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ABSTRACT

This paper describes the implementation of a streaming spec-
tral processing system for realtime audio in a consumer-level on-
board GPU (Graphics Processing Unit) attached to an off-the-shelf
laptop computer. It explores the implementation of four processes:
standard phase vocoder analysis and synthesis, additive synthesis
and the sliding phase vocoder. These were developed under the
CUDA development environment as plugins for the Csound 6 au-
dio programming language. Following a detailed exposition of
the GPU code, results of performance tests are discussed for each
algorithm. They demonstrate that such a system is capable of real-
time audio, even under the restrictions imposed by a limited GPU
capability.

1. INTRODUCTION

Graphics Processing Units (GPUs) have been used for audio pro-
cessing in a variety of environments. Typically, they have been em-
ployed as co-processors in systems where their massively parallel
architectures can be harnessed for signal processing programs[1].
There is now a significant number of reports in the literature demon-
strating their use in the implementation of various algorithms, such
as Ray Tracing [2], Wave-based Modelling [3], SMS[4], Finite
Difference Physical Models[5], to cite but a few.

In this paper we investigate the use of off-the-shelf consumer-
level GPUs for the implementation of frequency-domain audio
processing. In such a scenario, we do not have a separate dedi-
cated co-processor, but rely solely on the on-board GPU that is also
driving the video graphics subsystem. Our goal was to study and
implement efficient algorithms that could overcome the limitations
of the given hardware and possibly deliver realtime performance.
In particular, we are interested in developing applications that can
be employed by users without the need for specialised hardware
setups. Finally, we also envisage that such implementations can,
in a second stage, be applied to dedicated co-processor systems in
high-performance computing applications.

The processes implemented in this paper involve separate Phase
Vocoder (PV) analysis and synthesis, Additive synthesis from PV
data, and a Sliding PV (SPV) algorithm-based frequency domain
effect[6].

1.1. Environment and toolset

The chosen environment involved a NVIDIA GT650M GPU, with
1024MB VRAM (see Table 1), running on OSX10.9. The chosen
parallel development toolset was CUDA 5.5[7], running in con-
juction with the LLVM/Clang C/C++ compiler, with Csound 6.02
as the host for the processing plugins. The choice of environment
was dictated by two concerns: a good match for the target hard-
ware, which CUDA is, and on the hosting side, a well-developed
environment for testing of audio programs, which is provided by
Csound[8] version 6[9].

Table 1: Some specifications for the target GPU

cores 384
clock speed 900 MHz

VRAM 1024MB
compute capability 3.0
max threads/block 1024

bandwidth 80 GB/s
multiprocessors 2

cores per multiprocessor 192

2. PROGRAMMING MODEL

The programming model supported by CUDA abstracts the GPU
processors into a hierarchy of threads, blocks, and grids. At the
lowest level, we have separate threads that can be grouped into
blocks. A grid is a collection of blocks.

Each thread in a block can be given a one, two or three di-
mensional index, to facilitate computation across vectors, matrices
or volumes. All threads in a block live on the same multiproces-
sor, execute in parallel and can share fast memory. Blocks can be
scheduled in parallel in separate multiprocessors. There is an up-
per limit in the number of threads in a block, which depends on
the compute capability of the hardware used, and in the case of the
GT650M is 1024, as shown in Table 1.

Each thread has a local memory space, and can access shared
memory within its block. All threads have also access to global
device memory. The fast shared memory is very limited in size,
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but has a higher bandwidth and lower latency than global memory.
Any memory transfers between host (CPU) and device (GPU) are
costly and should be minimised.

Thread execution is grouped in warps, which contains 32 threads.
For full efficiency, it is advised that all threads in a warp have a sin-
gle execution path. Divergence via conditional branches will force
each branch to be executed serially until these converge back into
the same path. For this reason, it is important to minimise diver-
gent conditionals in the GPU code.

The code executed by a thread is provided in a unit called a
kernel. For all practical purposes, this is a C/C++ function (de-
fined by the CUDA attribute __global__ ) that is designed to
run in multiple copies, concurrently. The CUDA programming ex-
tensions provide a simple syntax to launch a grid of threads based
on a given kernel, with a certain number of blocks and threads per
block.

CUDA programming assumes a heterogenous programming
model, where a host is responsible for allocating and managing
device memory, including data transfers, as well as scheduling the
parallel execution on the device. Under this model, serial sections
of code, running on the host, are interspersed with parallel ones
running in the GPU. This is illustrated by Figure 1.

host (single thread)

device 

(N threads in M blocks)

Figure 1: Heterogenous programming model

3. STREAMING SPECTRAL PROCESSING

Spectral processing is said to be streaming when time domain data
is being windowed and transformed in a continuous fashion from
an input signal (such as a realtime stream from an analogue-to-
digital converter), producing a frequency domain signal of ordered
frames at a given rate [10]. This is opposed to the case where
all the input data is available for processing at once, and is more
restrictive in terms of designing parallel implementations.

Typically, windows will be placed at a constant hopsize, and
new output data is produced at a decimated rate, but there are
also algorithms for sample-by-sample output, such as the sliding
DFT[11], which is used in one of the cases studied. Thus, in the

most common cases, we would only need to process spectral data
at a reduced rate. This allows us to design a program that will use
the GPU as a co-processor to compute the spectral data. The gran-
ularity of such process is then set to hopsize samples. This is the
basic layout of the code discussed in the following sections.

3.1. Integration with Csound

The code discussed in this paper is hosted in Csound 6 as plu-
gin opcodes (unit generators). Processing is done in vectors of
ksmps samples, which can be set to any value above 1, with the
upper value determined by the analysis hopsize in the case of the
standard PV algorithms (no such limit applies to SPV). The PV
analysis, synthesis and additive synthesis opcodes work with fre-
quency domain signals (defined by the fsigCsound type), as well
as the usual time-domain audio (and control signals). Thus, GPU
processing is invoked every hopsize samples, in the case of these
algorithms. The SPV implementation works solely with audio sig-
nals (as it packages analysis, transformation and synthesis in one
single unit generator). It operates in fixed-size batches of 512 sam-
ples, which provide the best compromise in terms of performance
and latency.

3.2. Phase Vocoder Analysis

The steps involved in PV Analysis are detailed in Figure 2 [12].
At the interval of hopsize samples, we window and rotate an input
frame of time-domain data and apply a DFT to it. To obtain the
PV data in a flexible amplitude + frequency (Hz) format, we then
apply a conversion operation that takes the data from rectangular
to polar representations and calculates the one-frame phase differ-
ence at each bin, then converts it from radians per hopsize samples
to cycles per second.

apply window & 

rotate samples 

DFT

rectangular

to polar
Df rad/hs to Hz

Figure 2: PV analysis

These three operations are good candidates for GPU co-processing,
as they can be parallelised. The window and rotation operations
affect each sample separately, so they can be implemented in very
simple kernels.

__global__ void
rotatewin(float* out, float* in, float *win,

int N, int offset){
int k = threadIdx.x +

blockIdx.x*blockDim.x;
out[(k+offset)%N] = win[k]*in[k];

}
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In the code above k is the thread index, which is used to ac-
cess a given sample in the input and output frames, N is the DFT
size and offset is the rotation offset, that depends on the current
frame index and the hopsize. The kernel is made transparent to de-
ployment on any number of blocks, so that decision of how many
threads per block can be made separately (or even dynamically).

Similarly, the conversion to PV parameters is eminently paral-
lel, dealing with each bin separately. Since 0Hz does not need to be
processed, we offset the thread index to start from bin 1. Compu-
tation is done in double precision, but PV data is stored as single-
precision values following the convention for fsigs in Csound.

__device__ double modTwoPi(double x)
{

x = fmod(x,TWOPI);
return x <= -PI ? x + TWOPI :
(x > PI ? x - TWOPI : x);

}

__global__ void
topvs(float* frame, double* oldph,

double scal, double fac){
int k = threadIdx.x +

blockIdx.x*blockDim.x + 1;
int i = k << 1;
float re = frame[i], im = frame[i+1];
float mag = sqrtf(re*re + im*im);
double phi = atan2(im,re);
double delta = phi - oldph[k-1];
oldph[k-1] = phi;
frame[i] = mag;
frame[i+1] = (float)

((modTwoPi(delta) + k*scal)*fac);
}

Finally, the DFT is implemented using the CUDAFFT library
cufftExecR2C() function, which is optimised to run on the
GPU hardware. Processing from real to complex data is in place,
in the format expected by the windowing and rotation, and PV
conversion kernels. This simplifies the memory handling, as there
is only the need to copy the input data to the GPU and copy the
PV output back to the host once. This is the minimum necessary
data transfer to and from the device. The location of the frame,
waveform, and phase history data is not defined in the kernel code,
but in the current implementation, global device memory is used.
Shared memory cannot be used for two reasons: in the case of
waveform and frame data, it would require access to shared mem-
ory pointers by the host which is not available; and in the case of
phase history, it would break the unit generator reentrancy condi-
tion.

In summary, we have the following sequential steps performed
at each hopsize interval:

1. A frame of waveform samples is copied to the device
2. A kernel of N threads running rotatewin() is launched
3. DFT is performed with cufftExecR2C()
4. A kernel of N/2-1 threads running topvs() is launched.
5. A frame of amp + frequency data is copied from the device

Around this GPU-specific code, the host takes care of collect-
ing the input samples into the waveform frames that will be sent to
the device, as well as making the output frequency-domain signal
available to the rest of Csound.

3.3. Phase Vocoder Synthesis

PV synthesis basically re-trace the steps of analysis in reverse (Fig-
ure 3). As before, we have three highly parallel steps. The con-
version from PVS parameters into rectangular spectral data is pro-
vided by the following kernel:

__global__ void
frompvs(float* inframe, double* lastph,

double scal, double fac) {
int k = threadIdx.x +
blockIdx.x*blockDim.x + 1;

int i = k << 1;
float mag = inframe[i];
double delta = (inframe[i+1]

- k*scal)*fac;
double phi = fmod(lastph[k-1]

+ delta, TWOPI);
lastph[k-1] = phi;
inframe[i] = (float) (mag*cos(phi));
inframe[i+1] = (float) (mag*sin(phi));

}

rotate samples 

& apply window 

IDFT

polar to

rectangular
SfHz to rad/hs

Figure 3: PV synthesis

Rotation and windowing is, as in the analysis case, very straight-
forward:

__global__ void
winrotate(float* out, float* in, float *win,

int blocks, int N, int offset){
int k = threadIdx.x +

blockIdx.x*blockDim.x;
out[k] = win[k]*in[(k+offset)%N];

}

The steps involved in PV synthesis are:

1. A frame of PV data is copied to the device
2. A kernel of N/2-1 threads runningfrompvs() is launched.
3. Inverse DFT is performed with cufftExecC2R()
4. A kernel of N threads running winrotate() is launched
5. A frame of waveform samples is copied from the device

3.4. Additive Synthesis

At face value, additive synthesis appears to be a very suitable tech-
nique for GPU implementation, given the fact that it is based on
generating independently-computed sinusoidal streams and mix-
ing them together. However, in practice there are some issues that
need to be solved, namely
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• a suitable sinusoidal oscillator design

• memory use/access

For full-spectrum synthesis using all the analysis data, we use
two steps, both involving independent computations, which can be
parallelised: an oscillator bank, and the parameter update.

In designing the oscillator that will be used we have to con-
sider in particular the fact that conditionals are very costly in GPU
code (as discussed above). A standard table lookup oscillator with
floating-point indexing is not very efficient because of the condi-
tional checks and moduli operations for index bounds. An alter-
native is to use integer indexing and with fast wrap-around using
bitmasks. In addition, we have observed that table memory access
has an inherent cost (even if the table is loaded to shared mem-
ory, which has the fastest access), and direct use of trigonometric
functions is about 23% faster.

The most problematic issue with additive synthesis on the GPU
is memory access, which can take up a significant amount of the
total process time. Additive synthesis, in comparison to PV syn-
thesis, can be relatively memory-hungry. For example, it requires
a minimum of N × H floating-point numbers, where N is the num-
ber of bins and H the hopsize. For the full reconstruction of a
2048-point analysis (1024 bins), hopping by 256 samples, we have
a 1MB memory requirement for single-precision samples. This
memory would need to be accessed twice by the device: for writ-
ing by each oscillator, and for reading at a mixdown stage. In this
particular case, memory access costs can amount to almost 70% of
the total computation time. Reducing the hopsize does not mitigate
the problem, because it will increase the number of times a given
kernel executes. A solution is to use atomic additions, if these are
available and sufficiently fast. In this case, the mix down of each
sample can be at the time of the sample generation, and no further
memory access is required. In the cases where atomic operations
are costly, then we will need to write every partial to memory first,
and, in a second sequential step, mix all of them down (in parallel).
CUDA offers a very efficient atomic addition for float samples, so
we can take advantage of it.

update 

amps & phases 

waveform 

out

PV frame 

in parallel oscillator bank

Figure 4: Additive synthesis

Of course, is always possible to synthesise a smaller number of
bins, which would reduce both memory access and raw computa-
tion. In any case, each sample of each partial can be independently
calculated (see [13]). For this we can spawn N × H kernels, each
contributing a single sample to their respective partial, in effect
parallelising across bins and samples. The additive synthesiser as
implemented here is shown on Figure 4. The kernel used compute
each sample is shown below:

#define MAXNDX ((MYFLT) 0x40000000)
#define PHMASK 0x3FFFFFFF

__global__ void sample(float *out,

float *frame, float pitch,
int64_t *ph, float *amps,
int bins, int vsize, MYFLT sr) {
int t = (threadIdx.x +

blockIdx.x*blockDim.x);
int n = t%vsize;
int h = t/vsize;
int k = h<<1;
int64_t lph;
float a = amps[h], ascl = ((float)n)/vsize;
MYFLT fscal = pitch*MAXNDX/sr;
lph = (ph[h] + (int64_t)
(n*round(frame[k+1]*fscal))) & PHMASK;

a += ascl*(frame[k] - a);
atomicAdd(&out[n],

a*sinf((2*PI*lph)/FMAXLEN));
}

It takes in single-precision amplitudes and frequencies in a PV-
format frame, which has been copied from the host into the de-
vice, and writes its output sine wave to out, For sake of efficiency,
we interpolate amplitudes linearly, but frequencies only change at
hopsize intervals. Output memory is accessed via an atomic ad-
dition. The layout of kernels with respect to bins and samples is
shown in 5.

...

...

0 H-1

(N-1)H NH-1

N
 b

in
s

H samples

Figure 5: Layout of kernels for additive synthesis

The synthesis expression for each kernel is given by

shn(n) =
{
ah(t− 1) + [ah(t)− ah(t− 1)]

n

H

}
×

sin(φh(t) + ωh(t)n)
(1)

where h and n are the bin and sample indexes, respectively,
H is the hopsize, and t is the time in hopsize samples. The bin
amplitudes are found in ah(t) and ωh(t) = 2π fh(t)

fs
are the bin

frequencies (with fs as the sampling rate and fh the bin frequency
in Hz).

A separate second step is needed to update the synthesis pa-
rameters for each bin (amplitudes and oscillator phases). The phases
φh(t) are updated according to:

φh(t+ 1) = φh(t) + ωh(t)H (2)

and the amplitudes are updated directly from the input PV
frames. This operation is parallel across bins:

__global__ void update(float *frame,
float *amps, int64_t *ph,
int vsize, MYFLT sr){
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int h = threadIdx.x
+ blockIdx.x*blockDim.x;

int k = h << 1, i;
ph[h] = (ph[h] + (int64_t)

(vsize*round(pitch*frame[k+1]*MAXNDX/sr)))
& PHMASK;

amps[h] = frame[k];
}

The memory transfer from device to host that follows the ex-
ecution of these kernels is limited to a hopsize vector of floating-
point samples.

3.5. Sliding Phase Vocoder

If the hopsize is set to its smallest value, 1, the process can be
seen in another way. The advantages and drawbacks are described
elsewhere[6], but the algorithm is highly parallel. This can be seen
as the extreme case for phase vocoding, but it offers possibilities
for use of the GPU architecture.

3.5.1. The Underlying Mathematics

The Discrete Fourier Transform (DST) is defined by the formula

Ft(n) =

N−1∑
j=0

fj+te
−2πijn/N (3)

where the PCM-coded input signal is ft, and Ft(n) are the n fre-
quency (complex) amplitudes for time t, and N is the (assumed)
cyclic period of the signal.

If we know the values Ft(n) we can determine Ft+1(n):

Ft+1(n) =

N−1∑
k=0

fk+t+1e
−2πik n

N (4)

=

N∑
k=1

fk+te
−2πi(k−1) n

N (5)

=

(
N−1∑
k=0

fk+te
−2πik n

N − ft + ft+N

)
e2πi

n
N (6)

= (Ft(n)− ft + ft+N ) e2πi
n
N (7)

If the values of Ft(n) are kept on the GPU the need for data
transfer is much reduced, but we can make use of the transfer of
blocks of data for ft and ft+N at the expense of some latency.

There is however an immediate problem; the window cannot
be applied in the time domain. The solution in this case is to apply
the window as a frequency-domain convolution. That is to say, it
can be applied after the calculation of the DFT as multiplication
of the spectral transform of the window. Indeed for cosine-based
windows this operation is simple[14].

In the paper by Moorer ([15]) a complicated inverse formula
is developed. However it requires N2 data to be maintained and is
clearly impractical, especially on a memory-limited GPU. Instead
we use a direct calculation of the definition of the inverse DFT:

ft =
1

N

N−1∑
n=0

Ft(n)e
2πitn/N (8)

but as we only need consider one value of t for each frame this is
more efficient than the formula would suggest. For a single point
t = 0 this simplifies to

1

N

N−1∑
j=0

F0(j) (9)

3.5.2. Implementation

A GPU-based Csound opcode was developed from the code in
[16], where we take an audio input, apply a Transformational FM
process[6] and resynthesise it. In this application, the sliding PV
allows the unique effect of audio-rate frequency modulation of
spectral data. The initialisation function is required to organise
CUDA memory for the bin data and the pre-calculate a number
of constants (e.g. e2πi

n
N ). The main processing is done in small

vectors of samples and it involves the following steps

1. A vector of samples is copied to the device

2. The sliding DFT is performed (on sample-by-sample basis),
in parallel across bins by N/2+1 slide() threads (where
N is the DFT size).

3. DFT to PV conversion, followed by frequency modifica-
tion, and finally, PV to DFT conversion is performed by
N/2+1 fmsyn() threads

4. Reconstruction is performed in parallel across the time-domain
samples by vectorsize reconstruct() kernels.

5. A vector of samples is copied from the device to the host

4. RESULTS AND DISCUSSION

In this section, we would like to demonstrate that it is possible
to execute all of the code discussed in realtime, with low-latency
wherever possible, which was the original requirement that we
have set out to prove. In testing these conditions, we employ a
soundfile as input to the process, and make the requirement for re-
altime that computation time is less than the duration of input data.
For a low-latency condition, we need to have the ratio between
computation time and input duration fairly small so that any sig-
nificant jitter in the computation load is not translated as dropped
samples (also known as xruns). Tests included running the code
to the digital-to-analog converter in realtime using buffer sizes of
128 frames (3ms at fs = 44100) without xruns, which can also
characterise a low-latency condition. Timings were taken from the
total computation time recorded by Csound, which lumps the se-
rial and parallel code, but since the interest here is the feasibility of
the system as whole, this is exactly what we want to measure. The
reported times are the average of five runs, but we have observed
very little deviation in the individual results. Below, we discuss
the individual results for each process.

4.1. PV analysis

The following Csound 6 code was used to test the PV analysis
process. It consists of a soundfile input, the GPU-run analysis
(cudanal) and a standard CPU-based PV synthesis (pvsynth,
also used to provide a means to check the correctness of the out-
put).
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/* soundfile input */
asig = diskin:a("flutec3.wav",1,0,1)
/* GPU PV analysis */
fsig = cudanal(asig,

ifftsize,
ihopsize,
ifftsize, 1)

/* PV synthesis */
asig = pvsynth(fsig)
asig = linenr(asig,0.005,0.01,0.01)
out(asig)

Table 2: GPU PV analysis program times for a 60-sec run.

(DFT size, hopsize) time (secs)
(1024, 128) 2.95
(1024, 256) 1.68
(2048, 256) 2.20
(2048, 512) 1.28

For this algorithm, we have observed that the best performance
is obtained by maximising the number of threads in a block. Thus
we distribute the threads so that they fill the blocks completely,
up to the limit of 1024 threads. Since the number of threads is
determined by the DFT size, we will be using single blocks for
transforms of less than 1024 samples and multiple blocks above
this.

The times for a 60-sec run of the program with various com-
binations of DFT size and hopsize are shown in table 2. This indi-
cates that the best match in terms of performance is that of a 2048
transform every 512 samples. We can assess this as a generally
efficient performance, with timings more than 20× faster than the
realtime limit.

4.2. PV synthesis

Similarly to above, in order to isolate the performance of the syn-
thesis process, we employ a program that uses an analysis element
running in the CPU (pvsanal), followed by the GPU synthesis
code (cudasynth):

/* soundfile input */
asig = diskin:a("flutec3.wav",1,0,1)
/* PV analysis */
fsig = pvsanal(asig,

ifftsize,
ihopsize,
ifftsize, 1)

/* GPU PV synthesis */
asig = cudasynth(fsig)
asig = linenr(asig,0.005,0.01,0.01)

out(asig)

Results are shown in table 3. They also indicate a reasonable
performance, confirming the best combination of parameters ob-
tained in the analysis tests.

4.3. PV analysis & synthesis

Also interesting is the combination of GPU analysis and synthesis,
and following the results above, we can predict that they will be

Table 3: GPU PV synthesis program times for a 60-sec run.

(DFT size, hopsize) time (secs)
(1024, 128) 3.30
(1024, 256) 1.84
(2048, 256) 2.65
(2048, 512) 1.44

well within realtime capabilities. This is the program used (and
the results are shown on Table 4):

/* soundfile input */
asig = diskin:a("flutec3.wav",1,0,1)
/* GPU PV analysis */
fsig = cudanal(asig,

ifftsize,
ihopsize,
ifftsize, 1)

/* GPU PV synthesis */
asig = cudasynth(fsig)
asig = linenr(asig,0.005,0.01,0.01)
out(asig)

Table 4: GPU PV analysis & synthesis program times for a 60-sec
run.

(DFT size, hopsize) time (secs)
(1024, 128) 4.72
(1024, 256) 2.57
(2048, 256) 3.03
(2048, 512) 1.73
(4096, 512) 1.98
(4096, 1024) 1.20
(8192, 1024) 1.64
(8192, 2048) 1.01

(16384, 2048) 1.38
(16384, 4096) 0.86

These results demonstrate that a full PV analysis/synthesis
program can be run quite efficiently on the GPU. However, if we
compare it to PV code run sequentially in a high-performance CPU
(in this case based on a 2.8GHZ Intel I7 processor), we see that it
does not compare too well (Table 5) unless the DFT size is sig-
nificantly large. Even though the scope of this research is not to
draw comparisons between CPU and GPU capabilities for audio
processing, it is important to note these results. The major short-
comings of the GPU for the particular processes discussed here are
to do with the costs involved in launching kernels in a reasonably
fine grain (determined by the hopsize), and memory access. If we
examine the sequential steps involving the GPU in the analysis or
synthesis code, we will see that these are the most costly portions
of the code (with their average computation load):

• memory transfers: 40 - 45%

• FFT: 30 - 35%

• PV parameter conversion: 15 - 20%
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None of these issues are particularly avoidable as they are not
represented in sections of code that are good candidates for opti-
misation.

Table 5: CPU-based PV analysis & synthesis program times for a
60-sec run.

(DFT size, hopsize) time (secs)
(1024, 128) 1.24
(1024, 256) 0.69
(2048, 256) 1.28
(2048, 512) 0.70
(4096, 512) 1.34
(4096, 1024) 0.74
(8192, 1024) 1.36
(8192, 2048) 0.75

(16384, 2048) 1.40
(16384, 4096) 0.77

Nevertheless, the results point to the fact that the GPU may
be used as a means of freeing up some computation load from the
CPU in a multicore/multiprocessor operation scenario. We also an-
ticipate a considerable speedup on more capable hardware, where
we are likely to see the GPU outperforming these CPU results.

4.4. Additive synthesis

In general, Additive synthesis does not perform as well as PV syn-
thesis, and in the parallel case there is still a significant difference
in performance between the two techniques, even if at times it is
the gap is considerably less than in the serial case. The program
used for tests is the following (cudasynth implements the addi-
tive algorithm):

asig = diskin:a("flutec3.wav",1,0,1)
fsig = pvsanal(asig, ifftsize, ihopsize,

ifftsize, 1)
asig = cudasynth(fsig,1,1,ibins)
asig = linenr(asig,0.001,0.01,0.01)
out(asig)

The results are shown in Table 6, with regards to bins and hop-
sizes (DFT sizes are shown for completion, but they do not influ-
ence computation load), with GPU and CPU times side-by-side. A
highly optimised serial additive synthesis algorithm was used for
this comparison, replacing the cudasynth opcode in the listing
above.

Overall, the performance is still well within the range for low-
latency realtime performance (< 12% of total input duration at the
worst case), Comparatively, additive synthesis proves to be a good
match for the GPU, especially in the case of full-spectrum recon-
struction, and with larger hopsizes. The parallel code performs
worse only in the case where the hopsize is small comparatively to
the number of bins. This is mostly due to the fact that, in this case,
the balance between the parallel load and the process granularity
is not ideal. We can observe that this makes an important contribu-
tion to the computation cost. The granularity penalty is shown by
comparing the cost of calling one grid of 65536 threads (256 bins,
256 hopsize) and two grids containing 32768 threads each (256,
128), where we observe almost 100% slowdown. This shows that

GPUs are more suited to larger batches of data, which is not ideal
in the streaming processing case.

Table 6: GPU additive synthesis program times for a 60-sec run.

(DFT size, bins, hopsize) GPU time (secs) CPU time (secs)
(1024, 128, 128) 4.93 3.28
(1024, 128, 256) 3.70 3.01
(1024, 256, 128) 7.20 5.77
(1024, 256, 256) 3.37 5.46
(1024, 512, 256) 4.20 10.76
(2048, 256, 512) 3.04 5.65
(2048, 512, 512) 3.94 10.55

(2048, 1024, 512) 6.87 20.89

These results are very encouraging, and follow other reports
of additive synthesis, such as [13], but are not as extremely per-
formant as one might anticipate (the best speed up is of the order
of 3) . However the conditions in our case are much more restric-
tive than in other tests. We have implemented here a fully-flexible
general-purpose application of additive synthesis, where we can-
not run the processing in large batches, or apply other cost-saving
measures that would maximise the GPU processing load. In partic-
ular, in order to keep latency and realtime control to a satisfactory
minimum, as well as have good reconstruction quality, process-
ing granularity is never bigger than 1/4 DFT size. We also should
note that the results obtained in [17] are more in line with the ones
reported in this paper.

4.5. Sliding PV

The sliding phase vocoder CUDA opcode (cudasliding) com-
bines analysis, frequency scaling and resynthesis. It was tested
with the Csound program

asig = diskin:a("flutec3.wav",1,0,1)
amod = 1
asig2 = cudasliding(asig,amod,idftsize)
asig = linenr(asig2,0.005,0.01,0.01)
out(asig)

and the performance compared with a similar program running
solely on the host computer CPU.

Table 7: GPU and CPU sliding PV program times for a 60-sec
run.

DFT size GPU time (secs) CPU time (secs)
512 33.05 68.794
1024 37.98 138.29
2048 54.99 272.33

The results are shown in Table 7. As can be seen that the
times using the GPU are within real time, but considerably slower
than the standard phase vocoder with GPU support (Table 4). The
figures also are slower than reported by [16] on different hardware
with more computing capacity. It also suggests that much more
work will be needed if the Sliding Constant-Q algorithm[18] that
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needs three streams of SDFT to be calculated is to be available for
realtime on consumer-level GPUs.

5. CONCLUSIONS

In this paper, we set out to investigate the implementation of stream-
ing spectral processing operations in a consumer-level GPU at-
tached to an off-the-shelf desktop computer under a commonly-
used music programming environment, Csound. The full CUDA
source code for these unit generators, and a CMake build script,
can be found in the Csound git repository:

https://github.com/csound/csound.git

These opcodes are fully integrated into the standard system
and are included in the present release (6.03, April 2014).

We have demonstrated that each one of the processes detailed
here can be executed in realtime with low latency. The standard
algorithms can all generally be executed with good performance,
and, among these, additive synthesis is comparatively less effi-
cient, although the parallel version generally outperforms the se-
rial one. With the novel SPV process, we see significant gains,
with up to 5× speedup, where the improvements allow the code to
be used in realtime. We have identified that the major costs are re-
lated to memory transfers from host to device and vice-versa, and
device memory access. We believe that this work demonstrates
that consumer-level GPU processing can be harnessed for audio
applications. In particular a number of novel digital audio effects
can be designed to take advantage of the GPU implementation for
realtime performance.
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