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One-dimensional Potts model, Lee-Yang edges, and chaos
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It is known that the exact renormalization transformations for the one-dimensional Ising model in a field can
be cast in the form of the logistic mapf (x)54x(12x) with x a function of the Ising couplingsK andh. The
locus of the Lee-Yang zeros for the one-dimensional Ising model in theK,h plane is given by the Julia set of
the logistic map. In this paper we show that the one-dimensionalq-state Potts model forq>1 also displays
such behavior. A suitable combination of couplings, which reduces to the Ising case forq52, can again be
used to define anx satisfying f (x)54x(12x). The Lee-Yang zeros no longer lie on the unit circle in the
complexz5eh plane forqÞ2, but their locus still maps onto the Julia set of the logistic map.
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I. INTRODUCTION: ISING MODEL

Yang and Lee@1,2#, later followed by various other au
thors@3#, provided an important paradigm for understandi
the nature of phase transitions by looking at the behavio
spin models incomplexexternal fields. They observed th
the partition function of a system above its critical tempe
ture Tc was nonzero throughout some neighborhood of
real axis in the complex external field plane. AsT→Tc

1 the
end points of loci of zeros moved in to pinch the real ax
signalling the transition. When such end points occur at n
physical~i.e., complex! external field values they can be co
sidered as ordinary critical points with an associated e
critical exponent. This appealing picture was later exten
by Fisher to temperature driven transitions@4#.

On any finite graphGn with n vertices the free energy o
an Ising-like spin model can be written as

F~Gn ,b,z!52nh2 ln)
k51

n

@z2zk~b!#, ~1!

where the fugacityz5exp(h), and h is the ~possibly com-
plex! external field. Thezk(b) are the Lee-Yang zeros, whic
in the thermodynamic limit often condense on curves in
complexz plane. In the infinite volume limitn→` the free
energy per spin is

F~G` ,b,z!52h2E
2p

p

dur~b,u!ln~z2eiu!, ~2!

where r(b,u) is the density of the zeros, which can b
shown to appear on the unit circle in the complexz plane in
the Ising case~the Lee-Yang circle theorem!. ForT.Tc or, if
one prefersb,bc , there is a gap withr(b,u)50 for uuu
,u0, and at these edge singularities we have

r~b,u!;~u2u0!s, ~3!
1063-651X/2002/65~5!/057103~4!/$20.00 65 0571
f

-
e

,
-

e
d

e

which defines the Lee-Yang edge singularity exponents.
This also impliesM;(u2u0)s. Various finite size scaling
relations relate the Lee-Yang exponent to the other crit
exponents@5#.

At first sight there is no apparent reason why the Le
Yang edge singularity should bear any relation to the onse
chaotic behavior and Julia sets for nonlinear maps. Howe
the relation is well known in the case of spin models
hierarchical~fractal! lattices@6#, where exact renormalization
group ~RG! transformations exist. It was realized that th
Julia sets of the renormalization group transformations g
the boundaries of the basins of attractions~i.e., complex ex-
tended phases! of the high and low temperature attractors
the complex temperature plane and hence determined
loci of partition function zeros for such models. The idea h
also been applied using an approximate renormaliza
group transformation to the two-dimensional~2D! Ising
model on a square lattice and the two circles of Fisher ze
were recovered@7#. This picture of partition function zeros
arising as complex temperature or field phase bounda
also ties in nicely with the recent work of Biskupet al. @8#
who investigated Lee-Yang singularities in a general clas
models with first-order transitions.

In this paper we look at another class of model with
exact renormalization group transformation, the 1D Po
model, and show that the Julia set of this transformation a
gives the partition function zeros. The work reported in th
paper extends the earlier observations of one of the aut
on the 1D Ising model in Ref.@9#, which we now briefly
review for completeness. The partition function for the 1
Ising model is given by

ZN~K,h!5(
$s%

expFK(
j 51

N

s js j 111h(
j 51

N

s j G , ~4!

whereK5J/kT andh5H/kT, with J the spin coupling and
H the external magnetic field, and periodic boundary con
tions requiresN11[s1. The well-known solution to the 1D
Ising model proceeds by expressingZN(K,h) in terms of the
transfer matrixV asZN5Tr VN, where
©2002 The American Physical Society03-1
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V~K,h!5S V11 V12

V21 V22
D 5S eK1h e2K

e2K eK2hD . ~5!

Diagonalizing V gives the eigenvaluesl65eK$coshh
6Asinh2h1e24K% and allows us to express the partition fun
tion as

ZN5l1
N 1l2

N . ~6!

The Lee-Yang zeros of this partition function in the com
plex h plane are theN roots of ZN(K,h)50, which are for
real K the solutions of

ZN5~l1!N1~l2!N50⇔l15expS inp

N Dl2 , ~7!

where2N,n<N is odd. This gives theN Lee-Yang zeros
hn5 iun ,

cosS np

2N
DAe24K1sinh2~hn!5 i sinS np

2N
D cosh~hn!. ~8!

We can see that whenK→` ~the zero temperature ‘‘transi
tion point’’ for the 1D Ising model! the zeros are uniformly
distributed on the unit circle in the complexz5eh plane, as
demanded by the Lee-Yang theorem.

So far, so standard. Now note that the recursive renorm
ization group transformation for the 1D Ising model can
obtained by demanding that any renormalized couplingsK8
andh8 satisfy

ZN/2~K8,h8!5ANZN~K,h!, ~9!

whereA is some renormalization factor. Thinking in terms
a decimation-type renormalization scheme it is clear that
can satisfy this by taking

V~K8,h8!5A2V~K,h!2, ~10!

whereV is the transfer matrix given in Eq.~5!. Viewed geo-
metrically, we are welding two line segments together a
demanding a suitable rescaling of the couplings, so one c
of the rescaled transfer matrixV(K8,h8) must serve in place
of two copies of the originalV(K,h). This leads to the re-
cursion relations

e2h85e2h
cosh~2K1h!

cosh~2K2h!
,

e4K85
cosh~4K !1cosh~2h!

2cosh2~h!
. ~11!

The crucial observation of Ref.@9# was that these recursio
relations could be recast by making use of the renormal
tion invariantm511e4K sinh2(h) to eliminateh and intro-
ducing the variable

x52
m

~e4K21!
~12!
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to transform Eq.~11! into the logistic mapx854x(12x).
This will exhibit chaotic behavior for 0,x,1, i.e., if m
511e4K sinh2(h),0 which for imaginary external field,h
5 iu, will occur if sin2(u).e24K.

What has this got to do with Lee-Yang edge singularitie
Looking back at Eq.~8! we can see that the lowest Lee-Yan
zero will lie at sin2(u0)5e24K, which is precisely the ‘‘bound-
ary of chaos,’’m50, in x observed in the renormalizatio
transformation above. One can also identify a gap expon
for the chaotic map that is identical to the Lee-Yang exp
nents521/2 for the 1D Ising model@9#. The example of
hierarchical models where exact transformations also e
suggests that the identification of the Julia set of an
transformation and the loci of partition function zero
whether Lee-Yang edge singularities or Fisher zeros, is
neric so it would be of interest to see other examples of
phenomenon. In the remainder of the paper we discuss
such an example, the 1D Potts model, where one can
construct an exact renormalization transformation alo
similar lines to the Ising model and obtain the Lee-Ya
zeros explicitly.

II. 1D POTTS MODEL AND LEE-YANG ZEROS

The partition function for the 1D Potts model is given b

ZN~y,z!5(
$s%

expF K̃(
j 51

N

d~s j ,s j 11!1h̃(
j 51

N

d~s j ,1!G ,

~13!

where thed()s are Kronecker deltas and there are nowq

possible states for each spins. We have definedy5eK̃ and
z5eh̃ for later convenience. We can write down a trans
matrix for this as aq3q matrix V(y,z) with q22 diagonal
elements (y21)/(yz)1/q and a 232 submatrixT(y,z) @10#

T~y,z!5
1

~yz!1/q S yz z1/2~q21!

z1/2 y1q22 D . ~14!

For q52 we recoverV(K,h) from T(y,z) providing we
identify K̃52K,h̃52h.

The solution proceeds as in the Ising case by writ
ZN(y,z)5tr V(y,z)N and diagonalizingV @10#. The domi-
nant eigenvaluesl0,1 come fromT(y,z)

l0,15
1
2 @~y~11z!1q22#

6A@y~12z!1q22#21~q21!4z!~yz!21/q

~15!

which can be rewritten as

l0,15
y

2
~ t1t21z6A~z2t1

2 !~z2t2
2 !!~yz!21/q ~16!

with

t65
1

y
~A~y21!~y1q21!6A12q!. ~17!
3-2
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The other q22 eigenvalues given byl25l35•••5(y
21)(yz)21/q play no role in the thermodynamic limit forq
>1 as discussed in some detail in Ref.@10#.

The Lee-Yang zeroszn5ehn , as for the Ising model, ap
pear as solutions of

ZN5~l1!N1~l0!N50⇔l15expS inp

N Dl0 , ~18!

which, upon substituting in the values above forl0,1, gives

cosS np

2NDA~zn2t1
2 !~zn2t2

2 !5 i sinS np

2ND ~ t1t21zn!,

~19!

which is clearly of the same form as the Ising result in E
~8! for generalq and reproduces it exactly whenq52 ~and
we setK̃52K,h̃52h), as it should. The resemblance ru
deeper even for generalq, as noted in Ref.@10#. If we define
z̃5z/(t1t2)5yz/(y1q22) the Lee-Yang zeros are aga
uniformly distributed round the unit circle in the complexz̃

plane asK̃→` and t1→1,t2→1.
We now pursue the same path to construct the renorm

ization group transformation for the Potts model as we
for the Ising model. We demand that the renormalized c
plings y8 andz8 satisfy

ZN/2~y8,z8!5ANZN~y,z!, ~20!

which can be solved by takingV(y8,z8)5A2V(y,z)2, where
V is now the Potts transfer matrix. Since onlyl0,1 are play-
ing any role in the thermodynamic limit we discard the r
mainingq22 eigenvalues and concentrate our attentions
the submatrixT, by demandingT(y8,z8)5A2T(y,z)2.

We find the following recursion relations:

1

~y8z8!1/q
~y8z8!5

A2

~yz!2/q
@y2z21z~q21!#,

1

~y8z8!1/q
~y81q22!5

A2

~yz!2/q
@z~q21!1~y1q22!2#,

1

~y8z8!1/q
~z8!1/25

A2z1/2

~yz!2/q
~zy1y1q22!,

~21!

which can be used to eliminateA giving

y8z8

y81q22
5

y2z21z~q21!

~y1q22!21z~q21!
,

~z8!1/2

y81q22
5

z1/2~yz1y1q22!

~y1q22!21z~q21!
. ~22!

It is then straightforward to show that, as for the Isi
model, an invariant exists, in this case
05710
.

l-
d
-

-
n

C5
@y~12z!1q22#2

z
, ~23!

so we can use the expression forC to eliminatez and reduce
our two recurrence relations to one fory alone. Eliminating
z8 from Eq. ~22! leads to a single recursion relation that c
be written as

y8~y81q22!2~q21!5
z@y~y1q22!2~q21!#2

@y~z11!1q22#2 .

~24!

Now we can use Eq.~23! to write

C14y~y1q22!5
@y~z11!1q22#2

z
. ~25!

So we define

x52
@~C/4!1q21#

@~y21!~y1q21!#
~26!

and the relation~24! is again reduced to the logistic map wit
the prefactor 4,

x854x~12x!. ~27!

For C real and positivex is real and negative and so is ou
side the domain of chaos, but forC,24(q21) x is positive
we have chaos for 0,x,1. On the critical line itself,C
524(q21), we allow ourselves the possibility of comple
z5uzueiu and find from Eq.~23! that

z5
~y1q22!

y
eiu5~ t1t2!eiu, ~28!

where

cos~u!5122
~q21!

y~y1q22!
. ~29!

These are precisely the equations defining the Lee-Yang e
singularity in the 1D Potts model.

We have thus seen that defining a decimation-type ren
malization transformation for the 1D Potts model gives r
to a set of recursion relations that may be reduced using
renormalization invariant of Eq.~23! to a single equation.
This may in turn be mapped on to the logistic equation. T
boundary of the chaotic region for this logistic map is ide
tical to the critical line of the Lee-Yang edge singularity. Th
behavior is entirely analogous to that seen in the 1D Is
model in Ref.@9# and in the hierarchical models that als
possess an exact renormalization group transformation.

III. DISCUSSION

The similarity of the Lee-Yang edge singularity for th
generalq state Potts models in 1D and for the Ising mod
was already remarked in Ref.@10#. The exponents521/2
is identical for allq.1, and in suitably rescaled variables th
3-3
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Lee-Yang zeros lie on the unit circle atT50 for all q.1. In
this paper we have seen that a similar construction of
exact renormalization transformation may be employed
both the 1D Potts and 1D Ising models and that in both ca
the Julia set of the mapping gives the Lee-Yang singular

That this should be so is in accordance with both ear
observations of spin models on hierarchical lattices@6# and
the idea in Ref.@8# that loci of partition function zeros ca
profitably be thought of as phase boundaries in the comp
temperature or field planes. Just as in the hierarchical la
models, the Julia set of the renormalization map forms
boundary between the different basins of attraction,
phases, and hence coincides with the locus of zeros of
partition function.

An interesting counterpoint to these results is provided
the very detailed analysis of real-space renormaliza
group flow inq-state clock models with an additional imag
nary interaction that was carried out in Ref.@11#. Without the
imaginary term the three-state clock model is equivalen
the three-state Potts model and displays only the zero t
perature continuous transition, but the addition of the ima
nary term allows first order transitions with nongeneric fe
tures @12#. The Lee-Yang zeros we discuss here ar
essentially by looking for the equality~in modulus! of two of
the transfer matrix eigenvalues, whilst extending the z
temperature transition point to the Lee-Yang line by co
plexifying the external field.

It was noted in Ref.@11# that ‘‘Lee-Yang-Type’’ singulari-
ties in the clock models could also arisewithin transition
surfaces~where two of the eigenvalues were already equ!
J.
.
.

h.
J.
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when elements of powers of the transfer matrix were zero
equivalently, the eigenvalues degenerated in pairs. Altho
the net result is the same in both cases—a zero parti
function—the mechanism by which this arises and the im
cations are rather different. In the clock models the Le
Yang-type singularities are interpreted as indications of n
universal pathologies for certain real-space renormaliza
transformations for particular regions in parameter spa
whereas the standard Lee-Yang singularity is viewed mor
standard critical behavior, albeit at a complex parame
value. The general possibilities for pathologies of appro
mate real space renormalization transformations wit
phases in higher-dimensional models were also discusse
a rigorous manner in Ref.@13#.

Other cases exist where recursive nonlinear maps are
in the definition of exact partition functions, notably for sp
models on Bethe lattices~trees!. There has been discussio
of chaotic effects in such models whenq,1 @14# and the
logistic equation has even been observed for aq51 state
Potts model related to percolation on a Bethe lattice w
coordination number 3@15#.
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