Stoch Environ Res Risk Assess (2014) 28:1869-1887
DOI 10.1007/s00477-014-0851-1

ORIGINAL PAPER

Geographically weighted methods and their use in network
re-designs for environmental monitoring

Paul Harris - Annemarie Clarke - Steve Juggins -
Chris Brunsdon - Martin Charlton

Published online: 12 February 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Given an initial spatial sampling campaign, it is
often of importance to conduct a second, more targeted
campaign based on the properties of the first. Here a net-
work re-design modifies the first one by adding and/or
removing sites so that maximum information is preserved.
Commonly, this optimisation is constrained by limited
sampling funds and a reduced sample network is sought.
To this extent, we demonstrate the use of geographically
weighted methods combined with a location-allocation
algorithm, as a means to design a second-phase sampling
campaign in univariate, bivariate and multivariate contexts.
As a case study, we use a freshwater chemistry data set
covering much of Great Britain. Applying the two-stage
procedure enables the optimal identification of a pre-
specified number of sites, providing maximum spatial and
univariate/bivariate/multivariate water chemistry informa-
tion for the second campaign. Network re-designs that
account for the buffering capacity of a freshwater site to
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acidification are also conducted. To complement the use of
basic methods, robust alternatives are used to reduce the
effect of anomalous observations on the re-designs. Our
non-stationary re-design framework is general and provides
a relatively simple and a viable alternative to geostatistical
re-design procedures that are commonly adopted. Particu-
larly in the multivariate case, it represents an important
methodological advance.

Keywords Non-stationarity - Summary statistics - PCA -
Location-allocation - Robust - Acidification

1 Introduction

Given an initial spatial sampling campaign, it is often
important to conduct a second sampling campaign based on
the properties of the first. Here a network re-design mod-
ifies the first one by adding and/or removing sites so that
maximum information is preserved. In this respect, we
demonstrate the use of basic and robust geographically
weighted (GW) methods combined with a location-allo-
cation (L-A) algorithm (e.g. ReVelle and Eiselt 2005) as a
means to design a second-phase sampling campaign in
univariate, bivariate and multivariate contexts. We utilise
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Table 1 List of abbreviations

Abbrev. Definition Abbrev. Definition
and definitions

GW Geographically weighted GOF Goodness of fit

L-A Location-allocation RMSPE  Root mean squared prediction error

GWSS GW summary statistics MAPE Mean absolute prediction error

PCA Principal components analysis ~ Alk.T Alkalinity (peq L™") (transformed)

GWPCA  GW principal components Cond.T Conductivity (1S cm™") (transformed)
analysis

NO, Nitrogen dioxide NO;.T Nitrate or NO3 ™ (peq L") (transformed)

GWR GW regression SO,.T Sulphate or SO42+ (peq L_l) (transf.)

SD Standard deviation PO, T Phosphate or PO, (peq L") (transf.)

MAD Median absolute deviation AL.TM.T Total monomeric aluminium (ug L™")

(transformed)

MCD Minimum covariance TOC.T Total organic carbon (mg Lfl) (transf.)
determinant

GWSD GW standard deviation TOC Total organic carbon

GWMAD GW median absolute deviation PCl1 First principal component

GWCOR GW correlation PC1-2 First two principal components combined

PTV Percentage of the total variance SSWC Steady-state water chemistry

Great Britain, are re-designed for a second, targeted sam-
pling campaign of just 25 sites. This data was collected as
part of a freshwater acidification study, for input into the
calculation of associated critical load data (CLAG Fresh-
waters 1995). In this respect, weighted re-designs that
account for the buffering capacity of a freshwater site to
acidification (measured by its critical load) are also pre-
sented. Variability in the water chemistry data is mainly
driven by the deposition of various (acidifying and non-
acidifying) compounds, types of land use and geology; all
of which vary both singly and in combination across Great
Britain. Thus structures in the water chemistry data simi-
larly vary across space; as shown in the companion study
of Harris et al. (2014), also using GW methods.

Applying our re-design procedures enable optimal re-
designs, with respect to the preservation of spatial and
attribute information. The procedures are general and
applicable to any environmental monitoring programme,
where multiple variables are routinely measured. For
freshwater environmental concerns, this not only includes
re-designs for acidification (Hornung et al. 1995), but also
for eutrophication (Pretty et al. 2003), both of which can
benefit from targeted sampling where remedial actions are

the most important, as once a sampling site is visited, it
usually makes sense to measure multiple attributes. Our
study is structured as follows: (1) literature review for
spatial sampling; (2) the network re-design methodology;
(3) a description of the study data; (4) the re-design results;
and (5) conclusions. All methods were implemented in R
(http://www .r-project.org), many of which are available in
the GWmodel R package (Lu et al. 2013). As a large
number of abbreviations are used, the reader is helped with
a list of abbreviations and their definitions (Table 1).

2 Background and context

Methods to conduct spatial sampling can be categorised
into the following:

1. geometric-based (space-filling) (Royle and Nychaka
1998);

2. design- or probability-based with respect to random,
systematic, stratified random, clustered and multi-stage
sampling (e.g. de Gruijter et al. 2006);

3. design-based accounting for key spatial effects such as
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Reviews and linkages between the six categories can be
found in Brus and de Gruijter (1997); Martin (2001); Xia
et al. (2006); Wang et al. (2012). Observe that categories
(4-6) relate to network re-designs, as methods require an
initial data set to work with. Also a Gaussian process is
commonly assumed for model-based methods, but other
processes can be catered for. For categories (5-6), the re-
design can focus on: (a) prediction (e.g. McBratney et al.
1981; Ritter 1996), (b) (variogram) parameter estimation
(e.g. Warrick and Myers 1987; Miiller and Zimmerman
1999; Zhu and Stein 2005) or (c) a hybrid of both objec-
tives (e.g. Zimmerman 2006).

For methods that stem from a geostatistical (kriging)
perspective (category 6), the re-design is commonly opti-
mised by the minimisation of the average kriging variance,
where different optimisation algorithms are possible
(Baume et al. 2011). Re-designs for one variable (say,
using ordinary kriging) are common (e.g. van Groenigen
et al. 1999), and include re-designs that are: (1) constrained
by additional information via indicator kriging (e.g. van
Groenigen et al. 2000) or (2) informed by covariates via
regression kriging (Brus and Heuvelink 2007). Multivariate
methods, where the re-design is for two or more variables
simultaneously are rare; the cokriging approach of Vasat
et al. (2010), aside. Important non-stationary extensions
within the geostatistical framework address the severe
short-fall of the kriging variance as a measure of local
uncertainty (e.g. Journel 1986). For example, in a univar-
iate re-design, Delmelle and Goovaerts (2009) weight the
kriging variance with a local variance measure. Similarly,
in a univariate re-design with covariates, Marchant et al.
(2009) use regression kriging with a local (residual) vari-
ance term. Similarly, Haas (1992, 2002) specifies local
variograms/cross-variograms for univariate and multivari-
ate re-designs. For methods that stem from the maximum
entropy framework (category 5), univariate through to
multivariate methods are possible, often incorporating
important non-stationarities (Zidek et al. 2000). A draw-
back to these re-design methods is that they require con-
siderable statistical expertise to fit and interpret their
results. Furthermore, many methods are implicitly
designed for space—time data, such as air pollution data
(Zidek et al. 2000).

(category 2) with respect to an optimisation via prior
information on within-strata variances; in that regions with
high variability are sampled more intensively, than regions
with low variability. A basic difference, however, between
design-based methods and GW methods is that in the for-
mer, the selection probabilities are known. Furthermore,
these known probabilities are used in making inferences.

Our methods directly build upon the univariate (and
spatial-only) method of Kanaroglou et al. (2005), for
locating urban air pollution monitors (for nitrogen dioxide,
NO,). Here a pragmatic and easily reproducible strategy
was adopted, where a local variogram-type measure
(weighted by population density) was used as demand data
for input into an attendance maximising L-A algorithm
(e.g. Holmes et al. 1972). The idea being that more mon-
itors should be located in areas of high NO, variability and
also where people actually live. We extend this method, in
that our re-designs are possible for two or more variables,
simultaneously. Essentially, we replace the local vario-
gram-type measure with local variability outputs from
univariate, bivariate and multivariate GW methods. The
spatial scale of these local variability measures are, as far
as possible, determined objectively, rather than subjec-
tively. We also (non-geographically) weight these vari-
ability measures in the context of the study data (for
weighted re-designs) and replace the attendance maximis-
ing L-A algorithm with a p-median L-A algorithm (e.g.
Teitz and Bart 1968; Rosing et al. 1979). Our re-design
framework is general and could optimally locate any (pre-
specified) number of sample sites to any location-sampled
or un-sampled in the first campaign (since the local vari-
ability measures can be found at any location). For this
study however, we assume that only sites that were visited
in the first campaign need to be chosen, and that a much
reduced second campaign is required due to limited
financial resources.

3 Methodology

In order to describe our re-design methodology, we pro-
ceed as follows: (1) a description of the p-median L-A
algorithm; (2) an overview of GW methods; (3) the L-A
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stations, schools, warehouses, etc.). An L-A algorithm will
match supply with demand via the use of objectives and
constraints. The most common L-A algorithms are mini-
mum distance (e.g. p-median) and maximum coverage (e.g.
attendance maximising). The p-median algorithm will
locate supply sites such that the sum of weighted distances
for all demand sites from their nearest supply site is min-
imised. The distances are weighted by the demand data.
More formally, the p-median algorithm minimises an
objective function of the form
Xa X
Z= kidjdy; (1)
i=1 j=1

where ng is the number of deri;and sites; ng is the number of
potential supply sites; and  djj = np,, where n, is the
number of supply sites to be located. The weight k; at site
i represents demand; dj; is the distance between sites i and
J; djj is the allocation decision variable (given a value of 1
if demand site i is served by a supply site in j and a value of
0 otherwise).

In context of our network re-designs, the supply sites will
be those identified as potential sites for a second sampling
campaign. In this case, we assume we have sufficient
resources to re-sample at n, = 25 sites, selected from the
ng = 533 sites of the initial water chemistry sampling cam-
paign. The demand data will be local variability outputs from
our GW methods, found at the same nyg = 533 initial sites.
The demand data can also be weighted for weighted re-
designs (Sect. 5). Observe that we have chosen a p-median
L-A algorithm. There are however, many L-A algorithms to
choose from (ReVelle and Eiselt 2005), and one algorithm
should be chosen that best suits the properties of the re-
design process. Our reasons for choosing a p-median algo-
rithm stem from its relative simplicity and reproducibility; it
is possible that an alternative algorithm may be better suited
to our case study data, but it is the over-arching concept of the
re-design framework that we wish to focus on.

3.2 Geographically weighted methods

GW methods are primarily used to investigate spatial het-
erogeneity, where the form of the heterogeneity reflects the

according to the properties of a distance-decay kernel
function, and the model is locally-fitted to this weighted
data. Thus the geographical weighting solely applies to the
data in all GW methods, where each local model is fitted to
its own GW data (sub)set. The size of the window over
which this localised model might apply is controlled by the
kernel’s bandwidth. Small bandwidths lead to more rapid
spatial variation in the results, while large bandwidths yield
results increasingly close to the global model solution.
Commonly, the exploration of spatial heterogeneity
involves a simple non-stationarity test and a mapping of the
outputs or parameters of the GW method. This may then
direct a traditional (stationary) or sophisticated (non-sta-
tionary) analysis (e.g. when a rigorous inferential frame-
work is required).

3.3 The L-A demand data from basic and robust GW
methods

We utilise local variability outputs from basic and robust
forms of GWSS and GWPCA, to use as demand data for
input into a p-median L-A algorithm. Robust forms are
specified, so as to reduce the effect of outliers on the network
re-design (i.e. our definition of robust accords to the reviews
of Rousseeuw et al. (2006) or Filzmoser and Todorov
(2012)). This is important, as outliers can not only artificially
increase local variability, but can also mask key features in
local data structures. Robust procedures are possible for
estimating location and scale in univariate, bivariate and
multivariate contexts. Here, in the univariate case, we
replace basic variance estimates with robust median absolute
deviation (MAD) (Hampel 1974) estimates. In the bivariate
and multivariate cases, robust estimates for the covariance
matrix are needed and here, we specify the minimum
covariance determinant (MCD) estimator (see Maronna et al.
2006). In particular, we find our demand data, via:

a. GW standard deviation (GWSD) values and GW
median absolute deviation (GWMAD) values for basic
and robust univariate re-designs, respectively;

b. Basic and robust GW correlation (GWCOR) values for
bivariate re-designs;

c. Basic and robust GWPCA, where the demand data for

the multivariate re-decione 1< the ontnnt that locallv
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weighting function (see Sect. 3.5), definitions for a GWSD
and a GWCOR, forVa i e Size e
respectively  s(x;) = L Wi

and q(x;, vi) = c(X;, y)/(s(x;)s(y;)), where a local mean is

m(xj) = [, WX [, W, and where a local covariance
, P 00 N o7 P
isc(xipy)= ywy xj—m(xi) y;—m(y;) i1 Wi

A definition for the MAD is syap = 1.4826 median;lx;
— mediani(x ). A GWMAD involves finding local
medians of both the sample data x; and the expression
Ix; — median,(x)l. Definitions for local medians are given
in Brunsdon et al. (2002). For a robust GWCOR, we esti-
mate the local covariance using the MCD estimator, whose
objective is to find a subset of h observations whose basic
sample covariance matrix has the lowest determinant.
Crucial to the robustness and efficiency of this estimator is
h, and we specify a value of h = 0.75n, following Var-
muza and Filzmoser (2009, p. 43).

3.3.2 GWPCA

For GWPCA, a different localised PCA is computed at
target locations, allowing a local identification of any
change in the structure of a multivariate data set. If spatial
location i has coordinates (u;, v;), then GWPCA involves
regarding a vector of observed variables x; as having a
certain dependence on its location i, where 1 (u;, v;) and
R(u;, v;) are the local mean vector and the local covari-
ance matrix, respectively. The local covariance matrix is
R(u;;vi) = X"W(u;; vi)X, where X is the data matrix
(with n observation rows and m variable columns); and
W(u;, v;) is a diagonal matrix of geographic weights,
generated using the bi-square kernel function. To find the
local principal components at location i, the decomposi-
tion of the local covariance matrix provides the local
eigenvalues and local eigenvectors (or loading vectors)
with L(u;, v))V(u;, v)L(u;, v;))* = R(u;, v;), where L(u;, v;)
is a matrix of local eigenvectors; V(u;, v;) is a diagonal
matrix of local eigenvalues; and R(u;, v;) is the local
covariance matrix. A matrix of local component scores

and then multiply by 100. PTV data can be found at any
location (sampled or not). For a robust GWPCA, we
estimate the local covariance matrix using the MCD
estimator, as specified with robust GWCOR.

3.4 Rationale for using GW methods for network re-
design

1. For a univariate re-design, fewer sites should be
selected in areas where data variation is low, reflected
by low GWSD/GWMAD values. Conversely, more
sites should be selected where data variation is high,
reflected by high GWSD/GWMAD values.

2. For a bivariate re-design, fewer sites should be
selected in areas where the correlation between the
two variables is strong, reflected by a GWCOR tending
to 1. Conversely, more sites should be selected
where the correlation between the two variables is
weak, reflected by a GWCOR tending to zero.
Furthermore, for the sparse network of sites selected
in areas with strong local correlations, one variable
could be inferred from the other, entailing that only
one variable needs sampling.

3. The rationale for the bivariate re-design directly
extends to the multivariate re-design with GWPCA.
Here we postulate that fewer sites should be selected in
areas where the correlations (or collinearity) amongst
the multivariate data are strong, reflected by high PTV
outputs. In these areas, fewer sites are needed; and for
sites that are selected, not all of the variables need to
be sampled. Conversely, more sites should be selected
in areas where the correlations amongst the data are
weak, reflected by low PTV outputs. In these areas,
more sites are needed and all variables carry important
information (so all need to be sampled for).

3.5 Basic and robust bandwidth selection in the context
of network re-design

For this study’s GW methods, we generate the geographic
weights wj; using a bi-square kernel function, which can be
defined as

- R
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local observations are fixed within the search window). For
this study, we always specify the bandwidth as an adaptive
distance, where the number of local observations is
reported as a percentage of the full data set.

Crucial to any GW method is choosing the size of the
bandwidth, so that the frue scale of process heterogeneity is
reflected in their outputs. In the context of network re-
design, bandwidths that are too large will result in vari-
ability measures tending to their global form. Such demand
data will have little influence in the L-A algorithm,
resulting in a network re-design that only reflects the data’s
geometric properties (i.e. sites will be optimally and evenly
dispersed across the initial design). Thus bandwidths need
to chosen with care, as the re-design is strongly dependent
on them. Bandwidths can be: (1) optimally-specified via a
cross-validation procedure (provided an objective function
exists); (2) user-specified, but guided by the behaviour of
some surrogate method that is expected to have similar
properties; (3) user-specified, guided by experience of the
process under study; or (4) user-specified, but guided by all
three of the above methods. Of our study GW methods,
only for GWPCA is cross-validation possible. For the rest,
a surrogate procedure is used.

3.5.1 Bandwidths for GWSD and GWMAD data:
univariate re-designs

For GWSD and GWMAD data, a surrogate procedure is
used where we make use of the fact that local averages tend
to scale with local variances in environmental data. This is
known as the proportional effect in geostatistics (Chiles
and Delfiner 1999). As such, it is reasonable to find
bandwidths for GW means and GW medians, which can be
found optimally, and then use the same bandwidths for
calculating GWSD and GWMAD values, respectively.
Basic and robust leave-one-out cross-validation procedures
are followed, analogous to that used in GWR (see Bruns-
don et al. 1998, and Farber and Paez 2007, respectively),
but where local means/medians are used as predictors
rather than local regressions. Robust procedures are spec-
ified as cross-validation procedures are themselves sus-

ceptible to outliers, even if the GW predictor is robust. A
I R —

1ot rmracnradirea Avahte  tha  ~Aanrteri it rAame  ~F

the observation at i is removed. In the robust procedure, the
bandwidth r that minimises this GOF expression

MAPE(I‘) = 1=n i— b#(r) (4)
i=1

is taken as optimal, where MAPE is the mean absolute
prediction error. Thus for univariate re-designs, we aim to
find four surrogate bandwidths in total, two relate to
GWSD data, whilst two relate to GWMAD data. The only
re-design that is fully-robust is one that uses GWMAD
demand data and where the GWMAD bandwidth relates to
that found optimally for a GW median via the MAPE GOF
data.

3.5.2 Bandwidths for basic and robust GWPCA:
multivariate re-designs

We choose bandwidths for basic and robust GWPCA in
accordance with an existing cross-validation procedure,
where it is necessary to pre-specify (by experimentation)
the number of retained components, q (where q\ m, i.e.
cannot specify all m components). A dual optimisation
of both r and q is not currently viable, although work in
this area is on-going. Again basic and robust procedures
are possible, where GWPCA is viewed as a data model
(Jolliffe 2002) and in doing so, enables leave-one-out
GOF statistics to be found. The basic procedure uses the
mean GOF, whilst the robust procedure uses the median
GOF (i.e. analogous to those defined in expressions 3
and 4). For a given value of g, the bandwidth r that
minimises the specified GOF statistic is taken as optimal.
Details are given in Harris et al. (2011). Thus we aim to
find four optimal bandwidths in total, two relate to basic
GWPCA, whilst two relate to robust GWPCA. The only
re-design that is fully-robust is one that uses robust
GWPCA PTV demand data and where the GWPCA
bandwidth is found robustly. Observe that robust
GWPCA is computationally intensive (due its use of the
MCD estimator) and applying it within a leave-one-out
cross-validation significantly increases this computational
burden.

325 3 Randwidthe for bhasic and vrobust GWCOR Adata:
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same bandwidth. Thus a surrogate bandwidth for GWCOR
data is simply that found optimally for GWPCA, using the
same two variables. This procedure is also useful in that a
(simple) bivariate GWPCA re-design provides insight to
the expected behaviour of the (more complex) multivariate
GWPCA re-design (where m[ 2). That is, it can help to
review our postulations of Sect. 3.4. Considering basic and
robust forms are again needed, then for a bivariate re-
design, we aim find four bandwidths in total. Two relate to
basic GWCOR data, whilst two relate to robust GWCOR
data.

3.6 Summary: key stages of the network re-design
methodology

a. Decide on the potential locations for the second sam-
pling campaign. In this study, we assume that only
sites that were visited in the first campaign can be
chosen. Thus all demand data sets are found at the
n = 533 study sites.

b. Determine the kernel bandwidths for GWSD data
(basic), GWMAD data (robust) in the univariate re-
design case; GWCOR data (basic and robust) in the
bivariate case; and GWPCA (basic and robust) in the
multivariate case.

c. From the specifications in (b), find all demand data sets
for univariate, bivariate and multivariate re-designs.
Map this data for context.

d. In the univariate case, the resultant GWSD and
GWMAD data can be fed directly into the L-A
algorithm. However, in the bivariate and multivariate
cases, this demand data is needed: 1 — IGWCORI and
100 — PTV, respectively; each reflecting the nature of
the postulations presented in Sect. 3.4.

e. Find the distance matrix for the study data, choose
each demand data set in turn, and run the L-A
algorithm with a pre-specified number of second
campaign sites to optimally locate. In this case, 25
sites are taken to reflect the available resources.

f. Map the re-design results from each L-A run, indicat-
ing the level of demand at each of the chosen 25 sites.
The L-A algorithm also allocates nearby sites to each

4 Case study: freshwater chemistry data for Great
Britain

The study data is a subset of a water chemistry sampling
programme for Great Britain; data that was used to cal-
culate and map freshwater acidification critical loads
(Kreiser et al. 1993). Sites were chosen to represent the
most acid-sensitive water body within either a 10 km (for
sensitive areas) or 20 km (for non-sensitive areas) grid
square so that the minimum critical load is found. Data
chosen for our study is composed of eight variables at 533
freshwater sites. These are: pH, alkalinity, conductivity,
nitrate, sulphate, phosphate, total monomeric aluminium,
and total organic carbon. All variables aside from pH were
jointly transformed to approximate multivariate normality;
and are thus named as: pH, Alk.T, Cond.T, NO3.T, SO4.T,
PO4.T, AL.TM.T and TOC.T, respectively. For the
GWPCA calibrations, this data is then standardised (thus
covariance matrices are specified). Details on the selection
and pre-processing of this data can be found in Harris et al.
(2014).

Observe that data pre-processing decisions can strongly
affect the local variability outputs of our GW methods,
which can be further complicated in that the existence of
outliers may be a key contributing factor in any differences
observed. As a consequence, our network re-designs are
dependent on the particular data pre-processing decisions
we have taken. As our data are globally-transformed (and
globally-standardised for GWPCA), there is no guarantee
that the data will retain the associated properties at the
scale of each local fit. The consequences of these decisions
are most pertinent to GWPCA, as the standardisation
should be conducted at the scale of each local PCA (local
transforms are not so important). This local operation is not
fully viable for GWPCA and here the use of globally-
standardised data is considered a pragmatic alternative. A
very limited GWPCA with locally-standardised data can be
found however, and provides a check on this decision.
Locally-standardised data (or at least an approximation to
it) ensures that variables with the largest (local) variances
do not dominate the local variability outputs and in turn,
bias the network re-design. Observe that GWSD and
GWCOR are already in a locally-standardised form, for our



1876

Stoch Environ Res Risk Assess (2014) 28:1869-1887

Table 2 Basic and robust

: ust pH AT  CondT  NOyT  SO,T  PO,T ALTMT  TOC.T
global estimates of variability
SD 1.07 2.23 0.90 6.34 1.11 6.41 0.80 0.42
MAD 1.08 2.38 0.92 5.49 1.07 5.45 0.62 0.44
Table 3 Basic and robust pH AT  CondT NO,T  SO,T PO,T ALTM.T  TOC.T
global correlation coefficients
Basic
pH 1 0.92 0.58 0.15 0.47 0.19 —0.63 0.10
Alk.T 1 0.75 0.21 0.63 0.33 —-0.57 0.26
Cond.T 1 0.30 0.87 0.35 —0.33 0.41
NOs.T 1 0.39 0.18 0.00 —0.06
SO, T 1 0.34 -0.21 0.34
PO,.T 1 —0.03 0.44
AL.TM.T 1 0.11
TOC.T 1
Robust
pH 1 0.93 0.58 0.21 0.52 0.17 —0.66 0.04
Alk.T 1 0.74 0.29 0.67 0.30 —-0.59 0.19
Cond.T 1 0.37 0.87 0.31 —0.33 0.34
NO;.T 1 0.47 0.21 —0.03 —0.03
SO,.T 1 0.33 -0.22 0.30
PO,.T 1 0.03 0.45
AL.TM.T 1 0.29
TOC.T 1
Table 4 Eigenvalues, PTV (%) PCI PC2 PC3 PC4 PC5 PC6 PC7 PC8
and cumulative PTV (%) from
basic and robust PCA Basic
Eigenvalues 3.78 1.53 1.08 0.69 0.40 0.36 0.11 0.04
PTV 47.3 19.1 13.5 8.7 5.0 4.5 1.4 0.6
Cumulative PTV 47.3 66.4 79.9 88.6 93.5 98.1 99.4 100.0
Robust
Eigenvalues 391 1.67 1.12 0.73 0.41 0.23 0.11 0.04
PTV 475 20.4 13.6 8.9 5.0 2.8 1.3 0.5
Cumulative PTV 47.5 68.0 81.6 90.4 95.4 98.2 99.5 100.0

greater than unity, where they collectively account for
79.9 or 81.6 % of the variation in the data for basic and

an influence, locally. Thus pursuing a robust GW meth-
odology still has merit.
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Table 5 Basic and robust bandwidths (%) for GW methods and
associated re-designs

Basic Robust
Univariate re-design
GW mean as surrogate for GWSD (pH) 3 MNR
GW median as surrogate for GWMAD (pH) 7 7

Bivariate re-design

Basic bivariate GWPCA as surrogate for GWCOR  33* 457
(AL.TM.T and TOC.T)

Robust bivariate GWPCA as surrogate for 41 45¢
GWCOR (AL.TM.T and TOC.T)

Multivariate re-design
Basic multivariate GWPCA with q = 4 48 56
Robust multivariate GWPCA with q = 4 MNR MNR

MNR minimum not reached

# Judged optimum from interpretation of bandwidth function

correlations that are not only different locally, but also dif-
ferent to that found globally. In the multivariate case, all
eight variables are used.

5.1 Bandwidth selection

Bandwidths for the GW methods are given in Table 5,
using the procedures described in Sect. 3.5. For GWSD and
GWMAD data of the univariate re-designs, their surrogate
bandwidths (via GW means and GW medians) are rela-
tively small ranging from 3 to 7 %, where one bandwidth
function did not reach a minimum. Bandwidth functions for
GW means and GW medians (for the basic selection pro-
cedure) are given in Fig. 2a, b, where in both cases, clear
minimums are reached. For basic and robust GWCOR data
of the bivariate re-designs, none of their surrogate band-
width functions (via bivariate GWPCA) displayed a clear
minimum and as such, bandwidths are chosen with
judgement based on the behaviour of their function.
Bandwidth functions for basic and robust bivariate
GWPCA (for the basic selection procedure) are shown in
Fig. 2¢, d, where bandwidths are taken at local minimums
found at 33 and 41 %, respectively. Bandwidth functions
using the robust selection procedure, behaved in a similar
manner to that observed with the basic procedure.

of 48 and 56 % for basic GWPCA using the basic and
robust selection procedures, respectively. However, for
both cases of robust GWPCA, the bandwidth function did
not reach a minimum. The bandwidth functions for basic
and robust GWPCA (for the basic selection procedure) are
given in Fig. 2e, f, where the former reaches a minimum,
whilst the latter does not.

As broadly similar bandwidths are found within each of
the three groups of GW methods, we choose to use the
same bandwidth for their respective re-designs. This is
useful as it enables an objective comparison of the re-
design results (i.e. it isolates the effects of different band-
width sizes). Thus for the univariate re-designs, we specify
a bandwidth of 5 % for both the GWSD and GWMAD
calibrations. For the bivariate re-designs, we specify a
bandwidth of 41 % for basic and robust GWCOR cali-
brations. For the multivariate re-designs, we specify a
bandwidth of 52 % for basic and robust GWPCA calibra-
tions. These bandwidths are averages of those found within
each group. Observe the benefits of conducting an exten-
sive bandwidth study, as our final selections are more
assured. The bandwidth function in any GW method should
always be thoroughly investigated, and can be considered
analogous to a thorough investigation of the variogram in
geostatistics; where both investigations aim to identify
spatial structure in some way (see Cressie 1989).

5.2 Local analyses

Maps of the demand data are now scrutinised for the uni-
variate, bivariate and multivariate re-designs. Figure lc, d
present the GWSD and GWMAD maps for pH, where high
levels of pH variation tend to cluster at sites in northern
England. This can be attributed to changes in the sources of
acidification (natural and anthropogenic), as well as chan-
ges in land use and geology; all operating across small
distances. Thus for the corresponding re-designs, these
particular regions will be preferentially sampled. Note that
the average GWSD value is slightly higher than the aver-
age GWMAD value, thus a GWMAD performs as expected
in reducing variability at most locations (as a likely con-
sequence of outlying pH data). However, minimum and
maximum GWSD values are respectively, larger and
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Fig. 2 Basic bandwidth
functions for respective, basic
and robust: a, b univariate, c,
d bivariate, and e, f multivariate
re-designs

this respect, basic correlations between these outputs are
promisine at 0.91 and 0.52. for basic and robust cases.
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(a) (b)

Basic GWPCA with a 41% bwd.: PTV (%) for PC1 Robust GWPCA with a 41% bwd.: PTV (%) for PC1

! 7.{,

® [50,55]
55,60] o [80,85]
60,65] 85,90]
65,70] 90,95]
® (70,75] e (95,100]
7 % i
[}
\w\/\/‘(\ ,—’\“W/
0 100 km \f“‘\; 0 100 km
Data: AL.TM.T & TOC.T Global PTV = 55.7% Data: AL.TM.T & TOC.T Global PTV = 69.8%
(c) (d)
Basic GWCOR with a 41% bandwidth Robust GWCOR with a 41% bandwidth
ST
Y faem
&F ¥ & [{]
A
? (s\fv A %‘*
«
e [-0.3,-0.2] e [-0.3-0.2]
. 5—0.2,—0.1] ° ﬁ—o.z,—o.ﬂ
-0.1,0] -0.1,0]
50,0-1] §0,0.1]
0.1,0.2] 0.1,0.2]
50.2,0.3] §0.2,0.3]
0.3,04 0.3,0.4]
50.4,0.5] §0.4,o.5]
* (0.5,0.6] ° (0.5,0.6]
o —=e . PR




Stoch Environ Res Risk Assess (2014) 28:1869—-1887

1881

(@)

Basic GWPCA with a 52% bwd.: PTV (%) for PC1

ST

. 525,301

Data: all 8 variables
(c)

Global PTV =47.3%

Basic GWPCA with a 52% bwd.: PTV (%) for PC1-2

)

e [52.5,55]
e (5557.5]
57.5,60]
60,62.5]
62.5,65]
65,67.5]
(67.5,70]
70,72.5]
o (72'5,75]

~

(b)

Robust GWPCA with a 52% bwd.

: PTV (%) for PC1

ST
7 L [{]
& g
Py (\?}r' X 7{7/\-‘"\
R J
AL
07 ~
Jv/'
¥ - * [60,65]
W2 EGS,?O]
N 70,75
0%, i
£ }85,90]
o (90,95]
G
P
P )
e
b 7
Ry
\f“\ij 0 100km

Data: all 8 variables

(d)

Global PTV =47.5%

Robust GWPCA with a 52% bwd.: PTV (%) for PC1-2

i

o [75,77.5]
o (77.5,80]
80,82.5]
82.5,85]
85,87.5]
87.5,90]
90,92 5]
o (925,95]




1882

Stoch Environ Res Risk Assess (2014) 28:1869-1887

Fig. 5 Re-designs for: a basic
univariate, b robust univariate,
¢ basic bivariate, and d robust
bivariate. Demand level is
reflected by the size of the pink
circle at a chosen site

(a) (b)

Basic univariate re-design for pH: via GWSD  Robust univariate re-design for pH: via GWMAD

All 25 sites are shown with the "demand level' All 25 sites are shown with the "demand level

(©) d)
Basic bivariate re-design: via GWCOR Robust bivariate re-design: via GWCOR




Stoch Environ Res Risk Assess (2014) 28:1869—-1887 1883

Fig. 6 Multivariate re-designs
for: a basic via PC1 data,

b robust via PC1 data, ¢ basic
via PC1 plus PC2 data, and

d robust via PC1 plus PC2 data.
Demand level is reflected by the
size of the pink circle at a
chosen site

(a) (b)

Basic multivariate re-design: PTV for PC1 Robust multivariate re-design: PTV for PC1

&
AT 0 100km

All 25 sites are shown with the 'demand level’ All 25 sites are shown with the "demand level’

(c) (d)
Basic multivariate re-design: PTV for PC1-2 Robust multivariate re-design: PTV for PC1-2
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Fig. 7 Weighted re-designs (a) (b)

(multivariate and robust): a via Weighted robust mult. re-design: PTV for PC1 Weighted robust mult. re-design: PTV for PC1-2
PC1 data and b via PCI plus
PC2 data. Benchmark re-design
with equal demand data given in
(c). Demand level is reflected by
the size of the blue or green
circle at a chosen site.
Freshwater acidification critical
load map given in (d)
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data (for PC1 and for PC1-2) actually occur on the north-
western coast and nearby isles of Scotland. Differences
between basic and robust GWPCA PTV data can be taken
to indicate the existence of multivariate outliers, some of
which are likely to be locally-outlying.

5.3 Network re-designs

The L-A algorithm is first run with the eight demand data
sets found above; in each case, targeting 25 of 533 sites for
a second sampling campaign. Two maps for the resultant
univariate re-designs are given in Fig. 5a, b, for basic and
robust cases. Similarly, two maps for the resultant bivariate
re-designs are given in Fig. Sc, d. Four maps are presented
in Fig. 6 for the resultant multivariate re-designs, where
basic and robust GWPCA PTV data for PC1 and for PC1-2
are used as the demand data sets. A ninth run of the L-A
algorithm uses a demand data set of 533 equal values,
resulting in a benchmark re-design for 25 sites (Fig. 7c).
This benchmark re-design solely accounts for the particular
spatial configuration of the study data; a configuration that
directly influences the characteristics of all of the previous
eight demand data sets (see for example, the preferential/
clustered sampling studies of Olea 2007; Diggle et al.
2010; Gelfand et al. 2012). In this benchmark re-design, the
consequences of over- and under-sampling on the re-design
are isolated, such as: (1) the data void in central England, a
region where freshwater acidification damage was consid-
ered unlikely; or (2) the uneven sampling across 10 km or
20 km grid squares. Thus each of the eight, GW method-
based re-designs must first and foremost be compared to
the benchmark re-design. Only those re-designs that devi-
ate from the benchmark re-design are of interest and war-
rant further scrutiny. On viewing the eight re-designs, all
clearly deviate from the benchmark re-design, where the
smallest (or most subtle) deviations are found in the two
bivariate cases.

All eight re-designs appear reasonable, considering the
spatial distribution of the demand data (Figs. lc, d, 3c, d,
4) and the spatial configuration of the initial network of
sites. As expected, sites are preferentially located in
northern England in the univariate case, coinciding with
high levels of pH variation. As expected, sites are prefer-

data; the basic and robust GWCOR data; and the four
different GWPCA PTV data sets, the respective re-designs
depend on which GWSD/GWMAD; GWCOR; and
GWPCA specification is preferred. For example, on
viewing the robust multivariate re-design (with PTV PC1-2
data in Fig. 6d), notable differences with the corresponding
basic re-design (Fig. 6¢) are found in: (a) Scotland, where
one extra site is located; (b) Wales, where one less site is
located; and (c) southern England, where the same four
sites are chosen but demand is reduced (i.e. smaller pink
circles).

Finally, two further runs of the L-A algorithm are
conducted with weighted demand data to provide examples
of weighted (or biased) re-designs. There are various
options to weight our demand data sets, such as those
which: (1) account for the accessibility of a freshwater site,
in order to reduce sampling costs at remote locations or (2)
reflect the buffering capacity of a freshwater site to acid-
ification. Population data may act as simple surrogate
weighting data set for the former option, whilst freshwater
acidification critical load data can be used for the latter
option. As the critical load data are a constituent part of the
study data set, and available at all 533 freshwater sites, we
use this data to provide examples of weighted re-designs.
In particular, we weight our robust GWPCA PTV data sets
for PC1 and for PC1-2, by 1/exp (SSWC), where SSWC
are critical load data calculated via the steady-state water
chemistry model (Henriksen et al. 1992). The (non-
geographical) weighting reflects the fact that a critical load
of above 5 keq H"ha™' year™' is unlikely to be exceeded
by its corresponding acid deposition value (and thus irre-
versible damage is unlikely to occur). These weighted,
multivariate re-designs are given in Fig. 7a, b, along with a
map of the (positively skewed) SSWC data (Fig. 7d). Both
re-designs display a strong clustering of sites in northern
Scotland, a region of low critical loads coinciding with low
PTV data. Re-designs represent a targeted sampling cam-
paign in regions of most concern to ecological damage via
acidification, whilst ensuring that regions, less susceptible
to damage, are not unduly under-sampled.

6 Conclusions
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study, be it water (as in this study), soil or air pollution,
where a high number of contaminants are routinely mea-
sured. Furthermore, the re-designs can be tailored (or
weighted) so that targeted sampling is possible at sites
where urgent management actions may be required to
prevent environmental degradation.

As the collection of large environmental data sets con-
tinues (e.g. as required for the European Union Water
Framework Directive), the availability of such re-design
procedures are becoming increasingly valuable. GW
method-based re-design procedures are relatively simple in
comparison to geostatistical alternatives, where a useful
comparison of both approaches is left for future work,
possibly with simulated data. Future work is also expected
concerning the adaptation of our re-design procedures
with: (1) alternative L-A algorithms; (2) different distance
metrics, say for soil geochemistry re-designs in urban areas
(e.g. Glennon et al. 2014) and (3) GW variogram-type
measures (Harris et al. 2010) extended to multivariate
forms.
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