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Abstract This paper reports on the smoothing/filtering analysis of a digital
surface model (DSM) derived from LiDAR altimetry for part of the River
Coquet, Northumberland, UK using loess regression and the 2D discrete
wavelet transform (DWT) implemented in the S-PLUS and R statistical
packages. The chosen method of analysis employs a simple method to gen-
erate noise’ which is then added to a smooth sample of LiDAR data; loess
regression and wavelet methods are then used to smooth/filter this data and
compare with the original smooth’ sample in terms of RMSE. Various
combinations of functions and parameters were chosen for both methods.
Although wavelet analysis was effective in filtering the noise from the data,
loess regression employing a quadratic parametric function produced the
lowest RMSE and was the most effective.
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1 Introduction

The paper is concerned with the smoothing/filtering of a LiDAR- (Light
Detection and Ranging)'—derived digital surface model (DSM), using loess
regression and wavelet functions. The report focuses specifically on a pilot
analysis of a 2-m resolution gridded DSM derived from LiDAR for part of
the River Coquet, Northumberland, UK. LiDAR is an active technique of
remote sensing (Lillesand et al. 2004) typically involving an airborne sensor
that emits and collects laser light reflected off the Earth’s surface to construct
a DSM (Huising and Gomes-Pereira 1998; Wehr and Lohr 1999; Dubayah
et al. 2000). Interaction of the laser light with the Earth’s surface is a po-
tential source of both systematic and random errors (Huising and Gomes-
Periera 1998) and as a result DSMs will require error removal during post-
processing. Wehr and Lohr (1999) have emphasised the importance of post-
processing to the quality of the final DSM, and have noted that because of
this many methods have been developed on a proprietary basis only. The use
of LIDAR as a data source for the construction of DSMs and DEMs is
becoming increasingly commonplace. It is therefore timely that methods to
smooth/filter LIDAR data are explored.

Essentially, the motivation behind this study is to develop methods to
recover a surface of unknown smoothness from a noisy LIDAR DSM. In
places where the DSM is already reasonably free of noise, one does not want
to apply very much smoothing/filtering—since although filtering leads to
noise reduction, over-filtering will distort the shape of the underlying surface
to some extent. The aim is thus to get the oil to the squeak’ in the sense of
applying noise smoothers/filters only in localities where noise exists. Al-
though the focus of this paper is on the use of loess regression and wavelets,
many other approaches exist for the identification and removal of both
systematic and random errors in DEMs and DSMs. Systematic errors can be
removed by some form of low-pass filtering and subsequent adjustment of
elevation values (e.g., Albani and Klinkenberg 2003). Other error removal
methods include the outlier detection methods described in Lopez (2002),
and 2D Kalman filtering (Wang 1998).

Loess regression and wavelets are both /ocal statistical methods that are
particularly appropriate for the analysis of non-stationary spatial data series
that are often encountered in physical geography, of which a set of sampled
elevations in the form of a DSM or Digital Elevation Model (DEM) is an
example. Both methods have been widely used in mathematics and image
processing, but in contrast they have been little employed in geography and
GIS. In this paper, we explore the application of these methods for the
removal of error in the form of noise’” introduced to a portion of a LIDAR-
derived DSM.

' known also as a laser altimeter (Dubayah et al. 2000)
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This paper is organised into five sections. Section 2 covers the mathe-
matics of loess regression and wavelet transforms and considers the appro-
priateness of both methods for the analysis of geographic data series. In Sect.
3, we outline the characteristics of the study area and the LiDAR data set,
the error model and analyses are reported in Sect. 4 and finally the software
used for the experiments. The results from both methods are described and
discussed in Sect. 4 with concluding comments in Sect. 5.

2 Loess regression and wavelet analysis

Spatial non-stationarity (usually in the form of trends in the mean and var-
iance) provides a particular challenge for the application of traditional sta-
tistical methods borrowed from the time series analysis domain, such as
those based on autocorrelation and Fourier methods (e.g. power spectral
density) that are employed in the analysis of geospatial data. Fourier
methods in particular are often described as possessing good frequency lo-
calisation but poor temporal localisation characteristics (e.g., Kumar and
Foufoula-Georgiou 1997). This limitation has been related to the well-
known result of the Heisenberg Uncertainty Principle (Hubbard 1996: 50)
that dictates that one cannot measure with arbitrarily high resolution in both
time and frequency’ (Kumar and Foufoula-Georgiou 1997: 387, emphasis
added). In a geographical context, this translates to poor spatial localisation.
In other words, the ability to resolve frequencies in a data series is achieved
at the expense of averaging, resulting in poor resolution in the spatial do-
main. Such averaging by definition requires that the data are consistent with
a stationary model. This partly explains why methods that require either
weaker models of stationarity (such as the intrinsic stationarity of variogram
analysis: see Myers 1989) or no models of stationarity at all are often more
attractive for geographical data analysis (see Atkinson 2001). Loess regres-
sion and wavelet analysis are both /ocal methods of analysis that have been
applied to the smoothing and filtering of data series, and as such they are
suited to much geospatial data that are consistent with a non-stationary
mathematical model.

2.1 Loess regression

Loess regression is a form of local regression model (Cleveland et al. 1992;
Cleveland and Loader 1996). Although recently popularised in the late 1970s
by Cleveland and co-workers, local regression has various historical roots
that can be traced back to nineteenth Century Europe (Cleveland and
Loader 1996). In local regression a function of unknown algebraic form in
the model y=f(x)+e is estimated given a set of data pairs (x; y; for
i=1,...,n. The approach used is to fit a parametric curve, such as a straight
line or a quadratic, in the locality of a given x value, weighting each of the
(x;, ¥;) pairs according to the nearness of x; to x. Approximating a function
locally in this way is known as parametric localisation (Cleveland and Loader
1996).
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Basic local regression requires decisions to be made regarding the weights,
the bandwidth around each x, the parametric functions to be fitted and the
criterion of fitting (Cleveland and Loader 1996). The ingredients of the loess
regression adopted in this study are a particular weight function, termed the
tricube weight function, along with bandwidths for each x chosen on the
basis of the nearest fixed percentage of the rest of the data set (this per-
centage is termed the span), local polynomial parametric functions, and an
iterative down-weighting fitting criterion (Cleveland and Loader 1996). For a
given x and bandwidth /%, the tricubic weight applied to each of the n (x;, y,)
is:

i "o 0,73 2
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Thus, for any given x an associated set of n weights is generated. These are
used to calibrate parameter estimates for the local parametric curve. This
gives a unique set of parameters centred on x, which may be used to estimate
f(x). The choice of bandwidth / determines the smoothness of the estimate of
f(x). In loess regression, h takes different values for each x as described
above. Thus, each / is chosen so that a given proportion (the span) of all of
the data is non-zero weighted. As x changes, the parameter estimates change
with x so that the estimate f{x) varies continuously. A final feature of loess
regression is that there is some robustness to outliers. This is achieved using
an iterative, multi-pass approach. A basic loess regression is fitted as set out
above, and for each x; a value of f{x;) is estimated. The residuals x; [] f{x;) are
then computed. A very large absolute value of residual for a given i suggests
that observation 7 is an outlier. Such observations are down-weighted (or if
the outlier is very large, zero-weighted) and the loess procedure is run again
to give a more robust estimate of f{x). The re-weighting procedure is typi-
cally to multiply the existing weights, w;, by a factor K;, where

0 0 HIN
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€
and ¢; is the residual for observation i and s, is the standard deviation of the
residuals. Any residual less than 2SD results in no change in weighting, and
any over three standard deviations results in zero weighting. Residuals be-
tween two and three standard deviations are progressively down-weighted on
a linear scale. Typically, as in this study, loess regressions have two or three
passes of the above procedure.

2.2 Wavelet analysis

Wavelet analysis has been developed and popularised over the last 20 years
in a wide number of scientific contexts. In a GIS context applications have
ranged from the scale-based filtering and construction of multi-resolution
terrain models (Gallant and Hutchinson 1997; McArthur et al. 2000; Bjorke
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and Nilsen 2003), point pattern analysis (Rosenberg 2004) to more general
spatial data analysis (Morehart et al. 1999; Csillag and Kabos 2002). The
detailed mathematics are beyond the scope of this paper, and can be found in
Daubechies (1992), Bruce and Gao (1995), Lark and Webster (1999) and a
useful paper by Abramovich et al. (2000). It should be noted form the outset
that practical implementation of the DWT within computer software such as
S-PLUS often makes use of fast algorithms, for example the O(n) complexity
algorithm developed by Mallat (1989) employing a hierarchical series of low
and high pass filters (Abramovich et al. 2000)—one of a class of Fast
Wavelet Transforms (Strang 1994). The basic treatment here will be based
primarily on the 1D DWT of z(x) although this can be easily extended to the
2D DWT of z(x,y). Essentially the method involves the approximation of a
function of interest z(x) by the series expansion of orthonormal / (scaling
wavelet) and w (mother wavelet) basis functions and wavelet transform
coeflicients ¢ and s. Adopting the notation of Bruce and Gao (1995) w; ;. (x)
and / ;4 (x) are obtained by a process of dilating the wavelet functions to M
levels (or scales) and translating by k along the function of interest where
(Bruce and Gao 1995; Abramovich et al. 2000; Jiang et al. 2000; Csillag and
Kabos 2002):

L, O U U N U
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forj 27 and k 2 Z where Z is the set of integers.

As noted by Daubechies (in Hubbard 1996: 49-50) the ability to resize/
dilate wavelets means that both big wavelets—localised in frequency—and
small wavelets—Ilocalised in time—can be used, giving wavelets good tem-
poral and frequency localisation. Wavelet functions are only required to be a
waveform with aﬁompact support in temporal and frequency dollinai wit

zero mean d.e. 11 woxhRix ¥4 0P and unit square norm &ie: 11 B

dx V4 1bfor mother wavelets, and unit mean and unit square norm for scaling
wavelets (Kumar and Foufoula-Georgiou 1997; Lark and Webster 1999).
Consequently, there are a large number of wavelet functions available, which
only differ in detail. Examples of two wavelets are displayed in Fig. 1: spe-
cifically the simple Haar wavelet and the more complex Daubechies length
eight wavelet of order 4. Note that the definition of order here varies
according to the kind of wavelet, but typically wavelets of higher order tend
to be more complex in shape. For the Daubechies wavelets, order 4 implies
four vanishing moments i.e. that the first four moments of the wavelet
generating function are zero.

The wavelet transform coefficients ¢ and s—which from Bruce and Gao
(1995) correspond to the high frequency detail’ and low frequency smooth’
components of the function respectively and are approximated as follows
(Bruce and Gao 1995; Csillag and Kabos 2002):

zZ zZ
dj;k ’_‘ ijkﬁ’(llﬁxl:dt, SM;k ’_‘ / M’kdxl:Zdet, _] % 1,2, .-.;M

The description so far has been in the context of 1D transform. The DWT
in 2D is a simple extension of the DWT in 1D (Lark and Webster 2004 which
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[, I

0 2 4 0 3 5

Fig. 1 Scaling / and mother w wavelet functions for Haar (A and B, respectively) and
Daubechies length 8 order 4 (C and D, respectively) wavelets

should be consulted for further details). Essentially this proceeds by the
application of the 1D DWT on the columns of data corresponding to the 2D
input image/array, the storage of the resulting wavelet transform coefficients
in an intermediate 2D matrix, and the application of the 1D DWT on the
rows of this matrix (Lark and Webster 2004). For each level M, four sets of
coeflicients are produced:one set of smooth (scaling) coefficients S, and three
sets of detail (wavelet) coefficients: vertical Dy (row smooth, column detail
coeflicients), diagonal Dy (row detail, column detail coefficients) and hori-
zontal Dy (row detail, column smooth coefficients). These are typically
stored as sub-matrices of a larger 2 by 2 matrix (Lark and Webster 2004),
specifically:

U U
S Dy
Dy Dp

Different wavelet software stores these coefficients in slightly different
locations (Davis and Nosratinia 1999; Bjerke and Nilsen 2003) and within S-
PLUS, this arrangement is:

O O
Du Dp
S Dy

An image of Professor Michael Goodchild (Geography, UCSB) and the
results from using the S-PLUS 2D DWT of this image for three levels
(M =3) of wavelet transformation are displayed in Fig. 2. The correspon-
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Example Image 2D DWT

Haorizontal Diagonal
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Fig. 2 Example image with the results of a three level 2D DWT. The combination of
detail and smooth coeflicients are mapped for level 1

dence of the detail coefficients at level 1 to the vertical, diagonal and hori-
zontal elements of the image (note the lines on the shirt) can been seen clearly
from this figure.

A utility of the DWT is that the original function [z(x) or z(x,y)] can be
perfectly recovered by inversely transforming the scaled/translated wavelet
function pair / and w and wavelet transform coefficients ¢ and s. This, and
the fact that a considerable number of the detail coefficients d are zero,
makes the method very attractive for both the scale-based generalisation and
the efficient storage of functions (Graps 1995). It is for example the basis for
the JPEG2000 compression technique (Taubman and Marcellin 2001).
Wavelet analysis is also attractive from the perspective of a form of data
filtering known as signal denoising. This can be accomplished by reducing, or
setting to zero, a portion of the detail’ coefficients ¢ and then reconstructing
the original function z(x) (Graps 1995). Donoho and Johnstone’s (1994,
1995) wavelet shrinkage methods have been widely adopted in signal and
image processing, and are based on non-linear soft-thresholding of the
transform coefficients (Taswell 2000). The aim of wavelet shrinkage is to
apply a low pass filter such that noisy spatial data are impacted upon but
areas where there is little noise remain untouched, fitting well with the de-
noising’ goal of this paper.

Our work adopts the sureshrink procedure of Donoho and Johnstone
(1995), which achieves wavelet shrinkage using the following method, as set
out by its authors:

1. Apply wavelet transform to the noisy surface: this provides a set of
wavelet detail coefficients (which at this stage are also noisy)—if the
surface grid heights from LiDAR are {y;}, call these coefficients {d;},
where the indices denote the kth wavelet coefficient at level j. Higher
levels of j denote higher frequency wavelets.

2. Threshold the noisy wavelet coefficients: This is done by replacing each
{d; i}, with sgn (y; ) (Iy;l-1;) +. Any coeflicients whose absolute value is
less than ¢; is set to zero, and other coefficients are shrunk’ towards zero
by an amount ¢.
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3. Choose thresholds 7, for each wavelet level using Stein’s unbiased esti-
mate of risk (SURE; Stein 1981).

Typically, for lower frequency levels of j, the values of 7, are very small,
leaving the coefficients virtually untouched, but for high-frequency levels
values of #; are higher, so that a greater degree of shrinkage to zero occurs.
In areas where there is little noise, the values of d;; will be low for high
frequency j, and the shrinkage to zero will have little effect on the overall
wavelet profile. However, in noisy regions, the shrinkage of the higher fre-
quency d; ;s will have a smoothing effect, as desired. This approach can be
applied to several types of wavelet, for example the commonly used Haar or
Daubechies wavelets.

Wavelet-based signal denoising has been employed frequently in the
context of removing the speckle in SAR images (e.g., Fukuda and Hirosawa
1998; Argenti and Alparone 2002; Dai et al. 2004) yet only infrequently in
the context of filtering terrain data (e.g., Wang and Trinder 2002; Zatelli and
Antonello 2002). This may be due to the fact that DEMs are typically
interpolation-based and require little denoising, whereas SAR and LiDAR
DSMs are measurement-based and the measurement process introduces
noise, and requires some degree of pre-processing to remove noise and
estimate the underlying surfaces.

3 Methods
3.1 Study area and data preprocessing

A LiDAR DSM created by the UK Environment Agency for a 1-km square
section of the River Coquet in Northumberland provided the data set for
analysis (Fig. 3; Charlton et al. 2003). The Coquet rises on the Scottish
border and flows east about 80 km to its mouth at Amble. The catchment of
the river is around 650 km?. The location of the 1 km square tile of interest is
at Brinkburn, which lies about 16 km inland (Ordnance Survey tile NZ1198).
The River Coquet in this tile flows first through an unstable reach with its
bank stability related to the incidence of adjacent tree cover, and then enters
an incised conveyance channel with bedrock outcrops (Newson 2005). It was
felt that this topographic variety would provide a range of surfaces for the
experiment. The DSM was formed by interpolating the original first return
LiDAR data obtained from an airborne ALTM400 in a Cessna 404 flown in
March 1998 onto a grid. This is a narrow band instrument that produces a
semi-regular array of spot heights between 1 and 4 m. Although commonly
both first return data (corresponding to vegetation/building surface), and
last return data (penetrating elevation to some degree) are collected from
LiDAR instruments, only the first return data are used here. The data were
processed in June 1998 using the WGS84 datum, and then transformed to
OSGB36. They were then interpolated onto a 2x2 m” regular grid by the
Environment Agency. There are a maximum of 250,000 observations in the
file for each tile, with each observation consisting of a triplet {x,y,z}. A hill-
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Fig. 3 Location map for the study area

shade of the raw 1 km square DSM can be seen in Fig. 4 (with an area of

gross error in the SW omitted to im

3.2 Error model

In order to evaluate the ability of

prove the visualisation).

both loess regression and wavelets to

smooth/de-noise data, the approach was adopted of taking a known’ surface,

adding some noise to it, and then
method. Since the task of the smoot

to smooth/filter the noise with each
hing technique is to recover the known

surface, then the success of this can be assessed by computing the root mean
square error (RMSE) between the known surface, and that returned by the

Each side is 1 km

Fig. 4 Perspective view of the study area with the problematic zone in the SW removed
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smoothing technique. It is on the basis of this validation technique, that the
RMSE values quoted in this study are obtained. Two key issues here are the
nature of the noise that is added to the known surface, and the choice of the
known surface itself. The choice of surface was based on identifying a
120x120 m area of terrain that appeared to display little noise’ in the LIDAR
data (location S2 in Fig. 5). It was felt that this was a better option in
contrast to using an artificially generated surface, say on the basis of some
mathematical function z=f{x,y). A simple reason for this approach is that
the underlying surface used in the evaluation is geographically realistic and
as such is one that is likely to occur in practice. It may therefore have
characteristics that are not adequately encapsulated by some choice of
function.

The choice of the noise model was more complex. It would be unrealistic
to assume that the error in each LiDAR pixel would be uncorrelated to its
neighbours, but at this stage it is difficult to ascertain the exact structure of
the autocorrelation: LIDAR data are subject to a wide range of systematic
errors which common to active systems are a combination of sensor and
surface characteristics (Huising and Gomes-Pereira 1998; Wehr and Lohr
1999). Also, an inspection of the spikes’ in the raw LiDAR surface model
(these are apparent in Fig. 5—see later explanation) suggested that a

1000

meters

0 200 400 600 800 1000
meters

Fig. 5 Location of sample sites. S2 area of little noise’; S1 used to model error
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Gaussian distribution is also unlikely. These combined factors make it dif-
ficult to justify the methodology of assuming an autocorrelated Gaussian
error model, and simulating error terms based on this. Hence the following
approach was adopted:

1. To select another section of the study area of exactly the same size as the
known’ surface, but that is considered to be more noisy (location S1 in
Fig. 5).

2. To identify errors using a relatively crude method such as a global’
simple planar regression (that is, fitting a model of the form
z=a+bx+cy) to identify level of error on a pixel-by-pixel basis. Note
that this approach is only appropriate in a study area where the land-
scape is close to a plane—as is the case for S1.

3. Add this grid of errors’ to the known surface S2.

Thus, the errors found in step 2 are treated as the simulated noise in step
3. The errors generated from this approach should have the characteristics of
real world” LiDAR errors—and therefore we have sidestepped the issue of
choosing a model for noise by using some real world’ noise. The modelled
noise found in this algorithm is shown in Fig. 6. The Figures suggest that the
noise may well be non-Gaussian and autocorrelated, although the degree of
autocorrelation does not seem constant over the study area. There are also a
number of high positive spikes. Since simple autocorrelated Gaussian errors
do not exhibit these properties, it seems reasonable, at least at this initial
stage, to adopt the approach outlined above. An additional reason for using
the residuals from the relatively crude global plane-fitting method to obtain a
model of noise is that this model is different to the loess regression and
wavelet methods, and there it should minimise any bias in a comparative

Fig. 6 Simulated errors based on residuals from a global regression applied in S1
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assessment of the latter two methods. In many situations it would be difficult
to justify this approach—however, the particular sample of location Sl is
essentially a featureless plane. In this instance, extraction of the error term as
residuals from the regression model is justifiable. The idea here is to borrow
strength’ from this particular location in order to simulate errors in other
locations. Whereas we acknowledge that this approach does possess some
shortcomings—particularly that a simple regression cannot recover error
perfectly, and we are assuming that terrain complexity has no influence on
the error—we feel that at least initially, being able to produce a set of errors
close’ to the real world outweighs the benefits of modelling random error
terms in some more analytical way. It is proposed at a later date to compare
this approach to one using simulated modelled errors.

3.3 Software

In order to generate a smooth/de-noised surface from S2, the R implemen-
tation of loess regression as described in Sect. 2.1 was applied using both
linear and quadratic parametric functions of varying span. Note that since
the LiIDAR data are spaced on a regular grid, span and bandwidth are nearly
equivalent in this study.

The 2D DWT-based wavelet smoothing analysis was implemented in both
the S-PLUS and R statistical packages, the latter employing a version of
Donoho and Johnstone’s sureshrink algorithm (Whitcher 2004). A modifi-
cation of wavelet shrinkage denoising was used in the context of the S-PLUS
statistical software. This method involved writing an automated S-PLUS
script which iterated the type of wavelet used, the percentage of detail
coefficients (1-100%), and the number of levels or levels in the analysis (1-4),
shrinking on the basis of coefficient magnitude. The S-PLUS WAVELETS
library (S-PLUS 2000 version) allows up to 40 types of wavelet to be used,
although with the geometric progression employed in the DWT and the finite
grid size, the choice of certain wavelets limits the number of levels in the
analysis without boundary correction. It should be noted in passing that
source code for the DWT is available in Press et al. (1992).

4 Loess/wavelet results and discussion
4.1 Loess regression smoothing

The resulting RMSE (in metres) for both linear and quadratic functions of
loess regression and varying span /i are displayed in Fig. 7. From this
analysis the minimum RMSE of 0.014 was obtained from a quadratic
function with a span of around 0.01, which on the regular grid is equivalent
to a bandwidth / of about 10 m. In contrast the minimum RMSE of 0.019
from the planar function was obtained from a span of 0.007 (about 7 m).
An interesting issue arises from this loess regression analysis: it seems that
the local quadratic model outperforms the local planar model, but in addi-
tion to this it seems that the best span for a quadratic surface is higher than
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Fig. 7 Performance of Loess regression smoothing

that for a locally linear surface. This raises a question of scale—it seems that
if one wishes to treat a terrain as locally planar, one must consider a smaller
spatial window than if one is to treat a terrain as locally quadratic. This is
perhaps not surprising—many terrain features are remarkably similar to
quadratic forms reflecting naturally occurring features such as ridges, val-
leys, hills and lakes (or at least the land levels surrounding lakes) and this is
reflected in the widespread use of quadratic polynomials to model various
types of landforms (e.g., Schmidt et al. 2003; Wood 1998). The only way to
approximate, say, a valley using planes is to subdivide it into smaller rela-
tively flat sub-areas, and to find approximating planes for each of these. This
in itself raises some interesting theoretical issues relating to scale—depending
on how one is modelling a terrain, optimal’ scales will differ. Similarly, multi-
scale comparisons (such as visualising loess smoothes over a variety of spans)
could also yield different results depending on the local model used.
However, as well as this extra dimension of complexity in the analysis of
scales, some interesting potential applications arise from these findings, that
may provide a link between terrain filtering and the quadratic-based land-
scape classification work of Wood (1996, 1998). From the latter, we know
that by looking at the coefficients of local quadratic models, one can clearly
determine whether the quadratic curve is a valley, a peak, a ridge or some
other kind of quadratic form, and therefore assign a classification to the local
land feature. For example, one could check whether the local quadratic
surface has a maximum, and if it does, whether the maximum falls inside the
regression window. If it does, this suggests that one is in the presence of a
hilltop. In the context of terrain filtering, this information could be used as
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part of a rule-based generalisation process, or a two pass smoothing/filtering
method. For the first application, different surface generalisation algorithms
could be applied to different kinds of terrain feature, with the output of the
quadratic modelling used as input to set algorithm selection rules. For the
second application, use could be made of filtering methods that are less likely
to move extreme points (peaks, troughs) in those areas where these features
are detected from the local quadratic surface fit.

4.2 Wavelet filtering

The filtered/denoised surface generated by each iteration of the automated
wavelet programme was compared against the original noiseless surface and
the RMSE calculated. Surfaces analysed to three levels with a default
boundary condition generated the lowest RMSE estimates for the majority
of wavelets. The RMSE results (in metres) for a three level calculation for 40
wavelets retaining varying percentages of coefficients are displayed in Fig. 8.

The results demonstrate that analysis with a biorthogonal v-spline wavelet
vs2 (for definition see Bruce and Gao 1995: 294) produced the lowest RMSE
estimate (0.0374) that was obtained whilst retaining 10% of the coefficients.
Plan and perspective views of the original, noisy and filtered DSMs for this
wavelet/coefficient choice can be seen in Fig. 9, to visualise the success of the
wavelet smoothing procedure employed in this way.

Iterating the analysis through several wavelets using the sureshrink algo-
rithm in the R software (a total of 17, listed in Table 1) and calculating the
RMSE enabled a minimum RMSE of 0.033 to be obtained for the Fejer—
Korovkin wavelet of order 4. The results of the sureshrink can be seen in
Fig. 10, along with comparison against the minimum RMSE obtained for
the loess smoothing.

The horizontal line on the Figure indicates the level of error for the best
loess filter. It may be seen that none of the wavelets from either the S-PLUS
based shrinking or those from the R sureshrink analysis (Table 1) are an
improvement on this. It is also apparent that in general, the lower orders of
wavelets perform better than those of higher orders.

Wavelets would seem to be effective in noise reduction, although in this
instance inferior to loess regression. A particular concern is the slightly
arbitrary choice of wavelet function, this currently being dictated by those
functions being made available in the relevant R and S-PLUS libraries.
However, it is worth noting that there were no outstanding winners’ among
the wavelet functions, with similar results in terms of RMSE being recorded
for all kinds of wavelet. One observation from the sureshrink analysis per-
haps worth re-iterating is that lower order wavelets seem to perform rela-
tively well-suggesting a dictum of simpler is better’?

Although in this instance wavelet analysis was inferior to loess regression
for smoothing/filtering the noise, this may be due to the specific mechanism
chosen to generate the errors in the experiment. Although our method
provided a useful insight in terms of real world’ errors, further work is
needed to see whether the observations made on the basis of our error
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Fig. 8 Performance of S-PLUS 2D DWT wavelet shrinkage. Each line represents a dif-
ferent wavelet

modelling would be reproduced in other terrains. Alternative error distri-
butions that may arise from other situations, and which exhibit different
patterns of autocorrelation, may result in different outcomes. Thus, there is a
need to investigate other terrains, and also to consider theoretical ap-
proaches to error simulation, so that results of assessing filters on error with
known statistical properties can be obtained. For example, smoothing
splines (see for example Wahba 1975) may be considered as an alternative to
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Fig. 9 Images and perspective views of S2 before/after wavelet shrinkage
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Table 1 Wavelets used in the sureshrink analysis

Wavelet type Orders used Annotation in Fig. 10
Haar n/a haar
Daubechies (extremal phase) 4, 6,8,16 d4,d6.,d8,d16
Daubechies (least asymmetric) 8,16,20 la8,1a16,l1a20
Minimum bandwidth 4.8,16,24 mb4,mb8,mb16,mb24
Fejer—Korovkin 4,6,8,14,22 fk4,fk6,fk8.fk14,fk22
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§ 4
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1+ 38 s 23z 3§ g

fht
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: ¥ 3
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Fig. 10 Performance of the R sureshrink algorithm—see Table 1 for explanation of
x-axis labels. The horizontal lines indicate the minimum RMSE for linear (solid line)
and quadratic (dashed line) loess regressions

either wavelets or local regression smoothing. It is intended that these will be
topics of future investigation.

5 Conclusions

Comparison of the effectiveness of the loess regression and wavelet methods
for smoothing/filtering the sample LiDAR DSM reveals that the loess
regression smoothing method produces a surface with a lower RMSE than
either of the wavelet denoising methods. On the basis of this study loess
regression would seem to be a preferable method for noise reduction, how-
ever, these findings undoubtedly reflect the specific characteristics study area
used for the assessment, and cannot be said to any more than indicative
without application of the methods to a variety of LiDAR-derived DSMs of
contrasting terrain type/landcover. The degree to which this finding is a
function of the particular error model and scale of feature encountered in
this study also requires further research.
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