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Geographically Weighted Regression: A Method 
for Exploring Spatial Nonstationarity 

Spatial nonstationarity is a condition in which a simple ‘global” model cannot 
explain the relationships between some sets of variables. The nature of the 
model must alter over space to reflect the structure within the data. In this 
paper, a technique is developed, termed geogra hically weighted regression, 

model which allows diferent relationships to exist at diferent points in  space. 
This technique is loosely based on kernel regression. The method itself is intro- 
duced and related issues such as the choice of a spatial weighting function are 
discussed. Following this, a series of related statistical tests are considered 
which can be described generally as tests f o r  spatial nonstationarity. Using 
Monte Carlo methods, techniques are proposed fo r  investigatin the null 

non-stationa y one and also f o r  testing whether individual regression coefi- 
cients are stable over geographic space. These techniques are demonstrated on a 
data set f rom the 1991 U. K. census relating car ownership rates to social class 
and mule unemployment. The paper concludes by  discussing ways in which the 
technique can be extended. 

which attempts to  capture this variation by  Cali E rating a multiple regression 

hypothesis that the data m y  be described by a global model rat a er than a 

1. INTRODUCTION 

One of the main objectives in spatial analysis is to identify the nature of rela- 
tionships that exist between variables. Typically this is undertaken by calculating 
statistics or estimating parameters with observations taken from different spatial 
units across a study area. The resulting statistics or parameter estimates are 
assumed to be constant across space although this might be a very questionable 
assumption to make in many circumstances. It seems reasonable to assume that 
there might be intrinsic differences in relationships over space or that there 
might be some problem with the specification of the model from which the rela- 
tionships are being measured and which manifests itself in terms of spatially 
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varying parameter estimates. In either case it would be useful to have a means 
of describing and map ing such spatial variations as an exploratory tool for 

Several techniques already exist for this purpose although we argue that the 
method we develop in this paper has several important advantages. Perhaps the 
most well-known framework in which parameter “drift” has been measured is 
that of Casetti’s expansion method (Casetti 1972; Casetti and Jones 1992). In 
this framework, parameters in a global model can be made functions of geo- 
graphic space so that trends in parameter variation over space can be measured 
(inter alia, Fotheringham and Pitts 1995; Eldridge and Jones 1991). While this 
is an important framework in which improved models can be developed, it is a 
trend-fitting exercise which is of limited use in situations where parameters 
exhibit complex variation over the space being studied. The method pro- 
posed here, that of geographically weighted regression (GWR), allows the 
actual parameters for each location in space to be estimated and mapped as 
opposed to having a trend surface fitted to them. 

The method of spatial adaptive filtering (SAF) has also been proposed to 
handle spatially varying relationships (Foster and Gorr 1986; Gorr and Olligs- 
chlaeger 1994). However, this approach incorporates spatial relationships in a 
rather ad hoc manner and produces parameter estimates that cannot be tested 
statistically so that it is of limited applicability. 

Two other methods that model spatial variations in parameter estimates are 
the random coefficients model (Aitken 1996) and multilevel modeling (Gold- 
stein 1987). In both these ap roaches the parameter estimates in regression 
models are assumed to be ran dp om variables. In multilevel modeling, the distri- 
bution of the parameter estimates is assumed to be Gaussian, while in the ran- 
dom coefficients model, the parameters are modeled as finite mixture distribu- 
tions. In either case, by using Bayes’ theorem it is possible to obtain an estimate 
of each parameter although in neither case is any spatial dependency assumed 
in the parameter estimates which seems unrealistic in models of spatial phenom- 
ena. Although geographical variations of multilevel models have been applied 
(Jones 1991), these rely heavily on an assumed hierarchy of spatial units. While 
this may be reasonable if the hierarchical nature of the model is reflected well 
in the process being modeled, in other circumstances a “distance-decay” model 
of spatial association, such as GWR, may be more appropriate. 

developing a better un C f  erstanding of the relationships being studied. 

2. SPATIAL NONSTATIONARI’N IN A REGRESSION CONTEXT 

A frequently used model in geographical analysis is that of simple linear 
regression (inter aha, Dobson 1990, pp. 68-78). In this technique, a particu- 
lar variable, the dependent variable, is modeled as a linear function of a set of 
independent or predictor Variables; 

where y i  is the ith observation of the dependent variable, X i k  is the ith observa- 
tion of the lcth independent variable, the ~s are independent normally distributed 
error terms with zero means, and each a k  must be determined from a sample of n 
observations. Usually the least squares method is used to estimate the a k s .  Using 
matrix notation this may be expressed as 

8 = (xtx)-lxty (2) 
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where the independent observations are the columns of x and the dependent 
observations are the single column vector y.* The column vector ii contains the 
coefficient estimates. Each of these estimates can be thought of as a “rate of 
change” between one of the independent variables and the dependent variable. 
For example, if y were agreed house prices, and x contained several variables 
relating to attributes of the house and its surrounding environment, coefficients 
could be used to estimate the change in house price for an extra square meter of 
garden, an extra bedroom, or the house being located one kilometer closer to the 
nearest school. 

It is important to note that these rates of change are assumed to be univer- 
sal. Wherever a house is located, for example, the mar inal price increase asso- 

It might be more reasonable to assume that rates of change are determined by 
local culture or local knowledge, rather than a global utility assumed for each 
commodity. Returning to the example, the value added for an additional bed- 
room might be greater in a neighborhood populated by families with children 
where extra space is likely to be viewed as highly beneficial than in a neighbor- 
hood populated by singles or elderly couples, for whom extra space might be 
viewed as a negative feature. 

Variations in relationships over space, such as those described above, are re- 
ferred to as spatial nonstationarity. In a recent paper, Fotheringham, Charlton, 
and Brunsdon (1996) provide a demonstration of the extent to which regression 
parameter estimates can vary over space. In their example, a 7 x 7 window is 
placed over every cell in a 50 x 38 matrix which allows placement of the win- 
dow in such a way that it is completely within the region. At each placement, 
the data within the window are used to calibrate a regression model so that 
each cell has a set of parameter estimates associated with it. The parameter 
estimates can then be mapped to show the extent of spatial variations in esti- 
mated relationships. The results show that (a) relationships can vary signif- 
icantly over space and that a “global” estimate of the relationships may obscure 
interesting geographical relationships and (b) that the variation over space can 
be sufficiently complex that it invalidates simple trend-fitting exercises. An ex- 
ample of the type of parameter surface described by Fotheringham, Charlton, 
and Brunsdon (1996) is shown in Figure 1 for the relationship between popula- 
tion density and elevation in part of northeast Scotland. The surface shows 
localized parameter estimates obtained from the window regression technique 
described above in which a multiple linear regression model is calibrated 
using, in this case, a 7 x 7 window. The surface shows a complex surface of 
parameter values ranging from -1.26 to 0.75. In some parts of the study area, 
the relationship between population and density and elevation is significantly 
negative and in other parts it is significantly positive. Although there are inter- 
esting “valleys” and “hills” in this parameter surface, it is clearly too complex to 
be represented by a simple linear or quadratic trend. It does, however, provide 
interesting insights into how this particular relationship varies over space which 
can be used to explore aspects of the relationship between the two variables 
that might not otherwise be investigated. 

Although the methodology of Fotheringham, Charlton, and Brunsdon (1996) 
which is used to generate Figure 1 serves a useful exploratory purpose, it is ad 
hoc. Hence, it is the purpose of this paper to describe a formal statistical tech- 
nique, which we term geographically weighted regression (GWR), that allows 

ciated with an additional bedroom is fixed. However, t a is may not be the case. 

For the term a column of 1s must be included in x. 
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Parameter Value 
- 1 . 2 6  t o  - 0 . 9 2  

. 0 . 9 2  t o  - 0 . 5 9  

. 0 . 5 9  t o  - 0 . 2 5  I - 0 . 2 5 t o  0 . 0 8  

0 0 8  t o  0 4 1  

0 4 1  t o  0 . 7 5  

FIG. 1. Elevation Parameter Surface 

complex spatial variations in parameter estimates to be identified, mapped and 
modeled. 

3. GEOGRAPHICALLY WEIGHTED REGRESSION 

GWR is a relatively simple technique that extends the traditional regression 
framework of equation (1) by allowing local variations in rates of change so 
that the coefficients in the model rather than being global estimates are spe- 
cific to a location i. The regression equation is then 

k=l,m 

where a i k  is the value of the lcth parameter at location i. Note that (1) is a special 
case of (3) in which all of the functions are conStants across space. As will be 
shown below, the point i at which estimates of the parameters are obtained is 
completely generalizable and need not only refer to points at which data are col- 
lected. It is very easy with GWR to compute parameter estimates, for instance, for 
locations that lie between data points, which makes it possible to produce detailed 
maps of spatial variations in relationships. 

Although the model in equation (3) appears to be a simple extension of that 
in equation (I), a problem with calibrating (3) is that the unknown quantities 
are in fact functions mapping geographical space onto the real line, rather 
than simple scalars as in (1). In a typical data set, samples of the dependent 
and independent variables are taken at a set of sample points and it is from 
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these that the parameters must be estimated. In the traditional model, these 
estimates are constant for all i but in equation (3) this is clearly not the case. 
For model (3), it seems intuitively appealing to base estimates of aik on obser- 
vations taken at sample points close to i. If some degree of smoothness of the 
aiks is assumed, then reasonable approximations may be made by considering 
the relationship between the observed variables in a region geographically 
close to i. 

Using a weighted least squares approach to calibrating regression models, 
different emphases can be placed on different observations in generating the 
estimated parameters. In ordinary least squares, the sum of the squared differ- 
ences of predicted and actual yis is minimized by the coefficient estimates. In 
weighted least squares a weighting factor w, is applied to each squared differ- 
ence before minimizing, so that the inaccuracy of some predictions carries 
more of a penalty than others. If w is the diagonal matrix of wis. then the esti- 
mated coefficients satisfy 

In GWR, weighting an observation in accordance with its proximity to i would 
allow an estimation of a i k  to be made that meets the criterion of “closeness of 
calibration points” set out above. 

Note that usually in weighted regression models the values of wi are constant, 
so that only one calibration has to be carried out to obtain a set of coefficient 
estimates, but in this case w varies with i so that a different calibration exists 
for every point in the study area. In this case, the parameter estimation formula 
could be written more generally as 

There are parallels between this method and that of kernel re ression and 

1988; Silverman 1986; Brunsdon 1991, 1995; Wand and Jones 1995, pp. 114- 
45). In kernel regression, y is modeled as a nonlinear function of x by weighted 
regression, with weights for the ith observation depending on the proximity of x 
and x, for each i with the estimator being 

kernel density estimation (Parzen 1962; Cleveland 1979; Clevelan f and Devlin 

i(x) = (x~w(x)x)-’xtw(x)y. (6) 

The essential difference between the two methods is that in (6), kernel regression, 
the weighting system depends on the location in “attribute space” (Openshaw 
1993) of the independent variables, whereas in (5), GWR, it depends on location 
in geographical space. The output from (5) is typically a set of localized parameter 
estimates in x space so that highly nonlinear and nonmonotonic relationships 
between y and x can be modeled. The typical output from (6), however, will be 
a set of parameter estimates that can be mapped in geographic space to represent 
nonstationarity or parameter “drift.” 

3.1 Choice of Spatial Weighting Function 

Until this point, it has merely been stated that w(i) is a weighting scheme 
based on the proximity of i to the sampling locations around i without an 
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explicit relationship being stated. The choice of such a relationship will be con- 
sidered here. Firstly, consider the implicit weighting scheme of (2). Here 

wij = 1 vi,j (7) 

where j represents a specific point in space at which data are observed and i rep- 
resents any point in space for which parameters are estimated. That is, in the 
global model each observation has a weight of unity. An initial step toward weight- 
ing based on locality might be to exclude from the model calibration observations 
that are further than some distance d from the locality. This would be equivalent 
to setting their weights to zero, giving a weighting function of 

wij = 1 if dij < d ;  

wij = 0 otherwise. (8) 

The use of (8) allows for efficient computation, since for every point for 
which coefficients are to be computed, only a subset (often quite small) of the 
sample points need to be included in the regression model. However, the spa- 
tial weighting function in (8) suffers the problem of discontinuity. As i vanes 
around the study area, the regression coefficients could change drastically as 
one sample point moves into or out of the circular buffer around i and which 
defines the data to be included in the calibration for location i. Although sud- 
den changes in the parameters over space might genuinely occur, in this case 
changes in their estimates would be artifacts of the arrangement of sample 
points, rather than any underlying process in the phenomena under investiga- 
tion. One way to combat this is to specify wij as a continuous function of &j, 
the distance between i and j. In this case, it can be seen from ( 5 )  that the co- 
efficient estimates would then vary continuously with i. One obvious choice 
might be 

so that if i is a point in space at which data are observed, the weighting of that 
data will be unity and the weighting of other data will decrease according to a 
Gaussian curve as the distance between i and j increases. In the latter case the 
inclusion of data in the calibration procedure becomes “fractional.” For example, 
in the calibration of a model for point i, if wij = 0.5, then data at point j contrib- 
ute only half the weight in the calibration procedure as data at point i itself. For 
data a long way from i the weighting will fall to virtually zero, effectively excluding 
these observations from the estimation of parameters for location i. 

Compromises between (8) and (9) may be reached, having the computation- 
ally desirable property of excluding all data points greater than some distance 
from i and also the analytically desirable property of continuity. One such exam- 
ple is the bisquare function defined by 

wij = [l - d;/d2I2 if dij < d; 

wij = 0 otherwise. (10) 

This excludes points outside radius d but tapers the weighting of points inside the 
radius, so that wij is a continuous and once differentiable function for all points 
less than d units from i. 
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Whatever the specific weighting function employed, the essential idea of 
GWR is that for each point i there is a “bump of influence” around i corre- 
sponding to the weighting function in such a way that sampled observations 
near to i have more influence in the estimation of i’s parameters than do 
sampled observations farther away. The moving window methodology used to 
create Figure 1 and described more fully elsewhere (Fotheringham, Charlton, 
and Brunsdon 1996) employs a weighting function defined by unity if the points 
i and j lie within the square whose vertices are (-d/2,-d/2), (-d/2,d/2), 
(d/2,d/2) and ( 4 2 ,  -d/2), and zero otherwise. This is essentially a “sudden 
cut-off’ kernel like (8 ) ,  but square rather than circular in shape. In hindsight 
this appears a to be rather eccentric choice of kernel, although clearly in com- 
putational terms this fits the raster framework well. 
3.2 Calibrating the Weighting Function 

One difficulty with GWR is that the estimated parameters are, in part, func- 
tions of the weighting function or kernel selected in the method. In (8), for 
example, as d becomes larger, the closer will be the model solution to that of 
OLS and when d is equal to the maximum distance between points in the sys- 
tem, the two models will be equal. Equivalently, in (9) as B tends to zero, the 
weights tend to one for all pairs of points so that the estimated parameters 
become uniform and GWR becomes equivalent to OLS. Conversely, as the dis- 
tance-decay becomes greater, the parameter estimates will increasingly depend 
on observations in close proximity to i and hence will have increased variance. 
The problem is therefore how to select an appropriate decay function in GWR. 

Consider the selection of /? in (9). One possibility is to choose /3 on a least 
squares criteria. If the error terms in (3) are assumed to be Gaussian, then 
this also fulfills a maximum likelihood criterion. Clearly, the way to proceed 
would be to minimize the quantity 

i = l , n  

where $(/I) is the fitted value of yi using a distance-decay of B. In order to find 
the fitted value of yi it is necessary to estimate the aikS at each of the sample 
points and then combine these with the z-values at these points. However, when 
minimizing the sum of squared errors suggested above, a problem is encountered. 
Suppose is made very large so that the weighting of all points except for i itself 
become negligible. Then the fitted values at the sampled points will tend to the 
actual values, so that the value of (11) becomes zero. This suggests that under 
such an optimizing criterion the value of B tends to infinity but clearly this degen- 
erate case is not helpful. First, the parameters of such a model are not defined in 
this limiting case and second, the estimates will fluctuate wildly throughout space 
in order to give locally good fitted values at each i. 

A solution to this problem is a cross-validation (CV) approach suggested 
for local regression by Cleveland (1979) and for kernel density estimation by 
Bowman (1984). Here, a score of the form 

is used where y+f(B) is the fitted value of yi with the observations for point i 
omitted from the calibration process. This approach has the desirable property of 
countering the wrap-around effect, since when becomes very large, the model is 
calibrated only on samples near to i and not at i itself. 
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Plotting the CV score against the required arameter of whatever weighting 
function is selected will therefore provide gui x ance on selecting an appropriate 
value of that parameter. If it is desired to automate this process, then the CV 
score could be maximized using an optimization technique such as a Golden 
Section search (Greig 1980). 
3.3 Testing For Spatial Nonstationarity 

nantly descriptive. However, two useful questions may be examined: 
Until this point, the techniques associated with GWR have been predomi- 

Does the GWR model describe the data significantly better than a global 

Does the set of aik parameters exhibit significant spatial variation? 
In the first case, the geographically varying regression model as a whole is 

being tested. In the second case, it is possible to test whether the rate of 
change for any specific variable alters significantly across the study re on. In 

ple must be defined. In the first instance this statistic will describe the level of 
globality in the model. One possible choice here is the weighting arameter 

the GWR model from a global model. As described above, the value of B in 
the exponential function tend to zero for the global model and deviations of 
the estimate of /I from zero indicate the degree of difference between the local 
and global models. 

For the second hypothesis, it is the variability of Gk that can be used to 
describe the plausibility of a constant coefficient. In general terms, this could be 
thought of as a variance measure. For a given k suppose is the GWR esti- 
mate of Uik. Then a possible estimate of variability would be the “roughness” 
of a:k, defined as 

regression model? 

order to answer either of these two questions, descriptive statistics for t f? e sam- 

obtained by the CV procedure which can be used to assess the di ff erence of 

where 

and G is the study area. This could be estimated if a gridwise approximation to ai;, 
were constructed. However, this statistic would be relatively cumbersome to com- 
pute, so an alternative is proposed here. Suppose for each of the n sample points 
i the parameter estimate a; is computed. This would give n estimates of the 
coefficient under study. One way to proceed would then be to compute the stan- 
dard deviation of these values. This gives a sampled estimate of (13). This statistic 
will be referred to as si. 

There are now two types of statistic defined, one relating to each of the ques- 
tions posed above. The next stage is to determine their sampling distributions 
under the null hypothesis that model (1) holds. Although it is proposed to con- 
sider theoretical properties of these distributions in the future, for the time 
being a Monte Carlo approach will be adopted. Under the null hypothesis, any 
permutation of ( . i ,y i )  pairs among the geographical sampling points i are 
equally likely to occur. Thus, the observed values of /3 or si could be compared 
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TABLE 1 
Variables Used in GWR Example 

Dependent or 
Variable Numerator Denominator Independent 

Male Unemployment Male Population Population I 
Seeking Work Economically 

Active 
Social Class I Households with Total Households I 

Head in Social 
Class I 

Cars per Households Number of Cars Number of D 
Households (100s) 

to these randomization distributions in order to perform a significance test. 
Making use of the Monte Carlo approach, it is also the case that selecting N 
random permutations of (.i,yi) pairs amongst the i and computing either j? or 
si will also give a significance test when compared with the observed statistics. 

When carrying out the test for j?, note that computational overheads may 
be considerable. For each permutation, a CV-optimal must be found using a 
golden section search. Although this method is time consuming, it is a relatively 
simple task to compute each of the si statistics for each permutation once B has 
been calibrated. One possible time-saving step, if it is not desired to test the 
significance of p, is to optimize j? from the observed data, and using this value 
carry out the remaining permutation-based estimates of si. 

4. A CASE STUDY: CAR OWNERSHIP IN TYNE AND WEAR 

In this section, the GWR technique will be applied to ward-level 1991 Census 
data for the county of Tyne and Wear in the United Kingdom. The county is cen- 
tered on the city of Newcastle and the River Tyne in northeast England. The rela- 
tionships to be investigated are those between the rate of car ownership (as the 
dependent variable) and two socioeconomic independent variables, the propor- 
tion of male unemployment and the proportion of households in social class I (a 
U.K. census variable measuring the proportion of households headed by someone 
in professional or managerial occupation and often used as a surrogate for high- 
income households). More detail on these variables is given in Table 1 and their 
spatial distributions are mapped in Figures 2-4. The spatial distribution of the 
cars per houszhold data indicate that the wards along the river Tyne, toward the 
center of the region, generally have lower numbers of car per household than do 
the suburban areas towards the periphery. High levels of male unemployment are 
found in the central wards of Newcastle (located towards the centre of the region) 
and Sunderland (located in the southeast). The distribution of the social class vari- 
able exhibits a less obvious pattern but reflects the wealthier areas to the north of 
Newcastle and some of the coastal areas in the east of the region. 

It is hypothesized that as the pro ortion of male unemployment in a ward 
increases, car ownership rates will 1 ecrease, ceteris paribus, and that as the 
proportion of households in social class I increases, car ownership rates will 
increase, ceteris paribus. These hypotheses are strongly supported by the 
global OLS regression results given in Table 2 where both parameter estimates 
are significantly different from zero at the 99 percent level and both have the 
expected signs. The r-squared value for the model is 0.83 indicating a high 
degree of fit to the data. However, what the results do not indicate is the stabil- 
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N 

FIG. 2. Ward-based Map of Cars per Hundred Households 

Male Unemployment 
0 Under 10% 

10% - 15% 
15% - 20% 
20% - 25% 
Over 25% 

N 

7.5 0 7.5 15 Miles 
S 

FIG. 3. Ward-based Map of Male Unemployment 

ity of the relationships across the study region and for this we need to apply 
GWR. 

4.1 Application of GWR 

As GWR is a sample-point-based technique, the variables associated with 
each ward are assumed to be samples taken at the centroid of that ward so 
that the point i is defined as the centroid of ward i. In this way, distance decay 
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FIG. 4. Ward-based Map of Heads of Households in Social Class I 

TABLE 2 
Global OLS Regression Results 

Parameter Estimated Value Standard Error t value 

Intercept 
Social Class 
Unemployment 
R2 = .83 

88.5 
1.88 

-1.83 

2.89 
0.33 
0.11 

30.6 
5.7 
16.6 

effects will still apply, with the influence of each ward on the estimate of aik 
being reduced as the distance of the ward centroid from i increases. This also 
provides a useful means of mapping the results of the analysis: if aik is esti- 
mated for each ward centroid, and that value is assigned to the relevant ward, 
then a choropleth map of the variation in the coefficients may be drawn. These 
coefficient values may then also be used as a basis for the significance tests 
described above. 

GWR models with the spatial weighting function described in (9) with various 
values of B were .applied to the data described in Table 1 and in Figures 2-4. 
The value of the cross-validation sum of squared errors CVSS is graphed as 
a function of B in Figure 5.  From this it may be seen that there is a globally 
optimal value of /3 at around 0.303 which was confirmed by a Golden Section 
optimization routine. At this value the CV score is roughly half that for the 
global regression case of /? = 0. The weighting scheme around one of the city 
center wards for the optimal /3 is illustrated in Figure 6. This pattern shows 
how the data are weighted spatially for the estimation of the parameters for 
that one ward. The weighting scheme is centered on each ward to estimate the 
spatially varying parameter estimates. 

The main output from GWR, that of the spatial variation in parameter esti- 
mates, is shown in Figures 7-9 for the intercept, social class, and unemploy- 
ment parameters, respectively. The spatial variations in relationships revealed 
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FIG. 5. Calibrating the Spatial Weighting Function 

Weighting Value 
n Under 0.01 - m 0.01-0.03 

0.03-0.06 
0.06-0.30 m 0.30-1.00 

7.5 0 7.5 15 Miles 
S 

FIG. 6. Ward-based Map of the Weighting Function 

by these distributions are interesting. For instance, the intercept terms show a 
clear spatial pattern with higher values located in the northwest and southeast 
parts of the region. These correspond to the less urbanized parts of the region 
and suggest that, ceteris paribus, higher rates of car ownership are associated 
with more rural areas. This might be related to reduced levels of public transit 
in such areas and a greater inaccessibility to services. The relationship between 
car ownership rates and social class shown in Figure 8 suggests that, ceteris pari- 
bus, for a given proportion of households in social class I, the rate of car own- 
ership is higher for wards toward the coast and running in a band near the 
southern edge of the region. A possible explanation is that car ownership rates 
are higher in richer wards that are not particularly well served by the region’s 
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FIG. 7. Ward-based Map of Intercept Coefficient 

15 Miles 
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Social Class 1 
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N 

Coefficient 

FIG. 8. Ward-based Map of Social Class I Coefficient 

light railway mass transit system, which has its focus on the city of Newcastle, 
approximately in the center of the study area. The distribution of the unemploy- 
ment parameter suggests that the relationship is less negative within the highly 
urbanized core of the study area and in a band running southwest to northeast 
across the southern part of the region. The cause of this is not immediately 
obvious. An important use of GWR is as an exploratory tool for further investi- 
gation of questions and findings that might otherwise be missed. 
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TABLE 3 
Significance Tests for Nonstationarity 

Variable 8s *value 

Intercept 
Social Class I 
Male Unemployment 

6.34 
1.66 
0.17 

0.40 
0.04 
0.96 

Before discussing these results in further detail, it is useful to assess the sig- 
nificance of the spatial variations in the parameter estimates as determined by 
computing the si statistics using the Monte Carlo method described above. 
Results of these tests are shown in Table 3. 

From this it can be seen that the only coefficient to vary significantly over 
space is that associated with levels of social class I in a ward. This is also corro- 
borated by the fact that the standard deviation of the spatially varying parame- 
ter estimates for this variable (1.66) is over five times greater than the standard 
error of global parameter estimate (0.33 as shown in Table 2). One possible 
interpretation of this is that although unemployed people may value access to 
transport more in rural areas than in urban areas, practicality dictates that a 
car may be too expensive to run, so that levels of unemployment do not affect 
car ownership rates in any different way in urban and rural areas. However, for 
the more affluent, ownership of one or more cars is often a viable option, but 
this option is taken up more in rural areas, where public transportation provi- 
sion is often lower and there is perhaps a greater need for car transportation. 
Clearly, there may be other interpretations to this analysis, but GWR appears 
to be a useful means of exploring the data and identifying underlying geograph- 
ical patterns which could subsequently be incorporated into a formal modeling 
procedure. 
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FIG. 10. Ward-based Map of the Standard Error of the Social Class I Coefficient 

5. FURTHER ISSUES IN GWR 

This paper contains a description of a new technique for spatial analysis, one 
which has the potential to uncover a whole range of interesting questions about 
the spatial instability of relationships. Here we discuss several issues that might 
form the basis of future work on this topic. 

5.1 Variability of Coefficient Estimates 

All types of spatial analysis which produce localized and mappable outputs 
are subject to edge effects and GWR is no exception. For instance, consider 
the use of the “sudden cut off” kernel such as (8). For points close to the 
edge of the study area, the number of sample points in a radius of d around i 
will often be relatively small, since part of the sampling circle will lie outside of 
the study area. As a result, calibration of the regression model for such points 
will be subject to greater sampling error. Although the effect is more subtle, 
similar phenomena will occur with other kernels. In these cases, the sum of 
the weights will act analogously to n and this sum will vary according to the 
location of each point, so that for regions close to only a few sampling points, 
greater sampling error will occur. I t  is possible to compute the standard errors 
of the coefficient estimates for the GWR model and by mapping these, some 
indication of the reliability of each of the estimates may be obtained. In Figure 
10, for example, the standard error is mapped for the Social Class I coefficient 
for the example given above. I t  is interesting to note that this map shows 
clearly that the standard errors are not uniform and are larger for wards in the 
southern part of the study area. 

The challenge for future research is in finding ways of simultaneously visual- 
izing the coefficient estimates and their reliability measured by this standard 
error. 
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5.2 Roving Hypothesis Tests 

It is clear from the discussion in the previous subsection that, for each point, 
a coefficient estimate and a standard error may be computed. Dividing the 
former by the latter, a pseudo t statistic may be calculated. In ordinary least 
squares regression, this may be used as the basis for a test as to whether the 
coefficient differs significantly from zero. This is essentially a test for depend- 
ency between one of the independent variables and the dependent variable. In 
the case of GWR there would be such a statistic for every point in the study 
area. It is appealing to think that the test for dependency could be general- 
ized. This would provide a method of determining in which areas one variable 
influenced another-and in which areas it did not. 

Clearly, careful thought has to be iven to this problem, particularly the pit- 
falls of multiple significance testing, \ ut it would be helpful if some means of 
investigating the spatial nature of dependencies could be developed of either a 
formal or informal nature. 

5.3 Spatial Variations in Weighting Functions 

In the GWR methods suggested so far, the weighting function, once cali- 
brated, is assumed to be constant throughout the study area. However, there 
may be circumstances when this is not a reasonable assumption. For example, 
in economic applications, pricing structures may be dependent on local markets, 
but the extent of the notion of locality may vary regionally-the geographical 
extent of a London market may be spatially broader than that for Newcastle. 
In such cases, a more reasonable approach to GWR might be to have a spatially 
variable weighting function so that pi is estimated rather than /3. Although this 
will be computationally complex, the results should be informative, not only of 
the nature of relationships between attributes but also of the nature of how 
locations interact with each other. 
5.4 Extensions of GWR 

The idea of using geographically weighted data to produce localized statistics 
need not only apply to regression techniques. There are several other statistical 
techniques that allow weights to be attached to each variable, and any one of 
these could be modified to become geographically adaptive in the way that 
regression has been with GWR. As a simple example, it is possible to calculate 
the standard deviation of a set of observations with a weight attached to each 
observation. A GWSD (geographically weighted standard deviation) could be 
defined for a point i by applying a kernel weighting scheme around i to the 
computation of the sample SD. This would give a surface spanning the study 
region indicating the local variability of the variable being mapped. It would 
also be feasible to produce localized spatial autocorrelation statistics in this 
manner from a GWR version of Ord’s model (Ord 1975). Essentially, any 
model which can be weighted, can be geographically weighted. 

6. CONCLUSIONS 

One possible interpretation of GWR is that it is a discrete transform-such as 
a Fourier transform. A Fourier transform is often used with time series data to 
obtain a view of its frequency content. However, the longer the period over 
which the time series is observed, the more lower frequency components of 
the time series can be observed. As a result, the number of data items in the 
Fourier series grows with the size of the time series. Thus, rather than using 
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“data reduction” as a paradigm for data description, this is more a case of “data 
rearrangement,” or data transformation. GWR may also be viewed in this way. 
An initial data set having m independent variables, one dependent variable and 
n observations contains (m + 1)n data items. Having computed local ai values 
for each coefficient and also for the intercept term at each of the n sample 
points, there will still be (m + 1)n data items in the transformed data set. How- 
ever, having transformed the data in this way it is now possible to investigate 
local trends in nonstationarity in regression models, something that would not 
have been obvious from the raw data. Thus, like the Fourier Transform, it is a 
data transform that may be used to look at a data set from a different viewpoint. 

The technique can also be seen as a response to calls such as Fotheringham 
(1992, 1994), Fotheringham and Rogerson (1993), and Openshaw (1993) for 
a move away from whole-map statistics to localized statistics which are more 
informative and which can be mapped. In this paper we take exception to sin- 
gle statistics, such as a correlation coefficient or a regression parameter being 
used to describe a relationship over the entire geographical study area. Such a 
value must be an average taken over all points in the area and might disguise 
important spatial information on relationships between variables that vary 
according to locality. It is suggested that significant advances in spatial analysis 
can only be made if this inconsistency is addressed. It is hoped that GWR takes 
some steps in this direction and will promote interest in more genuinely geo- 
graphical approaches to the analysis of spatial data. 
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