.1.
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Figure 10. Point predictions for log-BS levels for four single weeks (dates inset) representing winter and summer, 1969 and
1982. White pixels correspond to non-residential areas, for which no prediction is made

The pattern of prediction variances is qualitatively similar to that of the predictions themselves, as a
consequence of the log-Normal distributional assumption for untransformed BS concentrations.

5. DISCUSSION

We have demonstrated a two-stage modelling strategy for modelling spatio-temporal data using
monitoring data that are temporally dense and spatially sparse, a common scenario in epidemiological
studies of air pollution exposure. In the first stage, we used a dynamic model for the purely temporal
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trend, while in the second we used appropriately constructed covariates to take account of remaining
spatio-temporal variation. Using a dynamic model in the first stage obviates the need to consider separate
models for short-term and long-term correlation between observations, and in our application resulted
in a materially better fit to seasonal variation in spatially averaged pollution levels than was obtainable
from a static harmonic regression model.

The area-wide average log-transformed BS levels given by the first-stage model are relatively precise,
with prediction variance around 0.08 compared with predicted values ranging between 1.7 and 6.3. In
contrast, the spatial sparsity of the data makes it important to take account of the uncertainty in the
predictions at particular locations. Our exposure estimates will subsequently be used as covariates in an
analysis of the relationship between exposure and adverse birth outcomes, in which context it will be
necessary to check that conclusions are robust against the statistical error in the exposure estimates. We
believe that these estimates, although only surrogates for the true levels of pollution to which mothers
were exposed, indicate a more realistic pattern of exposure than would an assumption of homogeneity
of exposures across a whole city. This seems likely to hold true both for particulate matter and for other
pollutants, for which there is evidence elsewhere (Haas, 1995; Meiring et al., 1998; Zidek et al., 2002).

In our application, we have been able to model the spatio-temporal variation without the need to model
spatio-temporal correlation in the residuals. This greatly eases the computational burden of computing
predictions and prediction variances. In principle, the methodology extends directly to models with
correlated residuals, provided that we are prepared to specify a spatio-temporal covariance structure
for the residual process Z;(x); see, for example, Gneiting er al. (2007). In problems of this kind,
we would always advocate the use of relevant covariate information to explain as much as possible
of the spatio-temporal variation. Nevertheless, and as the results from the validation sites indicate,
extrapolation beyond the area from which the model was constructed is almost certainly unwarranted.
In other settings the importance of other sources of pollution, for example traffic emissions, may require
the use of different covariates. The means by which suitable covariates are identified and constructed
is not necessarily straightforward and may require a degree of imagination; in our application, the
construction of the chimney count covariate and careful consideration of its interaction with both the
residential/non-residential land-use classification and with the effect of the Clean Air Act were crucial
to the implementation of the methodology.
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