
alessandro checco

D E C E N T R A L I S E D A L G O R I T H M S F O R W I R E L E S S N E T W O R K S

D E C E N T R A L I S E D A L G O R I T H M S
F O R W I R E L E S S N E T W O R K S

alessandro checco

a dissertation submitted for the degree of

doctor of philosophy

supervisor : prof . douglas j. leith

hamilton institute

national university of ireland , maynooth

august 2014

Alessandro Checco: Decentralised Algorithms for Wireless Networks, © August 2014

email: alessandro.checco@nuim.ie, website: http://www.hamilton.ie/achecco/

Hamilton Institute, National University of Ireland, Maynooth

alessandro.checco@nuim.ie
http://www.hamilton.ie/achecco/

C O N T E N T S

1 introduction 1

1.1 Performance Anomaly 1

1.1.1 Performance Anomaly – Related Work 2

1.2 Interference Reduction 3

1.2.1 Interference Reduction – Related Work 4

1.3 Publications 8

2 proportional fairness in 802 .11 networks 9

2.1 Network Model 9

2.2 Proportional Fair Rate Allocation 11

2.3 Finite-Load 13

2.4 Example 15

2.5 Conclusions 15

2.A Appendix - Normal Vector 16

3 decentralised algorithms for small cell networks 19

3.1 Decentralised Colouring Algorithms 19

3.1.1 Colouring Problem (CP) 20

3.1.2 Decentralised CP Solvers 20

3.1.3 Communication-Free Learning (CFL) Algorithm 21

3.2 Self-Configuration of Scrambling Codes for WCDMA Small

Cell Networks 24

3.2.1 Problem Statement 25

3.2.2 Scrambling Code Selection 27

3.2.3 Confusion Graph Estimation 28

3.2.4 Results - Numerical Simulations 29

3.2.5 Summary 36

3.3 Crowd Sourcing 36

3.3.1 Local Topology Discovery Model 37

3.3.2 Teleport Mobility 42

3.3.3 Simulations 47

3.4 Use Cases 52

3.4.1 Summary 53

4 decentralised colouring with partial sensing 55

4.1 Colouring Problems With Sensing Restrictions 56

contents

4.1.1 Decentralised Solvers 56

4.1.2 Examples 58

4.2 Solving Colouring Problems with Sensing Restrictions 60

4.2.1 Algorithm 60

4.2.2 Convergence Analysis 61

4.2.3 Relaxing Strong Connectivity Requirement 63

4.3 Performance on Random Graphs 65

4.3.1 Random Graph Model 65

4.3.2 Meeting Connectivity Requirements 66

4.3.3 Convergence Rate 67

4.4 Case Study: Manhattan WiFi Hot Spots 68

4.4.1 Convergence Time 72

4.5 Summary 72

4.A Appendix – Proofs 73

5 simplified cfl and fast convergence 81

5.1 Simplified CFL Algorithm 82

5.1.1 Role of Parameter S 82

5.1.2 Loose Bound for any Number of Colours 84

5.2 Fast Colouring – Performance Analysis 84

5.2.1 Main Result – Fast colouring with ∆+ 1 colours 84

5.2.2 Discussion 85

5.2.3 Differences with the State-of-the-art 85

5.2.4 Simulations 86

5.3 Use Case – RFID robot/smart bookshelf 89

5.3.1 Collision-Free Scheduling 91

5.3.2 Implementation 92

5.3.3 Comparison with Slotted Aloha 93

5.3.4 Memory and Computation Footprint vs. CFL 95

5.3.5 Summary 96

5.A Appendix – Proofs 97

6 conclusions 107

6.1 Future Work 109

bibliography 111

index 125

vi

L I S T O F F I G U R E S

Figure 1 Flow air-times of the proportional fair rate alloca-

tion in a 802.11g WLAN with 24 UDP flows and 10

stations. 16

Figure 2 Confusion graph G for a scenario consisting of 4

base-stations with symmetrical weights. 27

Figure 3 Example of small cell deployment within the Hynes

convention centre in Boston. 30

Figure 4 Comparison of SGA, IGA and CFL (with a = b =

0.1 algorithms performance when a feasible code

allocation exists. 31

Figure 5 Mean utility function U(s) versus number of base-

stations for optimal scrambling code allocation and

SGA, IGA and CFL algorithms when M = 3. 31

Figure 6 Mean utility function U(s) versus number of base-

stations for optimal scrambling code allocation and

SGA, IGA and CFL algorithms when M = 4. 32

Figure 7 Mean utility functionU(s) corresponding to the op-

timal allocation for different number of base-station

and varying number of scrambling codes, M. 33

Figure 8 Synchronisation time, associated complexity and

peak processing requirement as a function of NCL

size. 34

Figure 9 Example of a scenario in which the access point has

three interfering neighbours. 38

Figure 10 Hypercube representation of the tessellation forN =

4. 39

Figure 11 0.9-knowledge distribution. 49

Figure 12 0.9-knowledge, empirical cumulative distribution

function. 50

Figure 13 0.9-knowledge time of a random walk vs. report

period, compared with Model 1. 50

Figure 14 Apartment example. 51

Figure 15 δ-knowledge varying δ. 52

Figure 16 δ-knowledge varying detection threshold. 53

Figure 17 Illustrating a wireless network with asymmetric sens-

ing due to hidden terminals. 56

Figure 18 Example of a graph with two strongly connected

components which are sparsely interconnected. 63

Figure 19 Fraction of Directed Boolean Model (DBM) graphs

nodes satisfying connectivity requirements of The-

orem 4.2 versus the detection threshold. Addition-

ally, the fraction of nodes correctly coloured by Al-

gorithm 2 for detection threshold of −25dBm is

shown. 66

Figure 20 Example DBM graphs. 67

Figure 21 Measured convergence rate of Algorithm 2 for DBM

graphs using a number of available colours equal

to the chromatic number χ of the graph for three

different detection thresholds. 68

Figure 22 Measured convergence rate of Algorithm 2 for DBM

graphs with detection threshold of −15dBm and

density of λ = 0.5, with and without sensing re-

strictions. 69

Figure 23 Example assignment for Manhattan WiFi hot spots. 69

Figure 24 Connectivity for Manhattan WiFi hot spots. 70

Figure 25 Measured convergence rate of Algorithm 2 for Man-

hattan WiFi hot spots using a number of available

colours equal to the chromatic number χ of the

graph. 71

Figure 26 Measured convergence rate of Algorithm 2 for Man-

hattan WiFi hot spots using a number of available

colours equal to χ + 2, where χ is the chromatic

number of the graph. 71

Figure 27 Expected drift for unsatisfied vertices when S =

0. 83

Figure 28 Comparison of the proposed algorithm with the

state-of-the-art. 87

Figure 29 PDF of CFL and SCFL algorithm for a complete graph. 88

Figure 30 CDF for complete graphs 88

Figure 31 Asymptotic Behaviour 89

Figure 32 Smart bookshelf example. 91

Figure 33 Reading time of SCFL algorithm and Aloha for a

12-partite complete graph. 95

Figure 34 PDF of CFL and SCFL for a 12-partite graph. 96

L I S T O F TA B L E S

Table 1 Example of transition matrix P (modulo scaling fac-

tor 1
‖Aa0‖

) for N = 3. 44

Table 2 Median of the number of time slots needed to iden-

tify correctly all tags in a complete graph topology

with N = 200 and N = 1000 for different algo-

rithms. 94

L I S T O F A L G O R I T H M S

Algorithm 1 Communication-Free Learning for base-station i 22

Algorithm 2 Communication-Free Learning with sensing restric-

tions. 60

Algorithm 3 Simplified Communication-Free Learning 82

A C R O N Y M S

WLAN Wireless Local Area Network 1

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance 2

LTD Local Topology Discovery 3

TD Topology Discovery 4

FK Full Knowledge 40

AP Access Point 1

MC Markov chain 42

MTU Maximum Transmission Unit 2

TXOP Transmission Opportunity 9

KKT Karush–Kuhn–Tucker 11

acronyms

DCS Decentralised Constraint Satisfaction 62

PSC Primary Scrambling Code 4

UE User Equipment 24

UMTS Universal Mobile Telecommunications System

HSPA High Speed Packet Access

NCL Neighbour Cell List 24

3GPP 3rd Generation Partnership Project 4

SGA Single-step Greedy Algorithm 27

IGA Iterative Greedy Algorithm 28

CFL Communication-Free Learning v

WCDMA Wideband Code Division Multiple Access 24

RSCP Received Signal Code Power 26

CPICH Common Pilot Channel 26

WiSE Wireless System Engineering 29

MIPS Million Instruction Per Second 35

CP Coloring Problem v

TDMA Time Division Multiple Access

CFL Communication-Free Learning v

DBM Directed Boolean Model viii

WiGLE Wireless Geographic Logging Engine 65

CP Colouring Problem v

RFID Radio-Frequency Identification 6

EPC Electronic Product Code 90

SCFL Simplified Communication-Free Learning 82

x

1
I N T R O D U C T I O N

Designing and managing wireless networks is challenging for many

reasons. Two of the most crucial in 802.11 wireless networks are:

(a) variable per-user channel quality and (b) unplanned, ad-hoc de-

ployment of the Access Points (APs). Regarding (a), a typical conse-

quence is the selection, for each user, of a different bit-rate, based on

the channel quality. This in turn causes the so-called performance

“anomaly”, where the users with lower bit-rate transmit for most of

the time, causing the higher bit-rate users to receive less time for

transmission (air time). Regarding (b), an important issue is manag-

ing interference. This can be mitigated by selecting different channels

for neighbouring APs, but needs to be carried out in a decentralised

way because often APs belong to different administrative domains, or

communication between APs is unfeasible. Tools for managing un-

planned deployment are also becoming important for other small cell

networks, such as femtocell networks, where decentralised allocation

of scrambling codes is a key task.

1.1 performance anomaly

One way to mitigate the performance anomaly is to artificially in-

crease the air-time of high rate users and in this way to increase the

fairness amongst users. While initially addressed in the literature in a

heuristic way, the need has arisen for more soundly based approaches

and a clear definition of fairness and air-time. It is notable that these

approximate approaches in the literature share in common the idea

that proportional fairness is related to some form of air-time fair-

ness. We provide the first rigorous analysis of proportional fairness

in 802.11 Wireless Local Area Networks (WLANs). For a WLAN (i. e.
a single wireless hop) with no hidden terminals and noise losses we

show that there exists a unique proportional fair rate allocation and

completely characterise the allocation in terms of an air-time quantity.

Importantly, we find that the correct air-time quantity, the flow total
air-time, differs from the quantities previously considered in the liter-

introduction

ature. Our analysis is general enough to encompass both per station

fairness and per flow fairness, and does not assume symmetric net-

work load (stations may have different numbers of flows and these

may have finite offered load, leading to stations being unsaturated).

1.1.1 Performance Anomaly – Related Work

Proportional fairness has been the subject of considerable attention in

the literature on multi-rate 802.11 WLANs since it can be used to ad-

dress the performance “anomaly” [Heusse et al., 2003, Herzen et al.,

2011] in a principled manner and is closely related to so-called time-

based fairness [Jiang and Liew, 2005, Tan and Guttag, 2004]. Well

established utility fairness techniques from wired networks cannot,

however, be directly applied to Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) wireless networks due to the pres-

ence of collision losses and the coupling of station transmissions via

carrier sense.

For Aloha wireless networks, proportional fairness is rigorously

analysed in [Liu et al., 2009, Kar et al., 2004, Wang and Kar, 2005].

In [Kar et al., 2004, Wang and Kar, 2005] it is established that there

exists a unique proportional fair rate allocation and local message-

passing algorithms that converge to this allocation are proposed. In

[Liu et al., 2009] an alternative distributed algorithm based on back-

pressure is studied. However, there are no corresponding rigorous

results for 802.11 WLANs and the literature is confined to approxi-

mate approaches [Jiang and Liew, 2005, Siris and Stamatakis, 2006,

Banchs et al., 2006, Dunn et al., 2005, Nandagopal et al., 2000]. The

work in [Jiang and Liew, 2005, Nandagopal et al., 2000] neglects col-

lision losses while [Banchs et al., 2006] neglects collisions involving

more than two stations. In [Siris and Stamatakis, 2006] an algorithm

based on contention window tuning is proposed and in [Dunn et al.,

2005] an algorithm using Maximum Transmission Unit (MTU) tuning

is proposed. Notwithstanding this work, since the 802.11 rate region

is non-convex, basic issues such as the existence and uniqueness of

proportional fair rate allocations remained open before the present

work.

2

1.2 interference reduction

1.2 interference reduction

To mitigate interference in unplanned, ad-hoc deployed networks, it

is necessary to design simple, decentralised algorithms for channel

and power selection that are robust and adaptive to changes in the

network topology.

Recently, fully decentralised algorithms have been proposed for

solving general constraint satisfaction problems without the need for

message-passing [Duffy et al., 2013] and with the ability to respond

automatically to topology changes. These algorithms exploit local

sensing to infer satisfaction/dissatisfaction of constraints, thereby avoid-

ing the need for message-passing and use stochastic learning to con-

verge to a satisfying assignment. Our main contribution in this topic

is the analysis and extension of such algorithms, for the class of con-

straint satisfaction problems corresponding to graph colouring.

We begin Chapter 3 by applying these techniques to scrambling

code selection in femtocell networks (Section 3.2). This application

motivates the Local Topology Discovery (LTD) problem, because fem-

tocells need to rely on user reports in order to estimate their inter-

ference neighbourhood. In Section 3.3 we define the LTD problem,

introduce a Markov chain model and use this to upper bound per-

formance vs. the number of users in the network. In Chapter 4 we

then investigate situations where algorithms cannot rely on symmet-

rical sensing, a very typical case in wireless networks where hidden

terminals are present. We characterise a class of problems with par-

tial sensing that can still be solved by CFL algorithms. Finally, in

Chapter 5 we provide a significantly simpler and easier to implement

algorithm that retains similar convergence rate to the state-of-the-art,

but has the advantage of being provably fast when sufficient colours

are available. This gives some insight into which characteristics of

such algorithms are essential to provide fast convergence.

We also show how this simplified algorithm can be efficiently im-

plemented in two applications, namely in a warehouse served by RFID

robots and in a smart electronic bookshelf. In these applications the

algorithm can be implemented without the need to modify the RFID

protocol or the readers, and retaining backward compatibility with

standard RFID tags.

3

introduction

1.2.1 Interference Reduction – Related Work

Reducing cell size is one of the simplest yet most effective solutionsSelf-configuration of
scrambling codes for

WCDMA small cell
networks (3.2)

for capacity improvement e. g. in [Webb, 2007] the spectral gain effi-

ciency of wireless systems during the years 1950 to 2000 is analysed

and it is shown that shrinking of cell size has resulted in a factor of

2700 spectral efficiency gain. Self-configuration and self-optimisation

are considered as a key enabler for successful deployment of small

cells. This is especially true considering most deployments of small

cells (e. g. femtocells) are expected to be ad-hoc and unplanned. The

3rd Generation Partnership Project (3GPP) standard considers the opti-

mal selection of Primary Scrambling Codes (PSCs) as one of the top 5

most important parameters for self-configuration of small cells [3GPP

TR 25.967, 2011].

Achieving a proper PSC allocation is even more important than in-

terference reduction, because if two or more neighbouring femtocells

use the same PSC, code confusion occurs and the network cannot cor-

rectly distinguish between them. This is potentially an extremely se-

vere problem as it can prevent correct handover and make the cells un-

serviceable. Nevertheless, this thesis is the first work that addresses

this problem for small cell networks.

Topology Discovery (TD) has previously been investigated becauseLocal Topology
Discovery (3.3) of its applications to geographical position discovery [Chouldhury

et al., 2000], routing protocols problems [Marwaha et al., 2002], and

ad-hoc networks configuration in general [Choudhury et al., 2000].

However, to the best of our knowledge, the use of user reports from

wireless handset for neighbour discovery has not been studied in the

literature so far.

The graph colouring problem has been the subject of a vast lit-Partial Sensing (4)

erature, from cellular networks (e. g. [Raniwala and Chiueh, 2005]),

WLANs (e. g. [Raniwala and Chiueh, 2005, Mishra et al., 2006a,b, Le-

ung and Kim, 2003, Narayanan, 2002] and references therein) and

graph theory (e. g. [Dousse, 2012, Kothapalli et al., 2006, Hedetniemi

et al., 2002, Johansson, 1999]). Almost all previous work has been con-

cerned either with centralised schemes or with distributed schemes

that employ extensive message-passing. Centralised and message-

passing schemes have many inherent advantages. In certain situ-

ations, however, these systems may not be applicable. For exam-

ple, differing administrative domains may be present in a network

4

1.2 interference reduction

of WLANs. Early work in this direction includes that of Kauffmann

et al. [2007], which proposes a distributed simulated annealing al-

gorithm for joint channel selection and association control in 802.11

WLANs. However, heuristics are used to both terminate the algorithm

and to restart it if the network topology changes. Network-wide

stopping/restarting in a distributed context can be challenging with-

out some form of message-passing. A similar approach is chosen

in [Herzen et al., 2013a,b], where a distributed Metropolis sampler is

provided to jointly frequency and bandwidth selection.

In the graph theory and computer science literature, the problem of Fast Colouring with
∆+ 1 colours (5)colouring with ∆+ 1 colours has been thoroughly studied [Johansson,

1999, Kuhn and Wattenhofer, 2006, Szegedy and Vishwanathan, 1993,

Luby, 1988]. In particular, the family of locally iterative algorithms has

received much attention. This family of algorithms makes use of the

following strong assumptions:

1 The algorithm can use an unbounded number of colours (typically

it will reduce them as the algorithm progresses);

2 The graph topology is assumed to be fixed;

3 Each graph vertex needs to know which colours are not used by its

neighbours.

Szegedy and Vishwanathan [1993] use an heuristic argument to show

that no locally iterative (∆+ 1)-colouring algorithms is likely to ter-

minate in less than Ω(∆ log∆) rounds (lower bound).

But in the wireless networking field, these assumptions may not be

acceptable. To our knowledge, Assumption 1 has been discarded by

all works in the wireless networking field, because it is inappropriate

for such applications. Assumption 2 has been relaxed in two ways:

by using network-wide stopping/restarting techniques in annealing-

like algorithms [Kauffmann et al., 2005], and by use of learning al-

gorithms [Duffy et al., 2013, Kothapalli et al., 2006, Kuhn and Wat-

tenhofer, 2006, Szegedy and Vishwanathan, 1993, Barcelo et al., 2011,

Barenboim and Elkin, 2009].

Assumption 3 (either centralised or gossiping-like message pass-

ing) has been retained in [Kauffmann et al., 2005, Wu et al., 2006,

Crichigno et al., 2008, Subramanian et al., 2008]. But even if, in certain

conditions, communication between nodes may be possible, this can-

not be relied upon in the design of a robust algorithm in cases where

5

introduction

wireless nodes belong to different administrative domains or when

the devices are too simple to be able to realise such communication

(see, for example, RFID devices). The more challenging problem of

graph colouring in which no message passing is possible (so all three

assumptions are discarded) has only recently been studied in [Duffy

et al., 2013, Barcelo et al., 2011, Motskin et al., 2009].

• The Learning-BEB algorithm, proposed by Barcelo et al. [2011]

is an algorithm devised for achieving collision-free scheduling

in 802.11 networks. It is a modification of the CSMA/CA mech-

anism of truncated exponential backoff: after a successful trans-

mission, the transmitter uses a fixed backoff interval P, while af-

ter a collision it selects an interval uniformly at random (u.a.r.)

in the contention window range. Within the terminology of

graph theory, this corresponds to a colouring algorithm in which

each node selects the same colour after being locally satisfied,

and selects a colour u.a.r. otherwise. This algorithm is known

to suffer from slow convergence rates [Fang et al., 2010], but it

has the advantage of being easy to implement.

• The algorithm proposed by Motskin et al. [2009] is similar to [Barcelo

et al., 2011], with the advantage of being provably fast (O(logN)

when ∆ = O(N)) but with the major disadvantage of not being

adaptive to topology changes, since after a correct local choice,

the node keeps the chosen colour forever.

• The CFL algorithm proposed by Clifford and Leith [2007] and ex-

tended in [Duffy et al., 2013,?, Leith et al., 2012] uses a stochastic

learning mechanism to update the probability of choosing each

colour based on local sensing. In simulations it is fast, and it is

provably adaptive to topology changes. The main disadvantage

is that it is hard to prove good convergence rate bounds and

it is too complicated to implement in simple hardware such as

Radio-Frequency Identification (RFID) tags.

It is worth noting that all three algorithms share the common prop-

erty of initially selecting colours u.a.r. and holding the colour as-

signment constant when locally satisfied. They also all belong to the

family of locally iterative algorithms, even if they do not use assump-

tions 1-3. The difference between them lies in the way they respond

to the loss of local satisfaction: Learning-BEB will go back to u.a.r.

6

1.2 interference reduction

selection, the algorithm proposed by Motskin et al. [2009] will keep

the same choice even if locally unsatisfied, and CFL will distribute the

probability mass amongst all colours, decreasing the probability of

choosing the current unsatisfying colour. Learning-BEB is equivalent

to CFL when the latter uses parameters a = b = 1 (in the terminology

of [Duffy et al., 2013]).

7

Publications

1.3 publications

The following papers have been published/submitted reporting the

work in this thesis:

I. Alessandro Checco and Douglas J. Leith. Learning-Based Constraint

Satisfaction With Sensing Restrictions. Selected Topics in Signal Pro-
cessing, IEEE Journal of, 7(5):811–820, 2013.

II. Alessandro Checco and Douglas J. Leith. Proportional Fairness in

802.11 Wireless LANs. Communications Letters, IEEE, 15(8):807–809,

2011.

III. Alessandro Checco, Rouzbeh Razavi, Douglas J. Leith, and Holger

Claussen. Self-configuration of Scrambling Codes for WCDMA

Small Cell Networks. In Personal Indoor and Mobile Radio Communi-
cations (PIMRC), 2012 IEEE 23rd International Symposium on, pages

149–154. IEEE, 2012.

IV. Alessandro Checco and Douglas J. Leith. Fast, responsive decen-

tralised graph colouring. CoRR, abs/1405.6987, 2014. Submitted

to IEEE/ACM Transactions on Networking.

V. Alessandro Checco, Carlo Lancia, and Douglas J. Leith. Using crowd

sourcing for local topology discovery in wireless networks. CoRR,

abs/1401.1551, 2014. Submitted to IEEE Transactions on Vehicular
Technology.

8

2
P R O P O RT I O N A L FA I R N E S S I N 8 0 2 . 1 1 N E T W O R K S

In this chapter we provide the first rigorous analysis of proportional

fairness in 802.11 WLANs. This analysis corrects prior approximate

studies. We show that there exists a unique proportional fair rate

allocation and completely characterise the allocation in terms of a

new air-time quantity, the total air-time.

contents

2.1 Network Model 9

2.2 Proportional Fair Rate Allocation 11

2.3 Finite-Load 13

2.4 Example 15

2.5 Conclusions 15

2.A Appendix - Normal Vector 16

2.1 network model

We begin by introducing our network model, which follows closely

the well established model in [Duffy et al., 2005].

Station Throughput

We consider an 802.11 WLAN with n stations, n > 2. Let τi denote the

probability that station i attempts a transmission. The throughput of

station i is [Duffy et al., 2005]:

Si(τ) =
Psucc,iDi

σPidle + Tc(1− Pidle)

where Pidle =
∏n
k=1(1 − τk), Psucc,i = τi

∏n
k=1,k6=i(1 − τk), τ =

[τ1 ... τn]T , σ is the PHY idle slot duration, Tc the mean duration

of a transmission, Di the mean number of bits sent by station i in a

successful transmission. This model is from [Leith et al., 2010], with

the mean duration of successful and colliding transmissions taken

equal i. e. without Transmission Opportunity (TXOP) packet bursting.

proportional fairness in 802 .11 networks

The WLAN rate region is the set R of achievable throughput vectors

S(τ) = [S1 ... Sn]T as the vector τ of attempt probabilities ranges over

domain [0, 1]n. We also define the log-transformed rate region R̃ as

the set of achievable vectors S̃(τ) = [S̃1 ... S̃n]T , S̃i = logSi.

It will prove useful to work in terms of xi = τi/(1− τi) rather than

τi; observe that xi ∈ [0,∞) for τi ∈ [0, 1). We have that Pidle =

1/
∏n
k=1(1+ xk), Psucc,i = xiPidle and

Si(x) =
xi
X(x)

Di
Tc

(1)

where X(x) = a+
∏n
k=1(1+ xk) − 1 with a = σ/Tc.

Flows

We assign the packets transmitted by each station to “flows”. Let Pi
be the set of flows carried by station i and P = ∪ni=1Pi the set of flows

in the WLAN. How we choose to define a flow is essentially a design

decision, subject only to the constraint that
∑
p∈Pi s(p) = Si(x), s(p)

the rate of flow p. For example, we might define a flow to consist

of packets with the same source-destination address/port number

quadruple. Alternatively, per-station fairness is subsumed within our

formulation by defining all packets transmitted by the same station

to be a flow.

Air-time

We clarify air-time, since in the literature various non-equivalent defi-

nitions are used.

Definition 1 (Transmission Duration). The time Tc taken to transmit

a frame; e. g., used in [Dunn et al., 2005].

Definition 2 (Successful Station air-time). The fraction of time spent

by a station on successful transmissions; e. g., used in [Banchs et al.,

2006]. For station i, this is given by Tsucc,i = xi/X(x).

Definition 3 (Flow Total air-time). The fraction of time T(p) used for

transmissions by flow p, including both successful transmissions and

10

2.2 proportional fair rate allocation

collisions. We also define the station total air-time Ti =
∑
p∈Pi T(p)

and note that

Ti =
τiPcoll,iTc + τi(1− Pcoll,i)Tc

σPidle + Tc(1− Pidle)
=

xi
X(x)

(
1+

Pcoll,i
1− Pcoll,i

)

where Pcoll,i = 1−
∏n
k=1(1−τk)
1−τi

= 1− 1+xi∏n
k=1(1+xk)

is the collision prob-

ability experienced by station i.

2.2 proportional fair rate allocation

Assume that the WLAN offered load is unconstrained. This is similar

to a saturated station (i. e. stations always have a packet to send) as-

sumption, which we will later relax. To determine the proportional

throughput allocation we need to solve the following utility optimisa-

tion problem:

max
x,s

∑
p∈P

log s(p) s.t.
∑
p∈Pi

s(p) 6
xi
X(x)

Di
Tc

, xi > 0, i = 1, ...,n

The constraints ensure that the aggregate flow throughput at station

i is feasible and so lies within the WLAN rate region. Since the WLAN

rate region R is non-convex, the optimisation problem is non-convex.

Fortunately, it has recently been shown that the log-transformed rate

region R̃ is, however, convex [Leith et al., 2010]. Changing variables

to s̃(p) = log s(p), the optimisation can therefore be transformed into

convex form:

Problem 2.1 (Proportional Fairness).

max
x,s

∑
p∈P

s̃(p) s.t. log
∑
p∈Pi

es̃(p)6 log
xiDi
X(x) Tc

, xi > 0, i = 1, ..,n

In addition to the constraints now being convex, there also exists a

strictly feasible point and so the Slater conditions [Rockafellar, 1997]

are satisfied. Hence, strong duality holds and the Karush–Kuhn–Tucker

(KKT) conditions [Rockafellar, 1997] are necessary and sufficient con-

ditions for global optimality. However, since the objective function

is not strictly concave (it is linear in s̃(p)), extra work is needed to

establish that the optimisation has a unique solution. We will make

use of the following Lemma:

11

proportional fairness in 802 .11 networks

Lemma 2.1. The log-transformed rate region R̃ is strictly convex.

Proof. Let ∂R̃ denote the boundary of set R̃. Since we already know

that R̃ is convex, to establish strict convexity it is sufficient to show

that the tangent hyperplanes to any two boundary points S̃(x1), S̃(x2) ∈
∂R̃ are different whenever x1 6= x2. Now S̃i(x) = log xi

X(x)
Di
Tc

and

∂S̃i
∂xj

=
δij

xi
−
1

X

n∏
k6=j
k=1

(1+ xk),

where δij = 1 when i = j and 0 otherwise. The normal vector b(x) to

the tangent hyperplane at point S̃(x) ∈ ∂R̃ solves

n∑
i=1

bi(x)
∂S̃i(x)

∂xj
= 0 ∀j = 1, ...,n.

It can be verified (see appendix to this chapter) that bj(x) =
xj
1+xj

is

one such normal vector. Hence, for any two points S̃(x1), S̃(x2) on

the rate region boundary with x1 6= x2, the corresponding tangent

hyperplanes are different, as required.

We are now in a position to state the first of our main results.

Theorem 2.1. There exists a unique proportional fair rate allocation, the
solution to Problem 2.1, which: (i) assigns equal flow total air-times
(T(p) = T(q) ∀ p,q ∈ P), (ii) the flow total air-times sum to unity
(
∑
p∈P T(p) = 1) and (iii) lies on the boundary of the WLAN rate region.

Note that since the flow air-time usage overlaps due to collisions, (ii) does
not imply that the channel idle probability Pidle = 0.

Proof. We proceed by making use of strong duality. The Lagrangian

is

L(x, s, λ) =
∑
p∈P

s̃(p) +

n∑
i=1

λi

log
xiDi
XTc

− log
∑
p∈Pi

es̃(p)


The main KKT conditions are

1− λi
es̃(p)∑

q∈Pi
es̃(q)

= 0 ∀ p ∈ P, i = r(p) (2)

λi
xi

−
1

X

∂X

∂xi

n∑
j=1

λj = 0, i = 1, . . . n (3)

12

2.3 finite-load

From the first KKT condition (2), s(p) =
∑
q∈Pi

s(q)/λi ∀ p ∈ Pi and so

all flows carried by the same station are allocated the same through-

put. Summing (2) over flows p ∈ Pi carried by station i yields

λi = ni (4)

where ni = |Pi| is the number of flows carried by station i. It fol-

lows from complementary slackness that since λi > 0 the station

throughput constraint in Problem 2.1 is tight. Thus station through-

put Si(x) = nis(p) and S̃i(x) = log (nis(p)). The contribution to

the optimisation objective function in Problem 2.1 by station i is

ni log s(p) = niS̃i −ni logni. Hence, the level sets form hyperplanes

in rate region R̃. Any optimal solution S̃∗ must lie on the boundary

of R̃, else the flow throughputs could be increased and the objective

improved. Since R̃ is strictly convex by Lemma 2.1, each boundary

point has a unique supporting hyperplane and so the optimum of

Problem 2.1 is unique, as claimed.

Turning now to the second KKT condition, rearranging (3) and us-

ing (4) yields Ti = λi∑n
j=1 λj

, where Ti is the total air-time used by sta-

tion i. The total air-time used by each flow p ∈ Pi carried by station

i is

T(p) =
Ti
ni

=
1∑n
j=1 λj

,

establishing the property (i) as claimed. Property (ii) follows from the

fact that
∑n
j=1 λj =

∑n
j=1 |Pj| = |P|.

2.3 finite-load

The foregoing analysis can be generalised to situations with finite

offered-load. Problem 2.1 is then augmented with the additional (con-

vex) constraint

s̃(p) 6 log s̄(p), ∀p ∈ P (5)

where s̄(p) > 0 is the offered load of flow p. Let S =
{
r ∈ P : s(r) = s̄(r)

}
denote the set of offered-load constrained flows and U = P \ S the set

of network constrained flows. We have the following intuitive ex-

tension of Theorem 2.1 demonstrating that the air-time left unused

13

proportional fairness in 802 .11 networks

by the offered-load constrained flows is simply reallocated equally

amongst the network constrained flows:

Theorem 2.2. The proportional fair rate allocation with offered-load con-
straint (5): (i) assigns equal total air-time to all network constrained flows
(T(p) = T(q) ∀ p,q ∈ U), (ii) the flow total air-times sum to unity
(
∑
p∈P T(p) = 1) and (iii) is on the boundary of its rate region.

Proof. Strong duality also holds for the augmented problem. The

Lagrangian is

L(x, s, λ, ϑ) =
∑
p∈P

s̃(p) +

n∑
i=1

λi

log
xiDi
X(x)Tc

− log
∑
p∈Pi

es̃(p)


+
∑
p∈P

ϑp(¯̃s(p) − s̃(p))

with multiplier ϑp > 0 ∀p ∈ P. The second KKT condition (3) is

unchanged but the first KKT condition becomes

1− λi
es̃(p)∑

q∈Pi
es̃(q)

− ϑp = 0 ∀ p ∈ P, i = r(p) (6)

Let Si = Pi ∩ S be the set of offered-load constrained flows carried by

station i and Ui = Pi \ Si the set of network constrained flows. For

a network constrained flow p ∈ Ui multiplier ϑp = 0 by complemen-

tary slackness. Consider a station i with at least one network con-

strained flow (if there are no network constrained flows, the through-

put allocation is trivial). By (6), s(p) =
∑
q∈Pi s(q)/λi ∀ p ∈ Ui (so

all network constrained flows on station i have the same throughput)

and

s(r) = s̄(r) = (1− ϑr)s(p) ∀ r ∈ Si,p ∈ Ui

The multiplier ϑr is equal to the relative throughput difference be-

tween offered-load constrained flow r and a network constrained flow.

Combining these observations we have that

λi =
∑
p∈Ui

1+
∑
r∈Si

(1− ϑr) (7)

14

2.4 example

Now from the second KKT condition, Ti = λi∑n
j=1 λj

. Taking this to-

gether with (7), the total air-time allocated to flow p ∈ P is

T(p) =


1∑n
j=1 λj

p ∈ U = P \ S

1−ϑp∑n
j=1 λj

p ∈ S

That is, every network constrained flow p ∈ U is allocated the same

total air-time as claimed. Property (ii) follows from inspection of∑n
j=1 λj. Operation at the rate region boundary is necessary as oth-

erwise the flow throughputs could be increased and so the objective

improved.

2.4 example

Consider a WLAN with 10 stations and 24 UDP flows. The WLAN uses

802.11g MAC/PHY values (9µ s slot time, short preamble, 6Mbps

PHY rate). The first three stations carry 2, 5 and 10 flows respectively.

The remaining 7 stations carry one flow each. The offered load is not

constrained, so Theorem 2.1 applies. Figure 1 shows the flow total

air-times and flow success air-times for the proportional fair rate al-

location. It can be seen that the proportional fair allocation assigns

equal flow total air-times but that success air-times are unequal. In

general, equalising flow total air-times is not equivalent to equalising

flow success air-times whenever there is asymmetry in the network

load (e. g. when stations do not all carry an identical number of flows)

since this leads to stations experiencing different collision probabili-

ties.

2.5 conclusions

We provide the first rigorous analysis of proportional fairness in 802.11

WLANs. We show that a unique proportional fair rate allocation exists

and, correcting previous studies, that this allocation assigns equal to-
tal air-time to flows. Total air-time is the time spent on both colliding

and successful transmissions and differs from other air-time quanti-

ties proposed heuristically in the literature.

15

proportional fairness in 802 .11 networks

Figure 1: Flow air-times of the proportional fair rate allocation in a 802.11g
WLAN with 24 UDP flows and 10 stations.

2.a appendix - normal vector

We want to verify that bi = xı
1+xi

is a normal vector on the boundary

of the log-tranformed rate region. In other words, given

∂S̃i
∂xj

=
δij

xi
−
1

X

n∏
k6=j
k=1

(1+ xk),

we want to show that on the rate region boundary the following holds

n∑
i=1

bi(x)
∂S̃i(x)

∂xj
= 0 ∀j = 1, ...,n.

On the rate region boundary we have [Subramanian, 2012]

X =
∏
m

(1+ xm)
∑
i

xi
1+ xi

.

So we can write

16

2.A appendix - normal vector

∑
i

 xi
1+ xi

(
δij

xi
−

∏
k6=j(1+ xk)∑

k
xk
1+xk

∏
k(1+ xk)

) =

∑
i

 xi
1+ xi

(
δij

xi
−

1

(1+ xj)
∑
k

xk
1+xk

) =

xj

xj(1+ xj)
−

∑
i
xi
1+xi

(1+ xj)
∑
k

xk
1+xk

= 0.

as required.

17

3
D E C E N T R A L I S E D A L G O R I T H M S F O R S M A L L C E L L

N E T W O R K S

In Section 3.1, we introduce the decentralised Colouring Problem (CP),

and define the class of solvers we want to study. In Section 3.2, we

show how this problem arises in small cell networks for channel/code

allocation, and propose a decentralised solver for it. In Section 3.3, we

show how crowd sourcing can be used for local topology discovery,

to facilitate the design of such solvers.

contents

3.1 Decentralised Colouring Algorithms 19

3.1.1 Colouring Problem (CP) 20

3.1.2 Decentralised CP Solvers 20

3.1.3 Communication-Free Learning (CFL) Algorithm 21

3.2 Self-Configuration of Scrambling Codes for WCDMA Small
Cell Networks 24

3.2.1 Problem Statement 25

3.2.2 Scrambling Code Selection 27

3.2.3 Confusion Graph Estimation 28

3.2.4 Results - Numerical Simulations 29

3.2.5 Summary 36

3.3 Crowd Sourcing 36

3.3.1 Local Topology Discovery Model 37

3.3.2 Teleport Mobility 42

3.3.3 Simulations 47

3.4 Use Cases 52

3.4.1 Summary 53

3.1 decentralised colouring algorithms

We begin by recalling the formal definition of a decentralised Colour-

ing Problem (CP) solver, an example of which is the CFL algorithm

introduced by [Leith et al., 2012].

decentralised algorithms for small cell networks

3.1.1 Colouring Problem (CP)

Let G = (V ,M) denote an undirected graph with set of vertices V =

{1, . . . ,N} and set of edges M := {(i, j) : i, j ∈ V , i ↔ j}, where i ↔ j

denotes the existence of a pair of directed edges i → j, i ← j joining

vertices i, j ∈ V . Note that with this notation the edges in set M

are directed, since this will prove convenient later when considering

oriented subgraphs of G. However, since graph G is undirected we

have (i, j) ∈M ⇐⇒ (j, i) ∈M.

A Colouring Problem (CP) on graph G with D ∈ N colours is de-

fined as follows. Let xi ∈ D denote the colour of vertex i, where

D = {1, . . . ,D} is the set of available colours, and ~x denote the vec-

tor (x1, . . . , xN). Define clause Φm : DN 7→ {0, 1} for each edge m =

(i, j) ∈M with:

Φm(~x) = Φm(xi, xj) =


1 if xi 6= xj

0 otherwise
.

We say clause Φm(~x) is satisfied if Φm(~x) = 1. An assignment ~x is

said to be satisfying if for all edges m ∈M we have Φm(~x) = 1. That

is

~x is a satisfying assignment iff min
m∈M

Φm(~x) = 1. (8)

Equivalently, ~x is a satisfying assignment if and only if xi 6= xj for all

edges (i, j) ∈ M i. e. if i ↔ j. A satisfying assignment for a colouring

problem is also called a proper colouring.

Definition 4 (Chromatic Number). The chromatic number χ(G) of

graph G is the smallest number of colours such that at least one

proper colouring of G exists. That is, we require the number of

colours D in our palette to be greater or equal than χ(G) for a sat-

isfying assignment to exist.

3.1.2 Decentralised CP Solvers

Definition 5 (CP solver). Given a CP, a CP solver realises a sequence

of vectors {~x(t)} such that, if a satisfying assignment exists,

(d1) for all t sufficiently large ~x(t) = ~x for some satisfying assign-

ment ~x;

20

3.1 decentralised colouring algorithms

(d2) if t ′ is the first entry in the sequence {~x(t)} such that ~x(t ′) is a

satisfying assignment, then ~x(t) = ~x(t ′) for all t > t ′.

In order to give criteria for classification of decentralised CP solvers,

we re-write the LHS of Equation (8) to focus on the satisfaction of each

variable

~x is a satisfying assignment iff min
i∈V

min
m∈Mi

Φm(~x) = 1. (9)

where Mi consists of all edges in M that contain vertex i, i. e.

Mi =
{
(j, i) : (j, i) ∈M

}
.

Note that we adopt the convention of including edges in Mi which

are incoming to vertex i, but since (i, j) ∈ M ⇐⇒ (j, i) ∈ M then⋃
i∈VMi = M.

A decentralised CP solver is equivalent to a parallel solver, where

each variable xi runs independently an instance of the solver, having

only the information on whether all of the clauses that xi participates

in are satisfied or at least one clause is unsatisfied. The solver located

at variable xi must make its decisions only relying on this informa-

tion.

Definition 6 (Decentralised CP solver). A decentralised CP solver is a

CP solver that for each variable xi, must select its next value based

only on the evaluation of

min
m∈Mi

Φm(~x). (10)

That is, the decision is made without knowing

(d3) the assignment of xj for j 6= i.

(d4) the set of clauses that any variable, including itself, participates

in, Mj for j ∈ V .

(d5) the clauses Φm for m ∈M.

3.1.3 Communication-Free Learning (CFL) Algorithm

Pseudo-code for the CFL algorithm, that is the decentralised CP solver

we will analyse and extend for the rest of this thesis, is given in Algo-

rithm 1.

21

decentralised algorithms for small cell networks

Algorithm 1 Communication-Free Learning for base-station i
1: Initialize pi,j = 1/D, j ∈ {1, . . . ,D}.
2: Realise a random variable, selecting xi = j with probability pi,j.
3: loop
4: Evaluate minm∈Mi

Φm(~x), returning satisfied if its value is 1,
and unsatisfied otherwise.

5: Update: If satisfied,

pi,j =

1 if j = xi

0 otherwise.

If unsatisfied,

pi,j =

(1− b)pi,j + a/(D− 1+ a/b) if j = xi

(1− b)pi,j + b/(D− 1+ a/b) otherwise,

where a,b ∈ (0, 1] are design parameters.
6: Realise a random variable, selecting xi = j with probability pi,j.
7: end loop

An instance of the CFL algorithm is run in parallel for every ver-

tex of the graph to be coloured (e. g. when a vertex corresponds to

a cell in a wireless network, an instance of the algorithm is run on

every base-station/access-point). By construction, the only informa-

tion used by the algorithm is whether or not any neighbour shares

the same colour as i. Moreover, the CFL algorithm also satisfies the

criterion that proper colourings are absorbing states (so once one is

found, the vertices will settle on that assignment). The i-th instance

of the algorithm maintains a vector pi of length M. The j-th element

pi,j gives the probability that instance i chooses colour j. Vector pi is

updated according to Algorithm 1.

In summary, when satisfied i. e. the current colour choice is distinct

from that of all neighbours, vertex i keeps using this colour. Other-

wise, it updates pi to decrease the probability of selecting this colour

again and then randomly chooses a new colour with probability given

by vector pi. The algorithm contains two parameters, a and b, which

determine the algorithm’s aversion to colours that lead to a failure: as

a is made larger, failures are penalised more heavily and the “stick-

iness” of the algorithm towards previously successful allocations is

reduced; b affects the speed of convergence.

22

3.1 decentralised colouring algorithms

The CFL algorithm is decentralised, meaning that it does not im-

pose the requirement and overhead of communication between the

vertices.

3.1.3.1 Convergence Properties

Define γ = min(a,b)/(D − 1 + a/b). We state now the theorem

from Duffy et al. [2013].

Theorem 3.1. With probability greater than 1− ε ∈ (0, 1), the number of
iterations for Algorithm 1 to find a satisfying assignment is less than

(N) exp(2N log(γ−1)) log(ε−1).

We will extend this theorem in two different directions:

• in Chapter 4, we prove a similar convergence rate when each

vertex has partial information;

• in Chapter 5, we prove a sub-exponential convergence rate when

the number of colours is greater than ∆.

3.1.3.2 Asynchronous Updates

The CFL algorithm has been designed to run in parallel in a syn-

chronous manner [Duffy et al., 2013]. To make the algorithm suit-

able for more general scenarios, we allow now the vertices to have

asynchronous updates, with the constraint that the update period T

of each vertex is the same. In other words, each vertex updates every

T seconds, so the vertices will update one after the other according

to an order induced by their relative time offset. We also assume the

time of the execution of the algorithm steps is negligible, so no vertex

update will happen during the update of another. We will show that

the CFL algorithm is guaranteed to converge with high probability

even in this case.

Comparing this version of the CFL algorithm with that presented

by Duffy et al. [2013], we can notice that in Algorithm 1 the selection

of a new colour has been moved to be immediately after the update of

the probability vector (see step 6). This is necessary to ensure that

when the updates are asynchronous the sampling of a new colour is

made considering the most recent state possible, i. e. satisfaction is

tested immediately before the sampling. This change does not affect

the behaviour of the algorithm when the updates are synchronous, in

23

decentralised algorithms for small cell networks

the sense that Algorithm 1 is equivalent to the CFL algorithm when

the updates are synchronous.

We refer to Theorem 4.2 for a proof of the convergence rate of Al-

gorithm 2 (that generalises Algorithm 1 in case of partial sensing),

where we can notice that we never consider updates of more than

one vertex per time, so the order in which vertices update does not

affect the proof.

3.2 self-configuration of scrambling codes for wcdma

small cell networks

We now introduce the problem of Primary Scrambling Code (PSC) se-

lection in Wideband Code Division Multiple Access (WCDMA) small

cell networks, and show how the CFL algorithm can be used to allo-

cate scrambling codes in a fully decentralised manner.

The PSC used by a base-station in UMTS and HSPA acts as an identi-

fier and it is important that neighbouring base stations employ differ-

ent scrambling codes in order to correctly manage handover and cell

association. When the pilot signal power of a base-station received

at the User Equipment (UE) is above a threshold, the UE will add

the base-station to its monitored set and report the measurements to

the serving base-station. If two or more base-stations in this set use

the same PSC, code confusion occurs and the network cannot correctly

distinguish between them. This is potentially an extremely severe

problem as it can prevent correct handover and make the cells unser-

viceable. The 3GPP requirements for macrocells therefore specify that

direct neighbours and second order neighbours use different PSCs.

In legacy macrocells, the PSC is chosen from a total of 512 available

codes and, with such a large number of available codes, scrambling

code allocation is a fairly straightforward task [Holma and Toskala,

2000]. This task is mostly carried out manually or through centralised

algorithms using cluster reuse-based techniques [Chang et al.] or cen-

tralised graph colouring schemes [Jung and Lee, 2001]. While the

Neighbour Cell List (NCL) can be constructed manually with poten-

tial enhancement through drive tests to include missing neighbours

by constructing the cell overlapping matrix for legacy macrocell net-

works [Soldani and Ore, 2007], this would not be applicable to small

cells considering their unplanned deployment. Therefore a number

of PSCs are reserved specifically for small cells. Because small cells

24

3.2 self-configuration of scrambling codes for wcdma small cell networks

can be deployed within the coverage area of any macrocell, all macro-

cells need to add this set to their existing NCL. To avoid excessively

long NCLs, the number of reserved PSCs is kept very small (3 or 4 in

current implementations). A too long NCL leads to slower neighbour

detection, measurement and cell acquisition [Guey et al., 2005].

For small cells, scrambling code allocation is much more challeng-

ing for four main reasons:

• Small cells are not only constrained to choose from amongst

only very few reserved scrambling codes but also are typically

more densely deployed: it is not even guaranteed a non-interfering

allocation exists;

• Dynamic allocation is required due to the unplanned, organic

nature of deployments;

• Allocation algorithms are constrained to use little or no message

passing between base stations in order to ensure scalability to

large network sizes;

• Since the reserved scrambling codes for small cells is a unique

set that is added to all macrocells NCL, intelligent code plan-

ning techniques such as choosing the codes from the same code

group or choosing identical codes from different groups be-

comes more difficult.

The main contributions of the present work are: (a) The formal def-

inition of the dynamic scrambling code allocation problem for small

cells; (b) The application of the CFL algorithm to dynamic scrambling

code allocation; (c) Analysis and performance evaluation of this al-

gorithm using numerical simulations. The results show a dramatic

improvement (up to 150% reduction in code confusion when a feasi-

ble solution exists) with respect to the 3GPP recommended scheme.

3.2.1 Problem Statement

We introduce the following notation:

• Let B denote the set of small base-stations, with |B| = N.

• Let S denote the set of PSCs reserved for small

cells, with |S| =M.

25

decentralised algorithms for small cell networks

• Let xi ∈ S denote the scrambling code associated to base-station

i ∈ B, and ~x ∈ SN a global scrambling code allocation.

• Let ri(p) the Received Signal Code Power (RSCP) from the Common

Pilot Channel (CPICH) of base-station i ∈ B measured at location

p ∈ R2, and ri,j := ri(pj), where pj is the location of device j

(which might be a UE or another base-station). Note that the

received power of pilot signal i measured by a device served by

a cell j may be asymmetric, i. e. ri(pj) 6= rj(pi).

Let mi,j denote the maximum ratio of received pilot power of base-

station i to that of base-station j in the coverage area Cj of base-station

j, i. e. mi,j := maxp∈Cj
ri(p)
rj(p)

. The neighbour set for base-station i is

defined as ni = {j : j ∈ B : wj,i > 0}, where

wj,i =


mj,i if mj,i > T

0 otherwise,

and T is an appropriate threshold value. We define the network confu-
sion graph be the weighted directed graph G := (B,E,w) with vertices

B and edges E := {(i, j) : j ∈ ni}. That is, the graph with network base-

stations as vertices and edge between each vertex/base-station i and

every member of its neighbour set ni. Each edge between two neigh-

bours (i, j) is assigned weight wi,j. Graph G is fundamental because

if every vertex is assigned a different PSC from all of its neighbours

then code confusion cannot occur. We call such an allocation a proper
code allocation. Conversely, if any neighbour in this graph chooses

the same PSC then code confusion may occur.

We define the utility of a code allocation as:

U(~x) =

∑N
i=1 ui
N

, ui =


1 if xi 6= xj, for all j ∈ ni

0 otherwise.

The utility of a proper code allocation ~x is U(~x) = 1, while if all base-

stations have at least one neighbour with the same PSC then U(~x) = 0.

Given a confusion graph G and a set S of codes, the code allocation

task is to find a code allocation ~x with maximal utility U(~x). We say

that this code allocation task is feasible if at least one proper choice

of PSCs exists (and so the maximal U(~x) = 1). Whether a feasible

26

3.2 self-configuration of scrambling codes for wcdma small cell networks

Figure 2: Simple example of a confusion graph G for a scenario
consisting of 4 base-stations with symmetrical weights, and
w1,2 < w2,4,w3,4 < w1,3.

allocation exists depends both on the graph G and the number M of

codes available.

As an example, Figure 2 shows a simple case of a confusion graph

G for a network consisting of 4 base-stations where the weights asso-

ciated to the edges are symmetrical, i. e. wi,j = wj,i.

3.2.2 Scrambling Code Selection

In this section we introduce three decentralised algorithms for tack-

ling the code allocation task. All algorithms are run by the base-

stations in an asynchronous fashion, i. e. each base-station asynchronously

updates its choice of PSC. This allows a simple implementation since

femtocells are currently not synchronised. We will discuss how the

ordering of updates can affect the performance of the algorithms.

3.2.2.1 State of the Art: Single-step Greedy Algorithm (SGA)

The Single-step Greedy Algorithm (SGA) is based on the current 3GPP

recommendation [3GPP TR 25.967, 2011] that is envisioned as a po-

tential solution while other vendor specific methods are concurrently

encouraged. Each base-station i ∈ B scans the set of available PSCs

and determines the set Sallocated(b) = {xj, j ∈ ni} of PSCs used by its

neighbouring base-stations. From this it determines the set Sfree(i) =

S \ Sallocated of unallocated PSCs. If Sfree(i) is non-empty, then base-

station i picks a PSC uniformly at random from Sfree(i). Otherwise,

base-station i selects the code that is used by a neighbour of minimal

weight xi = argmin
xi∈S

max
j∈ni

wj,i.

27

decentralised algorithms for small cell networks

While appealingly simple, it is important to note that this greedy

algorithm is not guaranteed to find a proper code allocation even in

simple scenarios and in general its performance may be poor. For ex-

ample, consider the confusion graph shown in Figure 2, with weights

chosen such that w1,2 < w2,4,w3,4 < w1,3 and suppose M = 2 PSCs

are available for use by small cells, S = {A,B}. It can be readily veri-

fied that a proper code allocation exists, namely assigning code A to

vertices 1 and 4 and code B to vertices 2 and 3. However, in the SGA it

may happen that vertex 1 chooses code A, then vertex 4 chooses code

B and now vertices 2 and 3 are unable to choose a code that ensures a

proper allocation (vertex 2 will choose code A, conflicting with vertex

1 and vertex 3 will choose code B, conflicting with vertex 4). Indeed

in this case the utility U(s) = 0.

3.2.2.2 Iterative Greedy Algorithm (IGA)

A refinement is to execute the SGA repeatedly rather than just in a one-

shot manner, thereby yielding the Iterative Greedy Algorithm (IGA).

However, in general this suffers from similarly poor performance to

the SGA e. g. it is easy to verify that in the previous example for

SGA the allocation assigning code A to vertices 1 and 2 and code B

to vertices 3 and 4 is a reachable equilibrium point of IGA for the

confusion graph in Figure 2, i. e. there is a significant probability this

algorithm converges to an allocation with U(s) = 0.

3.2.2.3 Communication-Free Learning (CFL) Algorithm

Consider the unweighted, undirected version of graph G, i. e.
G̃ := (B, Ẽ), with Ẽ := {(i, j) : (j ∈ ni) OR (i ∈ nj)}. That is, the

graph with network base-stations as vertices and an undirected edge

between each vertex/base-station that can lead to code confusion.

We can then formulate the scrambling code allocation problem as

a CP on graph G̃, where the colour set represents S, and run Algo-

rithm 1 asynchronously to solve it.

3.2.3 Confusion Graph Estimation

In order to decide the scrambling code, ideally each base-station i

should know the RSCP levels rj(p), ri(p),p ∈ Ci for all base-stations

j. In practice, these quantities can be estimated based on UE reports.

28

3.2 self-configuration of scrambling codes for wcdma small cell networks

However, if the UE reports are to be taken into account, the base-

station requires to allow long enough time to collect the UE measure-

ments before deciding the scrambling code, which can lead to slow

convergence of the network1.

A simpler way to construct the confusion graph is to rely on the

CPICH RSCP measurements of other base-stations. This corresponds,

in our notation, to constructing the approximate confusion graph G ′

measuring mi,j :=
ri(pj)
rj(pj)

for each base-station j. Again, each base-

station i needs to know only the values mi,j, j ∈ n(i). Similarly, the

3GPP recommendation [3GPP TR 25.967, 2011] suggests to use base-

stations measurements for scrambling code selection.

While the algorithms introduced in this work can support both

base-station based and UE-assisted graph construction, in order to

make a fair comparison against the 3GPP scheme, the confusion graphs

are constructed based on base-station measurements.

As an example, Figure 3-(a), illustrates the scenario where four

base-stations are deployed within the conference hall at the Hynes

convention centre in Boston. The heat-map shown in this graph

refers to CPICH RSCP of base-station 1 (top-left) when the transmit

pilot power is set to 10dBm. The map is generated using the Wireless

System Engineering (WiSE) [Fortune et al., 1995] software, which is a

comprehensive 3D ray tracing based simulation package. The simu-

lation results from WiSE have been validated by comparison against

measurement data in a number of indoor and outdoor environments

including the Hynes convention centre considered in this example.

Figure 3-(b) shows the resulting approximate confusion graph G ′.

3.2.4 Results - Numerical Simulations

Simulations were performed to evaluate and compare the performance

of these three scrambling code allocation algorithms. Due to the com-

plexity of the WiSE package and need for exhaustive global search

for scrambling code allocation in many simulation scenarios, a sim-

pler model was used. Varying number of base-stations are placed

uniformly at random in a 100× 100m2 area. The update ordering

of the base-stations is selected uniformly at random from the set of

permutations of B for each sample. The maximum transmit power

1 We investigate the impact on convergence time when UE reports are used in Sec-
tion 3.3.

29

decentralised algorithms for small cell networks

-100dB

0dB1

3 2

4

(a) (b)

Figure 3: Example of small cell deployment within the Hynes convention
centre in Boston: (a) Received pilot power for base-station 1, (b)
Corresponding confusion graph G ′.

is 100mW and the pilot power is 10% of this value [3GPP TS25.101,

2004]. Radio propagation path loss used is the 3GPP model for small

cells [3GPP TR 36.814, 2010]. Simulation results are averaged over 100

independent runs.

3.2.4.1 Comparison of Scrambling Code Selection Algorithms

Figure 4 shows the boxplot of the utility function, U(s), for all three

algorithms and for scenarios where a feasible scrambling code allo-

cation exist (choosing the number of available codes M equal to the

chromatic number of the confusion graph). In this figure, markers

indicate the mean value of utility function, the bottom and the top of

the boxes indicate the 25th and 75th percentile of the utility function

samples. The figure additionally indicates the minimum values un-

derneath the bottom of the boxes. Without exception, the CFL always

finds a proper solution (U(~x) = 1). In contrast, both IGA and SGA

achieve mean utility of around 0.85 and also have relatively large de-

gree of dispersion around this mean. The improvement of the utility

function is up to 150%.

Figure 5 shows the utility function versus the number of base-

stations. The results are illustrated for the scenario when M = 3

scrambling codes are reserved for small cells (and so a proper code al-

location may not exist). While the overall trend is expectedly descend-

ing, the CFL is shown to outperform the other two greedy algorithms

by up to 50%. Additionally, the optimal allocation has been calcu-

lated with exhaustive search and compared against the CFL where

30

3.2 self-configuration of scrambling codes for wcdma small cell networks

�� �� �� ��
���

���

���

���

���

��	

��

���

�
�

�
��

�
��
�
�

�
�
�
�
��
�

������ �� ���� �
�
����! �

"#$

%&'

(&'

Figure 4: Comparison of SGA, IGA and CFL (with a = b = 0.1 algorithms
performance when a feasible code allocation exists.

4 5 6 7 8 9 10 11

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Base−stations, N

U
ti
lit

y
 f

u
n

c
ti
o

n
 U

(s
)

Optimum

CFL

SGA

IGA

Figure 5: Mean utility function U(s) versus number of base-stations for op-
timal scrambling code allocation and SGA, IGA and CFL algorithms
when M = 3.

31

decentralised algorithms for small cell networks

4 5 6 7 8 9 10 11
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Base−stations, N

U
ti
lit

y
 f
u
n
c
ti
o
n
 U

(s
)

Optimum

CFL

SGA

IGA

Figure 6: Mean utility function U(s) versus number of base-stations for op-
timal scrambling code allocation and SGA, IGA and CFL algorithms
when M = 4.

the CFL is shown to perform relatively close to the optimal especially

when considering practical densities. It should be note that the CFL

performance is considered to be acceptable given that the code alloca-

tion problem is NP-hard and that CFL is a fully distributed algorithm

which relies on individual base-station decisions without any mes-

sage passing (i. e. no centralised knowledge of the network topology

is available). Similarly, Figure 6 shows the results for the case when

the number of scrambling codes is increased to 4. Compared to Fig-

ure 5, the results show significant improvement in terms of the aver-

age utility function as a result of the added scrambling code. Again,

CFL is shown to be superior to both SGA and IGA and the performance

is even closer to the global optimum.

3.2.4.2 Impact of NCL size

To provide a better understanding of the effect of the number of avail-

able scrambling codes, Figure 7 shows the optimal utility function

averaged over 100 simulation runs for increasing number of base-

stations and varying number of available scrambling codes. As the

results show, increasing the number of scrambling codes has a sig-

nificant effect on the supported density of small cell deployments.

The downside would evidently be the increased size of the NCLs. Us-

ing the model introduced in [Kourtis, 2000], Figure 8-(a) shows the

32

3.2 self-configuration of scrambling codes for wcdma small cell networks

4 5 6 7 8 9 10 11

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Base−stations, N

U
ti
lit

y
 f
u
n
c
ti
o
n
 U

(s
)

M = 3

M = 4

M = 5

M = 6

Figure 7: Mean utility function U(s) corresponding to the optimal allocation
for different number of base-station and varying number of scram-
bling codes, M.

overall synchronisation time required for target cell measurements as

function of the NCL size. In fact, the time required for synchronisation

depends on how scrambling codes are allocated between the neigh-

bouring cells. In general, there is a trade-off between the synchroni-

sation time and the complexity (in terms of the number of operations

and memory access) when scrambling codes are planned. While the

synchronisation time strongly depends on the number of code groups

within a given NCL, the complexity rises with the number of individ-

ual codes [Kourtis, 2000]. The reason for this is because the final code

detection is more robust than the code group detection stage albeit at

the cost of increased complexity.

Moreover, poor code group detection degrades the overall synchro-

nisation process substantially and results in lengthy code acquisition.

As an example, for an NCL of size 12, if 6 identical scrambling codes

are selected from 2 groups, the required synchronisation time per cell

is 31.9ms with the associated complexity of 2.59× 105 operations and

memory access. The corresponding values are 40.2ms and 1.43× 105

operations if the 2 codes are selected from 6 groups.

Since the codes that are decided for small cells ought to be fixed,

it may not be possible to choose them from the same group as the

macrocells. However, it is still possible to select the codes dedicated

to small cells from the same group. In Figure 8-(a), considering the

33

decentralised algorithms for small cell networks

6 8 10 12 14 16
100

200

300

400

500

600

700

800

900

1000

Total length of NCL

S
y
n
c
h
ro

n
is

a
ti
o
n
 T

im
e
 (

m
s
)

Best Allocation

Feasible Allocation

Worst Allocation

(a)

6 8 10 12 14 16
0

2

4

6

8

10

12
x 10

6

C
o
m

p
le

x
it
y
 (

N
o
 o

f
O

p
e
ra

ti
o
n
s
 &

 M
e
m

o
ry

 A
c
c
e
s
s
)

Best Allocation

Worst Allocation

(b)

6 7 8 9 10 11 12 13 14 15 16 17
100

110

120

130

140

150

160

Total length of NCL

P
e

a
k
 P

ro
c
e

s
s
in

g
 R

e
q

u
ir
e

m
e

n
t

(M
IP

S
)

(c)

Figure 8: (a) Synchronisation time (b) Associated complexity (total number
of operations and memory access) and (c) Peak processing require-
ment as a function of NCL size.

34

3.2 self-configuration of scrambling codes for wcdma small cell networks

synchronisation time as the performance metric, the worst case al-

location refers to when all codes are selected from different groups

and the best allocation corresponds to choosing codes from minimum

possible number of code groups.

Given that each code group consists of 8 codes, there is a sharp

jump in the synchronisation time for the best allocation when the NCL

size is increased from 8 to 9 (or from 16 to 17) which imply the need

for a new code group. Furthermore, the feasible allocation refers to

the case when the code group of which small cell codes are selected is

different to that of the macrocells whilst the number of code groups

is kept at minimum.

Given that the measuring period is 500ms [Kourtis, 2000], Figure 8-(a)

confirms that the size of the NCL should not exceeds 14 cells for het-

erogeneous networks. Therefore, the number of small cells reserved

codes depends on the number of codes allocated to macrocells. While

with an ideal hexagonal shape macrocells’ layout, merely 6 codes are

sufficient to represent the neighbouring cells, in reality, a NCL size of

10 for macrocells is still not too conservative. This is especially the

case considering dense deployment of the macrocells in urban areas.

The exact number of required codes, depends on the network topol-

ogy including the base-stations location, their antennas orientations

and their pilot power settings.

Figure 8-(b) shows the complexity of the target cell search proce-

dure as a function of the number cells within a given NCL. In contrary

to Figure 8-(a), the best allocation here refers to when identical codes

are selected all from different groups and worst allocation represents

the scenario when many individual codes (up to 8) are selected used.

While it is desirable to minimise the number of operations and mem-

ory access to allow longer battery life of UEs, this will not be a prime

performance concern as long as UEs can handle the computation com-

plexity.

For this reason, the worst case peak processing requirement, in

Million Instruction Per Second (MIPS), was calculated and shown in

Figure 8-(c). Since the peak processing complexity depends on the

number of individual codes, it remains the same after the NCL size

exceeds 8. Fortunately, considering the processing capabilities of mo-

bile phones [Aguilar, 2008], the worst case peak processing require-

ment of 153 MIPS is still well bellow almost all mobile phones. The

margin is over 92% when considering more recent phones.

35

decentralised algorithms for small cell networks

Comparing the results shown in Figure 8, it is evident that for het-

erogeneous networks consisting of small cells, the best scrambling

code allocation strategy is to choose the codes from a minimum pos-

sible number of code groups.

3.2.5 Summary

This work introduces the problem of scrambling code allocation for

Wideband Code Division Multiple Access (WCDMA) small cell net-

works. The problem differs from code planning in the legacy macro-

cell networks due to the limited number of codes reserved for small

cells, the need for dynamic adaptation and for scalable, distributed

allocation algorithms. Additionally, a novel decentralised (with no

message passing) algorithm for dynamic scrambling code allocation

is proposed and its performance was evaluated against two variants

of 3GPP recommended schemes. The results confirm significant per-

formance improvement of the utility function (up to 150%) when us-

ing the proposed scheme. The proposed scheme is fully distributed

and is of low computation complexity which makes it suitable for

unplanned deployment of small cells base-stations.

Finally, the work discuss the trade-offs involved in increasing the

number of codes reserved for small cells. While there is a signifi-

cant improvement in term of supported small cell deployment den-

sity when the number of reserved codes is increased to 5 or 6, results

shows that the NCL size may not exceeds a total of 14 cells for a

synchronisation time of 500ms. Additionally, the work confirms the

importance of scrambling code planning for cells belonging to a given

NCL. Since the synchronisation time is shown to be the prime limiting

factor, the best code allocation strategy for heterogeneous networks

is the one that results in minimal number of code groups.

3.3 crowd sourcing

In this section we consider in more detail the problem of topology

discovery, already touched on in Section 3.2.3, and in particular es-

timating topology by means of user reports in networks which are

deployed in an unplanned, decentralised manner. To achieve LTD it is

sufficient that each node of the network is aware of its nearest neigh-

bours only. However, a base-station/access-point may not itself be

36

3.3 crowd sourcing

able to detect all conflicts that its users may experience. For example,

it may happen that a user is reached by both the serving access point

and one of the neighbours, and the conflict is not detected either be-

cause of hidden node effects or because of hardware limitations (e. g.
femtocells are half-duplex).

We tackle this problem via crowd sourcing, meaning that users de-

tect and report the existence of conflicting neighbours using, for ex-

ample, the technology described in [Sapiano, 2010]. Given a "reason-

able" user-mobility model, an important problem to address is how

much information we expect to obtain from user reports. Closely

related to this question is the problem of estimating the minimal den-

sity of users that guarantees full knowledge of the local topology.

Such an estimate enables in turn to determine the class of network

deployments that can effectively benefit from this approach.

Our main contributions are the following: (i) the problem of

user-reports-based local topology discovery is stated for the first time

through a crisp mathematical formulation; (ii) the topological struc-

ture of the serving-AP coverage area is mapped onto states of increas-

ing knowledge, in this way the use of a general user mobility model

is naturally allowed for; (iii) the problems mentioned above are given

an answer in the case of a simplified mobility model (Model 1 in Sec-

tion 3.3.2), useful for gaining insight into those situations where user

reports function is likely to give the greatest benefit; (iv) this simpli-

fied model is shown, under certain conditions, to provide an upper

bound on the time of topology discovery, thus it can be used as a

design tool (see Section 3.3.2.5).

3.3.1 Local Topology Discovery Model

Given a set of wireless APs A = {a0, . . . ,aN}, let A(ai) ⊂ R2 denote

the coverage area of access point ai. We note that in general A(ai) de-

pends on the transmission power of ai and on the radio propagation

properties of the medium. We focus on serving access point a0. Let

B denote the neighbouring APs that have non-void intersection with

A(a0), that is,

B = {ai ∈ A, i > 0 : A(a0)∩A(ai) 6= ∅}.

37

decentralised algorithms for small cell networks

A0

A(a1)

A(a

A(a

Figure 9: Example of a scenario in which the access point a0 has three in-
terfering neighbours: a1,a2,a3. The coverage area A(a0) can be
tessellated with the sets A1,A2,A3,A12,A13,A23,A123.

We will hereafter use the symbol N to denote the cardinality of B, i. e.
N = |B|.

Let P(B) denote the powerset of B. A tessellation of the area A(a0)

is the collection of tiles {Ai}i∈P(B) such that

A(a0) =
⋃

i∈P(B)

Ai , (11)

where

Ai =
⋂
j∈i
A(aj)∩A(a0) \

⋃
j6∈i
A(aj), i 6= ∅,

A∅ =A(a0) \
⋃

i∈P(B)\∅

Ai. (12)

In what follows each element Aj composing the tessellation is re-

ferred to as a tile, and we will use the vector notation j to represent

a set of neighbouring APs. Let us consider for example i = {a1,a2};

then, the tile Aj is the portion of A(a0) that is covered by a1 and a2
only, see Figure 9. For simplicity of notation, we will write A0 := A∅.

Whenever a user is in Aj , it will report j to access point a0. In

other words, a0 will be aware of the existence of those neighbouring

38

3.3 crowd sourcing

Line of Full Knowledge

1st order tiles

2nd order tiles

3rd order tiles

4th order tile

0th order tile

Figure 10: Hypercube representation of the tessellation for N = 4. There is
one zeroth order tile, namely AC, four first order tiles, A1,A2,A3
and A4, six second order tiles, A12,A13,A14,A23,A24,A34, four
third order tiles, A123,A124,A134,A234 and a fourth order tile,
i. e. A1234.

APs ai ∈ j. The rate of these reports depends on the mobility model

assumed.

To keep the model as conservative as possible, and to encompass

the frequent case of half-duplex APs, we assume a0 can not detect

the existence of any neighbour even though a0 lies in one of the

neighbours coverage area.

Let Kt denote the knowledge set of access point a0 at time t, i. e. the

set of neighbours that a0 is aware of. Given a sequence of reports

{j1, . . . , jt}, we have that Kt =
⋃t
i=1 j

i. Kt is a sequence of sets that

satisfies

Kt =

t⋃
s=0

Ks; (13)

in particular, |Kt| is non-decreasing in t. Clearly, the knowledge state

at time t, Kt, take values in P(B).

Definition 7 (Full Knowledge). Given an integer T and a finite se-

quence of reports {j1, . . . , jT }, the AP a0 is said to have Full Knowledge
(FK) of its neighbours at time T , if

KT =

T⋃
s=1

js = B.

39

decentralised algorithms for small cell networks

Remark 1. If a0 has Full Knowledge (FK) of its neighbours at time

T , it does so at all times T + t, t > 0. In other words, once a0 has

reached FK, it can not lose it.

Definition 8 (First time of FK). Given a sequence of reports {j1, j2, . . . },

the first time of FK τ for the AP a0 is the first time the latter reaches FK

of its neighbours, i. e.

τ := min{T > 0 such that KT = B} . (14)

Remark 2. The characterisation of the first time of FK will depend in

general on the realisation of a sequence of user reports; this means

that τ is a random variable. We want to remark that by (14), τ is a

stopping time, see e. g. [Levin et al., 2009].

Remark 3. A generic tessellation of B can be represented as an hy-

percube H = {0, 1}N by identifying the vertices of H with the tiles Aj

that the tessellation is composed of. The number of tiles of a generic

tessellation of B is 2N as well as the vertices of an hypercube, rep-

resented as vectors of size N. The tiles of the tessellation and the

vertices of the hypercube are mapped one to one as soon as the i-th

component of the vertices x ∈ H is identified with ai ∈ B. In other

words,

Aj ↔ x ⇔ xi = 1{ai∈j} , i = 1, . . . ,N,

where 1 is the indicator function. We define the order of a tile as the

number of neighbours a report from that tile would give knowledge

of. The number of k-th order tiles is
(
N
k

)
. A report from a k-th order

tile is equivalent to k first-order reports. In particular, FK is attained

with a report from the N-th order tile, or at least two reports from

two distinct (N− 1)-th tiles, etc. This property can be graphically

represented by what we call the Line of Full Knowledge, see Figure 10.

The line of FK is clearly not unique2; the aim of Figure 10 is only to

illustrate that a sequence of T reports {j1, . . . , jT } is a path on the

hypercube H, and that FK is attained whenever a line of FK is reached

at a time smaller than T .

Since the knowledge state at time t, Kt, takes values in the same

set P(B), we can map the knowledge states on the hypercube H. In

other word, a sequence of reports {j1, j2, . . . , jt} is equivalent to a

single report from tile
∑t
s=1 j

s = Kt.

2 For example, there are N tiles of order N− 1, but only 2 are part of a given line of
FK.

40

3.3 crowd sourcing

We can now define the main problems of this work.

Problem 3.1 (Expected first time of Full Knowledge). Given an access
point a0, a set B of neighbours with given position and coverage area and a
sequence of user reports, we want to characterise the expectation of the first

time of FK, i. e.

E(τ) =
∑
t>1

tP(τ = t) .

Obviously, the way the user(s) move inside the coverage area A(a0)

heavily affects the difficulty of the problem and its answer. However,

the formulation of Problem 3.1 has the great advantage of decoupling

the notion of FK from the user mobility model; addressing the mean

value of the first time of FK is also an enabler to the estimate of the tail

of the distribution of τ – through Markov’s inequality, for example.

Further, from a numerical point of view, the expected time of FK may

be achieved via a Monte Carlo simulation once the set B and the

mobility model in use are fixed.

There may exist situations where we are content to characterise

the first time in which only partial knowledge of the local topology

is attained. For example, we may be interested in the first moment

when the neighbouring APs that have been already discovered, i. e.
the elements of the knowledge set Kt, are enough to describe a given

fraction of the local topology. This idea motivates the following

Problem 3.2 (Expected first time of δ-knowledge). Given an access
point a0, a set B of neighbours with given position and coverage area, let
ρ be a measure over P(B). Fixed δ ∈ (0, 1], we want to characterise the
expectation of the first time of δ-knowledge E(τδ), where

τδ = min

t > 0 such that

∑
k∈P(Kt)

ρ(Ak)∑
j∈P(B)

ρ
(
Aj

) > δ

 .

When δ = 1 and ρ(Aj) > 0 for each j ∈ P(B), Problem 3.2 is

equivalent to Problem 3.1. Indeed,
∑

k∈P(Kt)

ρ(Ak)/
∑

j∈P(B)

ρ(Aj) > 1 if and

only if Kt ≡ B.

We will hereafter consider the Lebesgue measure ρ(Ak) = ‖Ak‖.
This leads to the following interpretation: δ-knowledge is attained

when the knowledge set Kt defines for the first time a tessellation

that covers a fraction of A(a0) larger or equal than δ. Equivalently, τδ

41

decentralised algorithms for small cell networks

is the first time when the fraction of A(a0) covered by the tiles that

would give new information3 is less than 1− δ.

Remark 4. The concept of δ-knowledge is fundamental in the sim-

ulation phase, when we want to know whether user reports can ef-

fectively be used to give knowledge of the local topology. Indeed, it

is likely that the neighbours ai whose coverage area do not overlap

with A(a0) save for a nearly negligible portion, will be discovered af-

ter a very long time; in other words, the leading contribution to E(τ)

will be represented by the mean first visit time of the user(s) to A(ai).

Discarding ai from the picture then, the concept of δ-knowledge let

us focus on the quantitative analysis of the LTD, see Section 3.3.3.

3.3.2 Teleport Mobility

The characterisation of τ, the first time of FK, depends on the users

mobility model that is assumed. This describes how users enter, exit,

and move within A(a0).

The users evolution can then be represented as a pair Ut = (nt,Xt)

where nt is the number of users that lie in A(a0) at time t, and

Xt = (x1t , x2t , . . . , xntt) is a vector with the position of the nt users. We

assume the evolution of Ut to be driven by a discrete-time Markov

chain (MC) throughout the work.

The realisation of {Ut}06t6T completely determines the sequence

of user reports {j1, . . . , jT } to the access point a0, cf. Remark 2. Since

Kt only depends on Kt−1 and Ut, then the bivariate process (Ut,Kt)

is a MC.

It will prove useful to consider a simplified mobility model in

which a single user can instantaneously teleport to any tile:

Model 1. (Teleport Mobility) A single user moves within A(a0) ac-

cording to a discrete-time MC taking value on P(B). The user can not

exit A(a0) and no other user can enter it. Assuming that all tiles are

Lebesgue-measurable plane sets, the transition probabilities are

P(i, j) =
‖Aj‖
‖A(a0)‖

, (15)

where ‖·‖ denotes the Lebesgue measure.

3 In the sense that the cardinality of the knowledge set KT would increase.

42

3.3 crowd sourcing

Remark 5. Model 1 greatly simplifies the characterisation of τ, the

first time of FK. Indeed, with this mobility model Kt is independent

of Ut, and the sole process Kt is hence sufficient to describe the pro-

cess of gathering knowledge from the user reports. We will hereafter

refer to Kt as the knowledge chain.

Assuming Model 1, we can easily describe the process of gather-

ing knowledge from user reports as a discrete-time random walk on

the hypercube H = {0, 1}N (which we have introduced in Remark 3);

having knowledge of n neighbouring APs is in fact equivalent to re-

ceiving a report from the n-th order tile that gives information about

all of them.

Let P(·, ·) the transition kernel of the knowledge chain. If k 6⊆ l,

then (13) guarantees that P(k, l) = 0 because such transition would

mean a loss of knowledge. Conversely, when k ⊆ l, a transition from

k to l happens if the user moves to a tile that contains the missing

information (l \k) and do not add more than that information. There-

fore,

P(k, l) =


∑

m∈P(k)

∥∥∥A{m∪(l\k)}

∥∥∥
‖A(a0)‖ if k ⊆ l,

0 otherwise.

(16)

The following result holds:

Lemma 3.1. The matrix P is upper triangular.

Proof. Let us consider the following partial ordering relation among

the states:

k � l ⇔ k ⊆ l .

By (16), P(k, l) 6= 0 only if k � l. Therefore, any mapping

P(B) 3 l ↔ l ∈ {1, 2, . . . , 2N}

such that

k � l ⇔ k 6 l

will put the matrix P into an upper triangular form. In particular,

we can order the states by increasing cardinality and in lexicographic

order4.

4 For N neighbouring APs, i. e. with 2N different tiles, this would mean the sequence
{1}, {2}, . . . , {N}, {1, 2}, . . . , {N-1,N}, . . . , {1, 2, . . . ,N}.

43

decentralised algorithms for small cell networks

The explicit computation of the whole matrix P using (16) is expen-

sive in general – P is a 2N × 2N matrix! However, as stated above P

is upper triangular, while in Section 3.3.2.3 we show that it is possi-

ble to explicitly characterise its spectrum. For the reader’s reference,

Table 1 shows the matrix P for N = 3.


‖A0‖ ‖A1‖ ‖A2‖ ‖A3‖ ‖A12‖ ‖A13‖ ‖A23‖ ‖A123‖
0 ‖A0‖+ ‖A1‖ 0 0 ‖A2‖+ ‖A12‖ ‖A3‖+ ‖A13‖ 0 ‖A23‖+ ‖A123‖
0 0 ‖A0‖+ ‖A2‖ 0 ‖A1‖+ ‖A12‖ 0 ‖A3‖+ ‖A23‖ ‖A13‖+ ‖A123‖
0 0 0 ‖A0‖+ ‖A3‖ 0 ‖A13‖+ ‖A1‖ ‖A2‖+ ‖A23‖ ‖A12‖+ ‖A123‖
0 0 0 0 ‖A0‖+ ‖A1‖+ ‖A2‖+ ‖A12‖ 0 0 ‖A3‖+ ‖A13‖+ ‖A23‖+ ‖A123‖
0 0 0 0 0 ‖A0‖+ ‖A1‖+ ‖A3‖+ ‖A13‖ 0 ‖A2‖+ ‖A12‖+ ‖A23‖+ ‖A123‖
0 0 0 0 0 0 ‖A0‖+ ‖A2‖+ ‖A3‖+ ‖A23‖ ‖A1‖+ ‖A12‖+ ‖A13‖+ ‖A123‖
0 0 0 0 0 0 0 1



Table 1: Example of transition matrix P (modulo scaling factor 1
‖Aa0‖

) for
N = 3.

3.3.2.1 Expected time of Full Knowledge

Let k∗ = {1, 2, . . . ,N}, i. e. the state of FK. By formula (16), P(k∗,k∗) =

1. This means that the chain has an absorbing state, and the hitting

time of this state is τ, the first time of FK. Hence, we can compute the

expected time of FK simply by

E[τ] = (I−Q)−11, (17)

where Q is obtained from P by removing the row and the column

relative to state k∗ and 1 is the column vector of ones [Gehring and

Halmos, 1976]. In a similar way it is possible to compute the other

moments of τ.

Even if I−Q is upper triangular and can be block decomposed, the

computation of its inverse may not be affordable when the cardinality

of B grows. In Section 3.3.2.4 we will bound the probability of the

event {τ > t}.

3.3.2.2 Expected Time of δ-knowledge

Regarding Problem 3.2, we can easily modify matrix P to obtain the

expected time of δ-knowledge. Every state k ∈ P(B) such that

∑
l∈P(k)

‖Al‖
‖Aa0‖

> δ

can be aggregated in the absorbing state, summing the corresponding

column of P in the last column, and then eliminating the column and

44

3.3 crowd sourcing

row corresponding to state k. In this way it is possible to compute

E[τδ] using (17).

3.3.2.3 Eigenvalues

The following result reveals the spectrum of the matrix P:

Theorem 3.2. For k ∈ P(B), the eigenvalues of P have the form

λk = 1
‖A(a0)‖

(
‖A0‖+

∑
l⊂k
|l|=1

‖Al‖+ · · ·+
∑
l⊂k

|l|=m

‖Al‖+ · · ·+
∑
l⊂k

|l|=|k|

‖Al‖

)
.

Proof. The matrix P being upper triangular by Lemma 3.1, the entries

P(k,k) are the eigenvalues of the matrix. Let us then imagine to have

the knowledge chain in state k. The only way for the chain to undergo

a self-transition (k → k) is that the user reports any combination of

neighbouring APs that have already been discovered. In other words,

the knowledge chain undergoes a self-transition if and only if the

user reports an element of P(k). Therefore,

λk =
1

‖Aa0‖
∑

l∈P(k)

|Al| .

Last formula is equivalent to the thesis.

Since each eigenvalue is a sum of positive elements, the second-

largest eigenvalue λ̃ can be obtained by maximising over the tiles of

order N− 1:

λ̃ = max
k : |k|=N−1

λk. (18)

3.3.2.4 Convergence Properties, Bounds

Thank to (18), it is now possible to compute a useful bound on the

time of FK with high probability.

Lemma 3.2. Given ε > 0, let

S(1− ε) =
log ε
log λ̃

. (19)

Then, S(1− ε) reports are sufficient to achieve FK with probability greater or
equal than (1− ε).

45

decentralised algorithms for small cell networks

Proof. Using Lemma 3.1 and Equation (18) on P,

P(τ > t) 6 λ̃t. (20)

For a small target tolerance ε of not achieving FK,

if t >
log ε
log λ̃

⇒ P(τ > t) 6 ε. (21)

δ-knowledge convergence bounds Using the same manip-

ulation of the matrix P described in Section 3.3.2.2, Corollary 3.2 can

be applied to the modified matrix to obtain a bound for the number

of steps to have δ-knowledge with high probability.

3.3.2.5 Some Remarks on the Mobility Model

Model 1 is equivalent to a single user teleporting instantaneously to

a random point within the coverage area of the AP; time is discrete.

Thus, at each time the AP a0 receives user reports from point drawn

according to the uniform probability distribution over the coverage

area A(a0).

Let us now suppose that the user moves within the AP coverage

area according to another discrete-time MC taking values on the cov-

erage area; let us also suppose that such a MC has a unique stationary

distribution, uniform over the coverage area; finally, suppose that the

user communicates its new position after a number of steps that are

sufficient for the MC to forget the past and reach equilibrium. Under

these assumptions, when the user sends a report to the AP, its posi-

tion is distributed according to the stationary (uniform) distribution

of the chain. Therefore, the teleport mobility model offers the follow-

ing nice interpretation: it is equivalent to any mobility model where a

single user moves within the AP coverage area according to a discrete-

time MC and sends reports to the AP at a rate which is smaller than

the inverse mixing time of the chain. Indeed, the evolution of this

new MC after a report is sent to the AP, by the Strong Markov Property
(see e. g. [Levin et al., 2009]), is independent of the past trajectory;

further, its future evolution is governed by the usual recursion

µt(k) =
∑

l∈P(B)

µ0(l) qt(k , l) , (22)

46

3.3 crowd sourcing

where µt is the probability distribution of k after t steps from last

report, q is the chain transition kernel, and µ0 is a mass concentrated

in the point where the last report was sent from. If the reports are

sent at a rate r < 1/τmix, where τmix is the mixing time of the chain,

then µ1/r ≈ π, i. e. the chain is approximately at equilibrium.

Clearly, the scenario described above does not really depend on

the MC having uniform stationary measure. Given a target proba-

bility distribution π over the AP coverage area and an ergodic MC

having π as its unique stationary distribution, let us imagine that a

single user moves within the coverage area according to the chain

and sends reports to the AP at a rate smaller than the inverse mixing

time. Then, we can generate a sequence of user reports by sampling

the measure π. In this case the matrix P describing the knowledge

evolution becomes

P(k, l) =


∑

m∈P(k) π
(
A{m∪(l\k)}

)
if k ⊆ l,

0 otherwise.
(16’)

It is questionable whether it is reasonable to assume that user re-

ports are sent at a frequency that is lower than the inverse mixing

time of the MC describing the user mobility. As we point out in Sec-

tion 3.3.3.2, high-frequency reports may not correspond to an achieve-

ment of FK after a small number of reports. Let us imagine that a

single user moves within A(a0) according to a Brownian motion and

sends reports with a high frequency. It is reasonable to expect that

many successive reports will be sent from the same tile, adding then

no further information about the local topology. We come back to

this point in Section 3.3.3.2.

All in all, we can conclude that Model 1, alongside the low-frequency

reports assumption, may represent a viable option to the study of LTD

in actual situations.

3.3.3 Simulations

3.3.3.1 Teleport Model on Random Positioned APs

We developed a simulation framework in MATLAB, where 8 APs have

been positioned in the space u.a.r. Each AP has a circular coverage

area of the same size. We considered 350 different configurations,

47

decentralised algorithms for small cell networks

with the constraint that a0 coverage area overlaps with the ones of

all other APs, so that FK is attained when all the 7 neighbours are

reported.

We can notice that, given the symmetry introduced on the cover-

age radii and the constraint on the number of neighbours of a0, the

results are invariant under the coverage radius chosen.

For each of these 350 configurations, the expected time of 0.9-knowledge

E[τ] has been computed using (17), together with the number of steps

to guarantee 0.9-knowledge with 90% confidence, S(0.9).

In Figure 11 we can observe the empirical distribution function of

these two measures. E[τ] is centred around 10 steps, while S(0.9) is

shifted on higher values, as expected being an upper bound. In

Figure 12, the empirical cumulative distribution function of E[τ] and

S(0.9) is shown. We can see that for 95% of the samples we can

expect to have 0.9-knowledge in about 16 steps, while to have 90%

confidence using the bound obtained in (19), we need to wait about

22 steps.

We can notice that the bound obtained with (19) is a conservative

estimation, because it uses only the second biggest eigenvalue λ̃, i. e.
it takes in account of only the slowest way to reach the desired knowl-

edge, while the problem has a rich combinatorial structure that can

not be completely captured by (20).

3.3.3.2 Random Walk on a Grid

In order to investigate and confirm the ideas of Section 3.3.2.5, we

simulated a random walk with reflective boundary on a grid as mo-

bility model, and compared it with Model 1 (see Section 3.3.2), for a

set of 8 AP positioned as described at the beginning of this section.

low frequency reports We consider the cases in which a re-

port is made for a number of steps that approaches M2 (the mixing

time of the Markov Chain), where M is the number of nodes in the

grid. We can observe that, if the report rate is low enough, the em-

pirical mean time of 0.9-knowledge of the random walk model ap-

proaches the one of our simplified model.

If we assume typical femtocell parameters, i. e. that the coverage

radius is 50m, and that the user make a step in a grid of 2.5m every

5 s, then Figure 13 suggests that one report every 50min is enough

to reach mixing time (M2 ≈ 1300) with the same number of reports

48

3.3 crowd sourcing

5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E[τ]

p
d
f

Number of reports

5 10 15 20
0

0.05

0.1

0.15

0.2

S(0.9)

p
d
f

Number of reports

Figure 11: Empirical distribution function of the expected time of
0.9-knowledge, and the number of steps to have 0.9-knowledge
with 90% confidence, for the teleport model on random posi-
tioned APs.

49

decentralised algorithms for small cell networks

2 4 6 8 10 12 14 16 18 20 22

0

0.2

0.4

0.6

0.8

1

Number of steps

E
C

D
F

E[τ]

S(0.9)

Figure 12: Empirical cumulative distribution function of the expected time
of 0.9-knowledge, and the number of steps to have 0.9-knowledge
with 90% confidence, for the teleport model on random posi-
tioned APs.

0 0.25 0.5 0.75

4

5

6

7

8

9

10

11

Random Walk report period [× M
2
]

 E
(τ

0
.9

)
[n

u
m

b
e

r
o

f
re

p
o

rt
s
]

Random Walk

Model 1

Figure 13: Empirical mean 0.9-knowledge time (in number of reports) of a
random walk vs. report period, compared with Model 1.

50

3.3 crowd sourcing

of the teleport mobility model (Model 1), giving us 0.9-knowledge in

less than 5 reports, i. e. less than 5 hours.

The reason why more reports are needed in the case of high-frequency

reports is the following: since the inter-report time is short, it is likely

that many reports will be sent from the same tile, i. e. the knowl-

edge chain will undergo many self-transitions. The results thus con-

firm that Model 1 can effectively be used at least to provide an upper

bound for τ.

Combining this result with the one from Figure 12, we can conclude

we need about 10 steps to have 0.9-knowledge, i. e. less than half day.

See Section 3.4.1 for an interpretation of these results in terms of

implementation.

3.3.3.3 A Realistic Scenario

A received power map for 4 APs in the Hynes convention centre has

been generated using the Wireless System Engineering (WiSE) [For-

tune et al., 1995] software, a comprehensive 3D ray tracing based

simulation package developed by Bell Laboratories. APs are assumed

Figure 14: Received power map, in dBm, of Hynes convention centre. AP
A is transmitting at 2.1GHz with a power of 34mW. Received
powers below −100dBm are not shown. APs B,C and D are not
transmitting.

transmitting at a frequency of 2.1GHz with a power of 34mW.

51

decentralised algorithms for small cell networks

In Figure 14 the received power map when only first AP is active is

shown. The area shapes are more complex than the simple scenario

depicted in Section 3.3.3.1.

In Figure 15, the expected time of δ-knowledge, E[τδ], is shown

varying δ; we can notice a step shape, where a new step is added ev-

ery time a new state becomes absorbing, as explained in Section 3.3.2.2.

In Figure 16, the expected time of FK, E[τ1], is shown varying the

user detection threshold, from a very conservative value of −60dBm

to a more realistic one of −100dBm. When the users are more sensi-

tive, the coverage areas, and the higher order tiles in particular, are

bigger, leading to better performances. We can see that 14 steps are

enough, on average, to get FK in all cases.

These results confirm that the values obtained placing random

AP with circular coverage in Section 3.3.3.1 are compatible with real

world scenarios.

0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

δ

E
(τ

)
[n

u
m

b
e
r

o
f

re
p
o
rt

s
]

Figure 15: Expected time of δ-knowledge, E[τδ] for different values of the
parameter δ.

3.4 use cases

In this section we present some use cases that are representative of

the possible practical applications of the results we have presented so

far. Given a particular wireless application, the focus is on whether

user reports can effectively be used to efficiently achieve knowledge

of the network local topology.

52

3.4 use cases

−100 −95 −90 −85 −80 −75 −70 −65 −60

0

2

4

6

8

10

12

14

Detection threshold [dBm]

E
(τ

)
[n

u
m

b
e
r

o
f

re
p
o
rt

s
]

Figure 16: Expected time of FK, E[τ], for different values of the user-
detection threshold.

In the case of femtocell deployment for residential use, each base

station typically serves a very small number of devices. Using data

of typical residential densities and coverage areas, a statistic of the

tessellation can be devised. If it is possible to establish a time T̃ after

which the user position can be considered as drawn from a uniform

distribution, then S(δ) is an upper bound of the time of δ-knowledge

for all the inter-report times smaller than or equal to T̃ .

Opposite to the previous example, femtocells deployed in congested

places like a mall have an extremely large basin of potential users.

However, in situations where users main interest is other than con-

necting to the internet, it is reasonable expecting the single-user reporting-

activity to be rather sporadic. Therefore, the Poissonian approxima-

tion that we have mentioned at the end of Section 3.3.2.5 may be ap-

plicable. In these case, characterising the time to achieve δ-knowledge

is possible through a statistic of the typical tessellations.

3.4.1 Summary

We introduce the problem of user-reports-based Local Topology Dis-

covery, providing a crisp mathematical formulation of it in the case

of Model 1. We show that Model 1 can effectively be used as an upper

bound for a wide range of mobility models, when the user reports fre-

quency is lower than the mixing time of the MC of the actual mobility

model. In Section 3.3.2.4 we provide an useful method to estimate

53

decentralised algorithms for small cell networks

the time of δ-knowledge when the problem is too big to solve exactly

using Equation (17).

Simulations on random scenarios show that the expected number

of reports in order to have a high degree of knowledge of the local

topology is very small. Roughly speaking, a user moving at 0.5m/s

according to a random walk model, and providing a report every

hour, will guarantee the AP will have 0.9-knowledge with high proba-

bility in less than half day. Since the local topology is not typically ex-

pected to change every day, this is an acceptable time, especially con-

sidering that it is actually possible to send reports on a shorter time-

scale. The simulations on more realistic scenarios (Section 3.3.3.3)

give very similar results in term of time of 0.9-knowledge.

In summary, our results are encouraging, and corroborate the heuris-

tic recommendations in [Edwards, 2008] and [Checco et al., 2012]. In

the case of femtocells, implementation of topology discovery should

be relatively straightforward because the hardware and the firmware

are already capable of generating and managing user reports. Look-

ing ahead, a more extensive study on more realistic scenarios is still

required, where the typical topological properties of a urban area

are taken in account. Similarly, an analysis of more realistic mobility

models is desirable. While the simple case of Model 1 can be used

to estimate any other Markovian model (i. e. any mobility model that

can be described with a Markov process) with unique stationary mea-

sure, it is likely to be an accurate estimate only when the report fre-

quency is sufficiently low, namely slower than the mixing time of the

Markov Chain.

54

4
D E C E N T R A L I S E D C O L O U R I N G W I T H PA RT I A L

S E N S I N G

Convergence of the CFL algorithm to a satisfying assignment is only

guaranteed by existing results when all devices participating in a con-

straint are able to sense the satisfaction/dissatisfaction of the con-

straint. This sensing requirement is violated in a number of impor-

tant practical problems, for example in wireless networks with hid-

den terminals. In this chapter we show that in fact the CFL algorithm

continues to find a proper graph colouring even in the presence of

strong sensing restrictions, in particular sensing asymmetry of the

type encountered when hidden terminals are present.

Our main analytic contribution is to establish sufficient conditions

on the sensing behaviour to ensure that the CFL algorithm finds sat-

isfying assignments with probability one. These conditions take the

form of connectivity requirements on the induced sensing graph.

These requirements are mild, and we demonstrate that they are com-

monly satisfied in wireless allocation tasks.

contents

4.1 Colouring Problems With Sensing Restrictions 56

4.1.1 Decentralised Solvers 56

4.1.2 Examples 58

4.2 Solving Colouring Problems with Sensing Restrictions 60

4.2.1 Algorithm 60

4.2.2 Convergence Analysis 61

4.2.3 Relaxing Strong Connectivity Requirement 63

4.3 Performance on Random Graphs 65

4.3.1 Random Graph Model 65

4.3.2 Meeting Connectivity Requirements 66

4.3.3 Convergence Rate 67

4.4 Case Study: Manhattan WiFi Hot Spots 68

4.4.1 Convergence Time 72

4.5 Summary 72

4.A Appendix – Proofs 73

decentralised colouring with partial sensing

Figure 17: (a) Illustrating a wireless network with asymmetric sensing due
to hidden terminals. The shaded areas indicate the interference
created by transmitters A and G. Transmissions by A prevent H
receiving transmissions by G. However, the converse is not true
i. e. transmissions by G do not prevent B from successfully re-
ceiving transmissions by A. Link A−B can therefore be satisfied
while G−H is dissatisfied. Similarly for the other links shown.
Associating each edge with a vertex yields graph (b) correspond-
ing to (a) for which a proper colouring is sought. Sensing restric-
tions then yield the induced oriented graph (c), as explained in
Section 4.1.1.

We argue that our results are of considerable practical importance in

view of the prevalence of both communication and sensing restric-

tions in wireless resource allocation problems.

The analysis of stochastic learning algorithms is challenging, and

part of the technical contribution is the development of novel analysis

tools. We present a number of examples demonstrating the efficacy

of CFL-like algorithms when subject to strong sensing as well as com-

munication constraints, and explore the impact of sensing constraints

on the rate of convergence.

4.1 colouring problems with sensing restrictions

4.1.1 Decentralised Solvers

Definition 9 (Decentralised CP Solver With Sensing Restrictions). A

Decentralised CP solver where (10) is replaced with the restriction

that for each variable xi, must select its next value based only on an

evaluation of

56

4.1 colouring problems with sensing restrictions

(d6) min
m∈Ci

Φm(~x), where information set Ci ⊆Mi is a subset of edges

incoming to node i and we adopt the convention that

min
m∈∅

Φm(~x) = 1.

Note that despite the sensing restrictions we still require the solver to

satisfy (D1) and find a satisfying assignment, i. e. for all t sufficiently

large

~x(t) = ~x, with min
i∈V

min
m∈Mi

Φm(~x) = 1.

This definition captures sensing restrictions where, for example,

a hidden terminal is unable to sense whether or not its transmis-

sions are causing excessive interference to the set of receivers for

which it is hidden. In such cases, the variable xi associated with

the hidden terminal can only evaluate minm∈Ci Φm(~x) rather than

minm∈Mi
Φm(~x), where Ci ⊆ Mi (where equality holds only if sens-

ing restrictions are absent).

It is important to note that an assignment ~x may ensure

minm∈Ci Φm(~x) = 1, i ∈ V but might have minm∈Mi
Φm(~x) = 0

for one or more variables and so need not be satisfying in the ab-

sence of sensing restrictions i. e. it may not be a proper colouring. We

therefore require the following sensing condition in order to satisfy

(D1):

Lemma 4.1. Let C := ∪i∈VCi. Suppose that for each pair of edges i ↔
j in M, at least one directed edge appears in at least one information set
Ci for some vertex i i. e. (i, j) ∈ M =⇒ (i, j) or (j, i) ∈ C. Then an
assignment ~x is satisfying with sensing restrictions iff it is satisfying in
the absence of sensing restrictions. That is, mini∈V minm∈Ci Φm(~x) = 1

⇐⇒ mini∈V minm∈Mi
Φm(~x) = 1.

Proof. Suppose mini∈V minm∈Ci Φm(~x) = 1. That is,Φm(~x) = 1 ∀m ∈
C. By definition, Φ(i,j)(~x) = Φ(j,i)(~x) and since (i, j) ∈ M =⇒
(i, j) or (j, i) ∈ C the result follows.

Conversely, suppose mini∈V minm∈Mi
Φm(~x) = 1. Since Ci ⊆ Mi,

the result immediately follows.

It will be useful to consider oriented partial graph G′ = (V ,C)

induced by the information set {C1, . . . ,CN}. This graph has the

same set V of vertices as graph G for which a proper colouring is

sought, but the edges are now defined by the set of ordered pairs

(i, j) ∈ C if (i, j) ∈ Cj. We say i → j if there is a directed edge from

57

decentralised colouring with partial sensing

i to j, and i 6→ j if there is no edge from i to j. For example, Fig-

ure 17(c) gives the graph G′ corresponding to Figure 17(b). Here, the

directed edge from A − B to G −H indicates that while G −H can

sense whether the edge between A− B and G−H is satisfied or not,

A−B cannot.

4.1.2 Examples

Before proceeding, we briefly demonstrate that several important re-

source allocation tasks in wireless networks fall within our frame-

work of graph colouring with sensing restrictions.

4.1.2.1 Channel Allocation With Hidden Terminals

Consider a network of N wireless links i = 1, . . . ,N, each consisting

of a transmitter Ti and a receiver Ri. Let Pi denote the transmit power

of Ti and γij denote the path loss between the transmitter Ti of link

i and the receiver Rj of link j. The received power at Ri from Tj is

therefore γjiPj. Each link can select one from a set D = {1, . . . ,D} of

available channels to use. Link iwould like to select a channel in such

a way that the signal power impinging on the receiver Ri from other

links sharing the same channel is less than a specified threshold Qi –

Qi may, for example, be selected to ensure that the SINR at Ri is above

a target threshold. Each link i can sense that another link j is sharing

the same channel when the received power γjiPj > Qj (this might

correspond to the minimum interference power that causes decoding

errors on the link or to the carrier-sense threshold in 802.11).

To formulate this as a colouring problem, let D = {1, . . . ,D} be the

palette of available colours. Associate variable xi with wireless link i,

i ∈ {1, . . . ,N}, with the value of xi ∈ D corresponding to the channel

selected by link i. Define graph G = (V ,M) with V := {1, . . . ,N} and

set of edges M. Add edge (j, i) to M whenever the received power

γjiPj from link j at link i is above threshold Qi when both links

select the same channel, i 6= j, i, j ∈ {1, . . . ,N}. Importantly, whenever

an edge (j, i) is in M we also add edge (i, j) to M, so that G is an

undirected graph. A proper colouring of graph G corresponds to a

satisfactory channel allocation i. e. γjiPj > Qi, for all i ∈ {1, . . . ,N}

and all j such that xj = xi and j ∈ {1, . . . ,N}.

Now define graph G′ = (V ,C) with edge (j, i) ∈ C when the re-

ceived power γjiPj from link j at link i is above threshold Qi when

58

4.1 colouring problems with sensing restrictions

both links select the same channel. Note that, unlike for graph G, we

do not also add edge (i, j) to C unless γijPi > Qj when both links

select the same channel. Observe that the edges in graph G′ embody

the sensing abilities of links, and in general C 6= M and so G′ 6= G.

Note that we can readily generalise this formulation to include,

for example, the selection of multiple channels/sub-carriers by each

link and to allow multiple transmitters and receivers in a link (which

might then correspond to a WLAN).

4.1.2.2 Decentralised TDMA Scheduling with Hidden Terminals

When using a time division access scheme, wireless networks need

to have a schedule for accessing the channel. This schedule can be

decided in a centralised manner, but it is possible to require a decen-

tralised way of solving the problem. The classical CSMA/CA approach

to decentralised scheduling does not yield convergence to a single

schedule and leads to continual collisions. Recently, there has been

interest in decentralised approaches for finding collision-free sched-

ules [Fang et al., 2010]. Consider a wireless network with N links,

i = 1, . . . ,N. Time is slotted and partitioned into periodic schedules

on length T > N slots. The transmitter on each link would like to

select a slot that is different from the choice made by other transmit-

ters if their collisions would collide (transmissions in the same slot

need not collide when, for example, the two transmitters are located

sufficiently far apart). A link is able to sense whether its transmission

in a slot was successful or not.

To formulate this as a colouring problem, let D = {1, . . . ,D} be the

set of available time slots in the periodic schedule. Associate variable

xi with link i, i ∈ {1, . . . ,N}, with the value of xi ∈ D corresponding

to the slot selected by the transmitter of link i. Define graph G =

(V ,M) with V := {1, . . . ,N} and set of edges M. Add edge (j, i) to

M whenever simultaneous transmissions by the transmitters of links

i and j would lead to failure of the transmission by i. Whenever an

edge (j, i) is in M, also add edge (i, j) to M. A proper colouring of

graph G corresponds to a non-colliding schedule.

Define graph G′ = (V ,C) with edge (j, i) ∈ C when simultaneous

transmissions by the transmitters of links i and jwould lead to failure

of the transmission by j. Unlike for graph G, we do not also add

edge (i, j) to C unless simultaneous transmissions by transmitters i

and j would lead to failure of the transmission by j. Once again, the

59

decentralised colouring with partial sensing

edges in graph G′ embody the sensing abilities of links and in general

C 6= M.

4.2 solving colouring problems with sensing restric-

tions

We now investigate in which conditions the CFL algorithm is still a

decentralised CP solver, adding the constraint (D6) of partial sensing.

4.2.1 Algorithm

We rewrite the CFL algorithm, with the only difference here of envis-

aging sensing restrictions. An instance of this algorithm is run in

parallel for every variable.

Algorithm 2 Communication-Free Learning with sensing restrictions.

1: Initialise pi,j = 1/D, j ∈ {1, . . . ,D}.
2: Realise a random variable, selecting xi = j with probability pi,j.
3: loop
4: Evaluate minm∈Ci Φm(~x), returning satisfied if its value is 1, and

unsatisfied otherwise.
5: Update: If satisfied,

pi,j =

1 if j = xi

0 otherwise.

If unsatisfied,

pi,j =

(1− b)pi,j + a/(D− 1+ a/b) if j = xi

(1− b)pi,j + b/(D− 1+ a/b) otherwise,

where a,b ∈ (0, 1] are design parameters.
6: Realise a random variable, selecting xi = j with probability pi,j.
7: end loop

The only difference from Algorithm 2, is that each variable has an

information set that can be smaller than Mi.

In the examples in this work we select a = b = 0.1, and do not opti-

mise these values to particular settings, because the choice of optimal

parameter depends heavily on the topological properties of the graph,

60

4.2 solving colouring problems with sensing restrictions

and should be done when a specific class of problem is tackled, or an

adaptive mechanism should be devised.

In order to be a decentralised CP solver with sensing restrictions,

Algorithm 2 must satisfy conditions (D1) − (D6). We can see imme-

diately that Algorithm 2 satisfies (D2) − (D6).

(D3)-(D6) By construction, the only information used by the algo-

rithm is minm∈Ci Φm(~x) in Step 4 and thus it satisfies the criteria

(D3), (D4), (D5) and (D6).

(D2) Algorithm 2 also satisfies the (D2) criterion that it sticks with a

solution from the first time one is found. To see this, note that the

effect of Step 5 is that if a variable experiences success in all clauses

Φ that it participates in it continues to select the same value with

probability 1. Thus if all variables are simultaneously satisfied in all

clauses, i. e. if minm∈Ci Φm(~x), then the same assignment will be

reselected indefinitely with probability 1.

It remains to verify satisfaction of (D1), i. e. convergence of the al-

gorithm to a satisfying assignment, which is the subject of the next

section.

4.2.2 Convergence Analysis

Recall the following definition:

Definition 10 (Strongly Connected Graph). A path of length q in

oriented graph G′ = (V ,C) is a sequence µ = (u1,u2, . . . ,uq) of edges

in C such that the terminal endpoint of edge ui is the initial endpoint

of edge ui+1 for all i < q. Oriented graph G′ = (V ,C) is strongly

connected if it contains a path starting in x and ending in y, for each

pair of distinct vertices x 6= y ∈ V .

We now state our main analytic result:

Theorem 4.1. Consider any satisfiable colouring problem with graph G =

(V ,M) and information sets {C1, . . . ,CN}. Suppose:

(a) At least one half of each undirected edge i ↔ j in M appears in at
least one information set Ci for some vertex i, i. e. (i, j) ∈ M =⇒
(i, j) or (j, i) ∈ C;

(b) The induced graph G′ = (V ,C) is strongly connected.

61

decentralised colouring with partial sensing

Then with probability greater than 1− ε ∈ (0, 1), the number of iterations
for Algorithm 2 to find a satisfying assignment is less than

(N3) exp(N4 log(γ−1)) log(ε−1) where γ =
min(a,b)
D− 1+ a/b

.

Proof. See Appendix.

As Theorem 4.1 covers any arbitrary CP that admits a solution, for

any given instance these bounds are likely to be loose. They do, how-

ever, allow us to conclude the following corollary proving that if a

solution exists, Algorithm 2 will almost surely find it:

Corollary 4.1. For any colouring problem that admits a proper colouring
and that fulfills conditions (A) and (B), Algorithm 2 will find a proper colour-
ing in almost surely finite time.

Intuitively, we expect that sensing restrictions may increase the

time it takes to find a satisfying assignment. When Ci = Mi, i ∈ V
(perfect sensing) then C = M and our analysis yields the following

bound on the convergence rate:

Corollary 4.2. When Ci = Mi∀i ∈ V , with probability greater than 1−
ε ∈ (0, 1), the number of iterations for Algorithm 2 to find a satisfying
assignment is less than

(N) exp(
N(N+ 1)

2
log(γ−1)) log(ε−1).

Proof. See Appendix.

That is, our upper bound on convergence rate is improved from

N4 to N2 with perfect sensing. This corresponds to the bound found

in [Duffy et al., 2013] (see Section 3.1.3.1) for generic Decentralised

Constraint Satisfaction (DCS) problems, but it is looser than the re-

fined bound found there for graph colouring problems (Theorem 3.1).

However, it is important to stress that this observation comes with the

caveat that, as already noted, we believe both of these bounds are ex-

tremely loose. Hence, we revisit this question below using numerical

simulations, which yield tight measurements of convergence rate.

62

4.2 solving colouring problems with sensing restrictions

Figure 18: Example of a graph G with two strongly connected components
({A,B,C,D} and {E, F,G}) which are sparsely interconnected. The
chromatic number χ(G) of graph G is 4, the chromatic numbers
of the connected components are 3 and 2 respectively.

4.2.3 Relaxing Strong Connectivity Requirement

The requirement in Theorem 4.1 for the sensing graphG′ to be strongly

connected can be relaxed in a number of ways. If graph G is not con-

nected, we only have to ask for strong connectivity separately for the

induced graph corresponding to each connected component. More

generally, we can extend our analysis to situations where graph G

consists of a number of strongly connected components with suffi-

ciently sparse interconnections between these components.

To help gain insight, consider the example graph G shown in Fig-

ure 18. Graph G consists of two strongly connected components,

{A,B,C,D} and {E, F,G}, with two directed edges between them. Sub-

graph {A,B,C,D} has no incoming edges and can be coloured on

its own (i. e. without reference to the rest of graph G). Component

{E, F,G} has two incoming edges. Observe that these can be thought

of as, in the worst case, reducing by two the number of colours avail-

able in our palette D when colouring {E, F,G}. Now, D contains at

least χ(G) = 4 colours (since we assume colouring of graph G is fea-

sible) while subgraph {E, F,G} is colourable using only two colours.

Hence, regardless of the colours of vertices C andD on the two incom-

ing edges, sufficient colours are always available to colour subgraph

{E, F,G}. We formalize these observations in Theorem 4.2.

Definition 11 (Subgraph of G′ generated by Vk). The subgraph of

graph G′ = (V ,C) generated by Vk is the graph (Vk, {(i, j) : i, j ∈
Vk, (i, j) ∈ C}). That is, the graph with Vk as its vertex set and with

63

decentralised colouring with partial sensing

all the arcs in G′ that have both their endpoints in Vk. With a slight

abuse of notation, we will identify the subgraph with the vertex set

Vk that generates it.

Definition 12 (In-degree of a subgraph). The in-degree of the sub-

graph graph G′ = (V ,C) generated by Vk, denoted by deg(Vk), is the

number of vertices j ∈ V \ Vk that have at least one edge (i, j) ∈ C,

j ∈ Vk ending in Vk.

Theorem 4.2. Let V =
⋃p
k=1 Vk, Vi

⋂
Vj = ∅ be a partition of the vertex

set V of oriented graph G′ = (V ,C) such that (i) the subgraph generated by
Vk, k ∈ {1, . . . ,p} is strongly connected and (ii) the subgraph generated by
the union ∪k∈SVk of any subset S ⊂ {1, . . . ,p} is not strongly connected.
That is, directed edges may exist between strongly connected components,
but their union is not strongly connected. Let D be the number of colours
available in our palette D and let χ(Vk) be the chromatic number of the
(undirected) subgraph of G = (V ,M) generated by Vk. Suppose that

χ(Vk) 6 D− deg(Vk), k = 1, . . . ,p (23)

Then for any colouring problem that admits a proper colouring and that
fulfills condition (B) of Theorem 4.1, Algorithm 2 will find a proper colouring
in almost surely finite time.

Proof. The main idea is that if a strongly connected component Vk
requires less colours than D to be coloured, and if the number of

edges entering in Vk is small enough, as shown in Equation (23) and

in Figure 18, then Vk can be coloured by Algorithm 2 even if some

vertices j 6∈ Vk are not reachable by any i ∈ Vk, with i ← j. The

original colouring problem is satisfiable by hypothesis, so we have at

least χ(G) available colours D in our palette. We need to consider

two cases. Case 1: deg(Vk) = 0. Since χ(Vk) 6 χ(G) (since Vk is a

subgraph of G), at least one proper colouring of subgraph Vk exists

and we can use Theorem 4.1 to establish that Algorithm 2 will almost

surely find a proper colouring. Case 2: deg(Vk) > 0. The incoming

edges reduce by at most deg(Vk) the choice of the colours available

for subgraph Vk. Hence, provided χ(Vk) 6 D − deg(Vk) then we

can apply Theorem 4.1 to subgraph Vk in isolation from the rest of

graph G to establish that Algorithm 2 will almost surely find a proper

colouring.

64

4.3 performance on random graphs

4.3 performance on random graphs

The upper bound in Theorem 4.1 is a worst case bound, and in ad-

dition we believe that it may not be tight. Hence, it is important to

also evaluate the performance of Algorithm 2 using numerical mea-

surements. In this section we present measurements for a class of

random graphs that are based on an idealised model of wireless net-

work interference. These graphs have been widely studied [Dousse,

2012] and provide a method for technology-neutral evaluation. In

Section 4.4 we evaluate performance in a technology specific man-

ner using graphs derived from the Wireless Geographic Logging En-

gine (WiGLE) database of 802.11 hot spot locations.

4.3.1 Random Graph Model

We use realizations drawn from the Directed Boolean Model (DBM)

described in [Dousse, 2012]. The vertices of the graph are drawn from

a Poisson point process in [0, 1]2 with intensity λ (with appropriate

re-scaling to a required area – in the examples here we re-scale to

an area of 100m2). In the original undirected Boolean model (also

known as the blob model [see Grimmett, 1999, Section 10.5]), each

vertex is the center of a closed ball of random radius. The radii of the

balls are independently and identically distributed. The (undirected)

connectivity graph is obtained by adding an edge between all pairs

of points whose balls overlap, i. e. B(y) ∩ B(z) 6= ∅, where B(y),B(z)

denote the balls centered on vertices y, z respectively. To obtain a

directed graph, following [Dousse, 2012] we slightly change the above

rule and put a directed edge between y and z if z ∈ B(y) and an edge

between z and y if y ∈ B(z). This modified model is referred to as

the Directed Boolean Model (DBM).

In our measurements the radii are chosen uniformly at random

from the finite set of the coverage areas corresponding to transmitting

powers in the range 12dBm to 20dBm, with steps of 2dBm, and a

specified detection threshold R. We use the 3GPP path loss model for

indoor environments [3GPP TS25.101, 2004], based on the Okumura-

Hata log-distance model

PLdB(d) = 43.3 · log10 d+ 11.5+ 20 · log10 f

65

decentralised colouring with partial sensing

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

0.96

0.97

0.98

0.99

1

λ

Algorithm 1

−25dBm

−20dBm

−15dBm

Figure 19: Fraction of DBM graphs nodes satisfying connectivity require-
ments of Theorem 4.2 versus the detection threshold. Addition-
ally, the fraction of nodes correctly coloured by Algorithm 2 for
detection threshold of −25dBm is shown.

where d is the distance in meters and f is the frequency in GHz. In the

examples here we select fixed frequency f = 2.412GHz. For detection

threshold R in dB and transmit power P in dB, the coverage radius is

then given by

d : PLdB(d) + P > R

Figures 18 and 20 show examples of graph generated using this model.

We focus in the most challenging cases by selecting the number D

of available colours equal to the minimum feasible value χ(G).

4.3.2 Meeting Connectivity Requirements

Theorems 4.1 and 4.2 place connectivity requirements on the induced

sensing graph G′ in order to ensure that Algorithm 2 converges to a

satisfying assignment. We begin by evaluating the fraction of random

graphs in the Directed Boolean Model (DBM) that meet these require-

ments. Figure 19 plots this fraction for a range of detection thresholds

R and vertex densities λ. It can be seen that for detection thresholds

below −15dBm greater than 96% of graphs satisfy the connectivity

requirements. Figure 20 shows some examples of some DBM graphs

corresponding to a −25dBm threshold. Observe that they consist of

a number of connected components and so the relaxed connectivity

66

4.3 performance on random graphs

0

1

0

0

1

1

1

1

1

1
1

1

0

0

(a) (b)

Figure 20: Example DBM graphs. The nodes labeled with 1 are the one that
satisfy the connectivity conditions of Theorem 4.2.

conditions provided by Theorems 4.2 are of considerable importance

here. Note also that modern wireless devices typically have a noise

floor of less than −70dBm and so −25dBm is conservative.

Moreover, Figure 19 shows the measured fraction of vertices for

which Algorithm 2 successfully found a satisfying assignment for a

detection threshold of −25dBm. It can be seen that greater than 99.9%

of vertices are successfully coloured by the algorithm. For λ = 0.5

and detection threshold of −15dBm, 4% of the vertices that do not

fulfill the conditions of Theorem 4.2 are still correctly coloured by

Algorithm 2. This small gap can be explained with the fact that the

conditions of Theorem 4.2 are sufficient, but not necessary for conver-

gence: some topologies can lead to convergence for their particular

structure or because of a fortunate initial condition (see Figure 20 for

some examples).

4.3.3 Convergence Rate

Figure 21 shows the empirical PDF of convergence time for Algo-

rithm 2 versus the detection threshold used for sensing. For a thresh-

old of −25dBm, the mean convergence time is less than 2000 iter-

ations. When the required threshold is increased to −15dBm, the

mean convergence time decreases to less than 1000 iterations. These

measurements are for a link density of λ = 0.5, corresponding to

on average 50 wireless links in an area of 100m2. Recall that we

selected the number D of available colours equal to the minimum fea-

sible χ(G), thereby focussing on the most challenging situations. For

67

decentralised colouring with partial sensing

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Number of Iterations

E
m

p
ir
ic

a
l
P

D
F

−25dBm
Mean: 1962.95 STD: 1315.62

−20dBm
Mean: 1197.29 STD: 1204.75

−15dBm
Mean: 968.68 STD: 1012.26

Figure 21: Measured convergence rate of Algorithm 2 for DBM graphs using
a number of available colours equal to the chromatic number χ
of the graph for three different detection thresholds. The density
is λ = 0.5.

larger numbers of colours it can be verified experimentally that the

convergence time decreases exponentially in the number of colours

above χ(G).

The comparison of the bounds given by Theorem 4.1 with the case

without sensing restrictions given by Corollary 4.2 suggests that sens-

ing restrictions lead to an increase in the convergence time. This is

indeed the case, as shown in Figure 22, where the convergence rate of

Algorithm 2 is shown with and without sensing restrictions for DBM

graphs with λ = 0.5 and detection threshold of −15dBm. However

for DBM graphs it can be seen that this increase is small.

We also analyzed in Section 4.4.1 the impact of the number of avail-

able colours on the convergence time.

4.4 case study : manhattan wifi hot spots

From the online database WiGLE [wig, 2010] we obtained the locations

of WiFi wireless Access Points (APs) in an approximately 150m2 area

at the junction of 5th Avenue and 59th Street in Manhattan1. This

space contains 81 APs utilizing the IEEE 802.11 wireless standard.

We model radio path loss with distance as dα, where d is the dis-

tance in meters and α = 4.3 is the path loss exponent (consistent with

1 The extracted (x,y,z) coordinate data used is available online at
www.hamilton.ie/net/xyz.txt

68

4.4 case study : manhattan wifi hot spots

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

Number of iterations

E
m

p
ir
ic

a
l
P

D
F

With sensing restrictions
Mean: 968.68 STD: 1012.26

Without sensing restrictions
Mean: 907.62 STD: 998.02

Figure 22: Measured convergence rate of Algorithm 2 for DBM graphs with
detection threshold of −15dBm and density of λ = 0.5, with and
without sensing restrictions.

0

50

100

0 50 100 150

0

20

40

60

x [m]

y [m]

z [m]

Figure 23: Example assignment for Manhattan WiFi hot spots. Wireless ac-
cess points are indicated by points and the colour indicates the
radio channel selected by the AP.

69

decentralised colouring with partial sensing

−75 −60 −45 −30

0.994

0.996

0.998

1

Detection Threshold [dBm]

Connectivity

Algorithm 1

Figure 24: Connectivity for Manhattan WiFi hot spots. Each measurement
represents the fraction of nodes that satisfy connectivity require-
ments of Theorem 4.2. The fraction of nodes correctly coloured
by Algorithm 2 is also shown.

the 3GPP indoor propagation model [3GPP TS25.101, 2004]), and the

AP transmit powers are selected uniformly at random in the range

12–20dBm, with steps of 2dBm. The aim of each AP is to select its ra-

dio channel in such a way as to ensure that it is different from nearby

WLANs. This can be written as a colouring problem with N = 81 APs

and N variables xi corresponding to the channel of AP i, i = 1, . . . ,N.

As per the 802.11 standard [802, 1997] and FCC regulations, each AP

can select from one of 11 radio channels in the 2.4 GHz band and so

the xi, i = 1, 2, . . . ,N take values in D = {1, 2, . . . , 11}. To avoid exces-

sive interference each AP requires that the received signal strength

from other APs sharing the same channel is attenuated by at least

−60dB. When all APs use the maximum transmit power of 18dBm

allowed by the 802.11 standard, this requirement is met when the

received power is less than −45dBm and ensures that the SINR is

greater than 20dB (sufficient to sustain a data rate of 54Mbps when

the connection is line of sight and channel noise is Gaussian [Gold-

smith, 2005]).

The APs do not belong to a single administrative domain and so

a decentralised solver is required. The presence of hidden terminals

means that the solver must find a satisfying solution while subject to

sensing asymmetry.

The connectivity requirement of Theorem 4.2 was observed to be

satisfied > 99% of examples, see Figure 24.

70

4.4 case study : manhattan wifi hot spots

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of iterations

E
m

p
ir
ic

a
l
P

D
F

−60dBm
Mean: 309.87 STD: 275.56

−45dBm
Mean: 33.86 STD: 72.77

−30dBm
Mean: 5.67 STD: 1.88

Figure 25: Measured convergence rate of Algorithm 2 for Manhattan WiFi
hot spots using a number of available colours equal to the chro-
matic number χ of the graph.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of Iterations

E
m

p
ir
ic

a
l
P

D
F

Threshold: −60dBm
Mean: 35.19 STD: 54.45

Threshold: −45dBm
Mean: 6.72 STD: 2.87

Threshold: −30dBm
Mean: 3.62 STD: 0.98

Figure 26: Measured convergence rate of Algorithm 2 for Manhattan WiFi
hot spots using a number of available colours equal to χ + 2,
where χ is the chromatic number of the graph.

71

decentralised colouring with partial sensing

4.4.1 Convergence Time

Algorithm 2 was observed to converge in less than 1000 iterations in

all examples. Figure 25 shows the measured distribution of conver-

gence time for Algorithm 2 versus the detection threshold used for

sensing. For a threshold of −45dBm, corresponding to the target re-

quirement noted above, the mean convergence time is less than 34

iterations. In a prototype lab set-up we have shown that an update

interval of less than 10 seconds is feasible on current 802.11 hardware.

Thus the mean time to convergence is under 6minutes, which is a rea-

sonable time-frame for practical purposes. When the required thresh-

old is increased to −30dBm, the mean convergence time decreases to

less than 6 iterations i. e. under 1 minute when each iteration takes 10

seconds.

To examine the impact of the number of available colours we com-

pare, in Figures 25 and 26, the convergence time when the number of

colours is equal to χ and χ+ 2 respectively. For a detection threshold

of −60dBm, adding two colours reduces the mean convergence time

of almost 10 times.

4.5 summary

We constructively establish the existence of decentralised learning-

based solvers that are able to find satisfying assignments even in the

presence of sensing restrictions, in particular sensing asymmetry of

the type encountered when hidden terminals are present. Our main

analytic contribution is to establish sufficient conditions on the sens-

ing behaviour to ensure that the solvers find satisfying assignments

with probability one. These conditions take the form of connectivity

requirements on the induced sensing graph. These requirements are

mild, and we demonstrate that they are commonly satisfied in wire-

less allocation tasks. We explore the impact of sensing constraints

on the speed which a satisfying assignment is found, showing the

increase in convergence time is not significant in common scenarios.

Our results are of considerable practical importance in view of the

prevalence of both communication and sensing restrictions in wire-

less resource allocation problems. The class of algorithms analysed

here requires no message-passing whatsoever between wireless de-

vices, and we show that they continue to perform well even when

72

4.A appendix – proofs

devices are only able to carry out constrained sensing of the surround-

ing radio environment.

4.a appendix – proofs

We will exhibit a lower bound for the probability of a sequence of

events that ultimately lead to an increase in the number of properly

coloured vertices. Such a sequence can be quite complicated in cases

where a vertex i is unsatisfied by a vertex j such that i 6→ j (asym-

metric sensing), because in this case it is necessary to propagate the

dissatisfaction to j via another path.

We can divide the colouring process in two distinct phases: during

the first, all unsatisfied vertices select their target colouring. This

phase is repeated as long as new vertices become unsatisfied, see

Lemma 4.3.

The second phase is needed when a vertex i is unsatisfied by a

vertex j such that i 6→ j. In this case vertex i will propagate the

dissatisfaction to j via another path, and do so in a way that allows

the rest of the vertices in the path to restore their colour before this

second phase started (see Lemma 4.7). Ultimately, the second phase

will only change the colour of one vertex, namely j. After the second

phase is executed, it may be necessary to run first phase again, and

repeat the two phases until convergence. Both phases are constructed

to have a strictly increasing number of vertices with target colour

after the phase is executed. We explain the whole sequence after

proving some intermediate lemmas and after some clarification on

the notation.

Consider graph G′ = (V ,C). Let

A =
⋃{

~x : Φm(~x) = 1 for all m ∈ C
}

,

denote the set of assignments which are absorbing for Algorithm 2

and

B =
⋃

{~x : xi 6= xj for all i↔ j},

the set of proper colourings, with A ⊇ B. Under condition (A) of

Theorem 4.1, A = B and all absorbing assignments are also satisfy-

ing. When the colouring problem is feasible then A 6= ∅ (at least

one satisfying assignment exists). Let a ∈ A be a target satisfying

assignment. We will refer to the assignment at time step t as ~x(t).

73

decentralised colouring with partial sensing

Let F~x(t) denote the set of vertices that have their target colour, i. e.
F~x(t) = {i : i ∈ V , xi(t) = ai}. Furthermore, let U~x(t) denote the set

of unsatisfied vertices, i. e. U~x(t) = {i : i, j ∈ V , xj(t) = xi(t), j → i},

where i → j and j ← i denote the existence of an oriented edge

(i, j) ∈ C. Define γ = min(a,b)/(D− 1+ a/b).

Lemma 4.2. If a vertex is unsatisfied, when using Algorithm 2 the proba-
bility that the vertex chooses any colour j at the next step is greater than or
equal to γ.

Proof. This follows from step 5 of Algorithm 2.

Lemma 4.3. Given any satisfiable CP and an information set {C1, . . . ,CN}

with starting unsatisfied assignment~x(0) ∈ DN,~x(0) 6∈ A such that F~x(0) 6⊇
U~x(0), Algorithm 2 will reach an assignment ~x(t̃) such that F~x(t̃)) F~x(0)

and F~x(t̃) ⊇ U~x(t̃) in t̃ 6 |F~x(t̃)| − |F~x(1)| 6 N steps with probability
greater than

γ

|F~x(t̃)|∑
k=|F~x(0)|

k

> γN(N+1)/2

In other words, all vertices that had their target colour in ~x(0) will still have
it in ~x(t̃), and all unsatisfied vertices in ~x(t̃) will have their target colour.

Proof. At the first step we consider the event that changes the assign-

ment to

xi(1) =


ai if i ∈ U~x(0),

xi(0) otherwise.
(24)

This event is feasible since Algorithm 2 ensures that all satisfied ver-

tices will remain unchanged and each unsatisfied vertex may change

its colour. The probability that this event happens is greater than

γ|U~x(0)|. After this step we have F~x(1) = F~x(0) ∪U~x(0). Now, the set of

unsatisfied variables U~x(1) could have changed. If U~x(1) ⊆ F~x(1), we

have finished, otherwise we consider again the event that changes the

assignment similarly to equation (24), i. e. at generic step t we have

xi(t) =


ai if i ∈ U~x(t−1),

xi(t− 1) otherwise.

The probability of this happening is greater than γ|U~x(t−1)|, and it can

be lower bounded by γ|F~x(t)| because F~x(t) = F~x(t−1) ∪U~x(t−1). Since

74

4.A appendix – proofs

while U~x(t−1) 6⊆ F~x(t−1) we have F~x(t) is a strictly growing set, and

we have a finite number of vertices N, a finite time t̃ 6 N exists

after which we will necessarily have U~x(t̃) ⊆ F~x(t̃). The worst case in

regards to the number of steps is when at each step, only one new

vertex is added to Fx(t), giving us the bound for the number of steps

of |Fx(t̃)|− |Fx(1)|.

Lemma 4.4. Consider any satisfiable CP and an information set {C1, . . . ,CN}

with induced graph G′ = (V ,C) and colour xi(t) ∈ D associated with each
vertex i ∈ V at time t. Let A ⊂ D|V | denote the set of satisfying assign-
ments. Suppose |V | > 1, ~x(0) 6∈ A (the initial choice of colours is not a
satisfying assignment) and graph G′ is strongly connected. Let a ∈ A be
an arbitrary satisfying assignment. If F~x(0) ⊇ U~x(0), there exists a pair of
vertices k, j with same colour such that j → k and k 6→ j, with k ∈ U~x(0)

and j 6∈ U~x(0), j 6∈ F~x(0); in other words, a vertex k exists that is unsatisfied
by a satisfied vertex j that doesn’t have final colour, and the minimum path
length between k and j is greater than 1.

Proof. Consider any unsatisfied vertex k ∈ U~x(0). At least one such

vertex exists because ~x(0) 6∈ A. The hypothesis F~x(0) ⊇ U~x(0) ensures

xk(0) = ak. Since k is unsatisfied, there exists a vertex j such that

j→ k and xj(0) = xk(0), and xj(0) 6= aj, because xk(0) = ak, xj(0) =

xk(0) = ak and since k ↔ j in G, we must have aj 6= ak. The

hypothesis F~x(0) ⊇ U~x(0) also ensures that j is satisfied, because if it

was unsatisfied it should have its final colour because F~x(0) ⊇ U~x(0)

and this would contradict the property just proved that xj(0) = aj.

Since j is satisfied and it has same colour than k, we have k 6→ j.

Definition 13 (1-rotation). A 1-rotation is an operator P acting on

vector ~s = (s1, s2, . . . , sm), m > 1, such that P(~s)i = si+1, i =

{1, 2, . . . ,m − 1} and P(~s)m = s1. Repeating a 1-rotation m times

yields the identity operation, i. e. Pm(~s) = ~s.

Lemma 4.5. Consider any satisfiable CP and an information set {C1, . . . ,CN}

and induced graph G′ = (V ,C) and colour xi(t) ∈ D associated with each
vertex i ∈ V at time t. Suppose there exists a cycle p1 → p2 → · · · →
pm → pm+1 → p1 ⊆ G ′, m > 1, with xpm+1

(0) = xp1(0) at time
t = 0. Let ~s(0) = (xp1(0), xp2(0), . . . , xpm(0)). With probability greater
than γNm, after m time steps Algorithm 2 will realize a 1-rotation of the
vector ~s(0), i. e. ~s(m) = P(~s(0)) = (xp2(0), xp3(0), . . . , xpm(0), xp1(0)),
while leaving the colours of all other vertices unchanged.

75

decentralised colouring with partial sensing

Proof. Observe that at time t = 0 vertex p1 is unsatisfied since

xpm+1
(0) = xp1(0) and pm+1 → p1. Consider the event that at time

t = 1

xp1(1) = xp2(0)

xp2(1) = xp2(0)

...

xpm(1) = xpm(0).

So vertex p1 takes the colour of p2 and the colours of all other vertices

remain unchanged. This event is feasible since Algorithm 2 ensures

that all satisfied vertices will remain unchanged and each unsatisfied

vertex may choose any colour from set D with probability at least γ.

From the latter, the event described occurs with probability greater

than γN. Observing that vertex p2 is now unsatisfied since xp1(1) =

xp2(0) = xp2(1) and p1 → p2, suppose that at time t = 2

xp1(2) = xp1(1) = xp2(0)

xp2(2) = xp3(1) = xp3(0)

xp3(2) = xp3(1)

...

xpm(2) = xpm(1).

Again this event is feasible and occurs with probability greater than

γN. After m such steps we have ~s(m) = P(~s(0)) as claimed, and this

sequence of events will occur with probability greater than γNm.

Lemma 4.6. Consider any satisfiable CP and an information set {C1, . . . ,CN}

with induced graph G′ = (V ,C) and colour xi(t) ∈ D associated with each
vertex i ∈ V at time t. Let A ⊂ D|V | denote the set of satisfying assign-
ment. Suppose ~x(0) 6∈ A (the initial choice of colours is not a satisfying
assignment) and graph G′ is strongly connected. Let d ∈ D be an arbitrary
colour. Let k ∈ V be an unsatisfied vertex and let j be a vertex such that
j→ k, xj(0) = xk(0) (at least one such vertex exists since k is unsatisfied).
With probability greater than γN

3
, in t̃ < N2 steps Algorithm 2 will choose

~x(t̃), such that xi(t̃) = xi(0) ∀i ∈ {i : i ∈ V , i 6= j} and xj(t̃) = d.

Proof. Since G ′ is strongly connected, there exists a cycle k → · · · →
j → k ⊆ G ′. Let us relabel the m+ 1 > 1 vertices in the cycle using

76

4.A appendix – proofs

the ordering induced by the cycle, i. e. p1 = k,pm+1 = j and so

p1 → p2 → · · · → pm+1 → p1.

Define vector ~s(t) = (xp1(t), . . . , xpm−1
(t), xpm(t)). We need to con-

sider two cases. m = 1. In this case the cycle is p1 → p2 → p1.

By assumption, xp2(0) = xp1(0) and so vertex p2 is unsatisfied since

p1 → p2. It follows that, with probability at least γN, after 1 time

step Algorithm 2 will realize the event that vertex p2 selects colour

d and the colour of all other vertices remains unchanged. m > 1.

Using Lemma 4.5, with probability greater than γNm in m steps

Algorithm 2 will realize a 1-rotation of the vector ~s(0) i. e. ~s(m) =

(xp2(0), . . . , xpm(0), xp1(0)) leaving the colours of all other vertices

unchanged. Observe that vertex j = pm+1 must now be unsatisfied

because xpm(m) = xp1(0), xpm+1
(m) = xpm+1

(0) = xp1(0) and pm →
pm+1. Now consider the event at timem+1where vertex pm+1 takes

the colour of vertex p1 (and the colour of all other vertices remains

unchanged). This event occurs with probability greater than γN. Af-

ter m+ 1 steps we have ~s(m+ 1) = (xp2(0), . . . , xpm(0), xp1(0)) and

xpm+1
(m+ 1) = xp2(0), and this event occurs with probability greater

than γN(m+1). Applying again Lemma 4.5, after a 1-rotation and

changing the colour of unsatisfied vertex pm+1 we have ~s(2m+ 2) =

(xp3(0), . . . , xp1(0), xp2(0)) and xpm+1
(2m+ 2) = xp3(0). This state is

reached after 2(m+ 1) steps with probability greater than γ2N(m+1).

Repeating, after m(m + 1) steps ~s(m2 +m) = (xp1(0), . . . , xpm−1
(0),

xpm(0)) and xpm+1
(m2 +m) = d (where at the very last step we se-

lect the colour of unsatisfied vertex pm+1 to equal d rather than the

colour of p1). This state is reached after m(m+ 1) steps with prob-

ability greater than γNm(m+1). Since m 6 N, m(m− 1) < N2 steps

and γNm(m−1) > γN
3
.

Lemma 4.7. Consider any satisfiable CP and an information set {C1, . . . ,CN}

with induced graph G′ = (V ,C) and colour xi(t) ∈ D associated with each
vertex i ∈ V at time t. Let A ⊂ D|V | denote the set of satisfying assign-
ments. Suppose |V | > 1, ~x(0) 6∈ A (the initial choice of colours is not a
satisfying assignment) and graph G′ is strongly connected. Let a ∈ A be an
arbitrary satisfying assignment. If F~x(0) ⊇ U~x(0) with probability greater
than γN

3
, in t̃ 6 N2 steps Algorithm 2 will reach an assignment ~x(t̃) such

that F~x(t̃)) F~x(0) and |F~x(t̃)| = |F~x(0)|+ 1;

Proof. Lemma 4.4 ensures a pair i, j exists such that xk(0) = ak, xk(0) ∈
U~x(0) and xj(0) = xk(0). Lemma 4.6 ensures that, in less than N2

77

decentralised colouring with partial sensing

steps, with probability greater than γN
3
, Algorithm 2 will reach an

assignment in which vertex j assumes colour aj and the colours of all

other vertices are unchanged.

Proof of Theorem 4.1. Consider Algorithm 2 starting from an assign-

ment ~x(0). Select an arbitrary valid solution a ∈ A. Since the CP is sat-

isfiable, we have that A 6= ∅. We will exhibit a sequence of events that,

regardless of the initial configuration, leads to a satisfying assignment

with a probability for which we find a lower bound. We consider the

following sequence, divided in two phases:

1: t← 0

2: repeat

3: if F~x(t) 6⊇ U~x(t) then

4: Phase 1 Applying Lemma 4.3, after t̃ 6 N steps F~x(t+t̃) ⊇
U~x(t+t̃) and F~x(t+t̃)) F~x(t) (so |F~x(t+t̃)| > |F~x(t)|+ 1). This

event happens with probability greater than γN
2
.

5: t← t+ t̃

6: end if

7: if U~x(t) 6= ∅ then

8: Phase 2 We have F~x(t) ⊇ U~x(t). Applying Lemma 4.7, after

t̃ < N2 steps |F~x(t+t̃)| = |F~x(t)|+ 1. This event happens with

probability greater than γN
3
.

9: t← t+ t̃

10: end if

11: until U~x(t) = ∅ .

This sequence is terminating, because the set F~x(t) is strictly increas-

ing, and when |F~x(t)| = N we necessarily have U~x(t) = ∅. Each vertex

will be added to F~x(t) only once, either by Phase 1 or Phase 2.

When a vertex is added by Phase 1, it will require at most N steps

and occur with probability at least γN(N+1)/2. When added by Phase

2, it will require at most N2 steps and occur with probability at least

γN
3
. SinceN 6 N2 and γN(N+1)/2 > γN

3
forN > 1, we can therefore

upper bound the total number of steps by N ·N2 = N3 and lower

bound the probability of the sequence by (γN
3
)N = γN

4
.

Due to the Markovian nature of Algorithm 2 and the independence

of the probability of the above sequence on its initial conditions, if this

sequence does not occur in N3 iterations, it has the same probability

of occurring in the next N3 iterations. The probability of convergence

78

4.A appendix – proofs

in k ·N3 steps is greater than 1− (1− γN
4
)k. For 1− (1− γN

4
)k >

1− ε we require k 6 logε
log(1−γN4)

6 −
logε
γN

4 = eN
4 log(γ−1) log(ε−1)

Proof of Corollary 4.2. After running Phase 1 in the proof of Theorem

4.1 for the first time, we have F~x(t+t̃)) F~x(t). If U~x(t) = ∅ we have

finished without running Phase 2. Otherwise we must run Phase 2.

But in this case we have from Lemma 4.4 that C 6= M (because there

exists a pair of vertices i, j such that j → k and k 6→ j), leading to

a contradiction. So after Phase 1 U~x(t) = ∅ and Phase 2 is never

executed. The running time of Phase 1 is no greater than N and

occurs with probability at least γ
∑N
k=1 k = γ(N+1)N/2.

79

5
S I M P L I F I E D C F L A N D FA S T C O N V E R G E N C E

In this chapter we introduce a simplified CFL algorithm and prove it

converges to a proper colouring in O(N logN) time with high proba-

bility for generic graphs (and in O(logN) time if ∆ = O(N)) when the

number of available colours is greater than ∆, the maximum degree

of the graph.

The simplified algorithm, in addition to being easier to analyse,

also gives some insight into which parts of such algorithms are es-

sential to provide fast convergence. It is easier to implement than

CFL and we show how the proposed algorithm can be efficiently im-

plemented to realise collision-free scheduling in two applications, a

warehouse served by RFID robots and a smart electronic bookshelf,

without the need to modify the RFID protocol or the readers, and

keeping backward compatibility with standard RFID tags.

contents

5.1 Simplified CFL Algorithm 82

5.1.1 Role of Parameter S 82

5.1.2 Loose Bound for any Number of Colours 84

5.2 Fast Colouring – Performance Analysis 84

5.2.1 Main Result – Fast colouring with ∆+1 colours 84

5.2.2 Discussion 85

5.2.3 Differences with the State-of-the-art 85

5.2.4 Simulations 86

5.3 Use Case – RFID robot/smart bookshelf 89

5.3.1 Collision-Free Scheduling 91

5.3.2 Implementation 92

5.3.3 Comparison with Slotted Aloha 93

5.3.4 Memory and Computation Footprint vs. CFL 95

5.3.5 Summary 96

5.A Appendix – Proofs 97

simplified cfl and fast convergence

5.1 simplified CFL algorithm

We consider the following decentralised algorithm, called Simplified

Communication-Free Learning (SCFL):

Algorithm 3 Simplified Communication-Free Learning

1: Initialise vector p = 1
D1 and counters k = S,m = 0

2: loop
3: if k = 0 then
4: k = S, m = 0
5: end if
6: Select channel c with probability pc
7: if Satisfied OR m = 1 then
8: p = δc {Choose same colour with probability 1}
9: m = 1 {Permanent state}

10: else
11: p = 1

D1 {Back to uniform selection}
12: end if
13: k = k− 1 {Decrease counter}
14: end loop

where D is the number of colours available, and S ∈ N+ is a design

parameter. The vertices have a common sense of time. For a round

consisting of S iterations, they select a colour u.a.r. until they become

satisfied. At that point, they will enter what we call the permanent
state (m = 1), i. e. they will not change their colour even if they

become unsatisfied again. This permanent state lasts only until the

round (of S iterations) ends, then all vertices in the permanent state

will start again to select colours u.a.r. if unsatisfied.

When all vertices are satisfied, the graph will have a proper colour-

ing and keep it indefinitely. But as soon as the graph changes, for

example upon the appearance of a new vertex, the vertices will start

again to change colours after a delay of at most S iterations, when

they will go back to the non-permanent state1.

5.1.1 Role of Parameter S

When S = 0, SCFL algorithm becomes that used in [Barcelo et al., 2011],

while it is equivalent to that in [Motskin et al., 2009] when S→∞.

1 This differs from the satisfied and unsatisfied states because a permanent vertex is
guaranteed to be satisfied only at the round in which it becomes permanent.

82

5.1 simplified cfl algorithm

0 1 2 3 4 5 6 7

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Number of unsatisfied vertices

E
x
p

e
c
te

d
 i
n

c
re

m
e

n
t

o
f

u
n

s
a

ti
s
fi
e

d
 v

e
rt

ic
e

s

Complete graphs, D=N

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

Figure 27: Expected drift for unsatisfied vertices for SCFL algorithm when
S = 0 on a complete graph.

Intuitively, parameter S plays an important role in the performance

of the algorithm. One the one hand, too small a value of S will cause

the vertices to be overly reactive to dissatisfaction, and change even

when the graph is almost completely coloured, causing the system

to fluctuate around an allocation that is not a proper colouring. For

example consider a complete graph with D = N,N > 3, in which N−

2 vertices are already coloured and only two vertices are unsatisfied.

These two vertices will select their colour. Only in the unlikely event

in which they choose the remaining two available colours will the

system converge to a proper colouring. Otherwise the number of

unsatisfied vertices will not decrease, making this algorithm slow to

find a proper colouring.

This is illustrated in Figure 27, which shows the expected variation

of unsatisfied vertices at next step (drift) vs. the number of unsatis-

fied vertices for different values of N. The drift here is computed

exploiting the fact that when the graph is complete and S = 0, the

corresponding Markov chain (where the state is the number of unsat-

isfied vertices) is easy to calculate. For N > 3, we can see a region

(growing with N) of states with positive drift: the expected next state

when inside this region is a state farther from the absorbing state.

83

simplified cfl and fast convergence

On the other hand, it is important to keep S small, because it also

determines the maximum delay that can occur in the vertices reac-

tivity to topology changes. This is because a proper coloured graph

will have all vertices in the permanent state, and so it will require at

least S iterations to react to a change. Selecting S → ∞, as in [Mot-

skin et al., 2009] would mean that the algorithm cannot react at all to

topology changes.

In Section 5.2.1, we prove that it is enough to choose S = ∆ +

1 (where ∆ is the maximum degree of the graph) to guarantee fast

convergence.

5.1.2 Loose Bound for any Number of Colours

We can obtain similar bounds on the convergence time obtained in [Duffy

et al., 2013] by the CFL algorithm when the number of colours used is

greater than or equal to the chromatic number χ. Namely we have:

Theorem 5.1. Consider a feasible CP on a graph G = {N,E}, with palette D.
Given any unsatisfied assignment ~x(0) ∈ DN, then with probability greater
than 1− ε ∈ (0, 1), the number of iterations for SCFL algorithm to find a
satisfying assignment is less than

((S+ 1)N) exp((S+1)N(N+1)
2 log(D)) log(ε−1).

Proof. See Appendix

5.2 fast colouring – performance analysis

5.2.1 Main Result – Fast colouring with ∆+ 1 colours

If at least ∆ + 1 colours are available, SCFL is provably fast: it con-

verges to a proper colouring in O(N logN) time with high probability

for generic graphs, and in O(logN) time if ∆ = O(N). Moreover,

this is achieved while keeping the parameter S small (of the order of

∆+1), allowing the algorithm to respond quickly to topology changes

(see Section 5.1.1).

Theorem 5.2. Consider a CP on a graph G = {N,E} with maximum degree
∆ and D > ∆ + 1 available colours. Let |N| = N > 2 and Zt be the
set of vertices in the non-permanent state at time t ∈ {0, 1, 2, . . . }, with

84

5.2 fast colouring – performance analysis

|Zt| = Zt ∈ {0, 1, 2, . . . ,N}. Let R be the first time in which all vertices
reach the permanent state. For SCFL algorithm with S = ∆+ 1 we have

P

(
R >

logN+ log (ε−1) +K

log ∆+1
∆ + K

∆+1

)
6 ε,

for −1 < K 6 log 1
1+log4 . Given ε, we denote the bound B(N,∆, 1− ε) =

logN+log (ε−1)+K

log ∆+1
∆ +

K
∆+1

when K = log 1
1+log4 .

Corollary 5.1. If ∆ = O(N), then for N → ∞, the order of steps before
convergence is R = O(logN), or more precisely

P
(
R > logN+ O(1)

)
6 ε, for N→∞.

Corollary 5.2 (Complete graphs). If ∆ = Θ(N), then for N → ∞, the
order of steps before convergence is R = O(N logN), or more precisely

P
(
R > N logN+ O(1)

)
6 ε, for N→∞.

Proof. See Appendix.

5.2.2 Discussion

Theorem 5.2 means that if at least ∆+ 1 colours are available, SCFL al-

gorithm achieves fast O(N logN) convergence to a proper colouring,

while, from Theorem 5.1, when D is arbitrary we maintain a similar

exponential bound to CFL. Simulations suggest that the latter bound

is loose, but the drift analysis used to prove fast convergence when

D > ∆+ 1 cannot be easily extended to the general case of an arbi-

trarily small number of colours. Szegedy and Vishwanathan [1993]

use an heuristic argument to show that no locally-iterative (∆ + 1)-

colouring algorithms is likely to terminate in less than Ω(∆ log∆)

rounds, so it follows that SCFL algorithm is order optimal in the case

of complete graphs (when ∆ = N).

5.2.3 Differences with the State-of-the-art

As we will see by means of simulations in Section 5.2.4, SCFL algo-

rithm has very similar performance to CFL algorithm.

85

simplified cfl and fast convergence

The main advantage of SCFL algorithm over CFL is its simplicity: it

does not require each vertex to update, for each iteration, a probabil-

ity value over each colour. Its simplicity allows us to prove its fast

convergence properties, and makes more appealing for real world

applications, see for example Section 5.3.2.

Moreover, the SCFL algorithm can obtain a similar convergence rate

to CFL, but without using complicated stochastic learning techniques.

This suggests that the main characteristic of the CFL algorithm that

underpins its good performance is the "stickyness" to previously suc-

cessful choices, rather than the ability to move the probability mass

among the colour vector.

A limitation of SCFL algorithm is that it requires a degree of syn-

chronisation: vertices need to agree on when each round starts, so a

global clock is needed. Note that we believe this assumption can be re-

laxed, and this is supported by simulation results. Unfortunately, re-

laxing it makes the proof of Theorem 5.2 considerably more involved,

hence it is left for future work.

5.2.4 Simulations

In Figure 28, a comparison of the convergence time over 10 000 ran-

dom graphs of the CFL algorithm, the Learning-BEB [Barcelo et al.,

2011] algorithm and SCFL is shown, when ∆+ 1 colours are available.

Two classes of random graphs are created by selecting each edge with

probability 0.8 and 0.4 respectively. The number of iterations is plot-

ted on a logarithmic scale.

It can be seen that, while Learning-BEB performs poorly (see Sec-

tion 5.1.1 and Figure 27 for an explanation), CFL and SCFL exhibit a

sub-polynomial convergence rate. From now on, the Learning-BEB al-

gorithm results will not be shown anymore, because its consistently

poor performance make them uninteresting (and hard to compute) in

the present context.

In Figure 29, the empirical PDF (over 1000 samples) of the number

of iterations to colour a 48 vertex complete graph are shown, for the

CFL algorithm and the SCFL algorithm. The upper bound B(N,∆, 0.9)

on the number of iterations obtained using Theorem 5.2 with confi-

dence 1− ε = 0.9 is 2167 iterations.

In Figure 30, the empirical CDF of convergence time for the CFL

and SCFL algorithms is shown. Also the upper bound obtained using

86

5.2 fast colouring – performance analysis

0 50 100 150

10
0

10
1

10
2

10
3

Number of nodes

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Random graph, density: 0.8

CFL (a=b=0.1)

Learning−BEB

SCFL

0 50 100 150

10
0

10
1

10
2

Number of nodes

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Random graph, density: 0.4

CFL (a=b=0.1)

Learning−BEB

SCFL

Figure 28: Comparison of the convergence time on random graphs for CFL
algorithm, Learning-BEB algorithm and Algorithm 1 for densities
of 0.8 and 0.4 respectively, using ∆+ 1 colours.

87

simplified cfl and fast convergence

0 50 100 150 200 250 300 350 400
0

0.005

0.01

CFL with a=b=0.1

E
m

p
ir
ic

a
l
P

D
F

Number of iterations

0 50 100 150 200 250 300 350 400
0

0.005

0.01

SCFL with M=S=∆+1

E
m

p
ir
ic

a
l
P

D
F

Number of iterations

Figure 29: Empirical PDF of the number of iterations to colour a complete
graph with 48 vertices over 10 000 samples, for the CFL algorithm
and the SCFL algorithm.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

C
D

F

SCFL

CFL

Bound

Learning−BEB

Figure 30: Empirical CDF of convergence time for CFL and SCFL. Also the
upper bound obtained using Theorem 5.2 is shown.

88

5.3 use case – rfid robot/smart bookshelf

0 500 1000 1500 2000

10
−4

10
−3

10
−2

10
−1

10
0

N

R̃
/B

(N
,∆

)

Bipartite graphs

12−partite graphs

Complete graphs

Figure 31: Ratio between the empirical estimation of the number of itera-
tions and the bound B(N,∆, 1/2).

Theorem 5.2 is shown for a complete graph of 12 vertices. We can

see that the two algorithms have similar performance and also that

the bound seems to be rather loose, even if we know from the heuris-

tic argument of Szegedy and Vishwanathan [1993] that no locally-

iterative (∆+ 1)-colouring algorithm is likely to terminate in less than

Ω(∆ log∆) rounds, so the looseness of this bound is likely to be due

to a pre-factor rather than the exponent.

To corroborate this intuition, in Figure 31 we show the ratio be-

tween the empirical estimate of the number of iterations and the

bound B(N,∆, 1/2). We can see that the ratio tends to a constant

value.

We obtain very similar qualitative results for bipartite and random

graphs, thus they have not been included.

5.3 use case – RFID robot/smart bookshelf

SCFL algorithm can be applied in many different real life scenarios.

We will show two examples:

89

simplified cfl and fast convergence

warehouse with RFID robot A RFID robot is a mobile reader, able

to identify items in an environment (e. g. a warehouse) equipped

with passive RFID tags [Yan et al., 2008, Chow et al., 2006, Car-

reras et al., 2013]. The robot will move in the warehouse to

locate and move items.

smart bookshelf with antenna array A smart bookshelf is

a device in which small items, like CDs or books, are managed

in real time. An antenna array continuously reads RFID tags in

the items using one antenna per time, facilitating administrative

tasks like renting or collection [Melià-Seguí et al., 2013, Lang

and Han, 2014, Lau et al., 2010].

We will refer to both the robot and the antenna array as reader. We

are interested only in the RFID identification phase of the problem.

In Figure 32 a schematic of both examples is shown, in which the

reader (either a RFID robot or one antenna in the array) is in the range

of detection of 12 tags per time slot(tags with gray background when

the robot is in the depicted position or the central antenna of the array

is used).

Communication from the items to the reader can fail when there

is a collision, i. e. when at least two RFID tags within the coverage

of the reader transmit at the same time. To mitigate this, the RFID

protocol implements a basic slotted Aloha collision resolution mech-

anism [Finkelzeller, 2003, Want, 2006, Shih et al., 2006]. When the

reader needs to identify a tag, it issues a QUERY command, and each

tag in the coverage area selects an integer u.a.r. in interval [0,D− 1],

where D− 1 is set by the reader. All tags that select 0 reply imme-

diately; tags that select another other number record those numbers

in a counter and don’t transmit. A tag replies by sending a 16 bit

random number. If the reader hears the random number, it echoes

that number back as an acknowledgement, causing the tag to send its

Electronic Product Code (EPC). The reader can then send commands

specific to that tag, or continue to inventory other tags. In case of

collision or the need for another identification, the reader can issue

a QUERY REP command, causing all of the tags to decrement their

counters by 1; again, any tag reaching a counter value of 0 will re-

spond. After M steps, the procedure can start again with a QUERY

command.

90

5.3 use case – rfid robot/smart bookshelf

Figure 32: A schematic example of a grid of tags, in which the reader (either
a RFID robot or an antenna in an array) is in the range of detection
of 12 tags per time slot (tags with gray background when the
reader is in central position).

Usually during inventory operation, the reader can set a flag (flag

B) on successfully read tags, so they will not answer anymore to sub-

sequent queries until a new command (set flag A) is broadcast to all

tags.

Problem Definition

For both the warehouse and the smart bookshelf applications, we

want to design a collision resolution mechanism that possesses the

following properties: (i) allow tags to be detected quickly (reading

time comparable with Aloha); (ii) allow subsequent read per tag to

be faster; (iii) allow the reader to correctly read all of the tags when

their relative positions change (for example when a batch is moved to

a new warehouse); (iv) the new mechanism cannot require a change

in the RFID protocol and has to be backward compatible, i. e. able to

work with standard RFID tags and new tags together.

5.3.1 Collision-Free Scheduling

In the problem just defined, the RFID detection needs to be repeated in

time, so a collision-free schedule would dramatically improve the ef-

91

simplified cfl and fast convergence

ficiency of the medium access protocol. Moreover, the work of Melià-

Seguí et al. [2012] showed that the random number generator used

in most RFID tags is biased towards certain values: the effect of the

increase of collisions due to this bias would be heavily mitigated with

a collision-free schedule.

The problem of assigning a different time slot (different counter

value when the QUERY command is issued) to each RFID tag can be

mapped to a CP on a graph, where the structure of the graph depends

on the location of the tags. Graph G = (N,E) is built such that N is

the set of tags, and an edge e = (i, j) ∈ E iff the tags i and j are near

enough for their transmissions to potentially collide.

When all tags are within the coverage range of the reader, the prob-

lem is mapped to colouring of a complete graph. More generally

(e. g. when the reader can cover at most k tags per time), most RFID

applications can be modeled as a CP on a complete k-partite graph

Gs1,...,sk , i. e. the graph composed of k independent sets of (possibly

different) size si, i = 1, . . . ,k, such that each set is connected with all

the vertices of the other sets. This graph is k-colourable. For exam-

ple, the collision-free schedule problem in the scenario represented in

Figure 32 can be modeled as a CP on a 12-partite graph.

SCFL algorithm is a natural candidate for this task, because

• It requires changing the behaviour of the tags only, without

changing the RFID protocol or changing the (usually expensive)

reader;

• it is backward compatible and can coexist with standard tags;

• it provides a significant speed-up, as shown in Section 5.3.3.

5.3.2 Implementation

We show how to implement SCFL algorithm in a existing RFID infras-

tructure ensuring backward compatibility.

The idea is to modify the behaviour of the tag, to allow it to enter

the permanent state after successful QUERY, and to possibly exit it

every S periods by extending the meaning of the QueryAdjust com-

mand. The QueryAdjust command is normally used to modify the

range [0,D− 1] in the tags, to reduce the collision probability (by in-

creasing the time period D) when many tags are present, or to reduce

the expected backoff (by decreasing D) when few of them are present.

92

5.3 use case – rfid robot/smart bookshelf

The reader should be programmed to send a QueryAdjust command

every S period, i. e. every S ·D queries.

Modified tags will thus have the following additional capabilities

a. If the reader sets flag B, the tag will enter the permanent state,

and thus will select the same random number (same time slot)

when flag A is broadcast again.

b. If the tag receives a QueryAdjust command and the tag flag is A,

it will exit the permanent state.

We also assume the reader broadcasts flag A at the beginning of the

process, and sets flag B on each tag that is correctly detected in a
time slot not used by other tags. In this way already identified tags will

not cause collisions, and tags that are correctly identified but that

would cause a collision (with a previous identified tag) when a new

inventory would be started will actually continue to change.

This implementation will still work together with non-modified

tags at the expense of having some collisions, because those non-

modified tags will choose a new (possibly different) time slot at ev-

ery new QUERY, but each non modified tag can at most affect one

modified tag, so the overall performance should still be superior than

original slotted Aloha mechanism. This intuition is confirmed by sim-

ulation in next section.

5.3.3 Comparison with Slotted Aloha

The average time needed by SCFL algorithm to identify correctly all

tags in a complete graph has been computed and compared with the

one of the following algorithms [Lee et al., 2005], based on slotted

Aloha (with the additional capability of flagging a tag that has been

correctly identified, so a flagged tag will not try to transmit anymore):

bfsa Basic Framed Slotted Aloha, with standard superframe size of

256 slots.

dfsa Dynamic Framed Slotted Aloha, where the superframe size

doubles when the number of slots with collisions is larger than

70% of the current superframe size, and halves when the num-

ber of slots with collisions is less than 30%.

edfsa Enhanced Dynamic Framed Slotted Aloha, see [Lee et al.,

2005] for detail on this enhanced version of DFSA.

93

simplified cfl and fast convergence

In this notation, the superframe size is equivalent to the parameter D,

i. e. the number of slots after which the reader starts a new QUERY

(forcing tags to select a new slot u.a.r.). These algorithms, different

from SCFL, have the property of being memoryless, in the sense that

for each superframe they behave statistically in the same way, in the

sense that for each superframe their behaviour is a realisation of the

same stochastic process. On the other hand, SCFL algorithm has a

transient period in which a collision-free schedule is being searched,

while after convergence the tags will deterministically select same slot

at every subsequent superframe. As shown in Table 2, SCFL algorithm

is comparable with classic slotted Aloha during the transient period,

while at steady state performs better than classic slotted Aloha (83%

reduction), and as well better than the state-of-the-art dynamically

adjusted slotted Aloha (66% reduction). Using ISO15693 high tag

data rate [Want, 2006], the reader needs at each slot 1ms to send the

QUERY (or QUERY REP) command, and the tag needs 6ms to com-

plete the identification procedure with the reader (for transmission

of the random number and reception of the echo acknowledgment).

This would allow to read 1000 tags in around 7 seconds instead of

the more than 40 seconds required for classic slotted Aloha. In the

200 tags 1000 tags

Algorithm First inventory At steady state First inventory At steady state

BFSA 1280 1280 5850 5850

DFSA 662 662 5425 5425

EDFSA 628 628 2916 2916

SCFL 816 200 5040 1000

Table 2: Median of the number of time slots needed to identify correctly all
tags in a complete graph topology with N = 200 and N = 1000 for
different algorithms. SCFL algorithm has a different reading time
after convergence because it reaches collision-free operation, while
the other algorithms are memoryless.

case of a tag grid in which 12 tags can interfere for each antenna,

we simulated time of convergence, time of first inventory and time

of identification at steady state of SCFL algorithm, compared to stan-

dard slotted Aloha with flagging enabled and superframe size equal

to ∆+ 1 (as SCFL) varying the number of tags, for complete graphs

and 12-partite complete graphs. In Figure 33, we can see that time of

first inventory is comparable for the two algorithms, and after conver-

94

5.3 use case – rfid robot/smart bookshelf

Figure 33: Reading time of SCFL algorithm and Aloha for a 12-partite com-
plete graph. For SCFL algorithm time of convergence and time of
reading at steady state are also shown.

gence (less than 5 minutes for a shelf of 1000 items) SCFL algorithm

will be able to check the status of the whole library in 7 seconds,

instead of the 32 seconds required for Aloha every time. In other

words, a shelf with no new books will need 7 seconds to know the

status of the items (taken or not), while if new books are introduced

or the topology of the grid change, SCFL algorithm will have same

performance of Aloha for at most 5 minutes, converging again to a

collision-free schedule.

5.3.4 Memory and Computation Footprint vs. CFL

The implementation of CFL would require the usage, in each tag, of a

register of length D, to store the probability vector of choosing each

slot at next QUERY. Moreover, it would be necessary to perform some

basic operations (one multiplication, one division and one addition)

at each QUERY.

Both implementation constraints are not required in the implemen-

tation of SCFL algorithm, while it keeps comparable, if not better, per-

formance as illustrated in Figure 34, where the empirical PDF of the

95

simplified cfl and fast convergence

number of iterations to colour a graph are shown, in the case of a

complete 12-partite graph with 10 vertices for each independent set

over 10 000 samples for the CFL algorithm and the SCFL algorithm.

The upper bound B(N,∆, 0.9) on the number of iterations obtained

using Theorem 5.2 with confidence 1− ε = 0.9 is 784 iterations.

5.3.5 Summary

20 40 60 80 100
0

0.02

0.04

CFL with a=b=0.1

E
m

p
ir
ic

a
l
P

D
F

Number of iterations

20 40 60 80 100
0

0.02

0.04

0.06
SCFL with M=S=∆+1

E
m

p
ir
ic

a
l
P

D
F

Number of iterations

784
B(0.9)

Figure 34: Empirical PDF of the number of iterations to colour a complete
12-partite graph with 10 vertices for each independent set over
10 000 samples, for the CFL algorithm and the SCFL algorithm.

The SCFL algorithm is responsive to topology changes, and con-

verges to a proper colouring in O(N logN) time with high probability

for generic graphs (and in O(logN) time if ∆ = O(N)) when the num-

ber of available colours is greater than ∆.

The SCFL algorithm can be efficiently implemented in realistic in-

dustrial tasks, in particular in a warehouse served by RFID robots,

and in a smart electronic bookshelf, without the need to modify the

RFID protocol or the readers, and retaining backward compatibility

with standard RFID tags.

The performance of the algorithm during its transient time is com-

parable with the standard slotted Aloha implementation, while the

performance after convergence is one order of magnitude better. We

96

5.A appendix – proofs

note that the SCFL algorithm gives a clear advantage only to the sys-

tems in which the same set of tags is required to be read multiple

times, otherwise an improved slotted Aloha algorithm may be prefer-

able.

The main limitation of this work is the requirement for a form of

central synchronisation, that we believe can be relaxed in a future

work. This would make the algorithm suitable for more complex

applications, such as 802.11 networks.

5.a appendix – proofs

Consider graph G = (N,E). Let A denote the set of assignments

which are absorbing for SCFL algorithm, i. e. the set of proper colour-

ings. All absorbing assignments are also satisfying. When the colour-

ing problem is feasible (the number of colours available is greater

than or equal to χ) then A 6= ∅ (at least one satisfying assignment

exists). Let a ∈ A be a target satisfying assignment. We will refer

to the assignment at time step t as ~x(t). Let U~x(t) denote the set of

unsatisfied vertices and D the set of available colour. Define γ = 1/D.

Lemma 5.1. If a vertex is unsatisfied, when using SCFL algorithm the prob-
ability that the vertex chooses any colour j at the next step is greater than or
equal to γ.

Proof. This follows from step 11 of SCFL algorithm.

Proof of Theorem 5.1. Consider SCFL algorithm starting from an assign-

ment ~x(0). Select an arbitrary valid solution a ∈ A. Since the CP is sat-

isfiable, we have that A 6= ∅. We will exhibit a sequence of events that,

regardless of the initial configuration, leads to a satisfying assignment

with a probability for which we find a lower bound: SCFL algorithm

will reach, in (S + 1)N steps, an assignment ~x((S + 1)N) such that

U~x((S+1)N) = ∅ with probability greater than γ(S+1)N(N+1)/2.

At the first step we consider the chain of events that changes the

assignment, after (S+ 1) steps, to

xi((S+ 1)) =


ai if i ∈ U~x(0),

xi(0) otherwise.
(25)

This is feasible since SCFL algorithm ensures that all satisfied vertices

at step 0 will remain unchanged for (S+ 1) steps and each unsatisfied

vertex may change its colour at step 1, and keep the same colour

97

simplified cfl and fast convergence

for (S + 1) steps with probability at least γ(S+1). The probability

that this event happens is greater than γ(S+1)|U~x(0)|. Now, the set of

unsatisfied variables U~x((S+1)) could have changed. If U~x((S+1)) = ∅,
we have finished, otherwise we consider again the event that changes

the assignment similarly to equation (25), i. e. at generic step τ(S+ 1)

we have

xi(τ(S+ 1)) =


ai if i ∈ U~x(τ(S+1)−1),

xi(τ(S+ 1) − 1) otherwise.

The probability of this happening is greater than γ(S+1)|U~x(τ(S+1)−1)|.

The lower bound on the probability of this sequence is obtained when

at each step that is a multiple of (S+ 1), only one new vertex choose

the target colouring, giving us the bound of (S+ 1)N steps, with prob-

ability greater than γ(S+1)·1 · γ(S+1)·2 . . . γ(S+1)·N = γ(S+1)N(N+1)/2.

Due to the Markovian nature of SCFL algorithm and the indepen-

dence of the probability of the above sequence on its initial condi-

tions, if this sequence does not occur in (S + 1)N iterations, it has

the same probability of occurring in the next (S+ 1)N iterations. The

probability of convergence in k · (S + 1)N steps is greater than 1 −(
1− γ

(S+1)N(N+1)
2

)k
.

For 1−

(
1− γ

(S+1)N(N+1)
2

)k
> 1− ε, we require

k 6
log ε

log

(
1− γ

(S+1)N(N+1)
2

) 6−
log ε

γ
(S+1)N(N+1)

2

=e
(S+1)N(N+1)

2 log(γ−1) log(ε−1).

Lemma 5.2. If vertex i is in non-permanent state at the end of iteration t,
then

P
(
i becomes permanent at time t+ 1

)
>
M−∆

M
>

1

∆+ 1
.

Proof. A non-permanent vertex has at least M − ∆ available colour,

and its choice is uniform, so it has a probability at least equal to

98

5.A appendix – proofs

M−∆
M to choose a colour not used by any neighbour. Now ∆

M 6 ∆
∆+1 ,

because M > ∆+ 1; so we have M−∆
M = 1− ∆

M > 1− ∆
∆+1 = 1

∆+1 .

Lemma 5.3. If all vertices are in permanent state, then they are all satisfied.

Proof. First let us note that in the first round in which a vertex be-

comes permanent, it is satisfied and it cannot cause dissatisfaction

to its neighbours; the neighbours can still be unsatisfied, but only

because of other vertices.

By contradiction, assume all vertices are in permanent state but

there is at least one vertex i unsatisfied. So there must be at least

another neighbour j unsatisfied and with same colour of i, by sym-

metry of dissatisfaction sensing. Now let us call ti, tj the (last) time

in which i and j became permanent, respectively. Assume, w.l.o.g.

that ti < tj (note that equality is not possible, because at first round

a vertex becomes permanent it is necessarily satisfied). Now at time

tj, j became permanent, so it chose a colour different from i, causing

a contradiction.

Corollary 5.3. A vertex in permanent state can be unsatisfied only by non-
permanent neighbours.

Lemma 5.4. If a vertex i is in permanent state and the counter k is equal
to zero, then

P
(
vertex i remains permanent

)
=

(
1−

1

M

)n(i,t)
>

(
∆

∆+ 1

)n(i,t)
,

where n(i, t) is the number of neighbours of i that are in non-permanent
state at time t.

Proof. Let xi be the colour of vertex i. When the counter k reaches

zero, permanent vertex i will still keep the same colour xi. By Corol-

lary 5.3, other permanent vertices cannot affect the satisfaction of

vertex i, but i could lose its (permanent) state if at least one of its

non-permanent neighbours chooses xi.

The probability that a non-permanent neighbour chooses a differ-

ent colour from xi is 1− 1
M , and since the choice of each vertex is inde-

pendent, the probability all non-permanent vertices choose a colour

from xi is (1− 1/M)n(i,t).

Now, since M > ∆+ 1, we have 1
M 6 1

∆+1 and so 1− 1
M > 1−

1
∆+1 = ∆

∆+1 .

99

simplified cfl and fast convergence

Lemma 5.5. Let Z,N,∆ positive integer numbers, with N− Z > 1, and
∆ > 2. The function

f(Z) = (N−Z)

1−(∆

∆+ 1

) ∆Z
N−Z


is concave with respect to Z.

Proof. This function is twice differentiable, and the second derivative

is negative in its domain:

f ′′(Z) =

∆2
(

log
(
∆
∆+1

))2
N2(

∆
∆+1

) ∆Z
Z−N

(Z−N)3
.

Lemma 5.6. For any choice of the integers N > 2, 1 6 ∆ 6 N− 1, τ > 1,
and the real 1+ log 4 < k < e we have

(∆
∆+1)

τ(∆+1)+1kτ−1N+


1−

(
∆
∆+1

) ∆

(
∆
∆+1

)τ(∆+1)

kτ−1N

N−

(
∆
∆+1

)τ(∆+1)

kτ−1N


(N− (∆

∆+1)
(∆+1)kτ−1N) 6 kτN(∆

∆+1)
τ(∆+1)+1. (26)

Proof. We first notice that we want k < e, to keep the bound limited

when ∆ = N− 1 and N→∞ (limN→∞(N−1
N

)N
= 1/e). The function

X =
(
∆
∆+1

)τ(∆+1)
kτ−1 is bounded from above by 1/e (because, for

k < e, X is increasing with ∆ and decreasing with τ, so we take

∆ = N− 1 and then taking the limit for N → ∞ we get 1/e when

τ = 1) and from below by 0. Now we consider function Y = 1−X
X ,

decreasing with X for k < e, and with image equal to [e− 1,∞), and

notice that (26) is equivalent to

1

k
F(∆, Y) 6 1,

100

5.A appendix – proofs

with

F(∆, Y) =

1+ Y∆+ 1

∆

1−(∆

∆+ 1

)∆/Y
.

Clearly F is increasing with Y, so we can bound it from above with

F∗(∆) = limY→∞ F(∆, Y) = 1− log
((

∆
∆+1

)∆+1
)

. It is easy to show

that F∗ is decreasing with ∆, so we just obtain the bound choosing

∆ = 1, that brings to F(∆, Y) 6 F∗(1) = 1 + log 4. This guarantees

that (26) is satisfied when 1+ log 4 < k < e.

Lemma 5.7. Let N ⊇ Z two integer sets of cardinalityN and Z respectively,
and N > 1 and Z 6 N. Let ∆ > 1 be an integer and n a integer vector of
length N. If

n(i) = 0, when Z = N,

and ∑
i∈N\Z

n(i) 6 ∆Z, (27)

then the following holds

f(Z,n) :=
∑
i∈N\Z

1−(∆

∆+ 1

)n(i) 6

(
1−

(
∆
∆+1

) ∆Z
N−Z

)
(N−Z).

(28)

Proof. We maximise over n the concave function f(Z,n) subject to

constraint (27). Since we want an upper bound, we can work on the

relaxed problem in which we allow n(i) ∈ R, because the maximum

over this wider set will be greater than or equal to the maximum over

N. The optimisation is then convex. The Slater condition is satisfied,

because ∆ > 1 and Z > 1 and so the point n(i) = 0 ∀i is in the

interior of the constraint set. Hence strong duality holds, and from

the KKT conditions we obtain that at an optimum n(i) = n(j) for all

i, j (because for each i we get the very same condition ∇n(i)f(Z,n) =

0 ⇔ µ = − log ∆
∆+1

(
∆
∆+1

)n(i)
, where µ is the (unique) multiplier,

because 1− 1/∆ 6= 0), and from complementary slackness we obtain

that constraint (27) is tight (because we get that µ = 0 if constraint (27)

is not tight, but this is not possible because ∆
∆+1 and n(i) are finite

101

simplified cfl and fast convergence

and thus µ = 0 contradicts first KKT condition). Hence, the n(i)

maximising f is

n(i) =
∆Z

N−Z
, i ∈ N \ Z, Z < N, (29)

and n(i) = 0 when Z = N (by definition of n(i)).

Proof of Theorem 5.2. Let Zt the number of permanent vertices at time

t. Observe that, by Lemma 5.3, Zt = 0 is an absorbing state i. e. Zτ = 0

∀ τ > t, and since Zt is non-negative we have that E[Zt] = 0 implies

Zt = 0. It follows that P(R > τ · S) = P(ZτS > 1) and by Markov’s

inequality,

P(ZτS > 1) 6 E[ZτS].

We divide the rest of the proof in two parts. First let us analyse the

behaviour of the algorithm when time is not a multiple of S and get

a bound for the first S− 1 steps.

First Part: t < S

We define the random variable

Xi(t) =


1, if vertex i is permanent at time t

0, otherwise.

Then P
(
i is permanent at time t

)
= P

(
Xi(t) = 1

)
. We can define

the random variable M(t + 1) that represents the number of non-

permanent vertices that become permanent at next step as

M(t+ 1) =
∑
i∈Zt

Xi(t+ 1).

So now we have

E
[
Zt+1|Zt

]
= Zt − E

[
M(t+ 1)

]
= Zt −

∑
i∈Zt

E
[
Xi(t+ 1)

]
=

Zt −
∑
i∈Zt

1 ·P
(
i is permanent at time t+ 1

)
, (30)

102

5.A appendix – proofs

and we can use Lemma 5.2 to obtain that in expectation, at least a

fraction ∆
∆+1 of non-permanent vertices will become permanent at

each step

E
[
Zt+1|Zt

]
6

(
1−

1

∆+ 1

)
Zt, t 6= S mod S. (31)

Since the RHS is strictly decreasing, for the first S− 1 steps we can

bound it with

E
[
Zt+1|N

]
6

(
∆

∆+ 1

)
N t < S.

Second Part: t > S

At time τ · S+ 1, τ > 1, we have to consider the number of vertices

that exit from permanent state. By Lemma 5.4, and using the same

construction used in (30) and (31), the probability a vertex i remains

permanent after a reset is:

P
(
no neighbours choose colour of i

)
>

(
1−

1

∆+ 1

)n(i,t)
,

where n(i, t) is the number of neighbours of i that are in the non-

permanent state, i. e. the number of edges that make i unsatisfied. So

the expected number of vertices that exit from the permanent state,

conditioned on Zt is:

e(Zt) 6
∑

i∈N\Zt

1−(∆

∆+ 1

)n(i,t) =: f(Zt,n(·, t)). (32)

Each non-permanent vertex can affect at most ∆ permanent ver-

tices, and because of Corollary 5.3 a permanent vertex cannot affect

any other permanent vertex, so the set N \ Zt can be affected by at

most a number of edges equal to∑
i∈N\Zt

n(i, t) 6 ∆Zt. (33)

103

simplified cfl and fast convergence

To bound e(Zt), we maximise over n(·, t) the concave function f(Zt,n(·, t))
subject to constraint (33). Using Lemma 5.7 we get for any τ > 1, com-

bining (31), (28) and (29)

E
[
ZτS+1|ZτS

]
6 (∆

∆+1)ZτS +

(
1−

(
∆
∆+1

) ∆ZτS
N−ZτS

)
(N−ZτS), for ZτS > 0.

Applying iterated expectation rule,

E
[
ZτS+1

]
= E

[
E
[
ZτS+1|ZτS

]]
6 (∆

∆+1)E[ZτS]

+ E

(1− (∆
∆+1

) ∆ZτS
N−ZτS

)
(N−ZτS)

.

We can now use Lemma 5.5 to apply Jensen’s inequality:

E
[
ϕ(Zt)

]
6 ϕ(E[Zt]),

with ϕ(Zt) = (N−Zt)

(
1−

(
∆
∆+1

) ∆Zt
N−Zt

)
. So we obtain

E
[
ZτS+1

]
= E

[
E
[
ZτS+1|ZτS

]]
6 (∆

∆+1)E[ZτS]

+

1− (∆
∆+1

) ∆E[ZτS]
N−E[ZτS]

(N− E[ZτS]). (34)

We set now, S = ∆ + 1, and we start considering the case τ = 1.

From (31), we have that E
[
Z∆+1

]
6
(
∆
∆+1

)∆+1
N < N

e . We want to

bound the RHS of (34) substituting E
[
Z∆+1

]
with

(
∆
∆+1

)∆+1
N, but

to do that we have to prove that the RHS of (34) is increasing with

E
[
Z∆+1

]
. The first addend of the RHS of (34) is affine and increasing

with E
[
Z∆+1

]
. Let us call second addend f. For Lemma 5.5, f is

strictly concave, so the subgradient property is f(x) 6 f(y) + (x −

y)∂f(y) and so f(x) 6 f(N/e)+ (x−N/e)∂f(N/e), and for x ∈ [0,N/e]

and ∂f(N/e) > 0 we have f(x) 6 f(N/e). Thus it is enough to show

that f ′ > 0 when E
[
Z∆+1

]
= N
e . To simplify the analysis, we do the

following strictly monotonic change of variable (that thus preserve

the stationary points): x =
E[Z∆+1]

N−E[Z∆+1]
.

f(x,N,∆) :−
N

1+ x

(
1−

(
∆

∆+ 1

)∆x)
.

104

5.A appendix – proofs

Now the derivative of f computed in x(N/e) is positive iff

g(∆) = −e∆

(
∆

∆+ 1

) ∆
e−1

log
(

∆

∆+ 1

)
+ e

(
∆

∆+ 1

) ∆
e−1

−

(
∆

∆+ 1

) ∆
e−1

− e+ 1 > 0.

We can easily prove it splitting g in the sum of two functions

g1(∆) = +e

(
∆

∆+ 1

) ∆
e−1

−

(
∆

∆+ 1

) ∆
e−1

− e+ 1 > 0

g2(∆) = −e∆

(
∆

∆+ 1

) ∆
e−1

log
(

∆

∆+ 1

)
.

• g1 is decreasing so we bound it with

lim
∆→∞g1 = −e−

1
e−1

(
(e− 1) e

1
e−1 − e+ 1

)
.

• g2 is increasing so we bound it with g2(1) =
e log(2)

2
1
e−1

.

So g is positive and thus f is increasing from 0 to N/e, and we can

then bound it with the value in N/e:

E
[
Z∆+2

]
6 (∆

∆+1)
∆+2N

+


1−

(
∆
∆+1

) ∆

(
∆
∆+1

)∆+1

N

N−

(
∆
∆+1

)∆+1

N


(N− (∆

∆+1)
∆+1N). (35)

We can now use Lemma 5.6, with τ = 1 to bound the RHS of (35)

with kN(∆
∆+1)

(∆+1)+1 (we note that this quantity is again smaller

than kN/e). Applying again (31) for the next N − 1 steps, we get

that E
[
Z2(∆+1)

]
6 kN(∆

∆+1)
2(∆+1), that is thus smaller than N/e

(because k < e). So we can use the same reasoning that brought

from (34) to (35) and then apply Lemma 5.6 again with τ = 2. Iterat-

ing this procedure we get, at any step τ(∆+ 1),

E
[
Zτ(∆+1)

]
6 kτ−1N(∆

∆+1)
τ(∆+1).

Now, setting a target small probability ε, we need to choose

τ >
logN+ log (ε−1) + log (k−1)

(∆+ 1) log (∆+1
∆) + log (k−1)

,

105

simplified cfl and fast convergence

to obtain the thesis.

Proof of Corollaries 5.1 and 5.2. Corollary 5.1 is obtained taking the limit

for N → ∞. Corollary 5.2 is obtained observing that 1
N is the first

term of Taylor series at∞ of log (N
N−1).

106

6
C O N C L U S I O N S

In this thesis, we provide the first rigorous analysis of proportional Proportional
Fairness: Chapter 2fairness in 802.11 WLANs. We show that a unique proportional fair

rate allocation exists and, correcting previous studies, that this allo-

cation assigns equal total air-time to flows. Total air-time is the time

spent on both colliding and successful transmissions and differs from

other air-time quantities proposed heuristically in the literature.

We introduce the problem of scrambling code allocation for WCDMA Scrambling Code
Allocation:
Section 3.2

small cell networks. The problem differs from code planning in

macrocell networks due to the limited number of codes reserved for

small cells and the need for dynamic adaptation and for scalable, dis-

tributed planning. We adapt the CFL algorithm to this task, allowing

asynchronous updates, and we evaluate its performance against two

variants of 3GPP recommended schemes. The results confirm signif-

icant performance improvement. The proposed scheme is fully dis-

tributed, which makes it suitable for unplanned deployment of small

cells base-stations.

We introduce the problem of user-reports-based Local Topology Local Topology
Discovery:
Section 3.3

Discovery, providing a crisp mathematical formulation of it in the

case of a simple mobility model (Model 1). We show that Model 1 can

effectively be used as an upper bound for a wide range of mobility

models, when the user reports frequency is lower than the mixing

time of the Markov chain of the underlying mobility model.

Simulations on random scenarios show that the expected number

of reports to have 0.9-knowledge of the local topology is modest.

Roughly speaking, a user moving at 0.5m/s according to a random

walk model, and providing a report every hour, will guarantee the

Access Point will have 0.9-knowledge with high probability in less

than half day. Since the local topology is not typically expected to

change every day, this is an acceptable time. The simulations on

more realistic scenarios (Section 3.3.3.3) give similar results in term of

time to 0.9-knowledge. These results encourage the implementation

of the user reports function, corroborating the heuristic recommenda-

tions in Edwards [2008] and Checco et al.. In the case of femtocells,

conclusions

such implementation would be easy, because the hardware and the

firmware are already capable of managing user reports.

We then investigate the impact of sensing restrictions on decen-Sensing
Restrictions:

Chapter 4
tralised learning-based Colouring Problem solvers. We constructively

establish the existence of solvers that are able to find satisfying as-

signments even in the presence of sensing restrictions, in particular

sensing asymmetry of the type encountered when hidden terminals

are present. Our main analytic contribution is to establish sufficient

conditions on the sensing behaviour to ensure that the solvers find

satisfying assignments with probability one. These conditions take

the form of connectivity requirements on the induced sensing graph.

These requirements are mild, and we demonstrate that they are com-

monly satisfied in wireless allocation tasks. We explore the impact of

sensing constraints on the speed with which a satisfying assignment

is found, showing the increase in convergence time is not significant

in common scenarios. Our results are of considerable practical impor-

tance in view of the prevalence of both communication and sensing

restrictions in wireless resource allocation problems. The class of al-

gorithms analysed here requires no message-passing whatsoever be-

tween wireless devices, and we show that they continue to perform

well even when devices are only able to carry out constrained sensing

of the surrounding radio environment.

Finally, we introduce the SCFL algorithm. It is responsive to topol-Fast colouring with
∆+ 1 colours:

Chapter 5
ogy changes, and converges to a proper colouring in O(N logN) time

with high probability for generic graphs (and in O(logN) time if

∆ = O(N)) when the number of available colours is greater than ∆.

The SCFL algorithm can be efficiently implemented in realistic indus-

trial tasks, such as a warehouse served by RFID robots, or a smart

electronic bookshelf, without the need to modify the RFID protocol or

the readers, and keeping backward compatibility with standard RFID

tags. The performance of the algorithm during its transient time is

comparable with the standard slotted Aloha implementation, while

the performance after convergence is one order of magnitude higher.

We can conclude that SCFL algorithm gives a clear advantage only to

the systems in which the same set of tags is required to be read mul-

tiple times, otherwise an improved slotted Aloha algorithm may be

preferable.

108

6.1 future work

6.1 future work

Regarding proportional fairness, the main direction of research now Proportional
Fairness: Chapter 2is to study proportional fairness in multi-hop wireless networks.

Regarding Local Topology Discovery more extensive study on more Local Topology
Discovery:
Section 3.3

realistic scenarios is required, where the typical topological proper-

ties of a urban area are taken in account. Similarly, an analysis of

more realistic mobility models is desirable: our work encompasses

the simple case of Model 1, that can be used to estimate any other

Markovian model (i. e. any mobility model that can be described

with a Markov process) with unique stationary measure only when

the report frequency is sufficiently low, namely slower than the mix-

ing time of the Markov chain. An analysis of the behaviour of the

mobility models during their transient behaviour is left for future

work.

With regards to sensing restriction study, future work includes the Sensing
Restrictions:
Chapter 4

research of more refined results for specific classes of graphs and,

more importantly, the extension of our analysis to more general DCS

problems.

The main limitation of SCFL algorithm is the requirement of a (al- Fast colouring with
∆+ 1 colours:
Chapter 5

though weak) form of central synchronisation, that we believe can be

relaxed in a future work. This would make the algorithm suitable for

more complex applications, like 802.11 networks. Also in this case,

the extension to more general DCS problems would contribute to the

evolution of this field.

109

P U B L I C AT I O N S

I. Alessandro Checco and Douglas J. Leith. Learning-Based Constraint

Satisfaction With Sensing Restrictions. Selected Topics in Signal Pro-
cessing, IEEE Journal of, 7(5):811–820, 2013.

II. Alessandro Checco and Douglas J. Leith. Proportional Fairness in

802.11 Wireless LANs. Communications Letters, IEEE, 15(8):807–809,

2011.

III. Alessandro Checco, Rouzbeh Razavi, Douglas J. Leith, and Holger

Claussen. Self-configuration of Scrambling Codes for WCDMA

Small Cell Networks. In Personal Indoor and Mobile Radio Communi-
cations (PIMRC), 2012 IEEE 23rd International Symposium on, pages

149–154. IEEE, 2012.

IV. Alessandro Checco and Douglas J. Leith. Fast, responsive decen-

tralised graph colouring. CoRR, abs/1405.6987, 2014.

V. Alessandro Checco, Carlo Lancia, and Douglas J. Leith. Using crowd

sourcing for local topology discovery in wireless networks. CoRR,

abs/1401.1551, 2014.

B I B L I O G R A P H Y F O R C H A P T E R 1

M. Heusse, F. Rousseau, G. Berger-Sabbatel, and a. Duda. Perfor-

mance anomaly of 802.11b. IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Communications
Societies (IEEE Cat. No.03CH37428), pages 836–843, 2003. doi: 10.

1109/INFCOM.2003.1208921. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=1208921.

Julien Herzen, Adel Aziz, Ruben Merz, Seva Shneer, and Patrick Thi-

ran. A measurement-based algorithm to maximize the utility of

wireless networks. In Proceedings of the 3rd ACM workshop on Wire-
less of the students, by the students, for the students, pages 13–16. ACM,

2011.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1208921
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1208921

bibliography

Li Bin Jiang and Soung Chang Liew. Proportional fairness in

wireless LANs and ad hoc networks. IEEE Wireless Communica-
tions and Networking Conference, 2005, pages 1551–1556, 2005. doi:

10.1109/WCNC.2005.1424745. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=1424745.

G. Tan and J. Guttag. Time-based fairness improves performance

in multi-rate WLANs. In Proceedings of the annual conference on
USENIX Annual Technical Conference, page 23. USENIX Association,

2004. URL http://portal.acm.org/citation.cfm?id=1247438.

Jiaping Liu, Alexander L. Stolyar, Mung Chiang, and H. Vincent

Poor. Queue Back-Pressure Random Access in Multihop Wire-

less Networks: Optimality and Stability. IEEE Transactions on
Information Theory, 55(9):4087–4098, September 2009. ISSN 0018-

9448. doi: 10.1109/TIT.2009.2025563. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5208499.

Koushik Kar, S Sarkar, and L Tassiulas. Achieving proportional fair-

ness using local information in Aloha networks. IEEE Transactions
on, 2004. URL http://repository.upenn.edu/cgi/viewcontent.

cgi?article=1069&context=ese_papers.

Xin Wang and Koushik Kar. Cross-layer rate control for end-to-

end proportional fairness in wireless networks with random ac-

cess. Proceedings of the 6th ACM international symposium on Mobile
ad hoc networking and computing - MobiHoc ’05, page 157, 2005. doi:

10.1145/1062689.1062710. URL http://portal.acm.org/citation.

cfm?doid=1062689.1062710.

VA Siris and George Stamatakis. Optimal CWmin selection for achiev-

ing proportional fairness in multi-rate 802.11 e wlans: Test-bed im-

plementation and evaluation. network testbeds, experimental evalu-
ation, pages 41–48, 2006. URL http://portal.acm.org/citation.

cfm?id=1160996.

Albert Banchs, Pablo Serrano, and Huw Oliver. Proportional fair

throughput allocation in multirate IEEE 802.11e wireless LANs.

Wireless Networks, 13(5):649–662, June 2006. ISSN 1022-0038. doi:

10.1007/s11276-006-6972-9. URL http://www.springerlink.com/

index/10.1007/s11276-006-6972-9.

112

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1424745
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1424745
http://portal.acm.org/citation.cfm?id=1247438
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5208499
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5208499
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1069&context=ese_papers
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1069&context=ese_papers
http://portal.acm.org/citation.cfm?doid=1062689.1062710
http://portal.acm.org/citation.cfm?doid=1062689.1062710
http://portal.acm.org/citation.cfm?id=1160996
http://portal.acm.org/citation.cfm?id=1160996
http://www.springerlink.com/index/10.1007/s11276-006-6972-9
http://www.springerlink.com/index/10.1007/s11276-006-6972-9

bibliography

Joseph Dunn, Michael Neufeld, Anmol Sheth, Dirk Grunwald,

and John Bennett. A Practical Cross-Layer Mechanism For Fair-

ness in 802.11 Networks. Mobile Networks and Applications, 11

(1):37–45, December 2005. ISSN 1383-469X. doi: 10.1007/

s11036-005-4459-z. URL http://www.springerlink.com/index/10.

1007/s11036-005-4459-z.

Thyagarajan Nandagopal, Tae-Eun Kim, Xia Gao, and Vaduvur

Bharghavan. Achieving MAC layer fairness in wireless packet net-

works. Proceedings of the 6th annual international conference on Mobile
computing and networking - MobiCom ’00, pages 87–98, 2000. doi:

10.1145/345910.345925. URL http://portal.acm.org/citation.

cfm?doid=345910.345925.

K. R. Duffy, C. Bordenave, and D. J. Leith. Decentralized constraint

satisfaction. Networking, IEEE/ACM Transactions on, 21(4):1298–1308,

2013.

W. Webb. Wireless Communications: The Future. New York, 2007.

3GPP TR 25.967. Home Node B (HNB) Radio Frequency (RF) require-

ments (FDD). Ver 10(version 10), 2011.

R. Chouldhury, S. Bandyopadhyay, and K. Paul. A mobile agent

based mechanism to discover geographical positions of nodes in

ad hoc wireless networks. In 6th Asia-Pacific Conference on Commu-
nications (APCC2000), Seoul, Korea, volume 30, 2000.

S. Marwaha, C.K. Tham, and D. Srinivasan. A novel routing protocol

using mobile agents and reactive route discovery for ad hoc wire-

less networks. In Networks, 2002. ICON 2002. 10th IEEE International
Conference on, pages 311–316. IEEE, 2002.

R. Choudhury, S. Bandyopadhyay, and K. Paul. A distributed mech-

anism for topology discovery in ad hoc wireless networks using

mobile agents. In Proceedings of the 1st ACM international symposium
on Mobile ad hoc networking & computing, pages 145–146. IEEE Press,

2000.

A. Raniwala and T. Chiueh. Architecture and algorithms for an IEEE

802.11-based multi-channel wireless mesh network. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings IEEE, volume 3, pages 2223–2234. IEEE,

2005.

113

http://www.springerlink.com/index/10.1007/s11036-005-4459-z
http://www.springerlink.com/index/10.1007/s11036-005-4459-z
http://portal.acm.org/citation.cfm?doid=345910.345925
http://portal.acm.org/citation.cfm?doid=345910.345925

bibliography

A. Mishra, V. Shrivastava, D. Agrawal, S. Banerjee, and S. Ganguly.

Distributed channel management in uncoordinated wireless envi-

ronments. In Proceedings of the 12th annual international conference on
Mobile computing and networking, pages 170–181. ACM, 2006a.

A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. Arbaugh. A

client-driven approach for channel management in wireless LANs.

In IEEE Infocom, volume 6, 2006b.

K. K. Leung and B. J. Kim. Frequency assignment for IEEE 802.11

wireless networks. In sVehicular Technology Conference, 2003. VTC
2003-Fall. 2003 IEEE 58th, volume 3, pages 1422–1426. IEEE, 2003.

L. Narayanan. Handbook of Wireless Network and Mobile Computing,

chapter Channel assignment and graph multicoloring. Wiley Series

on Parallel and Distributed Computing, 2002.

O. Dousse. Percolation in directed random geometric graphs. In Infor-
mation Theory Proceedings (ISIT), 2012 IEEE International Symposium
on, pages 601–605. IEEE, 2012.

K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Dis-

tributed coloring in O(
√

logN)-bits. In Proc. of IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2006.

S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Fault tolerant dis-

tributed coloring algorithms that stabilize in linear time. In Pro-
ceedings of the IPDPS-2002 Workshop on Advances in Parallel and Dis-
tributed Computational Models, pages 1–5, 2002.

Ö. Johansson. Simple distributed ∆+1-coloring of graphs. Information
Processing Letters, 70(5):229–232, 1999.

B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,

and C. Diot. Measurement-based self organization of interfering

802.11 wireless access networks. In INFOCOM 2007. 26th IEEE Inter-
national Conference on Computer Communications. IEEE, pages 1451–

1459. IEEE, 2007.

Julien Herzen, Ruben Merz, and Patrick Thiran. Distributed spectrum

assignment for home WLANs. In INFOCOM, 2013 Proceedings IEEE,

pages 1573–1581. Ieee, 2013a.

114

bibliography

Julien Herzen, Ruben Merz, and Patrick Thiran. SAW: Spectrum

assignment for WLANs. In ACM S3 2013, number EPFL-CONF-

189777, 2013b.

Fabian Kuhn and Rogert Wattenhofer. On the complexity of dis-

tributed graph coloring. In Proceedings of the twenty-fifth annual
ACM symposium on Principles of distributed computing, pages 7–15.

ACM, 2006.

Márió Szegedy and Sundar Vishwanathan. Locality based graph col-

oring. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 201–207. ACM, 1993.

Michael Luby. Removing randomness in parallel computation with-

out a processor penalty. In Foundations of Computer Science, 1988.,
29th Annual Symposium on, pages 162–173. IEEE, 1988.

B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki, C. Diot,

et al. Self organization of interfering 802.11 wireless access net-

works. 2005.

Jaume Barcelo, Boris Bellalta, Cristina Cano, and Miquel Oliver.

Learning-BEB: Avoiding collisions in WLAN. Other IFIP Publica-
tions, (1), 2011.

Leonid Barenboim and Michael Elkin. Distributed ∆+ 1-coloring in

linear in ∆ time. In Proceedings of the 41st annual ACM symposium on
Theory of computing, pages 111–120. ACM, 2009.

Haitao Wu, Fan Yang, Kun Tan, Jie Chen, Qian Zhang, and Zhen-

sheng Zhang. Distributed channel assignment and routing in mul-

tiradio multichannel multihop wireless networks. Selected Areas in
Communications, IEEE Journal on, 24(11):1972–1983, 2006.

Jorge Crichigno, Min-You Wu, and Wei Shu. Protocols and architec-

tures for channel assignment in wireless mesh networks. Ad Hoc
Networks, 6(7):1051–1077, 2008.

Anand Prabhu Subramanian, Himanshu Gupta, Samir R Das, and

Jing Cao. Minimum interference channel assignment in multiradio

wireless mesh networks. Mobile Computing, IEEE Transactions on, 7

(12):1459–1473, 2008.

115

Arik Motskin, Tim Roughgarden, Primoz Skraba, and Leonidas J.

Guibas. Lightweight coloring and desynchronization for networks.

In INFOCOM, pages 2383–2391, 2009.

M. Fang, D. Malone, K. R. Duffy, and Douglas J. Leith. Decentralised

learning macs for collision-free access in wlans. Wireless Networks,

pages 1–16, 2010.

P. Clifford and Douglas J. Leith. Channel dependent interference and

decentralized colouring. Network Control and Optimization, pages

95–104, 2007.

D. J. Leith, P. Clifford, V. Badarla, and D. Malone. WLAN channel

selection without communication. Computer Networks, 2012.

B I B L I O G R A P H Y F O R C H A P T E R 2

K. Duffy, David Malone, and Douglas J. Leith. Modeling the

802.11 distributed coordination function in non-saturated con-

ditions. IEEE Communications Letters, 9(8):715–717, August

2005. ISSN 1089-7798. doi: 10.1109/LCOMM.2005.1496592.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1496592.

Douglas J. Leith, Vijay Subramanian, and Ken Duffy. Log-convexity of

rate region in 802.11e WLANs. IEEE Communications Letters, 14(1):

57–59, January 2010. ISSN 1089-7798. doi: 10.1109/LCOMM.2010.

01.091154. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5370273.

Joseph Dunn, Michael Neufeld, Anmol Sheth, Dirk Grunwald,

and John Bennett. A Practical Cross-Layer Mechanism For Fair-

ness in 802.11 Networks. Mobile Networks and Applications, 11

(1):37–45, December 2005. ISSN 1383-469X. doi: 10.1007/

s11036-005-4459-z. URL http://www.springerlink.com/index/10.

1007/s11036-005-4459-z.

Albert Banchs, Pablo Serrano, and Huw Oliver. Proportional fair

throughput allocation in multirate IEEE 802.11e wireless LANs.

Wireless Networks, 13(5):649–662, June 2006. ISSN 1022-0038. doi:

10.1007/s11276-006-6972-9. URL http://www.springerlink.com/

index/10.1007/s11276-006-6972-9.

R. T. Rockafellar. Convex analysis. 1997. ISBN 0691080690.

URL http://books.google.com/books?hl=en&lr=&id=

1TiOka9bx3sC&oi=fnd&pg=PR7&dq=Convex+Analysis&

amp;ots=HpVNXCKW7b&sig=MJxPD3Ik6lUS6lgzRs-ltNimnT0.

V Subramanian. Convexity conditions for 802.11 wlans. 2012.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1496592
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1496592
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5370273
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5370273
http://www.springerlink.com/index/10.1007/s11036-005-4459-z
http://www.springerlink.com/index/10.1007/s11036-005-4459-z
http://www.springerlink.com/index/10.1007/s11276-006-6972-9
http://www.springerlink.com/index/10.1007/s11276-006-6972-9
http://books.google.com/books?hl=en&lr=&id=1TiOka9bx3sC&oi=fnd&pg=PR7&dq=Convex+Analysis&ots=HpVNXCKW7b&sig=MJxPD3Ik6lUS6lgzRs-ltNimnT0
http://books.google.com/books?hl=en&lr=&id=1TiOka9bx3sC&oi=fnd&pg=PR7&dq=Convex+Analysis&ots=HpVNXCKW7b&sig=MJxPD3Ik6lUS6lgzRs-ltNimnT0
http://books.google.com/books?hl=en&lr=&id=1TiOka9bx3sC&oi=fnd&pg=PR7&dq=Convex+Analysis&ots=HpVNXCKW7b&sig=MJxPD3Ik6lUS6lgzRs-ltNimnT0

bibliography

B I B L I O G R A P H Y F O R C H A P T E R 3

D. J. Leith, P. Clifford, V. Badarla, and D. Malone. WLAN channel

selection without communication. Computer Networks, 2012.

K. R. Duffy, C. Bordenave, and D. J. Leith. Decentralized constraint

satisfaction. Networking, IEEE/ACM Transactions on, 21(4):1298–1308,

2013.

H. Holma and A. Toskala. WCDMA for UMTS - radio access for third
generation mobile communications. Chichester, 2000.

C. R. Chang, J. Z. Wan, and M. F. Yee. PN offset planning strategies for

non-uniform CDMA networks. In Vehicular Technology Conference,
1997 IEEE 47th, volume 3, pages 1543–1547.

Y. H. Jung and Y. H. Lee. Scrambling code planning for 3GPP W-

CDMA systems. In Proceedings of IEEE vehicular technology confer-
ence, pages 2431–2434, Rhodes, Greece, Spring 2001.

David Soldani and Ivan Ore. Self-optimizing neighbor cell list for utra

fdd networks using detected set reporting. In Vehicular Technology
Conference, 2007. VTC2007-Spring. IEEE 65th, pages 694–698. IEEE,

2007.

J. Guey, Y. Wang, and J. Cheng. Improving the robustness of Target

Cell Search in WCDMA Using Interference Cancellation. 2005.

3GPP TR 25.967. Home Node B (HNB) Radio Frequency (RF) require-

ments (FDD). Ver 10(version 10), 2011.

S.J. Fortune, D.M. Gay, B.W. Kernighan, O. Landron, R.A. Valenzuela,

and M.H. Wright. WiSE design of indoor wireless systems: prac-

tical computation and optimization. Computational Science & Engi-
neering, IEEE, 2(1):58–68, 1995.

3GPP TS25.101. UE Radio transmission and Reception (FDD). 2004.

3GPP TR 36.814. Evolved Universal Terrestrial Radio Access (E-

UTRA); Further advancements for E-UTRA physical layer aspects.

Rel 9, 2010.

118

S. Kourtis. Code planning strategy for UMTS-FDD networks. In

Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring
Tokyo. 2000 IEEE 51st, volume 2, pages 815–819. IEEE, 2000.

D.P. Aguilar. A framework for evaluating the computational aspects of
mobile phones. PhD thesis, University of South Florida, 2008.

P. Sapiano. Discovering neighbouring femto cells, August 2010. URL

http://www.freepatentsonline.com/EP2214434A1.html.

David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov
chains and mixing times. AMS, 2009.

F.W. Gehring and P.R. Halmos. Finite Markov Chains, chapter 3: Ab-

sorbing Markov Chains, page 224. Springer-Verlag, 1976.

J. Edwards. Implementation of network listen modem for WCDMA

femtocell. In Cognitive Radio and Software Defined Radios: Technologies
and Techniques, 2008 IET Seminar on, pages 1–4. IET, 2008.

A. Checco, R. Razavi, D. J. Leith, and H. Claussen. Self-configuration

of scrambling codes for WCDMA small cell networks. In IEEE 23rd
International Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC), Sydney, Australia, September 2012.

B I B L I O G R A P H Y F O R C H A P T E R 4

M. Fang, D. Malone, K. R. Duffy, and Douglas J. Leith. Decentralised

learning macs for collision-free access in wlans. Wireless Networks,

pages 1–16, 2010.

K. R. Duffy, C. Bordenave, and D. J. Leith. Decentralized constraint

satisfaction. Networking, IEEE/ACM Transactions on, 21(4):1298–1308,

2013.

O. Dousse. Percolation in directed random geometric graphs. In Infor-
mation Theory Proceedings (ISIT), 2012 IEEE International Symposium
on, pages 601–605. IEEE, 2012.

G. R. Grimmett. Percolation, volume 321. Springer, 1999.

3GPP TS25.101. UE Radio transmission and Reception (FDD). 2004.

wigle.net, 2010. URL http://www.wigle.net/.

http://www.freepatentsonline.com/EP2214434A1.html
http://www.wigle.net/

IEEE Standard for Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications , Nov. 1997. P802.11, 1997.

A. Goldsmith. Wireless Communications. Cambridge university press,

2005.

B I B L I O G R A P H Y F O R C H A P T E R 5

Jaume Barcelo, Boris Bellalta, Cristina Cano, and Miquel Oliver.

Learning-BEB: Avoiding collisions in WLAN. Other IFIP Publica-
tions, (1), 2011.

Arik Motskin, Tim Roughgarden, Primoz Skraba, and Leonidas J.

Guibas. Lightweight coloring and desynchronization for networks.

In INFOCOM, pages 2383–2391, 2009.

K. R. Duffy, C. Bordenave, and D. J. Leith. Decentralized constraint

satisfaction. Networking, IEEE/ACM Transactions on, 21(4):1298–1308,

2013.

Márió Szegedy and Sundar Vishwanathan. Locality based graph col-

oring. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 201–207. ACM, 1993.

Bo Yan, Yiyun Chen, and Xiaosheng Meng. RFID technology applied

in warehouse management system. In Computing, Communication,
Control, and Management, 2008. CCCM’08. ISECS International Collo-
quium on, volume 3, pages 363–367. IEEE, 2008.

Harry KH Chow, King Lun Choy, WB Lee, and KC Lau. Design

of a RFID case-based resource management system for warehouse

operations. Expert Systems with Applications, 30(4):561–576, 2006.

Anna Carreras, Marc Morenza-Cinos, Rafael Pous, Joan Melià-Seguí,

Kamruddin Nur, Joan Oliver, and Ramir De Porrata-Doria. STORE

VIEW: pervasive RFID & indoor navigation based retail inventory

management. In Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication, pages 1037–1042. ACM,

2013.

Joan Melià-Seguí, Rafael Pous, Anna Carreras, Marc Morenza-Cinos,

Raúl Parada, Zeinab Liaghat, and Ramir De Porrata-Doria. Enhanc-

ing the shopping experience through RFID in an actual retail store.

In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication, pages 1029–1036. ACM, 2013.

Jun Lang and Liang Han. Design of library smart bookshelf based on

RFID. Applied Mechanics and Materials, 519:1366–1372, 2014.

Pui-Yi Lau, KK-O Yung, and Edward Kai-Ning Yung. A low-cost

printed CP patch antenna for RFID smart bookshelf in library. In-
dustrial Electronics, IEEE Transactions on, 57(5):1583–1589, 2010.

K. Finkelzeller. The RFID handbook. John Wiley & Sons, 2003.

Roy Want. An introduction to RFID technology. Pervasive Computing,
IEEE, 5(1):25–33, 2006.

Dong-Her Shih, Po-Ling Sun, David C. Yen, and Shi-Ming Huang.

Taxonomy and survey of RFID anti-collision protocols. Computer
communications, 29(11):2150–2166, 2006.

Joan Melià-Seguí, Joaquin Garcia-Alfaro, and Jordi Herrera-

Joancomartí. On the similarity of commercial EPC gen2 pseudo-

random number generators. Transactions on Emerging Telecommuni-
cations Technologies, 2012.

Su-Ryun Lee, Sung-Don Joo, and Chae-Woo Lee. An enhanced dy-

namic framed slotted ALOHA algorithm for RFID tag identifica-

tion. In Mobile and Ubiquitous Systems: Networking and Services,
2005. MobiQuitous 2005. The Second Annual International Conference
on, pages 166–172. IEEE, 2005.

B I B L I O G R A P H Y F O R C H A P T E R 6

J. Edwards. Implementation of network listen modem for WCDMA

femtocell. In Cognitive Radio and Software Defined Radios: Technologies
and Techniques, 2008 IET Seminar on, pages 1–4. IET, 2008.

A. Checco, R. Razavi, Douglas J. Leith, and H. Claussen. Self-

configuration of scrambling codes for WCDMA small cell net-

works.

I N D E X

network air-time, 10

blob model, see undirected Boolean model

Communication-Free Learning (CFL) algorithm, 21

CFL algorithm with partial sensing, 56

CFL algorithm with partial sensing, 55

CFL algorithm for scrambling code selection, 24

colouring problem, 20

code confusion, 24, 26, 27

confusion graph, see also code confusion

crowd sourcing, 36, 44

decentralised colouring solver, 20

δ-knowledge, see also full knowledge, 44

femtocell network, 24

network flow, 10

full knowledge, see also Local Topology Discovery, 44

hidden terminals, 58–60

Karush–Kuhn–Tucker (KKT), 11

Local Topology Discovery (LTD), 36

proportional fairness, 11

random walk mobility model, 48

scrambling code selection, 24

small cell network, see femtocell network

teleport mobility model, 42, 46

undirected Boolean model, 65

user generated reports, see crowd sourcing

Wideband Code Division Multiple Access (WCDMA), 24

colophon

This document was typeset using the typographical look-and-feel

classicthesis developed by André Miede. The style was inspired

by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”.

Hermann Zapf’s Palatino and Euler type faces (Type 1 PostScript

fonts URW Palladio L and FPL) are used. The “typewriter” text is

typeset in Bera Mono, originally developed by Bitstream, Inc. as “Bit-

stream Vera”. (Type 1 PostScript fonts were made available by Malte

Rosenau and Ulrich Dirr.)

Final Version as of December 28, 2014.

	Contents
	List of Figures
	List of Tables
	List Of Algorithms
	Acronyms
	1 Introduction
	1.1 Performance Anomaly
	1.1.1 Performance Anomaly – Related Work

	1.2 Interference Reduction
	1.2.1 Interference Reduction – Related Work

	1.3 Publications

	2 Proportional Fairness in 802.11 Networks
	2.1 Network Model
	2.2 Proportional Fair Rate Allocation
	2.3 Finite-Load
	2.4 Example
	2.5 Conclusions
	2.A Appendix - Normal Vector

	3 Decentralised Algorithms For Small Cell Networks
	3.1 Decentralised Colouring Algorithms
	3.1.1 Colouring Problem (CP)
	3.1.2 Decentralised CP Solvers
	3.1.3 Communication-Free Learning (CFL) Algorithm

	3.2 Self-Configuration of Scrambling Codes for WCDMA Small Cell Networks
	3.2.1 Problem Statement
	3.2.2 Scrambling Code Selection
	3.2.3 Confusion Graph Estimation
	3.2.4 Results - Numerical Simulations
	3.2.5 Summary

	3.3 Crowd Sourcing
	3.3.1 Local Topology Discovery Model
	3.3.2 Teleport Mobility
	3.3.3 Simulations

	3.4 Use Cases
	3.4.1 Summary

	4 Decentralised Colouring with Partial Sensing
	4.1 Colouring Problems With Sensing Restrictions
	4.1.1 Decentralised Solvers
	4.1.2 Examples

	4.2 Solving Colouring Problems with Sensing Restrictions
	4.2.1 Algorithm
	4.2.2 Convergence Analysis
	4.2.3 Relaxing Strong Connectivity Requirement

	4.3 Performance on Random Graphs
	4.3.1 Random Graph Model
	4.3.2 Meeting Connectivity Requirements
	4.3.3 Convergence Rate

	4.4 Case Study: Manhattan WiFi Hot Spots
	4.4.1 Convergence Time

	4.5 Summary
	4.A Appendix – Proofs

	5 Simplified CFL and Fast Convergence
	5.1 Simplified CFL Algorithm
	5.1.1 Role of Parameter S
	5.1.2 Loose Bound for any Number of Colours

	5.2 Fast Colouring – Performance Analysis
	5.2.1 Main Result – Fast colouring with +1 colours
	5.2.2 Discussion
	5.2.3 Differences with the State-of-the-art
	5.2.4 Simulations

	5.3 Use Case – RFID robot/smart bookshelf
	5.3.1 Collision-Free Scheduling
	5.3.2 Implementation
	5.3.3 Comparison with Slotted Aloha
	5.3.4 Memory and Computation Footprint vs. CFL
	5.3.5 Summary

	5.A Appendix – Proofs

	6 Conclusions
	6.1 Future Work

	Bibliography
	Index
	Colophon

