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a b s t r a c t

In this article we analyse the growth of OpenStreetMap (OSM)
representations for three street networks in Ireland. In each case
we demonstrate the growth to be governed by two elementary
spatial processes of densification and exploration which are
responsible for increasing the local density of the network and
expanding the network into new areas respectively. We also
examine summary statistics describing each network topology
and show these to be a consequence of the same processes. This
represents the discovery of a novel link between different aspects
of the growth.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The term Volunteered Geographic Information (VGI) describes the practice of large numbers of
citizens, mostly with no formal training, engaging in the creation of spatial data (Goodchild, 2007).
VGI has proven to be an effective means of acquiring timely and detailed geographical information
(Goodchild and Li, 2012). Consequently it is an important source of spatial information in a variety of
applications from transportation routing to emergency management (Goodchild and Glennon, 2010).
The OpenStreetMap (OSM) project was founded in the year 2004 and is one of the best known sources
of VGI (Mooney et al., 2010). GenerallyOSMcontributors operatewithout central coordination or strict
data frameworks, although coordination may be witnessed at times in the form ofmapping parties. As
such the OSMmapping process is considered bymany to be complex and unorthodox in the sense that
it contrasts greatly with that of national mapping agencies (Haklay et al., 2010). The contribution of
new data to OSM can be done in a number of ways (Neis and Zipf, 2012). The most common approach

∗ Corresponding author. Tel.: +353 1 716 2894.
E-mail address: padraig.corcoran@ucd.ie (P. Corcoran).

2211-6753/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.spasta.2013.01.002

http://dx.doi.org/10.1016/j.spasta.2013.01.002
http://www.elsevier.com/locate/spasta
http://www.elsevier.com/locate/spasta
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.spasta.2013.01.002&domain=pdf
mailto:padraig.corcoran@ucd.ie
http://dx.doi.org/10.1016/j.spasta.2013.01.002


22 P. Corcoran et al. / Spatial Statistics 3 (2013) 21–32

is to record data using a GPS receiver and edit this using one of the many freely available editors. If
aerial imagery is available, data may also be manually digitised from this. In recent years there have
been a number of cases where freely available data has been bulk imported into OSM. For example
the complete road network for the USA was imported into OSM from the TIGER dataset in 2007 and
2008.

The process by which OSM contributions map the physical environment is inherently spatial and
thereforemay be subject to spatial analysis andmodelling. For example, most contributionsmap only
their local community and this area may be located and its extent measured (Neis and Zipf, 2012). A
number of authors have noted the need for such analysis and modelling as it offers many potential
benefits (Kuhn, 2007; Mulligann et al., 2011). Firstly it could be used as a tool for central coordination
and the targeting of contributors with specific mapping tasks (Panciera et al., 2010). OSM does not
carry any of the data quality guarantees associated with data from national mapping agencies. If an
accuratemodel of the OSMmapping processwas available it could be used to classify the quality of the
data in question (Mulligann et al., 2011). The research objective of this article is to statistically analyse
andmodel the growthofOSMstreet network representations and in turnprovidenew insights into the
dynamics of OSM mapping. Specifically this work makes two contributions. Firstly we demonstrate
the growth of the OpenStreetMap (OSM) representation for three street networks in Ireland to be
governed by the two elementary spatial processes of exploration and densification. Secondly, we show
how these processes explain summary statistics describing each network topology. This represents
the discovery of a novel link between different aspects of the network growth.

The layout of this paper is as follows. Section 2 reviews relatedworks on the topic of spatial analysis
and modelling. Section 3 describes the geographical regions for which we examine the growth of
the corresponding OSM street networks. This section also describes the methodology employed for
converting theOSMdata to a network representation. Section 4presents results. In the final part of this
paper, Section 5, we draw conclusions from this work and discuss possible future research directions.

2. Related works

In this sectionwe review relatedworks in the domain of spatial analysis andmodelling. Specifically,
in each of the following two sub-sectionswe concentrate on thoseworks related to the topics of spatial
analysis of OSM and street networks.

2.1. OpenStreetMap

OSM data and it contributors have been the subject of significant spatial analysis and modelling.
Many studies have analysed the quality of OSM data. Haklay (2010) and Girres and Touya (2010)
performed a spatial analysis of the quality of OSM street network representations in the UK and France
respectively through a comparison to ground-truth data obtained from the corresponding national
mapping agency. Both studies found that on average the quality of the data was reasonably good but
exhibited significant spatial heterogeneity. Neis et al. (2012) analysed how the quality of the OSM
street network in different regions of Germany changed between the years 2007–2011. The authors
found that, as of 2011, on average the OSM street network representation exceeds the information
contained in a proprietary dataset by 27%.

Given that OSM data quality exhibits spatial heterogeneity many works have attempted to model
different aspects of data quality towards quality assessment and improvement. Haklay et al. (2010)
attempted to model the relationship between OSM data quality for a region and the number of active
contributors in that region. He found that beyond 15 contributors per square kilometre the accuracy
of the OSM street networks was high. In works related to this Roick et al. (2013) and Trame and
Keßler (2011) analysed the spatial distribution of a number of OSM variables including total number
of edits and number of contributors. Neis and Zipf (2012) performed an in-depth analysis of OSM
contributor activity. This included an analysis of contributor location of residence and the extend of
OSM areas they edited. Mashhadi et al. (2013) attempted to model the spatial relationship between
OSM coverage in London and a number of variables. The authors discovered a strong correlation
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between OSM coverage and population density. A less, but significant, correlation was discovered
between OSM coverage and a number of socio-economic variables. Mulligann et al. (2011) combined
semantic similarity with concept variograms and spatial point pattern analysis to model interaction
characteristics of features in OSM towards data quality assessment and improvement.

2.2. Street networks

Since the discovery that a variety of complex networks exhibit small-world properties,
characterised by clustering and shortcuts, there has been a significant interest in the statistical analysis
of complex networks (Watts and Strogatz, 1998). Complex networks are generally considered as
lying in an abstract space, where the location of vertices has no particular meaning. For many types
of networks, such as citation networks, this consideration is justifiable. However, there are many
network types where the location of vertices is particularly important as direct connections between
vertices can depend on constraints such as the cost associated with the length of edges. These types
of networks are known as spatial networks and examples include power grids and street networks
(Barthelemy, 2011). The constraints to which spatial networks are subject have dramatic effects on
their corresponding topological structure and statistical properties (Costa et al., 2007). For example,
the degree of vertices in spatial networks are practically limited and the average path length is
generally much larger than for other types of networks with a comparable number of vertices (Chan
et al., 2011). Consequently spatial networks exhibit statistical propertieswhich are distinct fromother
types of networks.

Many studies have analysed and modelled the statistical properties of transportation networks
which are a specific type of spatial network. It has been demonstrated that some street networks
exhibit scale-free and small-world properties (Porta et al., 2006; Ferber et al., 2009) while other street
networks exhibit small-world properties but not scale-free properties (Jiang and Claramunt, 2004).
Buhl et al. (2006) analysed the topological patterns of a large number of street networks in different
countries. Derrible and Kennedy (2010) examined the structure of 33metro systems in terms of state,
form and structure. Masucci et al. (2009) performed a statistical analysis of the London street network
relative to three models. Crucitti et al. (2006) compared the statistical properties of street networks
corresponding to different classes of cities such as planned and self-organised.

In an effort to better understand the statistical properties exhibited by transportation networks
many studies have analysed and modelled the corresponding growth of such networks. Erath
et al. (2009) presented an analysis of the Swiss street and rail network growth during the period
1950–2000. Barthelemy and Flammini (0000) proposed a model of network growth based on local
optimisation combined with ideas previously proposed in studies of leaf pattern formation. The
authors demonstrated their model generates networks with similar statistical properties to the street
network of Dresden city. Ferber et al. (2009) proposed a model of network growth where new
candidate edges are generated using randomwalks and these are subsequently added to the network
if they do not self-intersect. The authors demonstrated their model generates networks with similar
statistical properties to the public transportation networks of a number of cities including Sydney
and Paris. Xie and Levinson (2009) proposed a model which adds a set of new edges but subsequently
either removes or confirms individual elements of this set. This model considers the context of the
growth which allows for the interaction between demand (travelers) and supply (transportation
network). The authors validated themodel using historical data from the Indiana interurban network.
Strano et al. (2012) demonstrated the growth of a street network located in a region north of Milan
Italy to be governed by two elementary spatial processes referred to as densification and exploration.
The model of Strano et al. (2012) will be described in detail in Section 4.2.

Methods developed for the study of spatial networks may also be applied to study the
representation of such networks in OSM. Given that both types of network are spatial, the networks
in question and their growth many potentially exhibit similar statistical properties. However, due to
the fact that the processes underlying the growth of both types of networks are very different this
may not be the case. For example, the growth of street networks in a country is a function of decisions
made by its government. This is generally not the case for their corresponding representations in OSM
which are a function of possibly uncoordinated sporadic contributors. To date only a couple of works
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have examined the properties of street networks inOSMusing techniques from the domain of network
theory. Neis et al. (2012) studied the growth of OSM street networks in terms of street length, number
of topological errors and street semantics. In a related work Corcoran and Mooney (2013) studied the
growth of OSM street networks in terms metric and topological characteristics.

3. Study regions & network representation

In this article we analyse the growth of three OSM street networks corresponding to the urban
regions of Maynooth, Waterford and Wicklow located in Ireland. Maynooth is a University town in
Ireland located 24 km west of Dublin and has a population of over 1100. The area of this region is
10.5 km2. Waterford is city located in the South-East of Ireland at the head of Waterford Harbour
and has a population of over 50,000. The area of this region is 99.3 km2. Finally Wexford is town
located near the South-East corner of Ireland and has a population of over 9000. The area of this
region is 33.8 km2. None of the three chosen regions were subject to bulk data imports. For each
region the street network corresponding to the first day of each month contained within the period
01-11-2007–01-10-2011 inclusive was extracted using the methodology described in Mooney and
Corcoran (2011). This provided a total of 48 street network versions for each region. This period was
chosen as it corresponded to a growth of each network from containing little or no street network
detail to a highly detailed street network.

The OSM database contains points, lines and polygons which are commonly referred to as nodes,
ways and areas respectively. OSM points consist of a pair of latitude and longitude coordinates,
additional information in the form of tags and a unique identifier (ID). OSM lines consist of a sequence
of OSM points, additional information in the form of tags and a unique ID. OSM polygons are identical
to OSM lines except that they enclose an area. A street network in OSM is represented by a set of lines.

Graph theory provides a natural environment to study street networks. A graphG = (V , E) consists
of a set of vertices V and a set of edges E which are unordered pairs of vertices. If we assume that the
vertices are the street intersections and the extremes of dead end streets, and the edges the street
fragments connecting these vertices, we obtain a primary representation of the street network. On the
other hand, if we assume the vertices are streets and two vertices are connected whenever the streets
they represent intersect, we obtain a dual representation of the street network (Masucci et al., 2009).
It was noted by Crucitti et al. (2006) that a dual representation corresponds to an abandonment of
metric distance; a street is a single node irrespective of its length. In order to study the growth of the
OSM street networkswe converted each network version i to its corresponding primary representation
denoted Gi = (Vi, Ei). It was determined that two streets intersect if their corresponding OSM
line representations share a common OSM point. Recently a number of authors have proposed to
study the growth of networks using only a single graph representation which encodes the temporal
properties of growth (Holme and Saramaki, 2012). However such approaches are still very new and
underdeveloped.

The growth of the OSM street network corresponding to the Maynooth region is illustrated in
Fig. 1(a)–(f) which shows the state of the network on the dates 01-11-07, 01-02-09, 01-03-09, 01-
07-09, 01-09-09 and 01-10-11 respectively. The number of vertices, denoted |Vi|, contained in these
networks is 25, 785, 1475, 2061, 2764 and 3438 respectively.

4. Results

This section is divided in three sub-sections where each examines a different aspect of OSM
street network growth. The first sub-section examines the rate of network growth. It was recently
demonstrated by Strano et al. (2012) that the growth of a street network may be governed by two
elementary spatial processes known as densification and exploration. In the second sub-section we
defined these processes and evaluate if the growth of the OSM street networks are also governed by
these processes. In the final sub-section we examine the growth of the OSM street networks in terms
of topology.We describe in detail the results corresponding to theMaynooth region and subsequently
summaries those corresponding to the Waterford and Wicklow regions.
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Fig. 1. OSM representations of the Maynooth street network on the dates 01-11-07, 01-02-09, 01-03-09, 01-07-09, 01-09-09
and 01-10-11 are displayed in (a), (b), (c), (d), (e) and (f) respectively.

4.1. Rate of growth

As illustrated by Fig. 1 the degree to which the Maynooth OSM street network grows during the
study period is significant. Fig. 2 displays the value |Vi| (number of graph vertices) for each version i of
the network. If we consider |Vi| to be a measure of network size it is evident that the rate of network
growth is not uniform and at a maximum during the middle of the study period. In order to remove
rate of growth as a factor in our study we adopt the number of vertices |Vi| as the internal clock of
the process. Thus, we study the growth of the network as a function of |Vi|. This approach was also
used by Strano et al. (2012) to remove a demographic factor when studying the growth of a street
network.

Let Ni be the set of OSM nodes representing version i of the network. The value |Ni| is therefore
a measure of the corresponding OSM dataset size. Using this fact it is possible to show that the
relationship between network growth and OSM dataset size is linear. This is demonstrated by
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Fig. 2. Number of vertices for the Maynooth OSM street network.
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Fig. 3. Number of OSM nodes for the Maynooth OSM street network.

examining the plot of |Ni| versus |Vi| in Fig. 3. The first degree polynomial equation |Ni| = 3.45|Vi| +

57.22 is represented in this figure by a black solid line and models the relationship which exists
between these variables.

4.2. Densification and exploration

Strano et al. (2012) examined the properties of new edges in the growth of the street network
located in a region north of Milan Italy. The authors demonstrated that this growth was governed
by two elementary spatial processes referred to as densification and exploration. In the remainder of
this section we describe the methodology used by Strano et al. (2012) to illustrate these facts and
subsequently we evaluate if the Maynooth OSM street network is also governed by these processes.

The growth of a street network can be analysed in terms of street centrality which measures the
importance of individual streets in a given network. The betweenness centrality of an edge is adopted
which is defined as the number of times the edge is contained in shortest paths and therefore is a
measure of the edge’s influence on shortest paths in the network. The betweenness centrality of an
edge e in the network G = (V , E), denoted b(e), is defined in Eq. (1) where σij is the number of
shortest paths from vertex i to j and σij(e) is the number of shortest pathswhich contain e. The average
betweenness centrality of the network is defined by Eq. (2).

b(e) =


i∈V


i∈V
j≠i

σij(e)
σij

(1)
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Fig. 4. Kernel density estimation of δb(e∗) for the Maynooth OSM street network.

b(Gi) =
1

(|Vi| − 1)(|Vi| − 2)


e∈Ei

b(e) (2)

Let∆Ei be the set of edges added to networkGi−1 to obtainGi and for e∗
∈ ∆Ei wedenoteGi\{e∗

} to
be graph obtained by removing e∗ from Gi. The impact of an edge e∗ on the betweenness centrality of
the networkGi, denoted δb(e∗), is defined in Eq. (3). The quantity δb(e∗)measures the relative variation
of the network average betweenness centrality due to the removal of the edge e∗; that is, the degree
to which its removal impacts on the average betweenness centrality. The computational complexity
of computing δb(e∗) is O(|Vi||Ei| + |Vi|(|Vi| + |Ei|)log|Vi|) (Brandes, 2001).

δb(e∗) =
b(Gi) − b(Gi \ {e∗

})

b(Gi)
(3)

In order to study the properties of δb(e∗) in the context of the Maynooth region the six network
versions corresponding to the dates 01-11-07, 01-02-09, 01-03-09, 01-07-09, 01-09-09 and 01-10-11
were selected. The number of vertices contained in these networks is 25, 785, 1475, 2061, 2764 and
3438 respectively. These specific network versions were chosen so that the values |∆Ei| were similar
and significantly large. All network edges on the date 01-11-07 are considered new and therefore
this network version cannot be subject to analysis. A kernel density estimate of δb(e∗) values for each
network version is displayed in Fig. 4. The distributions of δb(e∗) all exhibits twowell separated peaks.
The size of the left peak increases over time while the size of the right peak decreases over time and
begins to merge with the left peak. To understand the nature and growth of these peaks we relate
them to the corresponding street network. Fig. 5(a)–(e) displays the street network versions where
edges corresponding to the left peaks of the kernel density estimates are coloured green and edges
corresponding to the right peaks of the kernel density estimates are coloured red. A study of this figure
reveals that new edges are divided into two classes. The green edges (left peak) tend to bridge existing
streets creating new routes while the red edges (right peak) are usually cul-de-sacs. To quantify this
characteristic of the two classes of edges we calculate the mean kmin(e∗) value for each class where
kmin(e∗) is the minimum degree of the two end vertices of e∗. The mean kmin(e∗) values of the green
edges in Fig. 1(b)–(e) are 3.1, 3.0, 3.2, 3.2 and 3.3 respectively. While the mean kmin(e∗) values of the
red edges in Fig. 1(b)–(e) are 1.2, 1.1, 1.2, 1.1 and 1.2 respectively.

These results correlate closely with those observed by Strano et al. (2012) in their analysis of a
street network located in a region north of Milan. The authors suggest that this is a consequence of
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Fig. 5. The processes of densification (green) and exploration (red) exhibited by the Maynooth OSM street network growth on
the dates 01-02-09, 01-03-09, 01-07-09, 01-09-09 and 01-10-11 are displayed in (a), (b), (c), (d) and (e) respectively.

the growth being subject to two distinct concurrent spatial processes. The first process of densification
(green edges, left peak, kmin(e∗) > 2) is responsible for increasing the local density of the street
networkwhile the second process of exploration (red edges, right peak, kmin(e∗) ≈ 1) is responsible for
the expansion of the network into new areas. This implies that the growth of the OSM street network
in question is also be governed by both of these spatial processes. Strano et al. (2012) also suggested
that in some cases both processes have a temporal sequence where exploration acts as a stimulation
for densification. An examination of the top left regions of Fig. 5(a) and (c) reveals that this sequence
can also occur in the context of OSM.

Although not presented in this paper, the two regions of Waterford andWicklow also appear to be
governed in a similarmanner by densification and exploration. For example Fig. 6(a) displays the kernel
density estimation of δb(e∗) for theWaterford region on01-10-2009. The processes of densification and
exploration corresponding to this kernel density estimate are exhibited in Fig. 6(b).
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Fig. 6. Kernel density estimation of δb(e∗) for the Waterford OSM street network on 01-10-2009 is displayed in (a). The
corresponding processes of densification (green) and exploration (red) are exhibited in (b).
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Fig. 7. Mean vertex degree for the Maynooth OSM street network.

4.3. Network topology

In this sub-section we examine the growth of the Maynooth OSM street network in terms of
its topology. This is achieved by calculating summary statistics which describe the topology of the
network in question. The degree distribution is a statistic commonly used to describe the topology
of a given network (Chan et al., 2011). However the direct comparison of a large number of degree
distributions is challenging and therefore a summary statistic of the degree distribution is used to
allow a meaningful comparison (Strano et al., 2012). Also Barthelemy (2011) states that in the case
of streets networks, and more generally spatial networks, the degree distribution is not a suitable
approach for describing network topology and is of ‘‘little interest’’. As a summary statistic we use the
mean vertex degree for each network version i which we referred to as MDi. This is computed using
Eq. (4). Fig. 7 displays a plot of MDi versus |Vi| which illustrates that the mean degree increases from
2.16 to 2.89 during the network growth. However the relationship between these variables is complex
and non-linear.

MDi =
2|Ei|
|Vi|

(4)

Additional information regarding the network topology can be obtained using the alpha index (α)
defined in Eq. (5). The alpha index measures the number of cycles in the network and in turn is a
measure of network connectivity (Kansky, 1963; Levinson, 2012). It takes values in the interval [0, 1]
where a value of 0 corresponds to a network with no circuits while a value of 1 corresponds to a
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Fig. 8. Alpha index for the Maynooth OSM street network.

completely interconnected network. Fig. 8 displays a plot of αi versus |Vi| and illustrates that the
number of cycles increases during the network growth. It is evident that the relationship existing
between αi and |Vi| is correlated with the relationship existing between MDi and |Vi|. This is not
surprising considering it has been previously demonstrated that many summary statistics of real
world networks tend to be correlated (Jamakovic and Uhlig, 2008). The pattern that the mean vertex
degree and alpha index both increase as the networks grows was also reflected in the parallel studies
of the Waterford and Wexford regions.

αi =
|Ei| − |Vi| + 1

2|Vi| − 5
(5)

The fact that densification dominates exploration to a greater degree as the network in each of the
three regions grow explains the growth of the mean vertex degree and alpha index. That is, why both
these topology summary statistics increase as the corresponding networks grow. Bridging existing
streets through densification increases the number of cycles and the corresponding vertices introduced
have degree greater than or equal to three. This represents the discovery of a novel link between the
densification and exploration processes and network topology.

5. Conclusions

This article presents an analysis of the growth of three OSM street network representations located
in Ireland and makes two main research contributions. Firstly we demonstrated that in each case the
growth appears to be governed by the spatial processes of densification and exploration. Secondly we
demonstrated that summary statistics of the network topology may be explained by the processes of
densification and exploration. This represents the discovery of a novel link between different aspects
of the growth.

The growth of an OSM street network is a function of contributor activity. As discussed in
Section 2.1 the degree and nature of such activity exhibits significant spatial heterogeneity. Despite
this fact, in this article, it has been demonstrated that the growth of OSM street networks
corresponding to three independent regions appear to be governed by the same processes of
densification and exploration. And that, in each case, as the network grows densification becomesmore
dominant relative to exploration. This suggests that the presence andnature of these processesmaynot
be a function of contributor activity. Insteadwebelieve that the presence andnature of these processes
may be a consequence of the manner in which different networks in general grow. This is akin to the
fact that many different networks exhibit small-world and/or scale-free properties (see Section 2.2).
This theory is supported by the fact that Strano et al. (2012) previously showed these processes to
govern the growth of a type of spatial network other than an OSM street network representation; that
is, a street network in a region North of Milan.
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In the context of spatial networks one possible justification for this theory is the following. Only a
finite amount of edges can be contained in a given spatial region and therefore, in order for a network
to continue to grow, it must eventually expand into new regions through exploration. Once a region
has been explored the network can continue to grow in that region through densification. This theory
could also explain why, in all cases examined, as the spatial network grows densification becomes
more dominant relative to exploration. Only a limited number of exploration streets may be added to
a spatial region before it becomes completely explored. On the other hand, densification streets could
be added to such a region long after this occurs.

It is possible that the processes of densification and explorationmay also govern the growth of non-
spatial networks. For example consider a social network where vertices represent people and an edge
exists between two vertices if the people in question are friends. If people represented in the network
make new friends with others not previously represented in the network this would correspond to
exploration. On the other hand, if people represented in the network make new friends with others
already represented in the network this would correspond to densification.

Not withstanding the good results obtained in our study, providing evidence that networks in
general, and not just the given case studies, are governed by the processes of densification and
exploration would require a larger scale study containing a greater number of networks of greater
size. However the computational complexity of the corresponding algorithms presents an obstacle to
this. As stated in Section 4.2 the computational complexity of computing δb(e∗) is significant andmust
be computed for every edge e∗. For example, computing the necessary results for theMaynooth region
using a desktop machine with an Intel 2.8 GHz dual core processor required roughly 5 h. Therefore
analysing larger scale networks presents a significant challenge in terms of time and resources. This
could potentially be overcome using a distributed or GPU computing paradigm.

As discussed in Section 2.2 many different models of transportation network growth have been
proposed. In this article we have examined the single model of Strano et al. (2012) and demonstrated
that it can explain some aspects of the growth of OSM street networks. As part of future work we are
interested in performing a parallel study using other models to determine if they provide any further
insight into the OSM mapping process. For example, the model of Xie and Levinson (2009) considers
the context of a transportation network growth which allows for the interaction between demand
(travelers) and supply (transportation network). Thismodel could also potentially be applied toOSM if
one lets demand correspond to the number of active contributors in an area and supply correspond to
the OSM representation in that area. As discussed in Section 2.1, it has previously been demonstrated
that a relationship exists been the degree of contributor activity in an area and the corresponding
OSM representation. In the introduction to this article we stated that understanding the processes
governing the growth of OSM has the potential to serve as a platform for data quality assessment.
However the question of how to link such a process to a methodology for quality assessment is still
in many regards open and therefore represents another possible future research direction.
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