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Abstract. A classical radioastronomy receiver is fed with a corrugated horn and an independent lens,
both placed in a cryostat to lower the noise temperature. The beam is focused and directed using a
combination of elliptical and plane mirrors. This paper proposes modifying the initial feeding system
by placing the lens onto the horn aperture, thereby allowing a size reduction of the horn and lens, and a
simplification of their mechanical design. The profiled lens is shaped to correct the phase error on the
horn aperture. A quasi-optical model of the horn-plus-lens system has been developed using a Beam
Mode Expansion (BME). Results using both a hyperbolic-planar lens and a spherical-elliptical lens,
as well as results obtained by using Geometrical Optics (GO) with a Kirchoff–Huygens integration
to get the far-field pattern, have been compared with measurements. As a direct application, a full
focusing system for the new 40-m radiotelescope at the “Centro Astronómico de Yebes” is presented
for the 22, 30 and 45 GHz bands. This paper has developed a QO model for a corrugated conical horn
with a phase-correcting lens.
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1. Introduction

Radioastronomy receivers have feeder systems formed by corrugated conical horns,
a focused lens, an elliptical mirror and a set of several plane mirrors (Chu,
1983; Tuovinen et al., 1992). The first two elements are placed in a cryostat
to lower the system noise temperature (Goldsmith, 1997). Quasi-Optical Theory
(QO) (Goldsmith, 1997; Garcı́a et al., 2002) covers the analysis of this structure
(called a Gaussian telescope), while a Beam Mode Expansion (BME) optimizing
fundamental-mode power (Wylde, 1984) is applied to the corrugated conical horn.
Applying both theories simultaneously works properly provided that the lens is
many horn confocal distances away (Goldsmith, 1997). However, if the lens is
placed in the near field of the horn, the field radiated by the lens is less described
(Tuovinen et al., 1992). This is the case when a lens profile is chosen to correct a
horn phase error. Clarricoats and Saha (1969) and Kildal et al. (1984) have worked
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with such a systems with excellent results. In this paper we expand that analysis
from the point of view of the QO theory.

Figure 1 shows a comparison between GO (with a Kirchoff–Huygens integration
in the aperture plane to get the far-field pattern) and QO for a horn with a meniscus
lens at 30 GHz. A BME is used to model the corrugated horn (Wylde, 1984; Garcı́a
et al., 2003) and the effect of the lens is added via an ABCD matrix. The horn axial
length is 105.3 mm and horn aperture radius is 49.1 mm. The refractive index of
lens material is 1.45. As can be seen, the radiated pattern is not accurately predicted
by the QO. This paper proposes the use of a more accurate procedure where the
BME is applied to the pattern produced by the horn-plus-lens system.

The structure of this paper is as follows. In Section 2, a model of a horn with
a spherical-elliptical lens is developed along with the BME method and its op-
timization procedure. A BME is used to model a horn plus hyperbolical-planar
lens system in Section 3. In Section 4, we validate the BME proposed for the
hyperbolical-planar lens in Section 3 by means of a system working at 7.25 GHz.
In Section 5, we consider the spherical-elliptical lens and validate the method by
constructing a radioastronomical receiver at 30 GHz. In this section we also present
an optical solution for other bands of the new 40-m radiotelescope of the “Centro
Astronómico de Yebes”. Finally, in Section 6 we discuss the results and consider
their implications for the 22 GHz channel of the new radiotelescope.

In radioastronomy there are several scientific observation bands of interest,
from 2 GHz up to higher than 300 GHz (Chu, 1983; Tuovinen et al., 1992). An
individualized study of the problem is necessary for each observation band (Chu,
1983; Goldsmith, 1997), in order to design the feeds and the focalization elements
such as lenses and conical or plane mirrors (Chu, 1983; Tuovinen et al., 1992;
Goldsmith, 1997; Garcı́a et al., 2002; Wylde, 1984). This paper is related with the
necessity of the focalization of the new 40-m Nasmyth-Cassegrain radiotelescope of
the Centro Astronómico de Yebes in Spain with F/D ratio of 7.9 (Garcı́a et al., 2003).

Our aim is to cover several bands from 120 GHz to 2 GHz. There is a dimension
constraint in the receiver cabin for the situation of all the receivers, so it is suitable
to share the maximum number of focalization elements for each observation band.
In Figure 2 the receiver cabin and the physical dimension available for the situation
of the receivers and their focalization elements are represented (Garcı́a et al., 2003).
It can be seen (Figure 1) that the cabin presents two Nasmyth asymmetric sections
centered on M4 and M4’ mirrors optical axis that can be selected by means of
Nasmyth mirror M3.

To deal with the focalization problem of the different radiotelescope bands, the
quasi-optics theory (QO) is used in this paper (Chu, 1983; Goldsmith, 1997; Wylde,
1984; Clarricoats and Saha, 1969). In order to achieve the proper focalization of
the radiotelescope two fundamental requirements are necessary: the first one is
that the subreflector (and so the main reflector) has a suitable taper (illumination
level in the edge), of 12 dB taper for optimum aperture efficiency. The second
requirement is the existence of a perfect focalization, in terms of geometry optics
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Figure 1. Copolar radiation pattern (φ = 45◦) of a corrugated horn and a spherical-elliptical lens:
solid GO, dotted QO with 31 modes.

(GO) (Goldsmith, 1997), that feeders are situated in the system foci. In Figure 3
the geometry of the radiotelescope is presented whose fundamental parameters
are:

• Primary

– Main reflector diameter 40 m
– Fm/Dm 0.375
– Fm 15 m
– �v 67.38◦

– hp 6.667 m
– Vertex hole 3.170 m

• Cassegrain configuration

– FED 7.909
– Fe 316 379 m
– �r 3.621◦

– Magnification, M 21.0919
– Lv 1.204 m
– Fc 26 600 m
– Lr 25 396 m
– g 11.6 m
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Figure 2. Radiotelescope receiver cabin.

– g′ 5.0 m
– hs 7.129 m

• Subreflector geometry

– Ds 3.28 m
– ex 1.099555
– prof 0.5207 m
– Dvs 0.2635 m

2. Horn with spherical-elliptical lens

Consider a corrugated conical horn placed along z axis and propagating an hybrid
mode HE11 (linearly polarized-x̂), the aperture field can be described as (Clarricoats
and Olver, 1984):

Ex (θ, φ) = F1(θ )(cos(θ) cos2(φ) + sin2(φ)) (1)

Ey(θ, φ) = F1(θ ) (cos(θ ) − 1) sin(φ) cos(φ) (2)
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Figure 3. Radiotelescope geometry.

where,

F1(θ ) = P1
ν (cos(θ))

sin(θ )
+ d(P1

ν (cos(θ )))

dθ
(3)

and Pm
ν (cos(θ )) is the Legendre polynomial of the first kind of order m (m = 1) and

degree ν. As the hybrid mode HE11 is excited, the order m takes the value 1.The
degree ν is the root of the function P1

ν (cos(ψe)), where ψe is the half-flare
angle.

A Beam Mode Expansion can be applied to a horn with a phase correcting lens
(spherical–elliptical profile). The lens aperture field is calculated from the horn
field by applying Jasik’s expressions (Jasik, 1961) for the conservation of power in
a differential area, giving:

Eapx(ρ, φ) = N (θ (ρ)) F1(θ (ρ))(cos(θ(ρ)) cos2(φ) + sin2(φ)) (4)

Eapy(ρ, φ) = N (θ (ρ)) F1(θ (ρ)) (cos(θ (ρ)) − 1) sin(φ) cos(φ) (5)
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where the conservation of power factor is:

N (θ ) = 1

n − 1

√
(n − cos(θ ))3

n cos(θ ) − 1
(6)

and

cos(θ(ρ)) =
nρ2

f 2(n−1)2 +
√

1 − (n2−1)ρ2

f 2(n−1)2

1 + ρ2

f 2(n−1)2

(7)

n is the refractive index of the lens material and f is the elliptical vertex length
(Milligan, 1985).

BME is based on the idea that any aperture function described in cylindrical
components can be expressed in terms of generalized Laguerre–Gauss functions:

Eap(ρ, φ) =
∞∑

p=0

∞∑
m=0

Apmy

(
2ρ2

W 2

)m/2

Lm
p

[
2ρ2

W 2

]
e−ρ2/W 2

sin(mφ) · ŷ

+
∞∑

p=0
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m=0

Bpmx

(
2ρ2

W 2

)m/2

Lm
p

[
2ρ2

W 2

]
e−ρ2/W 2

cos(mφ) · x̂ (8)

with W an arbitrary constant, p and m taking values 0, 1, 2, 3, . . . and Lm
p [x] the

generalized Laguerre polynomial with orthogonality properties,∫ ∞

0
Lm

P

[
2ρ2

W 2

]
Lm

Q

[
2ρ2

W 2

] (
2ρ2

W 2

)m

e−2ρ2/W 2
ρ dρ

= W 2

4

�(m + P + 1)

P!
· δPQ. (9)

Since the x̂ component of the aperture field is simply described by the m = 0 and
m = 2 terms, and the ŷ component by the m = 2 term, the expansion coefficients
can be expressed as:

Bp0x = 4

(W/a)2

p!

�(p + 1)

∫ 1

0

1

2
N (θ (au)) F1(θ(au)) (cos(θ (au)) + 1)

×L0
p

[
2u2

(W
/

a)2

]
e−u2/(W/a)2

u du (10)

Bp2x = 4

(Wa)2

p!
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0
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2
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(

2u2

(W/a)2

)
L2

p

[
2u2
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]
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Ap2y = 4

(W/a)2

p!

� (p + 3)

∫ 1

0

1

2
N (θ (au)) F1(θ (au))(cos(θ (au)) − 1)

×
(

2u2

(W/a)2

)
L2

p

[
2u2

(W/a)2

]
e−u2/(W/a)2

u du (12)

where the variable ρ = au is used to normalize the expressions with respect to the
aperture radius a.

Varying the ratio W/a allows an optimum adjustment of the BME. For in-
stance, a common criterion is the maximization of the fundamental mode power.
Wylde (1984) and Murphy (1988) used this for corrugated and smooth con-
ical horns, respectively. Lamb took the complete system into account (Lamb,
1986).

The x̂ and ŷ components of power that correspond to the pth-mode for m = 0
or 2 and can be expressed as:

PBp0x (p, W/a)

= (W/a)2 B2
p0x∫ 1

0 N (θ (au))2 F1(θ (au)) · [(cos(θ (au)) + 1)2 + (cos(θ (au)) − 1)2]u du

(13)

PBp2x (p, W/a)

= (W/a)2 B2
p2x∫ 1

0 N (θ (au))2 F1(θ (au)) · [(cos(θ (au)) + 1)2 + (cos(θ (au)) − 1)2]u du

(14)

PAp2y (p, W/a)

= (W/a)2 A2
p2y∫ 1

0 N (θ (au))2 F1(θ (au)) · [(cos(θ (au)) + 1)2 + (cos(θ (au)) − 1)2]u du

(15)

Figures 4 and 5 depict these power expressions (13) and (14) in terms of
the ratio W/a. Note that Equation (15) is similar to Equation (14). Each mode
propagates a maximum power at a specific value of W/a. In the case of fun-
damental mode power optimization, a conjugated gradient optimization gives a
value for W/a of 0.712 and 95.3% of the power is carried by the fundamental
mode.

The beam waist appears at the lens aperture where the radius of curvature is
infinite. Physically, W is the beam radius in the aperture, as Wylde and Mur-
phy remarked, but in this case, it is also the beam waist. Table I shows the BME
coefficients when the power in the fundamental mode is optimized. The mode
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TABLE I

BME Coefficients with W/a = 0.712 normalized to B00x

Coefficient Bp0x Bp2x = Ap2y

0 1 −7.974e − 3

1 −2.817e − 10 −2.206e − 3

2 −0.171 4.969e − 6

3 −0.095 5.662e − 4

4 3.002e − 4 4.807e − 4

5 0.049 2.326e − 4

6 0.052 2.125e − 5

7 0.030 −9.773e − 5

8 3.801e − 3 −1.326e − 4

9 −0.016 −1.129e − 4

Figure 4. Normalized power vs. W/a for Bp0x modes for a horn plus spherical-elliptical lens.

coefficients are normalized to the fundamental mode B00x . The difference in scales
between the m = 0 modes and the m = 2 modes is remarkable. As the normal-
ized power associated with the fundamental mode is high, an analysis based solely
on this mode can be conducted. Figure 6 shows the coefficient Bp0x, normalized
to B00x, as a function of W/a. The B10x value has been drawn with a thicker
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Figure 5. Normalized power vs. W/a for Bp2x modes for a horn plus spherical-elliptical lens.

line and it can be seen that there is no power associated with it. Minimizing the
power in this mode is another method for finding an optimum value for W/a
(Lamb, 1986).

3. Horn with hyperbolic-planar lens

In case of a hyperbolic-planar lens (Milligan, 1985), the BME analysis is carried
out by following the same steps and equations, but changing expression (6) to:

N (θ ) =
√

(n cos θ − 1)3

(n − 1)2 f 2n − cos θ
(16)

and,

cos(θ (ρ)) = 2ρ2n ±
√

4ρ4n2 − 4(ρ2n2 + (n − 1)2 f 2) · (ρ2 − (n − 1)2 f 2)

2(ρ2n2 + (n − 1)2 f 2)
.

(17)

The beam waist is again at the lens output aperture. The fundamental mode
power is maximized at 99.83%, when W/a is 0.517.
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Figure 6. Normalized Bp0x coefficient in terms of W/a for a horn plus spherical-elliptical
lens.

Following the same computation as in the previous section, Figure 7 and 8
represent the normalized power of each mode. Again Ap2y is similar to Bp2x . Table II
shows the values of the coefficients normalized to B00x for the case of fundamental
mode power optimization. As in the previous section, Figure 10 shows the power
in each Bp0x mode of the W/a. value. The B10x value has been represented by a
thicker line.

4. Validation of the hyperbolical-planar lens model

The BME and GO models were tested by comparing with measurements of a horn
plus hyperbolical-planar lens system.
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Figure 7. Normalized power in terms of W/a for Bp0x modes for a horn plus hyperbolical-planar
lens.

The output electric field can be expanded as follows:

Ex (r, z, φ) = e( −r2

W 2 − jπr2

λ·R(z) − jkz− jφ0(z))

×
⎡
⎣
∑Mmax

m=0 Bp0x · L0
p

(
2r2

W (z)2

)
e−2 jmφ0(z)+∑Mmax

m=0 Bp2x · 2r2

W (z)2 · L2
p

(
2r2

W (z)2

)
e−2 j ·(2m+2)φ0(z)

⎤
⎦ · cos(2φ)

(18)

Ey(r, z, φ) = e( −r2

W 2 − jπr2

λ·R(z) − jkz− jφ0(z))

·
Mmax∑
m=0

Bp2y · 2r2

W (z)2
· L2

p

(
2r2

W (z)2

)
e−2 j ·(2m+2)φ0(z) · sin(2φ) (19)

with Mmax the number of modes used in the BME, R (z) the curvature radius,
W ( z) the beam radius and φ0 (z) the initial phase slippage (Goldsmith,
1997).
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Figure 8. Normalized power in terms of W/a for Bp2x modes for a horn plus hyperbolical-planar
lens.

Figure 9. Normalized Bp0x coefficient as a function of W/a for a horn plus hyperbolic-planar lens.
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TABLE II

BME coefficients with W/a = 0.517 normalized to B00x

Coefficient Bp0x Bp2x = Ap2y

0 1 −9.016e − 3

1 −6.736e − 12 2.026e − 4

2 −0.027 −1.171e − 3

3 0.019 1.082e − 4

4 0.017 −5.470e − 5

5 5.942e − 4 −7.764e − 5

6 −7.948e − 3 −3.208e − 5

7 −5.612e − 3 1.015e − 5

8 4.201e − 4 2.474e − 5

9 4.240e − 3 1.771e − 5

Figure 10. Photograph of the 7.25 GHz corrugated conical horn and the hyperbolical-planar lens.

Beam patterns were measured for a corrugated conical horn working at a fre-
quency of 7.25 GHz. The horn has a diameter of 157.0 mm, an axial length of 261.66
mm and a half-flare angle of 16.7◦ (Figure 9). The lens material is polypropylene
with n = 1.5. Radiation patterns were computed with GO and with QO using the
fundamental mode. These are shown in Figure 11.

Figure 12 shows the optimum W/a values for several horn geometries (half flare
angle) and three lens materials.

The optimum W/a value decreases with the half flare angle of the horn. In the
limit where the horn has a half flare angle of zero, it does not need a phase correcting
lens and the optimum W/a result converges toward the BME proposed by Murphy
for an isolated corrugated conical horn.
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Figure 11. The 7.25 GHz (E Plane) measurements, GO and QO radiation patterns.

Figure 12. Optimum W/a as a function of the half flare angle with three different materials for the
hyperbolical-planar lens.

In the same way, the power in the fundamental mode for the optimum value of
W/a is shown in Figure 13. It shows the same convergent behavior as mentioned
above. A saturation of the power carried by the fundamental mode with the half
flare angle of the horn can be observed.

5. Validation of the spherical-elliptical lens model: Application to the
focalization of the new 40-m radiotelescope of

“Centro Astronómico de Yebes”

To validate the usefulness of the QO-BME method, a receiver system is designed at
three frequency bands for the new 40-m radiotelescope at the “Centro Astronómico
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Figure 13. Optimum W/a fundamental-mode power as a function of horn half-flare angle for three
different hyperbolical-planar lens materials.

de Yebes”. The optics proposed in this paper consists of a corrugated conical horn
with a phase correcting lens placed in its mouth followed by an elliptical mirror. A
spherical-elliptical lens is used.

The parameters used in the receiver design are defined in Figure 14. A classical
Gaussian telescope (Goldsmith, 1997) design was developed, but in this case d1 = 0,
because the lens is placed in the mouth of the horn and corrects the horn phase
error.

The radiotelescope has a main parabola diameter of 40 m, an F/D equivalent of
7.9 and a subreflector diameter of 3.28 m (Garcı́a et al., 2003). Three frequency
bands, centred at: 22, 30 and 45 GHz, have been studied. The material used for the
lenses has a refractive index n of 1.45 (Teflon).

A wavelength-independent system is achieved in all observation bands by means
of the Gaussian beam telescope system (Goldsmith, 1997; Lamb, 1986).

The optimized optics for each of the three bands is summarized in Table III.
The edge taper and defocusing at the subreflector are found to be plane and

frequency independent (Padman et al., 1987) for the three observation bands. Each
one performs well. Our goal of a 12-dB edge taper is achieved over each design
frequency band. Moreover, the subreflector defocus is nearly negligible for the

Figure 14. Geometry of the receiver optics.
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TABLE III

Optics for the channels with a hyperbolic lens in the mouth of the horn

Frequency bands

Parameters 19–22–25 GHz 27–30–33 GHz 42–45–48 GHz

d2 (mm) 498.1 665.9 397.8

d3 (mm) 488.7 649.3 391.7

f1 (mm) 131.8 140.4 134.8

f2 (mm) 488.7 649.3 391.7

Axial length (mm) 111.0 105.3 70.0

Horn radius (mm) 38.4 49.1 30.0

Figure 15. The 30 GHz (E plane) measurements, GO and QO radiation patterns with the new BME
are presented.

three observation bands (the radius of curvature is confined to within ±0.1λ for
the three bands). The aperture efficiency is 0.8 and exhibits plane behavior in the
bands implement (Garcı́a et al., 2002).

To validate the model, a 30 GHz radioastronomical receiver was built and ana-
lyzed using Equations (18) and (19).

Figure 15 shows the results of the QO theoretical model developed in this ar-
ticle, the theoretical pattern predicted by GO and measurements of a horn with a
spherical-elliptical lens at 30 GHz (Figure 16). The horn has an axial length of
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Figure 16. Photograph of the 30 GHz corrugated conical horn and the spherical-elliptical lens.

Figure 17. Optimum W/a as a function of horn half-flare angle with three different materials for the
spherical-elliptical lens.

105.3 mm, an aperture radius of 49.1 mm and the Teflon lens has a refractive index
n = 1.45.

It can be seen that the measured main beam is successfully modeled by QO. An
important remark should be made. Apart from the effects considered in our model,
the lens produces an additional attenuation due to reflections at lens surfaces and
due to propagation within the lens material itself. Neither effect has been taken
into account here since we get good matching by using corrugations and a low-loss
lens material (Teflon). However, the matching is not perfect and produces higher
sidelobe levels. These effects can be seen in measurements of Figure 15.
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Figure 18. Optimum W/a fundamental-mode power as a function of horn half-flare angle for three
different spherical-elliptical lens materials.

Figure 19. Subreflector illumination predicted by the fundamental mode model and 31-mode BME
model.

Figure 17 shows the optimum W/a values for several horn geometries (half
flare angle) and three spherical-elliptic lens materials. The optimum W/a value
increases with the half flare angle. In the limit where a horn has a half flare angle
of zero, it does not need a phase correcting lens, and the results converge toward
the BME proposed by Murphy for an isolated corrugated conical horn.

In the same way, the power of the fundamental mode for the previous values
of W/a are shown in Figure 18. They exhibit the same convergent behavior as
described previously.
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Figure 20. Copolar radiation pattern of the 22 GHz channel. This was modeled using the paraxial
software package GLAD.

Figure 21. Copolar radiation pattern of the 22 GHz channel simulated with GLAD and ZEMAX. A
Gaussian and a Bessel function were used to model the output field of the horn. These are compared
with the results of a simple fundamental Gaussian beam mode (GBM) model with no truncation at
the optical components.

The illumination of the 40-m radiotelescope subreflector is shown in Figure 19.
The subreflector is an hyperboloid of diameter 3.28 m. A model considering only
the fundamental mode predicts an edge taper of −12 dB, while if the same system
is analyzed by means of our proposed BME with 31 modes, one observes that the
taper is in fact −10 dB.



190 E. GARCÍA ET AL.

Figure 22. Copolar pattern radiation of the 22 GHz channel predicted by GLAD.

Figure 23. Simulated radiation pattern using the BME proposed (Copolar 45◦ Plane).

However in our case this difference does not pose any problem. Typical optics
and geometries, such as the ones presented in Section V, have an optimum edge
illumination somewhere between −12 and −10 dB. For our designs an efficiency
of 0.81 is obtained for the three observation bands by illuminating the edge at
−10 dB.
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Figure 24. Measured radiation pattern of the horn and lens system with polarizer.

Figure 25. Photograph of the 22 GHz horn and lens system.

6. Implications for the design and measurement of the 22-GHz channel

We have also constructed a horn and hyperbolical-planar lens for the 22-GHz
channel. The 2D copolar radiation pattern for this channel of the telescope is shown
in Figure 20. The simulation was carried out using the optical software package
GLAD. In Figures 21 and 22 we present cuts of the copular far-field radiation
pattern predicted by both GLAD and ZEMAX. The maximum of the cross-polar
component is typically more than 25 dB below the on-axis copolar intensity. This
is an important consideration when deciding whether to use the hyperbolic or
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spherical lens. The hyperbolic lens produces a lower crosspolar level. Also with
a hyperbolic lens there are lower reflections in the material and this results in a
better radiation patterns. Figure 25 shows a photograph of the 22-GHz horn and the
lens.

7. Conclusions

Placing the lens of a classical Gaussian telescope directly at the horn aperture
has some mechanical advantages. The typical size of the horn plus lens sys-
tem can be reduced and the lens-carrying holder within the cryostat can be
simplified.

In the case of such near-field illumination of the lens, the model proposed by
Wylde (1984) and Murphy (1988) should be improved and a new BME of the horn-
plus-lens is needed in order to get a better fit, comparable to, for instance, the GO
solution.

This paper has developed a QO model for a corrugated conical horn with a phase-
correcting lens. The lens profiles considered in this paper are spherical-elliptical
and hyperbolical-planar. The QO results have been compared with GO results and
an agreement down to −25 dB is achieved.

In all the focused bands and the validation models implemented in this pa-
per, we have used the efficiency concept defined by Goldsmith (1997) and Wylde
(1984). In all the radiotelescope bands, is achieved an independent wavelength
system, because of the geometry used (Gaussian telescope; see Goldsmith, 1997).
So, a −12 dB taper edge in the subreflector is achieved in all the bands, and a
wavelength independent focusing also is achieved. This −12 dB value is a design
objective in order to achieve an efficiency (see Wylde, 1984) of 0.81 wavelength
independent.

It is important to remark that the configuration with pahse correcting lens could
be optimal in a lot of cases of focusing radiotelescopes receivers. This is because of
the stability in the tolerance position of the elements configuration (placement of
the horn and the lens, errors in those placements). Also this kind of configuration
is very stable in its electromagnetic properties when errors such as little changes in
focal distance of lens occurs.

A comparison between the BME and GO models is presented by means of
different radiation patterns for both types of lenses considered in this paper. Our
model has been applied to the design of receivers at three observation bands: 22,
30 and 45 GHz. The receivers are those needed for the new 40-m radiotelescope
in “Centro Astronómico de Yebes”. Validation of the model has been achieved
with the design and building of a corrugated conical horn and a hyperbolical-
planar lens at 7.25 GHz, described in Section 4, and at 22 GHz, described in
Section 6. The spherical-elliptical lens model is validated using the telescope’s
30-GHz observation band receiver.
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Garcı́a, E., de Haro, L., López Fernández, J. A., Tercero, F., Galocha, B., Barcia, A. and Besada,
J. L.: August 2002, Int. J. Infrared Millimetre Waves 23(8), 1193–1213.

Goldsmith, P. F.: 1997, Quasioptical Systems, IEEE Press, chapters 2–4.
Jasik, H., 1961, Antenna Engineering Handbook, Mc Graw-Hill, chapter 14.
Kildal, P. S., Jakobsen, K. and Subhakar, R. K.: 1984, ‘Meniscus les corrected corrucated horn: A

compact feed for a Cassegrain antenna,’ IEE Proceedings, Vol. 131, Pt. H, no. 6, pp. 390–394.
Lamb, James W.: April 1986, Int. J. Infrared Millimeter Waves 7(10), 1511–1536.
Milligan, Thomas A.: 1985, Modern Antenna Design, McGraw Hill Book Company, chapters 2 and

3.
Murphy, J. A.: April 1988, ‘Aperture efficiencies of large axisymmetric reflector antennas fed by

conical horns’, IEEE Transactions on Antennas and Propagation, Vol. 36, No. 4, pp. 570–575.
Padman, R., Murphy, J. A. and Hills, R.: October 1987, ‘Gaussian mode analysis of cassegrain

antennas efficiency’, IEEE Transactions on Antennas and Propagation, Vol. 33, Issue 10,
pp. 1093–1103.

Tuovinen, J., Hirvonen, T. M. and Raisanen, A. V.: June 1992, ‘Near-field analysis of a thick lens and
horn combination: Theory and measurements’, IEEE Transactions on Antennas and Propagation,
Vol. 40, No. 6, pp. 613–619.

Wylde, R. J.: August 1984, ‘Millimetre wave Gaussian beam-mode optics and corrugated feed horns’,
IEE Proceedings, Vol. 131, Pt. H., No. 4, pp. 258–262.


