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ABSTRACT 

An enhancing effect that can be applied to analogue oscillators in 
subtractive synthesizers is termed Animation, which is an effi-
cient way to create a sound of many closely detuned oscillators 
playing in unison. This is often referred to as a supersaw oscilla-
tor. This paper first explains the operating principle of this effect 
using a combination of additive and frequency modulation syn-
thesis. The Fourier series will be derived and results will be pre-
sented to demonstrate its accuracy. This will then provide new 
insights into how other more general waveform animation proc-
essors can be designed.  

1. INTRODUCTION 

The modelling of analogue musical equipment using digital tech-
niques has been an area of research that has received consider-
able attention over the past decade, and is still a very current 
topic [1]. This field covers the reproduction of Tube amplifiers 
([2] and [3]), guitar effects devices ([4] and [5]), spring reverb 
units [6], analog synthesizer oscillators, both generally in [7] and 
[8], and in a model specific manner in [9] and [10], and resonant 
voltage controlled filters ([11], [12], and [13]).  

With regard to analog synthesizer oscillators in particular, 
most of the previous work has focused on the alias-free synthesis 
of ideal classical waveforms, such as the sawtooth, the triangle, 
and the rectangular waveforms, see [7], or [14], for example. The 
reason for this focus on oscillators was simply that digital models 
of waveforms associated with particular analog synthesizers are 
more difficult to create because it requires access to such synthe-
sizers in order to make waveform measurements. These can be 
expensive and difficult to obtain in their vintage versions. The 
ideal forms of the classic waveform signals have a spectrum that 
decays about 6 or 12 dB per octave, following the 1/f or the 1/f2 
law (where f denotes frequency), respectively [19].  

An early approach was the filtering of the digital impulse 
train obtained from the summation formula for the cosine series 
[20]. More recent works have proposed to implement an ap-
proximately bandlimited impulse train using a windowed sinc 
table ([21] and [22]), a feedback delay loop including an allpass 
filter [24], or a sequence of impulse responses of fractional delay 
filters [25]. Alternative approaches include the differentiated 
polynomial waveforms ([26],[27] and [28]), hyperbolic wave-
shaping [8], Modified FM synthesis[29], polynomial interpola-
tion [30], polynomial transition regions [15] and [18], bandlim-
ited impulse train generation using analog filters [16], and 
nonlinear phase basis functions [17]. 

Alongside these oscillator algorithms, other work has fo-
cused on enhancing effects that can be applied to them such as 

Hard Synchronisation ([31] and [32]) and Frequency Modulation 
([33] and [34]).  

One very interesting effect is described in the literature as 
Waveform Animation [35]. Animation is a single oscillator ef-
fect. It is an enhancement to the traditional non-modular ana-
logue subtractive synthesizers feature of two or three oscillators 
per voice ([36] and [37]), which has generally held up for digital 
emulations [38]. The result of the Animation is the production of 
a deep, thick, pulsing sound. Originally proposed as a technique 
for modular analog systems it did not appear on synthesizers 
produced by the major manufacturers who opted for simply add-
ing a unison oscillator option instead ([39] and [40]). More re-
cently this unison oscillator arrangement has become termed as a 
Supersaw [38] or a Hypersaw [41]. It became strongly associated 
with electronic dance music.  

Nam et al. [25] proposed an implementation of this effect in 
which several detuned bandlimited impulse trains (BLITs) with 
appropriate DC offsets are added together and fed through a sin-
gle leaky integrator. However, this incurs the computational costs 
of generating multiple waveforms at a small frequency difference 
from each other. A digital implementation of Waveform anima-
tion, however, offers a more efficient alternative for creating this 
multiple oscillator sound effect than just adding numerous de-
tuned waveforms because it does not result in a corresponding 
loss in polyphony as groups of oscillators are assigned to each 
voice.  

When it comes to the digital emulation of a particular analog 
effect there are two choices: either (1) attempt to reproduce a par-
ticular analog circuit design directly or (2) to emulate the opera-
tion from an algorithmic perspective with tailored digital ele-
ments. While the first approach can work very well, it produces 
an algorithm that is computationally intensive and requires a sig-
nificant oversampling factor to operate correctly, see [5], [11], 
[12], and [13]. The second approach is less complex, computa-
tionally cheaper, and more flexible, conferring the final imple-
mentation with benefits such as having greater polyphony avail-
able to the virtual synthesizer. An example of this approach has 
been presented in [10]. 

Therefore, in this paper, we will work out the underlying the-
ory of the Waveform Animator oscillator effect from a signals 
point of view. This will be augmented by a model by which it 
can be implemented efficiently in modern digital synthesis sys-
tems using delay lines. The next section will mention the origins 
of the effect combined with the theory underlying it.  

2. MULTIPLE DETUNED OSCILLATORS 

The idea for this sound can be attributed to Risset [42] who de-
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veloped it in the late 1960s for some of his compositions. In 
computer music circles it is sometimes termed the ‘Risset Arpeg-
gio’ [43]. The intense effect of the detuned sound is due to a 
complicated beating pattern created among the harmonics of each 
oscillator. An analytical expression is available that describes this 
pattern [44]. Assuming a signal with a number of harmonics that 
has M detuned copies at a spacing of f0 between each of them, 
the beating pattern amplitude of the kth complex harmonic cluster 
is given by 
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 tfk

tfkM
AtB kk

0

0

sin

sin
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where Ak is the amplitude of the kth harmonic.  

3. WAVEFORM ANIMATOR 

Hutchins proposed the multiphase waveform animator capable of 
emulating a bank of detuned sawtooth oscillators with a single 
Voltage Control Oscillator (VCO), by mixing a number of alge-
braically phase shifted sawtooth waveforms together [35]. The 
original paper did not show mathematically how this is achieved; 
rather it was demonstrated in terms of the waveforms it required 
as it was intended for implementation using a modular analog 
synthesis system. However, to gain a deeper insight that will as-
sist our digital implementations it is worthwhile to understand the 
principle of this system fully. 

The input to the Animator is a sawtooth with a rising edge of 
amplitude A. The animator itself consists of a number of chan-
nels each controlled by a different triangle wave Low Frequency 
Oscillator (LFO), whose rate should be less than 2Hz and whose 
amplitude is smaller than that of the input [35]. A block diagram 
of one channel that illustrates the principle of the animator is 
given in Fig. 1. Note that more channels leads to a more intense 
effect. 

In Fig. 1, the input sawtooth and LFO are on the left hand 
side, there are two subtracting elements, a comparator, and the 
output appears on the right hand side. This output is a time-
varying phase-shifted sawtooth that is then added with the input 
sawtooth to create the animated effect. 

To explain in more detail: subtracting the input from the LFO 
generates an intermediate waveform. The LFO is very slow in 
relation to the input so that it is effectively like adding a DC off-
set to each period of the input wave. Fig. 2 shows this graphically 
using the relevant waveforms. In Fig. 2 the amplitude of the input 
sawtooth A = 5.0 and the amplitude of the LFO is 2.0. The result 
of the operation is that the DC level of the input is altered by a 
value of 7.0 in this example.  
 
 

 

 

Figure 2. Input sawtooth (solid line), LFO waveform 
(dashed line) and difference of the two (dotted line). 

 
This waveform is fed to a comparator device that is set to emit 

a pulse when its input is greater than the sawtooth amplitude A, 
otherwise the output is zero. This results in a PWM waveform 
whose pulse is on the leading edge and whose pulse width is var-
ying at the rate of the LFO. Further, the amplitude of the pulse is 
2A. This PWM wave is then subtracted from the DC-altered saw-
tooth to produce a time-varying phase-shifted version of the input 
sawtooth. This is illustrated in Fig. 3. The upper panel shows the 
generated PWM wave against the comparator input and the lower 
panel shows the original input sawtooth and its phase shifted ver-
sion. 

 
 
To illustrate mathematically what the animator is doing, first 

assume that we are looking only over a few periods where the 
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Figure 3.  The DC-altered sawtooth (dashed line) and PWM 
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LFO waveform can be regarded as a constant DC level, we can 
then write the animator output as 
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where the first term on the rhs of (2) denotes a rising sawtooth, 
Cdc represents the added DC level, and the third term represents 
the PWM waveform comparator output whose maximum ampli-
tude is 2A and minimum value is zero.  

The expression for a falling edge, zero-centered, PWM wave 
of time-varying duty cycle d(t) is [45] 
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Each component of the second term on the rhs of (3) is phase 
shifted where the phase shift depends both on the duty cycle and 
increases with increasing frequency because of the factor k. To 
rewrite (3) so that it represents the comparator output correctly it 
needs to have a leading edge pulse and be scaled in amplitude 

 
      AtPAtPzs 22     (4) 

 
Substituting (3) into (4), and then the result into (2) we can 

write the animator output as a combination of AC and DC com-
ponents. 
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Remembering from (2) that the comparator combines the PWM 
wave along with the input sawtooth if we concentrate on the AC 
components of (5) first we have 
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which can be written as 
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This gives the equation for a rising sawtooth with a time-varying 
phase shift. Then, looking at the DC term of (5) 
 

   tdAAtSDC 22DC    (8) 

 
The term d(t) will be constant within each time period. Thus, for 
a single time period we can write 
 

dAAS ˆ22DCDC    (9) 

 

To show that (9) is zero, we must determine d̂  by locating 
the point of intersection of the LFO waveform with the sawtooth 
waveform in each period. If we write these as line equations we 

can use simple geometry to determine the intersection point be-
tween the two. For argument’s sake, we assume that we are ex-
amining the crossing point within the first period of the sawtooth 
wave. Doing this, the time of their intersection tp can be ex-
pressed as  
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where fLFO is the LFO frequency, ALFO(t) is the time-varying am-
plitude of the LFO wave and ALFO is the maximum amplitude it 
will reach within that one period. The value of the duty cycle for 
that period will be 
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To further simplify the analysis we assume that within this first 
period of the sawtooth the amplitude of the triangle wave is con-
stant, i.e. 
 

LFOLFO AA     (12) 

 
Then, examining Fig. 2, we can write 
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Substituting (12) into (11) and then combine with (13) in (9) to 
give 
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Next, noting that 
 

 LFOLFO fAAf  22 0   (15) 

 
The third term on the rhs of (14) can then be approximated, and 
following simple manipulation leads to the expected result  
 

02DC  LFOLFO AAAAAS   (16) 

 
The expression (16) will hold for every period of the input saw-
tooth. Therefore, the final animator output can be written 
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Examining (17) it can be interpreted as a summation of har-

monically related frequency modulated sinusoids where the 
modulation is the time-varying duty cycle d(t) and the modula-
tion index increases with respect to the harmonic number. This 
result is very interesting as it means that the bandwidth around 
each harmonic increases with respect to increasing frequency. 
This would suggest why the waveform is perceived as being ‘an-
imated’ as this increasing bandwidth with respect to frequency is 
similar in effect to adding detuned harmonic waveforms together. 
Furthermore, the faster the LFO the wider the bandwidth will 
become. There also should be a relationship between the swing in 
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the duty cycle with the sideband harmonic magnitudes and ulti-
mately the strength of the effect. 

4. ANIMATOR SPECTRAL PROPERTIES 

It is worthwhile to investigate the spectral properties of the ani-
mated waveform a little further. The time-varying duty cycle sig-
nal only changes its value for every new period of the input saw-
tooth. This means that this modulating duty wave resembles a 
flat-top multi-level Pulse Amplitude Modulation signal, where 
the pulse rate is the same as the input sawtooth. However, be-
cause it is changing so slowly to simplify the analysis first we 
can assume that the duty cycle modulation is a shifted and scaled 
triangle LFO of the form 
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where dmax and dmin are the maximum and minimum values of the 
duty cycle respectively. They are determined by the user choice 
for ALFO. 

We can also write the Fourier series for the triangle wave 
modulation in (18) as 
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where q is the harmonic index. 

This particular triangle wave will start from its minimum 
value which is in keeping with the original work [35]. Combining 
(19) with (18) and then substituting into (17) we can see that we 
will have a Complex FM waveform [46]. The relative contribu-
tion of each harmonic of the LFO to the spectrum of (17) could 
be computed using this theory. However, it can quickly become 
complicated if we use many components from the Fourier series 
in (19). By writing expressions for the modulation indices it is 
possible to find a way of simplifying the task. Denoting the mag-
nitudes of the modulation indices for each as Iq we can consider 
the first two significant components (The second harmonic mag-
nitude I2.=0 because it is a triangle wave) we have 
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and  
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Noting that I1 > 1 while I3 << 1 (and will be true for all higher 
modulation indices), this suggests that it would be reasonable to 
assume that the primary contribution to the modulation of each 
harmonic in (17) is only the first component with modulation 
index given by (20) which allows us to rewrite  
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where we denote the phase shift  minmax ddk  . 

 
 
To validate the approximation Fig. 4 shows a plot of the 

spectra of a frequency modulated single sinewave of frequency 
441Hz using the modulation function of (18) with frequency 
0.5Hz and dmax=0.9 and dmin=0.1 (solid line) along with the spec-
trum of the same sinewave but with a sinewave modulation func-
tion with modulation index given by (20). From the figure it can 
be seen that there is an exact match for the magnitude of the first 
and third order sidebands at 441.5Hz, 440.5Hz, 442.5Hz and 
439.5Hz respectively. There is a close match with the second or-
der sidebands at 442Hz and 440Hz. This indicates that the ap-
proximation is acceptable.  

Once adopting this approximation it is straightforward to 
have an expression for the magnitude spectrum of (22) around 
each harmonic 
 

    10 kIJnfkfH oLFO    (23) 

 
where Jo denotes a Bessel function of order o [47].  

With this done it is possible to plot a relationship between the 
width of the duty cycle (that is, the difference between the max-
imum and minimum values) versus the magnitude of the first 
sideband of the modulation. This is helpful when creating an an-
imated waveform as it can be used to decide how to set the am-
plitude of the triangle wave LFO and to determine the amplitudes 
of other sawtooths that could be added to the animated wave to 
get a desired balance between the animated waves and the origi-
nal. This is similar to the mix function associated with commer-
cial products [38], [41]. An experiment can be run by creating 
different values for the first modulation index in (20) using dif-
ferent values of duty cycle width. These can then be substituted 
into (23) to compute the first sideband magnitude (where o = 1). 
The result of this is given in Fig. 5. It shows that the largest side-
band magnitude occurs when the width of the duty cycle is 0.7. 
This corresponds to a duty cycle maximum of 0.85 and a duty 
cycle minimum of 0.15. Thus, at this setting most significant lev-
el of waveform animation is achieved. 

 

Figure 4.  Comparison of the spectra of a sinewave that 
has been frequency modulated using the triangle wave 
LFO of (19) (solid line) versus a one component approx-
imation to it as given by (22) (dashed line). 
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Figure 5.  Relationship between the duty cycle width and 
first sideband magnitude computed using (20). 

5. ANIMATOR USING A DELAY LINE FILTER 

The multiple detuned oscillator effect can also be created by em-
ploying a group of delay-line based pitch shifters and a single 
waveform input [48]. The principle can be seen as an extension 
of the use of inverse comb filters with time-varying delays. By 
combining the output of such delay lines with the original signal, 
we will be able to model the multiple detuned oscillator effect for 
arbitrary inputs. 

The pitch shifter operation is based on a periodic linear 
change in delay time. The amount of pitch transposition is pro-
portional to the rate of delay change [49]. By modulating a delay 
line with a signal whose derivative is constant and non-zero, the 
pitch of the input signal can be shifted. We can define this pro-
cess for a single up and down transposition pair by the following 
expressions, where  is the delay line length, s is the frequency 
scaling factor (transposition ratio) and x(t) is the input signal: 
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where the delay modulation signal  t   is defined as 
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The windowing and delay functions in (24), w(x) and D(x) are 
expressed by 
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The windowing is necessary to hide the discontinuities of 
signal as the delay jumps from 0 to . The use of two delay lines 
is designed to allow crossfading between them, which creates a 
continuous pitch-shifted signal.  

To create a mix of seven signals with slight tuning differ-
ences, we can use four pitch shifters arranged as in the block dia-
gram in Fig. 6. The transposition factor s should then be set to 1 
+ f0/f0, providing a constant-interval spacing between each 
pitch-shifted copy of the original signal. 

An example of the waveform output and the magnitude spec-
trum is given in Fig. 7. The upper panel shows the waveform 
over a 9 second period. The envelope of the waveform shows 
periodic peaks and troughs due to the beating that is occurring 
between the detuned harmonics. The two plots in the lower panel 
show the cluster of components around the region of the first 
harmonic and the second harmonic of the input. As expected the 
bandwidth around the second harmonic is proportionally wider 
than that of the first.  
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Figure 6.  The pitch-shifter based detuned oscillator effect 
where s is the transposition factor 1 + f0/f0. 
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6. CONCLUSION 

This paper has investigated the digital implementation of a 
Waveform Animator oscillator effect. It has first presented a 
mathematical analysis that has resulted in expressions for the fre-
quency spectra of this effect, looking in detail at the significance 
of the modulation components. Secondly, it examined by simula-
tion the relationship between the duty cycle and the degree of 
animation. Lastly, a delay line based algorithm was then dis-
cussed as means to obtain a general model of this effect. Fur-
thermore, if the input to the delay-line model is bandlimited then 
the output will also be so. Such a model could be incorporated 
within any synthesis toolkit. It is intended that this work will of-
fer sound designers more insight into alternative approaches for 
synthesizing ‘Supersaw’ timbres and also raise their awareness as 
to the role that frequency modulation plays within these sounds.  
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