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1 Introduction

Different approaches to the basic structure of spacetime exist and in recent years there

has been a growing interest in the notion of space or spacetime as an emergent concept.

A natural setting where space or spacetime are necessarily emergent is in the proposed

nonpterturbative definitions of string theory provided by matrix models [1–3]. In this con-

text plausible models of emergent geometry have been discussed [4]. The notion of classical

geometry changes drastically within the context of matrix models; neither background ge-

ometry nor topology is predefined but instead they emerge dynamically as a consequence

of the condensation of the matrix degrees of freedom to form the background geometry.

The purpose of this paper is to study the scaling of finite matrix effects for large matrix

size (large N) as the limit of stability of the geometry is approached.
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We consider an action in which the basic objects are simple Hermitian matrices at finite

temperature with a prescribed energy functional. The geometry exists at low temperatures

as a condensate around which the system fluctuates.

The energy functional of interest here is that of a 3-matrix model consisting of the

trace of the square of the commutator of the matrices (a Yang-Mills term) plus the epsilon-

tensor contracted with the trace of the three matrices (a Myers term [5]). The system has

been studied before in [6–11] and with a mass deformation in [12]. It is a static bosonic

subsector of the BMN model [3].

The model exhibits a geometrical phase for sufficiently low temperatures where the

effect of the cubic Myers term is important, with the geometry being that of a fuzzy

sphere [13, 14] which is a non-commutative version of the commutative sphere.

At a critical temperature, which can be traded for a critical Myers coupling, a phase

transition occurs and the condensed geometry evaporates. In the geometrical, low tem-

perature phase, small fluctuations around this condensate correspond to a U(1) gauge and

scalar field multiplet [7].

In previous studies [10, 11] it was argued that, as the transition is approached from

the low temperature side, there are divergent fluctuations in the system and in particular

that the specific heat diverges with exponent α = 1
2 . This suggests that the system may

exhibit finite size scaling [15, 16] in terms of the matrix size as the system size grows. We

therefore study the growth of fluctuations, in terms of both temperature and matrix size,

as the transition is approached from below, but insisting on remaining in the fuzzy sphere

phase. The fluctuations we consider are those of a restricted ensemble and do not take into

account the rare finite matrix transitions when the system jumps from the fuzzy sphere to

the matrix phase. Such fluctuations are completely absent in the large N limit as is typical

of matrix models where tunneling goes to zero as N goes to infinity. Our study shows that

the fluctuations do indeed scale with matrix size.

The principal results of this paper are:

• In the absence of fluctuations, the Myer’s term gives rise to an instability of the model.

This is responsible for the destabilisation of the matrix phase for small matrices but

insufficient to cause an instability for matrices of size N ≥ 12 approximately.

• The transition is rounded by finite matrix effects and there is a pseudo critical tem-

perature shifted from the infinite N transition temperature with shift exponent which

we predict on scaling grounds is λ = 4
3 .

• The scaling form of the free energy with N is a universal function of x = tNλ where

t = Tc−T
Tc

. We predict the scaling relation λ = 2
2−α .

• If we assume that d = 2, based on a fuzzy sphere background, and α = 1
2 as found in

earlier studies, then our theoretical prediction is that λ = 4
3 and if further we accept

that the approach to criticality is governed by a divergent correlation length then we

infer that the correlation length exponent ν = 2
3 .
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• Hybrid Monte Carlo simulations give good agreement with finite size scaling in terms

of the matrix size N and assuming the asymptotic scaling form of the specific heat

as the critical temperature is approached from below Cv ≃ A−(Tc − T )−α our best

estimates from these measurements are A− = 0.051 ± 0.017, α = 0.50 ± 0.01, λ =

1.41± 0.08 and ω = 0.66± 0.08 where the peak in the specific heat grows as AωN
ω.

These are in good agreement with the theoretical estimates based on scaling and

α = 1
2 .

• When we assume the exponent α = 1
2 and scaling so that λ = 4

3 and ω = 2
3 we find

tight estimates for the shift amplitude Aλ = 3.9±0.1 and the specific heat maximum

amplitude Aω = 0.199± 0.005.

The organization of the paper is as follows: in section 2 we discuss the main properties

of the model which are relevant to us. In section 3 we present the theory of finite size

scaling. In section 4 we give an overview of the difficulties that arise in near-critical system

simulations and the impact they have on our studies. In section 5 we present our numerical

results. In section 6 we present our conclusions from the study.

2 The three matrix model

The model we shall consider in this paper is the three matrix model, which was studied

in [6, 9–11]. Let Xa, a = 1, 2, 3, be three traceless N -dimensional Hermitian matrices. We

consider the action (really an energy divided by temperature, as all our considerations will

be in Euclidean signature)

S[X] = N Tr

(
− 1

4
[Xa, Xb]

2 +
2ig

3
ǫabcXaXbXc

)
, (2.1)

where ǫabc is the totally antisymmetric Levi-Civita symbol, g ∈ R is a parameter of the

model. The change g → −g is equivalent to Xa → −Xa, therefore it will be sufficient

to restrict our study to the case g ≥ 0, which we shall assume. This model has a phase

transition [6, 9] and it is the vicinity of this transition that is of interest to us here.

The stationary points of the system follow from varying S: demanding that δS = 0

results in
[
Xb, [Xa, Xb]− igǫabcXc

]
= 0 , (2.2)

and every configuration of matrices Xa that solves (2.2) is a (local) extremum or saddle

point of (2.1).

For most purposes of this paper it will be convenient to scale out a factor of
√
N

and work with the parametrization g̃ = g
√
N , as this gives a phase diagram that does

not dependent on N . So we make the substitution Xa → g̃ Da√
N

in terms of which the

action reads

S[D] =
g̃4

N
Tr

(
− 1

4
[Da, Db]

2 +
2i

3
ǫabcDaDbDc

)
. (2.3)
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From this it is clear that observables are symmetric under g̃ → −g̃, or equivalently under

g → −g. For g̃ 6= 0 we can interpret T = g̃−4 as a temperature for the system.1

Many of the physical properties are characterised by the expectation value of the action

< S >, the specific heat of the system and the distribution of the eigenvalues of the matrices

Xa. Our study here will focus on the first two. The specific heat is defined as

Cv =
< (S− < S >)2 >

N2
=

< S >

N2
− g̃4

d

dg̃4

(
< S >

N2

)
. (2.4)

For convenience we shall define S := < S >, this is the internal energy divided by the

temperature.

The model has at least two phases, which we call the commuting matrix phase and the

fuzzy sphere phase, and the above three quantities behave quite differently in these two

phases. In a semi-classical approximation [10] the phase transition occurs at

g̃c =

(
8

3

)3

4

⇔ Tc =

(
3

8

)3
≈ 0.05273 . (2.5)

This is remarkably close to our numerical result of 0.0531± 0.0003 obtained in section 5.1.

2.1 The commuting matrix phase

The high temperature phase of the model with T > Tc is characterised by fluctuations

around a ground state in which the three matrices are mutually commuting. This ground

state can be represented by Xa’s which are linear combinations of hHmh−1, m = 1, . . . ,

N − 1, where Hm are in the Cartan sub-algebra of su(N) and h ∈ SU(N). Any such

linear combination is a trivial solution to (2.2), so the classical action vanishes for these

stationary configurations.

However, these solutions can be unstable if any of the eigenvalues get too close to

one another, as we now demonstrate. Fluctuations around a classical solution can be

expressed as

Xa = X0,a + δXa , (2.6)

with X0,a three mutually commuting, Hermitian matrices. We are free to perform an N×N

unitary transformation on X0,a to simultaneously diagonalise them,

(X0,a)ij = λa
i δij , (no sum over i). (2.7)

A little algebra reveals that, to quadratic order in δXa we have

− 1

4
Tr[Xa, Xb]

2 =
1

2

(
(∆ij .∆ij)δ

ab −∆a
ij∆

b
ij

)
δXa,ij δXb,ij (2.8)

and
2i

3
ǫabcXaXbXc = iǫabc∆

c
ijδXa,ij δXb,ij , (2.9)

1Generally we prefer to discuss the physical properties of the system in terms of the temperature T ,

though it may be more convenient in some situations to use either g̃ or g. Note that, as there are no

dimensionful quantities in the action, T here is dimensionless.
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where ∆a
ij = λa

i − λa
i . Stability of fluctuations around a classical solution are therefore

determined by the eigenvalues of the operator

1

2

(
∆2

ijδ
ab −∆a

ij∆
b
ij

)
+ ig ǫabc∆

c
ij , (2.10)

where ∆2
ij = ∆a

ij∆
a
ij with eigenvalues 0, 1

2∆
2
ij ± g

√
∆2

ij . The zero-eigenvalue is associated

with the U(N) invariance of the action and can be removed by gauge fixing such that one

of the matrices is diagonal. However, if some of the background eigenvalues, λa
i , are too

close together, (2.10) has a negative eigenvalue, and hence an instability. In particular, if

∆2
ij < 4g2, (2.11)

for any pair i, j, then there is a direction which is unstable. The solution is stable if all

the eigenvalues of X0,a are far enough apart. Note that there are no unstable directions

for g = 0, the instability is induced by the Myers’ term.

Fluctuations can of course modify this analysis. It is possible that they stabilise the

unstable solutions. We will not attempt an analytic approach to this question here but

will return to it later in the paper. The first immediate effect of fluctuations is that they

modify the expectation value of the action and shift it away from S = 0. To study this

effect consider a Schwinger-Dyson type analysis,

0 =

∫
[DX] Tr

∂

∂Xa
(Xae

−S)

⇒ 0 = 3(N2 − 1)− Tr < Xa
∂S
∂Xa

> (2.12)

⇒ 3(N2 − 1) = −N Tr < [Xa, Xb]
2 > +2igNǫabcTr < XaXbXc >

= 4 < S > −2igNǫabcTr < XaXbXc > ,

where 3(N2 − 1) is the number of degrees of freedom in the three Hermitian matrices Xa.

Thus we expect
< S >

N2
=

3(N2 − 1)

4N2
+

ig

2N
ǫabcTr < XaXbXc > . (2.13)

It is shown numerically in [12] that Tr < XaXbXc > ≈ 1
N1/2

(
1

T 1/4 + o
(

1
T 1/2

))
at large T

and large N so, in this limit,
Sm(T )

N2
=

3

4
, (2.14)

which is positive. This suggests that, in the matrix phase of the model, the specific heat

does not depend on T ,

Cv =
3

4
, (2.15)

and each degree of freedom contributes a value of 1
4 to the specific heat. The model behaves

like a pure Yang-Mills matrix model in the large N limit, i.e. one with only the commutator

squared term.

For large N , the eigenvalue distribution in this phase is compatible with a parabolic

distribution [12, 17, 18]. In a gauge in which X3 is diagonal (which can always be achieved
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by an SU(N) transformation) the diagonal entries of < X3 > can be arranged in descending

order and give a parabolic distribution with normalised density

ρ(λ) =
3(R2 − λ2)

2πR3
, (2.16)

with R determined numerically to be 2.0. This parabolic form of the distribution further

implies, as argued in [18, 19], that the background of commuting matrices have their

eigenvalues distributed uniformly within a ball of radius R = 2.0. Fluctuations around this

background are still present and those of the different matrices do not commute.

2.2 The fuzzy sphere phase

The fuzzy sphere phase is a cold (ordered) phase and is radically different to the commuting

matrix phase. The background matrices in this phase are represented by a solution to (2.2)

in which Xa are proportional the generators of su(2), Xa = gLa with [La, Lb] = iǫabcLc,

up to U(N) transformation hLah
−1 with h ∈ SU(N). For the classical solution we have∑

aX
2
a = g2c21, with c2 the second order Casimir for the N -dimensional representation

of SU(2), and hence <TrD2
a>

Nc2
= 1. More generally we shall define a radius of the fuzzy

sphere, R, by

R2 =
< TrD2

a >

Nc2
, (2.17)

which, in the large N limit, has a nonzero value only in the fuzzy sphere phase. The

parameter R provides an order parameter for the transition, being non-zero in the low

temperature phase and zero in the high temperature phase.

For low temperatures below the transition the expectation value of the action in this

phase is approximated by the value of the action for the solution Xa = gLa, so that

R ≃ 1 and

Sf (T ) = −c2c
adj
2

12T
+ < fluctuations > , (2.18)

where c2 = N2−1
4 and cadj2 = 2 are the Casimir and adjoint Casimir operators of su(2).

Since the matrices Xa are proportional to the generators they have a discrete eigenvalue

spectrum with N distinct eigenvalues of the form λ =
{
− gN−1

2 ,−gN−3
2 . . . gN−1

2

}
.

2.3 Excited fuzzy sphere states

A closer examination of equation (2.2) shows that there are reducible fuzzy sphere solutions,

with Xa proportional to su(2) generators in a reducible representation of the form

R1(M1)⊕R2(M2) . . .⊕RK(Mk) , (2.19)

where Ri(Mi) is an su(2) irreducible representation of dimension Mi and
∑

i=1,K Mi = N .

The matrices Xa for this solution can always be chosen to have block-diagonal form and

this will be implicit for the rest of this discussion. All of the metastable states with the n-

tuple (M1,M2, . . . ,MK) can be listed and indeed all the solutions described so far — even

the commuting matrix phase and the irreducible fuzzy sphere phase — can be classified

– 6 –
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this way. For a fixed N , the number of distinct solutions to (2.2) of the form (2.19) grows

as p(N), the number of integer partitions of N , which for large N behaves as

p(N) ≃ eπ
√

2N/3

4N
√
3

(2.20)

and for low enough temperatures the fuzzy sphere configuration represents the ground

state of the system with each of the other p(N)− 1 configurations representing a potential

metastable state.

The special case M1 = M2 = . . . = MN = 1 corresponds to the commuting matrix

phase and the ground state in this case can be viewed as arising from N one-dimensional

(or trivial) representations of su(2). In the other extreme, when K = 1, the representation

is irreducible and gives the fuzzy sphere discussed above. Nevertheless, the commuting

matrix solution is genuinely different to all the others, the configuration represented by

diagonal matrices is a state built from the one-dimensional representations so the ǫ term

in (2.2) plays no rôle and the system has no memory of su(2). These are one dimensional

representations of an arbitrary algebra.

There are two observables that could be used to distinguish between the fuzzy sphere

from section 2.2 and these excited configurations with K > 1. First we can use the eigen-

values of the matrices: since any irreducible representation R(M) of su(2) has M distinct

eigenvalues, configurations of the form (2.19) have max{Mi} < N distinct eigenvalues in

their spectra. Another observable that is sensitive to the excited states is the expectation

value of the action. We have

Sef

(
T, (M1,M2, . . . ,MK)

)
= −

K∑

i=1

Mic2(Mi)c
adj
2

12NT
+ < fluctuations > (2.21)

and Sf (T ) < Sef (T,K) < Sm(T ) for ∀K : 1 < K < N . These excited states are unstable,

see section 4.2 and far from the phase transition fluctuations around the lowest excited

states are very much like fluctuations around the ground state (see figure 5) and these fluc-

tuations are small relative to the spacing between such states. So at very low temperatures

these excited states do not play an important rôle in the thermodynamics of the system.

The considerations so far have been in the absence of fluctuations and apply, at low

temperatures, sufficiently far from the critical point that fluctuations can be neglected.

Fluctuations are important in the high temperature phase due to eigenvalue repulsion

which lifts the degeneracy of eigenvalues and stabilises the high temperature phase against

the Myers instability discussed in section 2.1. Otherwise at high temperatures fluctuations

are not large. In the low temperature phase eigenvalue repulsion also lifts the degener-

acy associated with identical su(2) blocks in the low temperature phase otherwise for all

practical purposes the excited fuzzy states play no rôle for sufficiently low temperatures.

However, near the critical point as the transition is approached from the low tempera-

ture side fluctuations grow and the specific heat rises, see figure 3. In this regime the excited

fuzzy sphere states will of necessity play a more important rôle. One can estimate when

the first excited state will be important by noting that it corresponds to R(N − 1)⊕R(1)

– 7 –
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and that the difference in action between this and the ground state grows linearly with

N , being N
8 for large N . If the square of this difference divided by N is larger than the

specific heat then these excited states are unimportant, however, as the critical point is

reached the specific heat grows and eventually all excited states are important. Far from

the transition Cv = 1, so we can estimate that the first excited state will begin to become

important for T ∼ 1
64 ≃ 0.0156. Once the first excited state becomes important, there are

more possibilities for fluctuations in the system and the specific heat in turn grows. More

excited states enter the picture and eventually the system undergoes a phase transition.

Earlier estimates [6–10] give this transition at Tc =
(
3
8

)3 ≃ 0.0527. So we expect the

critical regime between for 0.0156 ≤ T ≤ 0.0527 which is quite consistent with figure 3.

2.4 A 1.5 order phase transition

It is clear from the previous sections that the commuting matrix and the fuzzy sphere

phases are quite different. The classical results in equations (2.14) and (2.18) give Sm(Tc)−
Sf (Tc) 6= 0 at the transition temperature, Tc, so this might näıvely be classified as a first

order phase transition — with latent heat and a finite specific heat on either side of the

transition — but the full story is more subtle.

An approximate analytic expression for the specific heat, in the N → ∞ limit, was

given in [11]. If we make the ansatz Xa = φ g La in the fuzzy sphere phase and write an

effective potential for the theory in terms of φ then, in a large N semi-classical approxi-

mation, equations (3.25) and (3.26) of reference [11] with m = 0, give, R = φ and in the

large g̃ limit,

Cv =
3

4
+

g̃5φ2

32

dφ

d g̃
with φ = 1− 2

g̃4
− 12

g̃8
+ o

(
1

g̃12

)
. (2.22)

Thus

Cv = 1 +
2

g̃4
+ o

(
1

g̃8

)
(2.23)

and

Cv −→
T→0

1 . (2.24)

On the other hand, near g̃c

Cv(g̃) =





29
36 + 1

4
√
6

√
g̃c

g̃−g̃c
+ . . .

3
4

φ =





1
4 +

√
3
8

√
g̃−g̃c
g̃c

+ . . . , g̃ > g̃c

0 g̃ < g̃c .
(2.25)

Thus the specific heat diverges2 on the low temperature side of the transition. This is the

characteristic behaviour of a continuous (also called 2nd order) transition near a critical

point.

The general theory of continuous phase transitions and critical phenomena [20–23]

suggests that, near the phase transition, the specific heat Cv on either side of the transition

should behave as

Cv(T ) ∼ C0± +A±|T − Tc|−α. (2.26)

2In terms of temperature (2.25) gives Cv(T ) =
29

36
+ 3

64
(Tc − T )−

1

2+. . . .
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T

dU

Fuzzy sphere I (classical solution)
Fuzzy sphere II (effective potential expansion)

Matrix phase

Figure 1. The internal energy per degree of freedom showing critical behaviour on the low tem-

perature side and non-critical behaviour on the high temperature side. The slope near Tc, gives the

specific heat.

The three matrix model under consideration here seems to have a rather unusual phase

transition in that the specific heat diverges only as the phase transition is approached from

one side but does not diverge as it is approached from the other.

The internal energy per degree of freedom, U = T <S>
N2 , arising from the semi-classical

approximation of [11], is plotted in figure 1 and the slope of this curve near Tc, when

expressed in terms of g̃, results in the form (2.25) for the specific heat. The semi-classical

approximation on the low-temperature side is given by

S

N2
=

3

4
− φ3(T )

24T
, (2.27)

where

φ(T ) =
1

4

(
1 +

√
1 + δ(T ) +

√
2− δ(T ) +

2√
1 + δ(T )

)
(2.28)

δ(T ) = 4T 1/3

((
1 +

√
1− T

Tc

)1

3

+

(
1−

√
1− T

Tc

)1

3

)
. (2.29)

This is the typical behaviour of a critical point and a second order phase transition. This

implies that a small correction to Tc can give a very large correction to the internal en-

ergy, ∆UTc .

On the high temperature side the internal energy is U = 3
4T , from (2.14), and so

approaches the phase transition with a finite slope, giving constant specific heat (2.15).

– 9 –
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This transition has the characteristic features of a 2nd order transition when ap-

proached from low temperatures while those of a 1st order transition when approached

from the high temperature side. We might call such a transition a 1.5 order phase tran-

sition. The two dimensional dimer model has similar asymmetric thermodynamics in the

neigbhourhood of its transition. Curiously in the dimer example the background geometry

can also be interpreted as undergoing a transition [24].

The free energy per degree of freedom was also derived, in the same approximation as

the internal energy above, in [11]. On the low temperature side it is3

F

N2
= T

[
ln

(
φ

T

)
− 1

3

]
− φ4

24
. (2.30)

Conversely, on the high temperature side, integrating

U(T ) = −T 2 d

dT

(
F

T

)
=

3

4
T , (2.31)

leads to
F

N2
= C1T − 3

4
T lnT , (2.32)

with C1 an integration constant. Adjusting C1 so that F (Tc) matches on the high and low

side gives C1 = ln 6
4 − 7

12 ≈ −0.1354 and results in the free energy per degree of freedom

shown in figure 2. There is a jump in the specific entropy,4 s = − 1
3N2

dF
dT as we go through

the phase transition, ∆s = 1
9 .

Of course this classical and semi-classical analysis is not the whole story and indeed

the purpose of the present work is to study the characteristics of this phase transition

numerically.

3 Finite size critical systems

Phase transitions where some observables are non-analytic functions of the temperature,

T (e.g. they may diverge) are possible only in the thermodynamic limit, which in our case

would correspond to taking N → ∞ at fixed T . We can of course only perform numerical

studies of systems consisting of a finite number of degrees of freedom, so the systems we

simulate will only undergo pseudo phase transitions where the non-analyticities are rounded

(e.g. with peaks at pseudo-critical points instead of divergences).5 Increasing N gets closer

to the thermodynamic limit but also increases the computer resources required for the

numerical study, truly N → ∞ systems can only be approximated by finite N systems and

the thermodynamic limit must be extrapolated from finite N results. The behaviour of the

specific heat as a function of temperature is plotted in figure 3, for N = 40 and N = 100.

3One must be careful in specifying the measure when determining the free energy, and the measure for

the matrices Xa differs from that for the Da by a temperature dependent factor [11]. The from of the free

energy quoted here is that associated with the Da.
4Note: there are 3(N2

− 1) degrees of freedom.
5For more a comprehensive treatment of critical phenomena the reader is directed to see the reviews

in [20–23].
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Figure 2. A semi-classical approximation for the free energy per degree of freedom. By construction

the free energy is continuous at the critical point, but it is not differentiable, the left derivative is

slightly greater than the right derivative, leading to the jump in entropy described in the text.

The deviation, in the numerical data, of the largest values of Cv for different values of

N is the due to finite size effects. In figure 3 we see that the peak of the specific heat

moves with N , this is the shift of the pseudo-critical temperature. The temperature at

which the different curves begin to deviate from one another corresponds to the rounding

temperature and is more difficult to observe in the figure. In figure 4 we show a blow-up

of the area around the critical point for different values of N where one sees the onset of

rounding more clearly. It is probable that the data shown in figures 3 and 4 do not achieve

the true maximum specific heat since the data do not track the return to low values of the

specific heat at high temperatures. However, this is not important for our analysis as we

will show that the entire critical regime satisfies scaling with the matrix size.

Before going on to discuss our numerical results in detail we give a brief review of finite

size effects on critical systems. See C. Domb and J.L. Lebowitz [15], for further discussion

of these issues and for the original literature see also [16].

3.1 Thermodynamic limit away from the critical point

Let F (T,Nd) be the free energy for a system with Nd degrees of freedom at a temperature

T . In the thermodynamic limit the free energy per degree of freedom is

f∞(T ) = lim
Nd→∞

1

Nd
F (T,Nd) . (3.1)

In our case Nd = 3(N2 − 1) ∼ N2. Far away from any critical point we expect this limit

to exist and to be independent of the macroscopic geometry.
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When the number of degrees of freedom is finite and all degrees of freedom are equiva-

lent, e.g. there are no surfaces and the couplings are isotropic, then there is a characteristic

linear system size L ∼ aN
1

d
d , where d is the dimension and a is a microscopic scale such as

a lattice spacing and the volume of the system is V = Ld. Since a is fixed, and typically

absorbed in the parameters of the system, one can take a = 1.

3.2 Finite size effects and the correlation length

When a finite system approaches a critical regime there is a number of important effects that

must be taken into account. First there is a temperature, called the rounding temperature

and denoted T ∗(L), at which observables of the finite system start to deviate from those

of the infinite system and T ∗(L) → Tc as the system size is increased. Finite size scaling

assumes that this approach of the rounding temperature to the bulk critical temperature

is governed by scaling with

|T ∗(L)− Tc|/Tc ∼ AθL
−θ, (3.2)

where θ is the rounding exponent.

Another finite size effect, which is directly visible in figure 4, is that thermodynamic

quantities which diverge at the critical point merely have maximal values in finite sys-

tems with the maximum at some temperature Tm(L) 6= Tc. Such temperatures are called

pseudo-critical. Again Tm(L) → Tc, as the system size is increased and finite size scaling

conjectures that

|Tm(L)− Tc|/Tc ∼ AλL
−λ, (3.3)

where λ is the shift exponent.

The specific heat of many critical systems is one such observable and finite size effects

round a divergent specific heat so that it has a maximum,

Cvm(L) = Cv

(
Tm(L)

)
, (3.4)

with Cvm(L) → ∞ as L → ∞. Finite size scaling implies that the divergence emerges in

the limit of infinite L via scaling. Thus

Cvm(L) ≡ Cv

(
Tm(L)

)
∼ AωL

ω. (3.5)

The exponents θ, λ and ω, describe the critical behaviour of our finite system as the system

size goes to infinity.

As the critical point of a bulk system is approached the length scale, over which

fluctuations in the system are correlated, grows. The correlation length is defined as the

rate of the asymptotically exponential decay of the two-point function, with distance, r,

between the points. For the near-critical system

Γ(r, T ) ∼ exp
(
− r/ξ(T )

)
as r → ∞ , (3.6)

from which the ξ(T ) can be computed as

ξ−1(T ) = − lim
r→∞

ln Γ(r, T )

r
. (3.7)
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At a critical point the correlation length diverges and, in most systems, in the immediate

vicinity of the critical point ξ(T ) can be expressed as6

ξ(T ) ∼ f±|t|−ν where t =
T − Tc

Tc
(3.8)

is the reduced temperature and the f+ and f− are system dependent amplitudes above

and below the critical temperature. They are typically different from one another but their

ratio is universal within a given universality class. The exponent ν therefore dictates how

fast the correlation length diverges when t → 0 in an infinite system.

The correlation length, of a system plays a crucial rôle in the explanation of finite size

scaling for systems exhibiting critical phenomena such as the Ising model or gas systems.7

The finite size system correlation length ξL is constrained by the size of the system and

one expects that

ξL(Tm(L)) ∼ L . (3.9)

We can classify the different regimes for the system in terms of the scaled variable y = ξL
L

or z = ξ(t)
L . As we approach criticality for finite size system the correlation length takes

the form

ξ(T, L) = Ly(z) = Lf(tL1/ν) , (3.10)

where both y and f are universal scaling functions.8

In this critical regime and when the system is large relative to the correlation length

y ≪ 1, y(z) ≃ z and f(x) ∼ x−ν so that bulk scaling is recovered. As the critical

temperature is approached finite size effects become important and y(z) begins to deviate

from z. This occurs at the rounding temperature T ∗(L). For a system of finite extent

the correlation length cannot grow arbitrarily large relative to the system size and at

the pseudo-critical temperature the specific heat reaches its maximum value. We take

the maximum of the specific heat to define the pseudo-critical temperature and at this

temperature we must have that both y and f are L independent constants. Therefore

tmL1/ν = const, which implies

|Tm(L)− Tc| ∼ L−1/ν , (3.11)

so that the prediction of finite size scaling is therefore that the shift exponent λ = ν−1.

If we assume that the only relevant quantity in an expansion around Tc is the correlation

length, then finite size scaling implies that the free energy, in the vicinity of the critical

6In fact there are systems where the correlation length diverges faster then any polynomial. A famous

example is the Kosterlitz-Thouless Phase Transition where ξ(T ) diverges exponentially [25].
7In the case of matrix models, due to the non-local type of interaction between the entries and the

absence of a notion of distance between the elements, we can only speculate on the existence of a unique

correlation length.
8The non universal scale for the argument of f must be adjusted by convention to get all systems in

a universality class to match. Such nonuniversal constants in scaling functions are referred to as “metric

factors” and they depend on the microscopic details of the system and are fixed by some system independent

convention. Metric factors will not be important for our purposes here, since we have only one system.
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point, takes the form

lim
N→∞,T→Tc

F (T,Nd)−Ndf∞(Tc) = F(tL1/ν) , (3.12)

where F(x) is a universal scaling function that depends only on the universality class of the

system. Given this form of the free energy we expect that the exponents λ and θ should

be the same, though the amplitudes Aθ and Aλ may differ.

If we take the large L limit for fixed t, from the extensivity of the system we must get

F(tL1/ν) ∼ Ldt2−α, (3.13)

which requires F(x) ∼ |x|2−α, and we infer that 2− α = νd which is a well known scaling

exponent relation.

We can further take two derivatives of (3.13) with respect to t, and divide by Nd, to

obtain the specific heat in the scaling regime and using 2− νd = α we obtain

C(T, L) = A−L
α/νC(x) , (3.14)

where the amplitude A− is extracted to guarantee that C is a universal scaling function.

With x the L independent constant xm at the pseudo-critical temperature we have that

A−C(xm) = Aω and the prediction of finite size scaling that ω = α
ν . Taking L → ∞ at

fixed t takes the scaling function past the rounding temperature and scaling gives that for

small x that C(x) ∼ x−α so that we recover C(T, L) ∼ A−t−α.

In a fully finite system it is not possible to use the expression (3.7) for all L and T and

it is also difficult to apply to numerical data. Alternative definitions of correlation lengths,

such as the second moment correlation length, are useful in this contest, see [15], but the

scaling analysis is essentially the same.

3.3 Scaling in terms of N

Our system has no surface, and all Nd = 3(N2 − 1) degrees of freedom are essentially

equivalent. However, in our model the dimensionality, d, of the system is only conjectural

(we expect d = 2 on the fuzzy sphere side of the transition). We also do not have access to

either a correlation length or a physical notion of size, L. However, there is no difficulty in

formulating a scaling ansatz in terms of the matrix size, N . The essential feature of finite

size scaling is then that the system in the critical regime scales with N .

Instead of (3.2), (3.3), (3.5) we use:

|T ∗(N)− Tc|/Tc ∼ AθN
−θ, (3.15)

for scaling of the rounding temperature with N ;

|Tm(N)− Tc|/Tc ∼ AλN
−λ, (3.16)

for scaling of the shift with N and

Cvm(N) := Cv(Tm(N)) ∼ AωN
ω, (3.17)

for scaling of the peak in the specific heat with N .
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One can repeat the analysis of the previous section but now using N rather than L.

Scaling suggests that (3.12) for the free energy of the system should be replaced by

lim
N→∞,T→Tc

F (T,N)−N2f∞(Tc) = F
(
tNλ

)
(3.18)

and we take the scaling variable9 to be x = tNλ. Taking the infinite N limit for fixed t

gives F(x) ∼ |x|2−α and (2− α)λ = 2. If we input the theoretical prediction for α = 1
2 we

have the further prediction that

λ =
4

3
. (3.19)

Furthermore, once the specific heat has risen sufficiently above the background values

that arise far from Tc, we expect that it has the form

C(T,N) = NωAωC(x) , (3.20)

where C(x) is a universal scaling function. The scaling function C(x) must have the be-

haviour C(x) ∼ x−α for large x. Also for T = Tm(N) we require that x = xm be independent

of N , since Cvm is given by (3.17) and hence

ω = λα =
2

3
. (3.21)

The value C(0) is a universal number for our system, but it is difficult to evaluate with

any precision due to the difficulties of accessing this region of parameter space for large

matrix sizes.

The relation (3.19) and (3.21) are derived without reference to a correlation length

or any other notion of distance and cannot be used to measure the dimensionality or a

characteristic size of the system. The scaling above is important to us because it contains

only exponents that are directly accessible to our numeric measurements and can be used

to test finite-size scaling in the context of the current matrix model.

By definition the rounding temperature, T ∗(N), is that temperature where deviations

from the asymptotic scaling form begin. As N is increased T ∗(N) moves closer to the

transition temperature. There is, however, no unambiguous connection between T ∗(N)

and N . The scaling function C(x) should be analytic, aside from its asymptotic form at

large argument, so one can replace T in (3.20) either with T ∗(N) from (3.15) or Tm(N)

from (3.16) and both should give a specific heat that diverges with N as Nω but with

different amplitudes. Therefore we expect θ = λ and θ = λ.

If we take the standard relation that L = aN
1/d
d , which for us gives L = N2/d, assuming

the microscopic scale a = 1 then

θ = θ
2

d
, λ = λ

2

d
, ω = ω

2

d
. (3.22)

If we further assume the existence of a single correlation length, ξ(T ), dominating the

critical region then we have

λ = θ =
2

dν
. (3.23)

9We have set the metric factor here to 1 for convenience here.
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We cannot draw a confident conclusion about ν and d separately as our analysis only gives

the product dν via measurements of λ and ω. However, if we assume that d = 2, which

seems reasonable based on the fuzzy sphere as background geometry, we have the prediction

for the correlation exponent

ν =
3

4
. (3.24)

We now turn to the numerical measurements.

4 Near-critical simulation difficulties

In this section we discuss some of the challenges posed in a numerical analysis of the

properties of the system very close to the phase transition and describe how they are

tackled.

4.1 Critical slowing down

Critical slowdown is a phenomenon that is typical in numerical simulations of critical

systems. It is described by the theory of dynamic critical phenomena (see e.g. [23, 27] for

detailed treatments of the subject). When T → Tc the time needed for a non-equilibrium

system to reach equilibrium grows as does the auto correlation time in a Monte Carlo

simulation of the system. More detail on the impact of critical slowdown on our numerics

is discussed in the appendix and here we merely observe that, for the systems studied in

this work, the critical slowing down of our simulations has significant impact on systems

with N ≥ 100 and has prevented us from simulating matrices with N > 110.10

4.2 Excited states

Another property to be taken into consideration is the presence of the excited fuzzy sphere

configurations given by (2.19). As mentioned earlier, those configurations possess energies

which are intermediate between the commuting matrix phase and the fuzzy sphere phase.

This means that, in the region where the two phases coexist, we would expect to see jumps

between the ground state and these excited states and between these excited states and

the commuting matrix phase rather than direct transitions between the commuting matrix

phase and the fuzzy sphere ground state. This expectation is supported by our simulations.

Far from the transition we are able to measure the values of Cv for restricted ensembles

trapped in different excited states and for the fuzzy sphere ground state. We find that

sufficiently far from the transition all such specific heats are of order 1 i.e. Cv ∼ 1 as

illustrated on figure 5. As the transition is approached Cv grows and close to the transition

distinct states are no longer observable see figure 6.

4.3 Energy separation between different phases

Ideally in the vicinity of the phase transition the system will jump between the two phases

and if we can get enough Monte Carlo steps, we will have enough statistics to properly

10One can see in figure 9 that the relative error in the measurement of the near-critical specific heat grows

with the system size.
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Figure 5. Monte Carlo history of an N = 25 system visiting different excited states, together the

corresponding Cv in their specific domains (for g̃ = 5, i.e. T = 0.0016 and T
Tc

= 0.03).

extract the relevant quantities. A Monte Carlo history where this occurs is depicted in

figure 6. We can see that the system spends roughly the same amount of MC time in both

phases, an indication that the system is close to the transition point. However for large N

the jump between the two phases becomes rare events, and indeed our numerical studies

indicate that this is already the case for N ≃ 12. This, in combination with the asymmetry

of the phase transition, makes it very hard to simulate the system efficiently in the regime

where the two phases coexist.

One tactic to handle this problem is to perform a cold start on the Monte Carlo runs, so

that the phase transition is always approached from the low temperature side. This biases

the system toward the fuzzy sphere phase, but has the advantage of giving reproducible

results. An example is shown in figure 7, with N = 50 at T = 0.0514 < Tc. The system

is below the critical temperature but, while the value of the action is compatible with

a fuzzy sphere configuration for quite some Monte Carlo time, it suddenly jumps to a

commuting matrix configuration. Once in the matrix phase configuration, it remains there

as fluctuations are too small to get it back.

4.4 Comments on the algorithm

When starting the system in a zero field configuration, and using a simple Monte Carlo

simulation, the system tends to get stuck in the zero action local minimum. The typical

configuration that such simulations produce is one where two of the matrices have zero

eigenvalues while those of the third matrix acquires non-zero eigenvalues which are distinct

from one another. The matrix that is started first in the simulation is the one whose

eigenvalue become non-zero and non-degenerate. A hybrid Monte Carlo simulation is
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Figure 6. Monte Carlo history of an N = 10 system at T = 0.0468, a regime where the two phases

coexist. For these values of N and T equation (2.14) gives Sm ≈ 75 while (2.27)–(2.29) give Sf ≈ 20

and the action is seen to jump randomly in the vicinity of, and between, these two values.

necessary to overcome this difficulty and for our study we use the hybrid Monte Carlo

algorithm of [26].

It is also tempting to perform simulations for the system by first diagonalising one

of the matrices. This results in a Vandermonde Jacobian from the change of variables

whose logarithm is included in the effective action. This algorithm is quite efficient for

some simulations but simulations with a hot start find it much more difficult to relax

to a fuzzy sphere phase even for very low temperatures and relatively large matrices.

This is because separation of the eigenvalues from one another must filter from the outer

eigenvalues inwards which tends to be very slow. To avoid any such difficulties we have

chosen to use the direct approach and our simulations are performed with a hybrid Monte

Carlo algorithm in which all matrices are treated on an equal footing.

5 Numerical measurement of critical exponents and finite size scaling

A direct analysis of the specific heat data, in the immediate vicinity of the critical point,

would involve a four parameter fit

Cv(T ) = C0− +A−(Tc − T )−α, (5.1)

where the data are fit to obtain C0−, A−, Tc and α. This, however, involves large errors

as there are so many parameters and the specific heat data for T very close to Tc involves

finite size effects which mean that the finite size scaling function C(x) enters the picture.

The first step is therefore a the determination of the critical temperature.
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Figure 7. Monte Carlo history of an N = 50 system at T = 0.0514 crossing between the fuzzy

sphere phase and the commuting matrix phase as an illustration of the restricted ensembles ap-

proach. For these values of N and T equation (2.14) gives Sm ≈ 1875 while (2.27)–(2.29) give

SF ≈ 850. The vertical bars show the fuzzy sphere domain, if we restrict our measurements only to

this region we can extract observables in the fuzzy sphere phase. These are what we call restricted

ensemble measurements.

5.1 Estimating Tc and λ and ω

A precise determination of the critical temperature is necessary for the evaluation of the

specific heat exponent α and the shift exponent λ. For a given finite N our best estimate

of the critical temperature is the pseudo-critical temperature Tm(N). We therefore first

analyse Tm(N) and endeavour to extract Tc from the limit of Tm(N) for N going to infinity

by fitting it as a function of N to the shift scaling form (3.16)

Tm(N) = Tc

(
1−AλN

−λ
)
. (5.2)

In figure 8 we present simulation our data for Tm(N).

Visual inspection of the data suggests a linear fit, i.e. λ = 1. Linear regression on

the data in figure 8 gives Tc = 0.0532 ± 0.0001 and Aλ = 1.5 ± 0.1 but assumes λ = 1.0.

However, the scaling ansatz suggests that we should look for a three parameter fit. When

we perform such a three parameter fit we get Tc = 0.0531 ± 0.0003, Aλ = 1.8 ± 1.5 and

λ = 1.1± 0.3 and the resultant critical temperature from both fits is largely unchanged.

For the three parameter fit the error in the amplitude Aλ is rather large so it is desirable

to fix some of the parameters. Since our principal goal is to check scaling we need to measure

λ rather than assume it. The measurements of Tc from both the three parameter fit and the

linear one broadly agree with the theoretical prediction Tc =
(
3
8

)3 ≃ 0.0527344, suggesting
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Figure 8. Extrapolation of Tm(N) for 1

N
→ 0. The value at 0 corresponds to Tm(∞) which is Tc.

The theoretical prediction is given by the blue dashed line. The green line is a three parameter fit

to equation (3.16) with Tc = 0.0531± 0.0003, Aλ = 1.8± 1.5, λ = 1.1± 0.3.

that we constrain the fit so that Tc is fixed to be this number. With Tc so constrained we

then find a two parameter gnuplot fit gives Aλ = 5.2± 1.6 and λ = 1.41± 0.08.

Finally since we have a prediction for the exponent λ, see (3.19), fixing both Tc and

λ = 4
3 = 1.333 gives Aλ = 3.9± 0.1 suggesting perhaps that Aλ = 4. We conclude that the

data are quite consistent with the theoretical estimate though a linear fit is also consistent

with our measurements.

We can similarly analyse the maximum of the specific heat Cvm(N). A linear fit

assumes ω = 1 and is best interpreted as an estimation of C0−, our data from such a linear

fit gives Cvm = 0.8 ± 0.2 + (0.035 ± 0.002)N which gives a value of C0− consistent with

the theoretical prediction of 29
36 ≃ 0.8055. A three parameter fit gives Cvm = (1.7± 0.3) +

(0.001 ± .002)N1.7±0.4, but the amplitude is very small and has large errors. Our scaling

ansatz suggests that we should look for a fit Cvm(N) = AωN
ω which is best extracted from

a log-log plot. Such a log-log plot is shown in figure 9 and gives Aω = 0.21 ± 0.06 and

ω = 0.66± 0.08 which is surprisingly close to the theoretical prediction ω = 2
3 .

Summarising our data: when the critical temperature is assumed to be the theoretical

value we find with two parameter fits the amplitudes and exponents in (3.16) and (3.17)

are given by

Tc − Tm(N)

Tc
∼ (5.2± 1.6)N−1.41±0.08

Cv

(
Tm(N)

)
∼ (0.21± 0.06)N0.66±0.08,

where we have chosen to prefer the direct fit for Tm(N) and the logarithmic fit for Cvm(N).

The basic data used are shown in figure 8 and 9.
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fit to data. The slope of the linear fit corresponds to ω in (3.17) for Cv and gives ω̄ = 0.66± 0.08.

The data yield the exponents λ = 1.41 ± 0.08 and ω = 0.66 ± 0.08 and the scaling

relation α = ω/λ, see eq. (3.21), predict α = 0.47± 0.06 which within errors is consistent

with α = 0.5.

5.2 Direct measurement of α from collapsed data

As argued in the previous section the numerical estimate for C0− in (2.26) when extracted

from a linear fit to the specific heat maximum, is in good agreement with the theoretical

prediction (2.25) C0− = 29
36 . It is then reasonable to take this as the input value of C0−

and endeavour to extract the amplitude and exponent α from the data.

However, data for a given fixed N are not very satisfactory for the estimation of A− and

α since any such data have important finite size corrections for finite N , i.e. the presence of

values of the specific heat taken at temperatures T < T ∗(N) when extracting the exponent

from single matrix size data. As we pointed out earlier, the point T = T ∗(N) is hard to

detect. Since the rounding temperature depends on N , we can do better by combining

different values of N . Deviations due to the rounding effects are significantly diminished

by averaging over the specific heat for different N .

Scaling suggests that, for a fixed value of the temperature lower than T ∗(N), the

values of the specific heat should be consistent for different N , provided N is large enough,

and our measurements verify this expectation. So we treat such values as independent

measurements of Cv(T ) and then take the weighted average over such values. If we have

a number of independent measurements of Cv, labeled by a discrete index i for different
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Figure 10. The figure shows the weighted averaged Cv obtained from different values of N ranging

from 30 to 110. A three parameter fit to the data with Cv = C0− + A
−
(Tc − T )α gives C0− =

0.76± 0.09, A
−
= 0.051± 0.017 and α = −0.50± 0.04.

values of matrix size Ni, then the weighted average, Cv(T ), is defined to be

Cv(T ) =

∑
i

1
σ2

Ni

Cv(T,Ni)
∑

i
1

σ2

Ni

(5.3)

where σi is the uncertainty in measurement i. Figure 10 plots a weighted average Cv using

data corresponding to values of N ranging from 30 to 110.

Figure 10 shows combined data for different N . When we approximate the near-critical

behavior of the specific as Cv ∼ C0− +A−|Tc − T |−α and use a three parameter fit we find

C0− = 0.76 ± 0.09, A− = 0.051 ± 0.017 and α = −0.50 ± 0.04. All three parameters are

in very good agreement with (2.25). One might expect C0− to be the least sensitive of

the parameters in the approach to the singularity, and it is tempting to set C0− to the

theoretical background value and refine the estimate of A− and α. When this is done

we find A− = 0.043 ± 0.0014 and α = 0.5197 ± 0.0054. If we also set α = 1
2 for a one

parameter fit we get A− = 0.0487 ± 0.0002 which suggests that the true value is indeed

A− = 3
64 = 0.046875. It should be noted that the form (2.25) is only asymptotic and

has additional corrections. Also our data still has finite size effects included. As a final

estimate we set C0− = 29
36 and perform a two parameter direct fit to the data we get

A0− = 0.047 ± 0.001 and α = 0.51 ± 0.01. In summary we believe that our data gives

reasonable evidence that (2.25) captures the true large N behaviour of the system.

On the high temperature side of the transition we find no divergence of the specific heat,

and our numerical measurements show good agreement with the value Cv = 3
4 = const. To
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conform to the standard scenario of critical phenomena there are two alternatives: either

A+ = 0 or α = 0 for T > Tc. If we assume the critical exponent is equal on the two sides of

the transition we are led to the conclusion that A+ = 0. Then we have the universal ratio

U0 = A+/A− = 0, the amplitudes A+ and A− are system and/or interaction dependent,

but U0 is universal. This provides important information for determining the universality

class of the system.

6 Conclusions and outlook

One of the key features of our simulations is that the matrix phase configurations tend to

be extremely stable. Fluctuations around these are small, they have a restricted ensemble

specific heat of Cv = 3
4 in comparison with the fuzzy sphere background whose minimum

specific heat is Cv = 1. This means that the decay of matrix phase configurations becomes

very unlikely even very close to the transition. The small fluctuation analysis of section 2.1

suggests that the principal mode of decay of such configurations is via the negative eigen-

value identified in section 2.1 and due to the Myers term. The largest eigenvalue separation

of matrix phase configurations is ∆a
ij = 2R and such configurations have eigenvalues de-

scribed by the parabolic distribution (2.16) so one would expect the matrix phase to become

unstable if on average the eigenvalues of one of the matrices are too close together. Taking

the expectation value of (2.11), assuming a parabolic distribution of the eigenvalues, one

obtains that the matrix phase becomes unstable for g2 > g2m ≃ 1
3

<∆2

ij>

4 = R2

10 , where the

factor of 1/3 comes from averaging over the number of matrices. For g̃ independent of N

this gives g̃m ≃ R
√
N√
10

. So the matrix phase becomes more and more stable as N increases.

Noting that numerically R = 2.0 we find that g̃m ≃ 0.632
√
N so that for N < 11 we have

g̃m(N) <
(
8
3

) 3

4 while for N ≥ 11 it is larger. For large N and fixed g̃ we therefore expect

simulations to get trapped in the matrix phase if the simulation ever falls into such con-

figurations and we further expect that for matrix sizes much larger that N = 11 it will be

virtually impossible to escape from the matrix phase. This is precisely what we observe in

simulations. We find that with effort one can escape from the matrix phase for N ≤ 14 but

our simulations have great difficulty escaping for N = 15 and do not escape for larger N .

In fact older numerical simulations [6] give the instability of the matrix phase as gm = 0.66

which is consistent with our observations.

Simulations on small matrix sizes then have quite a different character to those for

large matrix sizes. They exhibit fluctuations that make transitions between the two types

of typical configuration — the fuzzy sphere and the matrix phase. For larger N such

fluctuations are absent and one is forced to take data in a restricted ensemble where the

fluctuations are either around the fuzzy sphere or around the matrix phase.

In this work we have not endeavoured to study small enough systems where fluctuations

between the matrix phase and the fuzzy sphere are possible. We have rather concentrated

on larger matrix sizes as our goal is to check finite size scaling of fluctuations with N . Our

simulations therefore probe the scaling properties of fluctuations in the fuzzy sphere phase.

The fluctuations grow with N and diverge in the large N limit at a critical temperature
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with the large N fuzzy sphere becoming unstable at g̃ ≃
(
8
3

)3/4
corresponding to a critical

temperature Tc ≃
(
3
8

)3
. These fluctuations, since they do not probe the matrix phase

configurations, are what we call restricted ensemble fluctuations.

It may be that the true thermodynamically stable ground state of the system is in fact

the matrix phase, and simulations on small matrix sizes tend to suggest this, however, in

the large N limit and for T <
(
3
8

)3
fluctuations never escape from the vicinity of the fuzzy

sphere. If the fuzzy sphere phase is only a local minimum and not a global minimum in the

vicinity of this transition, then it would be clear why the transition appears to be one-sided

— the interpretation would be that the system is trapped in a local minimum which is stable

due to the large N limit and the observed transition would be due to the configurations

eventually escaping over the barrier once the temperature is high enough. The transition

would then be very similar to the two dimensional quantum gravity transition discussed

in the matrix model literature [28] which also has a one sided transition. The quantum

gravity system is exactly solvable and in the case of four valent planar graphs where the

potential is

V (Φ) = N Tr

(
1

2
Φ2 − g

4
Φ4

)
(6.1)

the eigenvalue distribution is given by

ρ(x) =
1

2π

(
1− g

a2

2
− gx2

)√
a2 − x2 with a2 =

2

3g

(
1−

√
1− 12g

)
(6.2)

and the specific heat by

Cv =
1 + 54g2 − (1 + 6g)

√
1− 12g

216g2
. (6.3)

By rescaling Φ → ϕ/
√
g one can rewrite V (Φ) = N

g Tr
(
1
2ϕ

2 − 1
4ϕ

4
)
and we can be in-

terpreted the coupling as temperature, g = T . The system has a critical temperature

Tc = gc =
1
12 and a non-analytic specific heat Cv = 11

12 +
√
12
√
Tc − T + · · · corresponding

to specific heat exponent α = −1
2 . As in our case, a restricted ensemble, where the system

is confined to the well near the origin, will capture this behaviour. The critical point is

when the eigenvalues spread enough to spill over the barrier.

As far as our simulations are concerned we start them in, or near, the fuzzy sphere

ground state and, for T ≤
(
3
8

)3
and sufficiently large N , they almost never escape from this.

Our principal observations are restricted to this regime and in this context we have demon-

strated that, despite the non-locality of matrix actions and the absence of a characteristic

size, finite-size scaling, with matrix size N , is still valid.

We have measured the critical temperature and the specific heat critical exponent,

α, along with the finite-size scaling exponents ω and λ near the phase transition. Our

numerical analysis is compatible with the hypothesis that finite-size scaling is valid, see

section 3.3 for details.

The values obtained for these exponents are new and we know of no other system with

these exponents which suggest that the model under study belongs to a new universality
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class. We expect that the critical exponents are universal within the class of models with

fuzzy sphere geometries evaporating.

Since we have not measured a correlation length and associated critical exponent we

cannot establish that our shift exponent λ is related to the the correlation exponent. The

measurement of a correlation length exponent is a non-trivial exercise in this context.

In order to verify the relations (3.23), i.e. λ = 2
dν , one needs to measure the exponent

ν for some appropriately defined effective correlation length ξ(T ). It seems plausible that

a correlation length could be extracted by studying the fall-off of two point correlators, but

this is left to future work.
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A Critical slowing down

In numerical calculations critical slowdown manifests itself as a growth in the number of

consecutive measurements of an observable P which are correlated as the transition is

approached, i.e. the autocorrelation time τP grows as the transition is approached.

Consider a simulation consisting of Nmc Monte Carlo steps producing a set of mea-

surements {P1, . . . PNmc
}. If τP ≤ 1 an expectation value < P > can be computed and

assigned an uncertainty σ ∼ 1/
√
Nmc. When τP > 1 this error estimation is too optimistic,

because the measurements are not fully independent, and a better estimation is given by

στP ∼ 1/
√
Nmc/(2τP ). The correlated data set is effectively equivalent to an uncorrelated

data set consisting of Nmc/(2τP ) measurements.

The autocorrelation time associated with an observable P is expected to be governed

by the correlation length and near a critical point should behave as

τP ∼ ξ(T )d+z(P ), (A.1)

with dynamical scaling exponent z(P ), which is algorithm and observable dependent. One

aim in designing an efficient algorithm is to reduce z(P ).

For a critical matrix model with size N we would expect, assuming (3.8), (3.15), (3.16)

and (3.23),

τP ∼ N2+z(P ) 2
d . (A.2)

In principle the autocorrelation time for an infinite data set is computed using the

series

τP =
1

2

∞∑

n=−∞

∞∑

τ=−∞

< (Pn− < P >)(Pn+τ− < P >) >

< (Pn− < P >)2 >
, (A.3)

but in practice the sum
∑∞

τ=−∞ must obviously be truncated to
∑τ0

τ=−τ0
with τ0 finite

and in general the obtained value for τP depends on τ0. Clearly the truncated version

of (A.3) can only be sensitive to autocorrelation times . τ0 so, if τ0 ≪ Nmc, τp might be

underestimated for systems with severe autocorrelation. On the other hand, if τ0 ∼ Nmc,
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the convergence of (A.3) becomes very poor. We can not rely only on the above expression

to determine τP .

In our analysis we allow for autocorrelations using the jackknife procedure, see e.g. [27],

which computes the uncertainty taking into account the autocorrelation of the data. As

a consistency check we compute the autocorrelation using the expression (A.3), with em-

pirically chosen τ0 and then we compare the result with τP as determined by the jackknife

procedure.
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