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Abstract

The ideas of directional distributions for random data are reviewed, in particular focussing on
descriptive directional statistics to summarise these distributions. Consideration is then given to spa-
tial variations in directional distributions; for example how does the directional distribution of wind
direction vary across geographical space, and how may this be analysed? To investigate this issue, an
approach to moving window-based smoothing of directional data is proposed, based on the applica-
tion of a geographical kernel-based weighting scheme to find localised mean directions (and related
statistics) to directions represented as complex numbers of magnitude one. Consideration is also given
to the visualisation of the outputs of an analysis such as this. The paper concludes with two applica-
tions of the techniques proposed; an analysis of wind speeds across Europe drawn from NOAA obser-
vations, and an analysis of US inter-county net migration counts between 1985 and 1990.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Directions occur in many kinds of geographical situations, but surprisingly little atten-
tion is given to the analysis of directional data. As their name suggests, these are data
relating to direction (usually in two-dimensional space). Typically, such data will take
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the form of angles in the range 027 rad (0-360°). Data of this kind has been analysed over
a long time span and in a wide variety of disciplines—see for example Mitchell (1767) who
provides an interesting astronomical study.

In this paper we discuss the application of localised statistics to this kind of data and the
visualisation of directional trends using streamlines. We show how descriptive statistics
can be interpreted in terms of complex numbers, and coordinate geometry, and how these
interpretations extend naturally to weighted statistics. We then show how these may in
turn be used to provide moving window filters to examine geographical non-stationarity
in distributions of circular data. We also consider the visualisation of localised directional
statistics, and consider how this may be viewed in a modelling context as well as an explor-
atory approach. In this paper angles are measured in radians, and zero radians corre-
sponds to the direction due east. This is mainly for mathematical convenience—any of
the observations made here could be translated to bearings, where angles are in degrees
and zero is due north.We begin with a brief introduction to circular descriptive statistics.

2. Circular descriptive statistics—a brief introduction

Directional data may be thought of as navigational bearings or as the directional com-
ponent of a two-dimensional vector. They are cyclic and have no well-defined minimum
and maximum value—directions just below 27 are considered to be close to values just
above zero. This implies that ordinary summary statistics are sometimes unhelpful. For
example, the directional data set in Table 1 has an arithmetic mean of 3.144 rad, although
this is almost as far removed as possible from each of the individual directions—see Fig. 1.

The problem here is that although directions should be represented on a cyclic scale, the
descriptive statistics are intended for use with a linear scale. An alternative way of repre-
senting directions is as two-dimensional vectors, or complex numbers. Here, the magni-
tude of the vector is fixed (usually taking the value one), and the direction of the vector
is that being represented. Equivalently, the direction can be represented as a complex
number whose magnitude is one. In this case, we may denote the direction as the complex
number z where z = exp(if), and 0 is the direction.

The advantage of this representation is that it overcomes the discontinuous step in
value seen as directions straddle due east. For example, if directions 1 and 2 are specified
by Table 1 as 0; = 6.23 and 0, = 0.05 then the directions differ by 6.18 (around 354°).
However using the complex number representations we have z; =0.999 — 0.050i and
25 =0.999 + 0.050i. These differ by 0.1i, which is relatively small, given that all directions
lie on the unit circle, and the largest possible difference between two z-values is 2, when the
directions are diametrically opposed.

Following this, an alternative definition of a mean may be given for directional data,
using the complex number representations of directions. We denote this mean by M.,
and define it as

Table 1
A small data set of directions (in radians)

0.233 0.144 6.179 6.111 5.989 0.208
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Fig. 1. Relationship of simple mean to directions in Table 1.
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Fig. 2. Relationship of directional mean to directions in Table 1.
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this is simply the mean of all of the directions in complex number form, normalised to
have a magnitude of 1.

There is a geometrical rationale for defining the mean in this way. It is the complex
number lying on the unit circle that minimises the mean squared straight line distances
between itself and each of the directions in the sample. For the directions listed in Table

1, it is shown in Fig. 2. As can be seen, the location is now more plausible, when compared
to that of Fig. 1.

()

3. Geometrical interpretation of circular mean

A geometric interpretation for the above definition of M. can also be given. This is illus-
trated in Fig. 3. As with Fig. 2, directions are plotted as points on the circumference of the
unit circle—and the points are considered as points in two-dimensional space (or on the
Argand diagram). Here, the lighter grey point represents the geometrical centroid of the
directions of the points in two-dimensional space. The circular mean can then be found
by extending a line from the centre of the unit circle, through this centroid, until it meets
the circumference of the circle (the meeting shown as the dark grey point).
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Fig. 3. Geometrical interpretation of the circular mean.

We can extend this idea a further stage, and demonstrate a measure of spread from this
geometrical viewpoint. In Fig. 4, two further samples of directions are shown. That on the
left shows very little angular dispersion, whereas that on the right shows a much larger
amount of dispersion. In both cases, the centroid of the points is shown.

As can be seen, the centroid is much closer to the centre of the unit circle for the sample
with the high degree of variation. For the sample with little variation, the centroid is very
close to the circumference. In fact, the two extremes are easy to visualise: if all of the
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Fig. 4. Geometric illustration of a measure of circular dispersion.
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directions in a sample were identical (so that there was no variation at all in the sample) the
centroid would lie on the circumference—since it would just take the value of the unique
direction exhibited. Alternatively, if directions were uniformly spread around the unit circle
(for example in the locations of vertices of a regular polygon)—the centroid would lie in the
centre of the unit circle. The length of the grey radial line in Fig. 4 measures the nearness of
the centroid to the centre of the unit circle, and hence gives an indication of sample spread.
This could be used directly to measure spread, although it has the counter-intuitive property
that greater lengths are associated with smaller degrees of sample variability. For this reason,
the length of the line is subtracted from one to give the measure of spread.
Translating this geometrical entity into a formula using complex numbers, we obtain

1 n

§ 2

i=1

y=1-—

2)

as a measure of spread.

This geometric interpretation also identifies an interesting pathological case. If the
directions in a sample are evenly positioned around a circle (and in some other cases) then
their centroid is at the centre of the unit circle. In this case, the spread is 1, but the mean is
undefined as the two points needed to define the line in Fig. 4 are coincident. This is per-
haps not unreasonable—if directions are evenly spread then no direction would provide a
‘typical’ direction in the sense that a mean direction would if some directions were
favoured over others. Although this observation may seem esoteric, it is important to
be aware that for some circular distributions, there is no mean direction.

4. Circular probability distributions

In addition to considering circular descriptive statistics, one can also think of the prob-
ability distributions used to model the variations in directional data. Perhaps the most
commonly used distribution for circular data is the von Mises distribution:

(0) = 2nlo(x)] " expicos(0 - p)] 3)

where 0 is a random direction, /y(4 is the modified Bessel function of order zero, and x and
u are distributional parameters. In a number of ways, the von Mises distribution can be
thought of as the circular equivalent of the normal distribution—see for example Mardia
(1972, 1975).

As well as being defined for samples, circular means and directional variances are also
defined for distributions—with expected values being substituted for sample means in Eqgs.
(1) and (2). For the von Mises distribution we have

Circular mean = 4)
and
Circular variance = 1 — 4;(k) (5)

where A;(4 is the ratio of the modified Bessel function of order one to the modified Bessel
function of order zero. Note that sample estimates of these two quantities can be obtained
using these relationships. p can be estimated by M. and x estimated by solving (5) with v
substituted for the circular variance. Standard errors of these estimates can be obtained
using bootstrap methods (Efron, 1982).
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5. Localising directional statistics

Although it is unusual to consider directions as complex numbers or from a geometrical
viewpoint, the definitions above are nothing new. Directional means may be considered in
a number of ways—see for example Mardia and Jupp (1999) or Fisher (1993). Similarly,
Eq. (4) defines the sample circular variance—Fisher (1993). However, it is useful to define
the sample circular mean and variance in the ways above if one wishes to extend this idea
by considering weighted mean directions, and in particular geographically weighted mean
directions. A weighted mean direction can easily be defined in an intuitive way:

n

(6)

where w; is the weight associated with direction z;. Similarly, a weighted circular variance
can be defined as

’Zn WiZ;

v=1- | S— (7)
Zi:lwi

Weighting is useful for a number of reasons—for example one may have a set of directions
measured with varying reliability, and wish to reflect this when computing a mean. Also,
one may wish to attach greater weight to more recent observations. The idea is important
here as a basis for geographical weighting of directional descriptive statistics. In this ap-
proach descriptive statistics are ‘localised’ around a given geographical point by weighting
observations using a kernel centred on that point. Allowing the point (and consequently
the kernel) to move around the map one can build up a continuous field of localised sta-
tistics which may be mapped to investigate local trends (Brunsdon, Fotheringham, &
Charlton, 2002). For any given localisation point (x,y) we obtain a unique set of w;’s
depending on the distance between each point in the data set and (x,y). Typically, if d;
is the distance between the location associated with the directional observation z; and
(x,y) a Gaussian weighting scheme is chosen:

w; = exp (—d’=2b%)

where b is the bandwidth of the kernel. This controls the smoothness of the localised statis-
tic, if it is viewed as a continuous function of (x,y). Applying this approach to directional
data allows geographical patterns in directional phenomena to be graphically explored.
Finally, geographically weighted directional means also have a theoretical interpreta-
tion. If directions at some geographical point (x,y) have a von Mises distribution as set
out in Section 4, but with mean u(x,y) then the geographically weighted mean direction
centered on (x,y) is a maximum localised likelihood estimator (Tibshirani & Hastie,
1987) of u(x,y). This likelihood interpretation can also be used in a method for selecting
an ‘optimal’ bandwidth. Suppose we have an observation 0; at location (x;, y;), then leaving
each observation 7 out of the data set, it is possible to estimate u(x;,y;) from the remaining
observations using the localised weighting procedure described above for a given
bandwidth. Next, one can compute a cross-validation likelihood for each observation
by substituting the estimated u(x;,y;) into Eq. (3). Summing the logarithms of these gives
a cross-validation likelihood score associated with the bandwidth. Thus we can consider
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this score as a function of the bandwidth. Choosing the bandwidth that maximises this
score is a useful ‘automatic’ approach to bandwidth selection.

6. Two examples
6.1. Wind direction

In this section two examples of the localised directional analysis described above are
given. The first of these is an analysis of METAR data obtained from the US National
Oceanographic and Aeronautical Administration (NOAA). ‘Cyclic Files’ contain weather
information from a large number of locations throughout the world. Among the recorded
data are the wind speed and direction. Here, a set of data for a number of stations in wes-
tern Europe for midnight, 18th January 2003, are analysed. Local directional mean wind
directions are computed as set out above, using a moving kernel with a bandwidth equiv-
alent to 4° of arc on a great circle. Here double weighting occurs—firstly there is a geo-
graphical weighting as set out in earlier parts of this paper, but secondly weighting
occurs to allow for the magnitude of the wind speed as well as the direction. Thus each
w; is the product of the geographical weight multiplied by the wind speed at location i.
Thus, the numerator in Eq. (6) is the geographically weighted resultant wind speed vector
at a given spatial location i, and dividing by the denominator yields the unit vector giving
the directional component of this quantity.

A key question here is how such localised statistics may be visualised. One simple way
of depicting directional data is the use of glyphs. These are symbols—such as arrows—
which may be depicted pointing in any direction. A glyph depiction of the raw data is
given in Fig. 5.

An initial approach was to show the geographically weighted mean directions as glyphs
on a regular grid. The problem here is that visual attention is drawn to the lattice arrange-
ment of the glyph locations regardless of the direction in which they point. In a sense there

Fig. 5. Raw NOAA data depicted with glyphs.
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Fig. 6. Streamlines showing wind direction for NOAA data.

were two patterns: the pattern of interest (the geographical trend in wind direction) and a
‘nuisance pattern’ (the regular grid on which the glyphs are located).

A more helpful approach uses streamlines. Here a location is chosen (the initiator point)
and the local mean direction is computed. The next sample point is then chosen by moving
a small amount in the mean direction. This process continues and selects a series of sample
points following the direction of flow. These points are joined to create a streamline. Sim-
ilarly, starting again at the initiator point, points may be drawn in the opposite direction
to the mean direction giving streamlines leading into the initiator point. Finally a single
glyph is drawn at the initiator point to indicate the direction of the stream line. A number
of judiciously chosen initiator points give a clear picture of trends in mean direction—see
Fig. 6.

In Fig. 7, the local circular variance is plotted. This is derived as in Eq. (2)—and can be
thought of as a local variability in wind direction. As before, wind speeds are included in
the weighting for this calculation. Note that this is not defined as variability over time—
since all measurements are essentially a ’snapshot’ taken at a single point in time. Rather,
this is a measure of spatial variability—a high value of this quantity suggests that near to
the sampling point, winds were recorded in a wide range of directions. Here there is a gen-
eral trend for increasing spatial divergence of wind direction as one heads from north to
south, with a number of local maxima. Most notable of these is a maximum circular dis-
persion in the north of Italy. This is consistent with the smoothed direction map, where it
appears that wind streamlines bifurcate.

6.2. US migration data

An interesting way of considering migration data is as directional flow information.
Every person moving from place A to place B can be thought of as a unit of population
flow in the direction of the vector AB. This notion of modelling human flows as a contin-
uous phenomenon has a long history—see for example Beckmann (1952). This idea has
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been exploited by Tobler, who derives a model of population flow on the basis of ‘attrac-
tiveness potentials’ (Tobler, 1978, 1981). The idea here is that each location in space has an
attractiveness potential at any point in time, and that population at any location flows in
the direction of greatest increase in potential. Thus, if population flow is regarded as a vec-
tor field, then this field is proportional to the gradient vector of the population potential
surface. Tobler demonstrates how discrete approximations may be used to estimate the
potential field using tabulated migration counts. Since population flows here are consid-
ered as a vector field, one can obtain a field of directions varying continuously over
geographical space, and represent these using streamlines similar to those provided in
Fig. 6—indeed this is done in Tobler’s 1981 paper.

Here we consider the problem from a slightly different standpoint—that of a local like-
lihood statistical model. Rather than using a potential field model to derive the direction
of population movement, we work from a probabilistic model, where population at any
point has a probability distribution associated with its direction of movement. Thus, given
an individual who lives at a location (x,y) who decides to migrate, one may attach prob-
abilities to each possible direction of migration and using a locally weighted mean of
observed directions one can estimate the expected direction for any point (x,y). Stream-
lines may then be derived from these directions streamlines as in Fig. 6. In this case the
streamlines indicate trends in population flow. Working with US inter-state migration
data for the period 1985-1990 gives the result shown in Fig. 8.

Clearly the data supplied does not specify the exact origin and destination as latitude
and longitude for each migrant in the five year period. For this reason all ‘from’ and
‘to’ locations for migrations are allocated to county centroids. For each state, there are
observations of the numbers of migrations to each other state for which migrations occur
(intra-state migrations are not considered here). Each non-zero state-to-state migration arc
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Fig. 8. Streamlines showing the directional components of trends in US inter-state migration (1985-1990).

is then counted as a directional observation. Unfortunately this does reduce the resolution
of the analysis, so that more subtle sub-state trends in migration cannot be identified here.
To compute spatial trends, geographically weighted directional means are computed—as
before ‘double weighting’ occurs. In this case the non-geographical weight applied to each
arc is the number of people associated with that arc. Note that the directions being con-
sidered here relate to ex-migration—so that at a given states, the angles refer to the direc-
tions to all counties to which people have migrated fo. Note also that the angles refer to
directions on the surface of a sphere.

A number of methods of depicting population movement have been considered in the
past—Tobler (1987) gives a comprehensive review of possibilities. A more recent consid-
eration is Holland and Plane (2001). The continuous nature of the smoothing approach
taken here suggests the use of a flow-based method of visualisation, similar to that used
by Tobler in his 1981 paper. It is worth noting that this approach typically associates just
one flow direction to any point in geographical space—with the exception of a small num-
ber of bifurcation points, and therefore cannot depict complex one-to-many flow situa-
tions, as discussed for example in Gou (1993) and Marble, Gou, Liu, and Saunder
(1997). However, the aim here is to provide a visual synopsis of the data and identify
trends, and some degree of simplification is justified.

6.3. Degree of smoothing

One way in which this approach differs from other flow-based methods is that it is pos-
sible to control the degree of smoothing, and indeed produce a range of flow maps each
depicting a ‘low-pass filtered’ image of the raw directional data, each with a different
degree of filtering. The migration process may be thought of as a superposition of patterns
of different scales—some local, some intra-state and some spanning the entire country—
and the effect of smoothing is to filter out the lower frequency (ie more locally-scaled) pat-
terns. Different levels of smoothing reveal trends at different geographical scales. The
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Fig. 9. Effect of greater (LHS) and less (RHS) smoothing than in Fig. 8.

degree of smoothing is governed by the choice of the smoothing kernel bandwidth. As with
more usual smoothing operations (such as an ‘ordinary’ moving window averaging) and as
discussed above, smaller bandwidths tend to give ‘rougher’ trends. In the case of surfaces,
the roughness takes the form of large numbers of peaks and troughs. For directional
trends roughness can be considered in terms of numbers of sink holes or vortices—points
at which several streamlines meet. Fig. 8 has just one vortex—however the effect of less
smoothing and more smoothing relative to this are shown in Fig. 9.

In the left hand panel a very large degree of smoothing is used—all streamlines more or
less follow the global mean migration direction. On the right hand panel a low degree of
smoothing is used, resulting in two vortices rather than one as in Fig. 8. From these, it is
possible to demonstrate patterns at different geographical scale as discussed in the above
section. Thus, one viewpoint is that it is good to visualise maps at different levels of
smoothing.

However, there may be situations in which it is helpful to depict the situation with just
one map. ‘Correct’ (or at least automatic) choice of degree of smoothing can be achieved
using methods such as cross-validation is discussed in Section 5 (or see for example Bruns-
don, 1995), although it can be helpful to look at the results of several levels of smoothing
and see directional trend patterns at different scales. The degrees of smoothing for the
streamlines in Figs. 6-8 were all selected using cross-validation.

7. Concluding discussion

The two examples above suggest there are a number of areas in which localised circular
statistics may provide some useful exploratory tools. However, a number of questions are
also raised, and a number of areas for future research may be identified. A few of these will
be outlined here.

7.1. Working with orientational data
Orientational data is similar to directional data, but is used in situations where there is

rotational symmetry through 180°. Thus, a straight road will have an orientation, but the
velocity of a car driving along that road has a direction. More generally, data relating to
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axes of some description are orientational. For example, Spain, Okello-Oloya, and John
(1983) consider the orientation of termite mounds—which tend to be elongated along
one axis. There are situations where orientation may vary geographically—and in these
situations the methods outlined in this paper could be adapted to describe the mean ori-
entation and spread in orientation. A typical approach for estimating orientational means
is to double the angles and treat as circular data, and then halve the computed mean—but
as well as these straightforward computational issues, the visualisation of trends in orien-
tation must also be considered.

7.2. Semi-parametric models for circular data

Although the emphasis in this paper has been the use of localised circular statistics as an
exploratory method it has been hinted that the method may be used as a semi-parametric
model. If we assume that a direction located at (x,y) has a von Mises distribution with a
mean p(x,y), where p(.,.) is an unspecified function of x and y then, as discussed in Section
5, the local circular mean is actually the local likelihood-based point estimator of u(x,y).
Note that the parameter xk must also be estimated—this could either be constant across
space, or itself a function of (x,y). This can be thought of as a parallel to a typical semi-
parametric regression model for linear data of the form z =f{x,y) + ¢ where z(.,.) is an
unspecified mean function of x and y, and e is a random normal variate with mean zero.
In particular, in the latter situation one may choose between ¢ having a constant variance
with regard to space, or having a variance that is itself a function of (x, y). One advantage
of considering this from a modelling viewpoint is that some inferential procedures may
then be applied. For example, one could use a bootstrap-based technique applicable to
local-likelihood methods to estimate confidence intervals for u(x, y)—see Galindo, Kauer-
mann, Liang, and Carroll (2000).

7.3. Alternative approaches to choosing bandwidth

In this paper a cross-validation based approach was used for bandwidth selection.
However a number of other options are possible if one adopts the modelling approach
suggested above. Cross-validation exploits the likelihood function for a set of observa-
tions, but this is also the case for a number of other approaches. In particular, an
approach using either the Akaike Information Criterion (AIC) (Akaike, 1973) or the
Bayesian (or Schwarz) Information Criterion (BIC) (Schwartz, 1978) could be used to
select the optimal bandwidth. Either of these latter approaches are likely to have a lower
computational overhead than the cross-validation approach.

7.4. Analysis of time-based data

The key characteristic of circular data is its cyclic nature. However, several other kinds
of data have this cyclic structure. In particular, data relating to time of day (or time within
a weekly 168 h cycle) have this structure. Thus, the methods here may be useful for mode-
lling events whose time of day and location are recorded. An example of this might be
Police data for recorded public order incidents. It would be useful to model the variations
in the mean time of day for incidents over geographical space. However, it is likely that
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different methods of visualisation than those used to examine directional trends should be
used for this kind of data.
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