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SUMMARY

This paper describes geographically weighted Poisson regression (GWPR) and its semi-parametric vari-
ant as a new statistical tool for analysing disease maps arising from spatially non-stationary processes.
The method is a type of conditional kernel regression which uses a spatial weighting function to estimate
spatial variations in Poisson regression parameters. It enables us to draw surfaces of local parameter
estimates which depict spatial variations in the relationships between disease rates and socio-economic
characteristics. The method therefore can be used to test the general assumption made, often without
question, in the global modelling of spatial data that the processes being modelled are stationary over
space. Equally, it can be used to identify parts of the study region in which ‘interesting’ relationships
might be occurring and where further investigation might be warranted. Such exceptions can easily be
missed in traditional global modelling and therefore GWPR provides disease analysts with an important
new set of statistical tools. We demonstrate the GWPR approach applied to a dataset of working-age
deaths in the Tokyo metropolitan area, Japan. The results indicate that there are signi�cant spatial
variations (that is, variation beyond that expected from random sampling) in the relationships between
working-age mortality and occupational segregation and between working-age mortality and unemploy-
ment throughout the Tokyo metropolitan area and that, consequently, the application of traditional
‘global’ models would yield misleading results. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ecological analysis of disease by regression modelling has been repeatedly employed in
epidemiology and health geography for trying to uncover plausible explanations for persistent
geographical variations in disease incidence rates [1–5]. In such ecological analyses, conven-
tional ‘global’ models postulating a geographically invariant spatial process have typically
been used for relating local variations in incidence rates to global association rules. How-
ever, ecological associations may also vary geographically, because the meaning of covariates
may change depending on di�erent geographical contexts [6, 7]. As an example, consider a
simple non-medical situation in which car ownership rates are related to a series of possible
explanatory variables. Rates of car-ownership in a region generally correlate positively with
average income or capital stocks, though the strength of the relationship might not be spatially
constant. For example, the relationship might be relatively weak in rural areas where most
people need a car for daily living, or in city centres where public transportation is well devel-
oped and having a car can be an inconvenience in terms of parking. Although this problem
might be solved by introducing interaction terms of contextual covariates, it is unlikely that
we can identify and utilize all contextual factors as operational variables in ecological studies.
Alternatively, some relationships might be intrinsically di�erent across space. For instance,
people’s preferences for housing styles might vary over space due to factors which are enor-
mously complex and impossible to identify in the form of single explanatory variables. In
either case, we need to take into account geographical variations in the ecological associa-
tions in our method of analysis [7, 8]. It is worth mentioning that the levels of ecological
association between health and other conditions have frequently been found to be di�erent
across nations or across regions in health studies [9]. It seems reasonable therefore to allow
the possibility that spatial variations in relationships might vary within regions.
To deal with this problem, we propose a new statistical tool, that of geographically weighted

Poisson regression (GWPR), for analysing disease patterns resulting from spatially
non-stationary processes. We also demonstrate the proposed methodology by presenting an
application based on a regional working-age mortality dataset for the Tokyo metropolitan
area. To examine regional variations in association, multi-level modelling is a popular method
with which we can assess variations in parameters between groups of observation units,
typically areal units [10–12]. A disadvantage of this method, however, is that the groups
of observation units need to be de�ned before the analysis but it is often di�cult to construct
such prede�ned categories of samples, particularly for areal units where administrative bound-
aries might have little meaning in terms of the processes being examined [13, 14]. Moreover,
multilevel models aim to capture variances of parameter distributions rather than revealing
their geographical patterns. This characteristic of multilevel modelling becomes apparent in
its alternative name of random coe�cient modelling. The alternative approach of geograph-
ically weighted regression (GWR), a non-parametric methodology for the investigation of
geographical drifts of regression parameters [8, 15], provides an exploratory methodology of
spatial associations. By introducing the concept of spatial kernels, the approach enables us
to map geographical variations in regression parameters without prede�ned areal categorisa-
tion (such as in the case of multilevel modelling) and without prede�ned parameterisation of
parameter drifts (such as in the case of the expansion method [16, 17]).
To date, GWR has been developed assuming a Gaussian modelling framework. Fother-

ingham et al. [18] applied Gaussian GWR to a long-term illness data set in the northeast
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of England and found complicated regional variations in regression parameters. However,
Poisson regression provides a more appropriate basis for the ecological analysis of areal dis-
ease datasets than conventional Gaussian regression, especially in the case where observed
counts include low numbers [19, 20]. It is well-known that if we can regard each death count
as the sum of a series of binomial independent trials with a low mortality rate, the counts are
expected to approximately follow a Poisson distribution. Thus, numerous models assuming
a Poisson distribution have been proposed as disease analysis tools. These include Poisson
probability mapping [21], Poisson regression [14, 19] and multiple-level Poisson regression
[5, 22].
An important theoretical advancement proposed here is the introduction of a semi-parametric

model speci�cation [23, 24] to GWPR modelling so that we can combine geographically vary-
ing and geographically constant parameters in a model. The semi-parametric model speci�-
cation enhances the practical usefulness of non-parametric regression models [23] re�ecting
a priori knowledge of the �xed nature of speci�c parameters in the model. It is also sug-
gested that in some situations constant terms contribute to model simplicity and avoid local
collinearity between covariates so that the interpretation of the estimated geographically vary-
ing parameters becomes easier.
The remainder of this paper is organized as follows. In Sections 2 and 3, we describe the

framework of GWPR and its calibration procedure, respectively. The semi-parametric variant
of GWPR is developed in Section 4. An empirical application of GWPR to the working-age
death in the Tokyo metropolitan area in 1990 is described in Section 5 and conclusions are
drawn in Section 6.

2. SPECIFICATION OF GEOGRAPHICALLY WEIGHTED POISSON REGRESSION

2.1. SMR and Poisson regression

Before modelling disease incidence rates, some de�nitions are necessary. The most common
indicator used for comparing regional death rates is the standardized mortality ratio (SMR)
in place i which is calculated by

SMRi=Oi=Ei (1)

where Oi is observed number of deaths in place i and Ei is expected number of deaths based
on reference mortality rates applied to regional demographic structure. Ei is de�ned as

Ei=
∑
g
rg × pg;i (2)

where rg is a standard mortality rate (e.g. national mortality rate) of demographic group g and
pg;i is regional population size speci�c to demographic group g in place i. The demographic
group g is usually determined by age or sex-age attributes. From equation (1), SMRi is clearly
a type of incidence rate index. Our following arguments can therefore be applied to general
mortality or morbidity rates de�ned by ratios of observed counts to population at risk.
Consider a conventional Poisson regression model written as

Oi ∼ Poisson
[
Ei exp

(∑
k
�kxk;i

)]
(3)
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where, xk;i is kth explanatory variable in place i and the �ks are parameters and Poisson [�]
indicates a Poisson distribution with mean �. The intercept term �0 is included by de�ning
x0;i=1(∀i).
By rewriting equation (1) as

Oi=Ei · SMRi (4)

we can see that the exponential term with linear predictors in the Poisson regression (equation
(3)) corresponds to the modelled regional variation of the standardized mortality ratio. It is
worthwhile noting that Ei is given exogenously and is often called an o�set variable in general
linear modelling [25].
The parameters of the Poisson regression are estimated by maximum likelihood. Letting li

be the log-likelihood of sample (place) i, we can de�ne the estimation problem as:

max
R
L =

∑
i
li(R|Oi)

=
∑
i
(−Ôi(R) +Oi log Ôi(R)) (5)

where R=(�0; �1; : : :) is the vector of the regression parameters. The conditional equation of
the kth estimator is obtained from setting the �rst derivative of the likelihood function with
respect to the parameter �k to zero:

@L
@�k

=0 ∀k (6)

Generally we need to employ an iterative process to �nd the solution of this set of equations.

2.2. Geographically varying parameters in Poisson regression

We now introduce the notion of allowing parameter values to vary with geographical location
ui(= (uxi; uyi)) which is a vector of two dimensional co-ordinates describing the location of
i (usually, x-y co-ordinates from a map). The Poisson model in equation (3) can then be
rewritten as

Oi ∼ Poisson
[
Ei exp

(∑
k
�k(ui)xk;i

)]
(7)

This kind of model can generally be named a geographically varying coe�cient Poisson
regression model after Hastie and Tibshirani [26]. Following the technique of GWR, we can
calibrate this model by a kernel regression methodology in which we estimate smoothed
geographical variations of parameters with a spatial weighting kernel. In this methodology,
parameter estimates are calibrated in a point-wise way. We then refer to this geographically
varying coe�cient Poisson regression model as a geographically weighted Poisson regression
(GWPR).
To estimate GWPR parameters, we employ a variant of the local likelihood principle

[27] which we refer to as a geographically weighted likelihood principle [28] and which
is consistent with geographically weighted least squares for conventional Gaussian GWR
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[8, pp. 90–91]. Following the local likelihood methodology, parameters at location i are
estimated by solving the following maximisation problem of the geographically weighted
log-likelihood.

max L(ui)=
N∑
j
(−Ôj(R(ui)) +Oj log Ôj(R(ui))) · wij(‖ui − uj‖) (8)

where Ôj(R(ui)) is the predicted number of deaths at location j with parameters at regression
point i,

Ôj(R(ui))=Ej exp
(∑

k
�̂k(ui)xk; j

)
(9)

and wij is the geographical weight of the jth observation at the ith regression point. The
weights of the observations gradually decrease as the distance between the regression point i
and location at which the jth observation is recorded becomes larger. A classical choice of
the weighting kernel is the Gaussian kernel [15] de�ned by

wij= exp
(

−1
2

‖ui − uj‖
G

)
(10)

where the parameter G (called the bandwidth) regulates the kernel size. It is useful to stress
the spatial nature of the weighting scheme here. Data that are recorded at locations in close
proximity to the regression point i are given higher weighting than data recorded at points
further away. As the focal point of the regression moves to a di�erent location, all the
weights change. The bandwidth controls the rate at which the weight of a datum declines as
the distance of the location at which it is recorded increases from the regression point. When
the bandwidth is large, the weights decay slowly; when the bandwidth is small, the weights
decay rapidly.
As an alternative to the weighting scheme in equation (10), we can use an adaptive ap-

proach where each kernel includes the same number of sample points (although with di�erent
weights). A popular adaptive kernel, the bi-square kernel, is de�ned by

wij=
{
[1− (‖ui − uj‖=Gi)2]2 if ‖ui − uj‖¡Gi
0 otherwise

(11)

where Gi is the distance to the M th nearest observation from regression point i and where
the exogenously given number M controls the bandwidth size. Adaptive kernels are useful in
the case that there is a large variation in the geographical density of the observed data. See
Reference [8, pp. 56–59] for more detailed arguments concerning the choice of geographical
weighting functions.

2.3. A note on the di�erence between GWPR and conventional local regression

It is important to note that what is being proposed is not local modelling in attribute space as
is often indicated by the term ‘local regression’ [27] including GAM [24] and LOESS [29].
Here, the term ‘local’ refers to a spatial extent around a regression location. Consequently,
what is being investigated is the extent to which processes might vary over space and hence
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violate the assumption of spatial non-stationarity embedded in the use of traditional, global
models of spatial processes.
Consider a simple Poisson regression model with one explanatory variable:

Oi ∼ Poisson[Ei exp(�0 + �1xi)] (12)

Conventional local regression models estimate the form of regression functions
non-parametrically.

Oi ∼ Poisson[Ei exp(f(xi))] (13)

Here, f is an unspeci�ed function of xi rather than a numerical coe�cient. Note that the
location in space is ignored in the two models (equations (12) and (13)).
GWPR estimates the geographical functional form of regression coe�cients

non-parametrically.

Oi ∼ Poisson[Ei exp(�0(ui) + �1(ui)xi)] (14)

where �0 and �1 are unspeci�ed bi-variate functions of ui(= (uxi; uyi)). Although we now
move back to a model with a linear predictor, we gain interaction between geographical
location and functional relationships in the linear predictor: the model has potentially di�erent
coe�cients for each location.
In conventional kernel regression modelling [27], one attempts to estimate a regression

function f by approximating it by polynomials centred on speci�c values of xi and maximising
a weighted likelihood function, with the weights being a kernel function centred on xi. In
GWPR we estimate coe�cients by calibrating a Poisson regression model whose likelihood
is geographically weighted, with the weights being a kernel function centred on ui. The key
di�erence is that in GWR the kernel is in geographical space and the regression model is in
predictor-variable space, whereas in a standard kernel regression model both the regression
model and the kernel are de�ned in predictor-variable space.

2.4. Kernel mapping and GWPR

Kernel mapping can be considered as a special case of GWPR. Consider the GWPR model
without any explanatory variables and containing just a local intercept. Then,

Oi ∼ Poisson[Ei exp(�0(ui))] (15)

By solving

0 =
@L(ui)

@�̂0(ui)

=
n∑
j
(−Ej exp(�̂0(ui)) +Oj) · wij(‖ui − uj‖) (16)
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we obtain the estimates of local mortality ratio with geographical weights as

exp(�̂0(ui))=

∑N
j wijOj∑N
j wijEj

(17)

In this case, local estimates of mortality ratio become a geographically weighted mortality
ratio that corresponds to the ratio of the kernel density of observed deaths to the kernel
density of expected deaths. The quantity is essentially the same as the relative risk surface
for areal-based health data advocated by Bithell [30].

3. CALIBRATION PROCEDURE OF GWPR

3.1. Local scoring procedure for GWPR

The maximization problem of equation (8) can be solved by a modi�ed local Fisher scoring
procedure, a form of iteratively reweighted least squares (IRLS) [24]. The iterative procedure
is necessary except for the special case of kernel mapping as shown in Section 2.4. In this
local scoring procedure, the following matrix computation of weighted least squares should
be repeated to update parameter estimates until they converge:

R(l+1)(ui)= (XtW(ui)A(ui)(l)X)−1XtW(ui)A(ui)(l)z(ui)(l) (18)

R(l+1)(ui) is a vector of local parameter estimates speci�c to location i and superscript (l+1)
indicates the number of iterations.

R(l)(ui)= (�(l)0 (ui); �
(l)
1 (ui); : : : ; �

(l)
k (ui))

t (19)

X is a design matrix and (X)t denotes the transpose of X.

X=

⎛
⎜⎜⎜⎝
1 x1;1 · · · xK;1
1 x1;2 · · · xK;2
...

... · · · ...
1 x1;N · · · xK;N

⎞
⎟⎟⎟⎠ (20)

W(ui) denotes the diagonal spatial weights matrix for location i:

W(ui)=

⎛
⎜⎜⎜⎝
wi1 0

wi2
. . .

0 wiN

⎞
⎟⎟⎟⎠ (21)

and A(ui)(l) denotes the variance weights matrix associated with the Fisher scoring for each
location i

A(ui)(l) =

⎛
⎜⎜⎜⎝
Ô1(R(l)(ui)) 0

Ô2(R(l)(ui))
. . .

0 ÔN (R(l)(ui))

⎞
⎟⎟⎟⎠ (22)
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Finally, z(l)(ui) is a vector of adjusted dependent variables de�ned as

z(l)(ui)= (z
(l)
1 (ui); z

(l)
2 (ui); : : : ; z

(l)
N (ui))

t (23)

where

z(l)j (ui) =
(
�(l)0 (ui) +

K∑
k
�(l)k (ui)xk; j

)
+
Oj − Ôj(R(l)(ui))
Ôj(R(l)(ui))

= �j(R(l)(ui)) +
Oj − Ôj(R(l)(ui))
Ôj(R(l)(ui))

(24)

where �j is a linear predictor of jth observation. By repeating the iterative procedure for every
regression point i, sets of local parameter estimates are obtained.
At convergence, we can omit the subscripts (l) or (l + 1) and then rewrite equation

(18) as

R(ui)= (XtW(ui)A(ui)X)−1XtW(ui)A(ui)z(ui) (25)

Since the linear predictor for each observation j is estimated for each regression point i, the
mapping from adjusted dependent variables to linear predictors is as follows:⎛

⎜⎜⎜⎝
�̂1(u1) �̂1(u2) · · · �̂1(uN )
�̂2(u1) �̂2(u2) · · · �̂2(uN )
...

... · · · ...
�̂N (u1) �̂N (u2) · · · �̂N (uN )

⎞
⎟⎟⎟⎠ =R

⎛
⎜⎜⎜⎝
z1(u1) z1(u2) · · · z1(uN )
z2(u1) z2(u2) · · · z2(uN )
...

... · · · ...
zN (u1) zN (u2) · · · zN (uN )

⎞
⎟⎟⎟⎠ (26)

where the ith row of the matrix R, ri, is

ri=xi(XtW(ui)A(ui)X)−1XtW(ui)A(ui) (27)

As shown in equation (7), only the diagonal elements (i.e. i= j) of the matrix on the left-
hand side of equation (26) are used for predicting the numbers of deaths at data locations. By
focusing on these elements, the mapping from adjusted dependent variable to linear predictor
is de�ned as

Ŵ=Sz (28)

where

Ŵ=( �̂1(u1); �̂2(u2); : : : ; �̂N (uN ))t and z=(z1(u1); z2(u2); : : : ; zN (uN ))t (29)

The ijth element of the matrix S, Sij, is

Sij=Rij
zi(uj)
zj(uj)

(30)

where Rij is the ijth element of the matrix R. This matrix S corresponds with the so-called
hat matrix for Gaussian local regression modelling [27].
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3.2. Standard error of parameters in GWPR

At convergence for each regression point i, the vector of local parameter estimates is

R̂(ui) = C(ui)z(ui)

= (XtW(ui)A(ui)X)−1XtW(ui)A(ui)z(ui) (31)

where A(ui) and z(ui) in the right-hand side of equation (31) are calculated by the converged
estimates of parameters R̂(ui). Since z(ui) approximately follows the normal distribution with
zero mean and variance–covariance A(ui)−1, the asymptomatic variance–covariance matrix of
regression parameters, cov(R̂(ui)), is given by

cov( R̂(ui))=C(ui)A(ui)−1C(ui)t (32)

The standard error of the kth parameter estimate is given by

Se(�k(ui))=
√
Cov( R̂(ui))k (33)

where Cov( R̂(ui))k is the kth diagonal element of the variance–covariance matrix. The local
pseudo t statistic for the local version of the kth parameter estimate is then computed by

tk(ui)=�k(ui)=Se(�k(ui)) (34)

This quantity approximately follows the standard normal distribution if the true regression
parameter is zero. This can be used for local inspection of parameter signi�cance. Although
the usual threshold of p values for a signi�cance test (e�ectively |t|¿1:96 for tests at the
5 per cent level with large samples) su�ers from the multiple comparison problem in this
approach, mapping the pseudo t surface still can yield useful insights into spatial variations
in relationships, as we demonstrate below.

3.3. Degrees of freedom and deviance of GWPR

If we use a very small bandwidth for the weighting kernel, we may �nd seemingly strong
geographical variation in the local parameter estimates but the estimates are not very reliable,
being based on relatively few observations. On the other hand, although a large bandwidth
provides more reliable local parameter estimates, these estimates may contain an unaccept-
ably large amount of bias, being based as they are on data at increasing distances from the
regression point. This trade-o� between spatial scale and statistical stability or between bias
and variance can be considered by model selection indicators such as AIC [31–33].
The AIC of the model with bandwidth G is de�ned as

AIC(G)=D(G) + 2K(G) (35)

where D and K denote the deviance and the e�ective number of parameters in the model
with bandwidth G, respectively. The model with the smallest AIC should be selected as an
optimal model called MAICE (minimum AIC estimator). A common rule-of-thumb in the use
of AICc is that if the di�erence in AICc values between two models is less than or equal to
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2, there is no substantive di�erence in the performance of the two models [32]. In the case
of local regression, since the degrees-of-freedom are likely to be small, small sample bias
adjustment (second order adjustment) in the AIC de�nition [34, 35], particularly the use of
AICc, is highly recommended [33, 36]. AICc derived by [35] is written as follows:

AICc(G) = D(G) + 2K(G) + 2
K(G)(K(G) + 1)
N − K(G)− 1

= AIC(G) + 2
K(G)(K(G) + 1)
N − K(G)− 1 (36)

If the e�ective number of parameters, K , is small relative to the number of observations, N ,
then the di�erence between AIC and AICc is negligible. The derivation of AICc is based
on Gaussian linear models. However, applying AICc to non-Gaussian modelling is generally
acceptable unless the underlying probability distribution is extremely non-normal [33].
As in the case of conventional Poisson regression, deviance as de�ned by McCullagh and

Nelder [25], is given by

D(G)=
N∑
i
(Oi log Ôi(R(ui); G)=Oi + (Oi − Ôi(R(ui); G))) (37)

However, unlike the case of global Poisson regression, in GWPR the second term in the
right-hand side of equation (37) is not necessarily zero.
Since the trace of the hat matrix corresponds to the number of regression parameters in a

general linear model (including a global Poisson model), it is straightforward to de�ne the
e�ective number of parameters of GWPR, K , by the trace of S:

K(G)= trace(S(G)) (38)

Obviously, the following equation is obtained from equation (30):

trace(S(G))= trace(R(G)) (39)

Therefore, the matrix S is not necessary for calculation of the e�ective number of parameters
in GWPR.
The information criterion AICc and the idea of MAICE can be used for not only bandwidth

selection but also for model comparisons between kernel mapping, global Poisson regression
models, GWPR models and regionalisation models [14].

4. SEMI-PARAMETRIC EXTENSION OF GWPR

4.1. Semi-parametric speci�cation of GWPR

In some empirical applications, there might be reasons, either generated from theory or past
experience, not to allow certain parameters to vary geographically. Alternatively, there may
be no signi�cant geographical variation in some local parameter estimates. In such cases, we
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should consider the following variant of the GWPR model which allows some local parameters
to vary spatially and some to be held constant.

Oi ∼ Poisson
[
Ei exp

(∑
k
�k(ui)xk;i +

∑
m
�mxm;i

)]
(40)

where the coe�cient with mth variable, �m, is not assumed to depend on geographical loca-
tions. This kind of model is called a semi-parametric model [23, 24] or a mixed
model [8].‡

4.2. Estimation of semi-parametric GWPR

Semi-parametric GWPR can be considered as a ‘two-smoother’ model [24]: one smoothing
mechanism is parametric while the other is non-parametric. Applying the adjusted dependent
variable approach, we solve two simultaneous matrix equations iteratively.

S(l+1) = (XtparA
(l)Xpar)−1XtparA

(l)(z(l) − W(l)) (41)

W(l) = S(l)(z(l) −XparS(l)) (42)

where Xpar is the design matrix of explanatory variable whose parameters are assumed not to
depend on geographical locations. Equation (42) means that linear predictors of geographically
varying parameters are estimated by applying GWPR to the adjusted residuals of parametric
predictors.
At convergence, if we use equation (42) to eliminate W in equation (41) by ignoring the

iteration superscript (l), then we obtain the following equation:

S=(XtparA(I − S)Xpar)−1XtparA(I − S)z (43)

This equation can be used for fast calculation of the iterative procedure:

S(l+1) = (XtparA(l)(I − S(l))Xpar)−1XtparA(l)(I − S(l))z(l) (44)

The algorithm of the iterative procedure can be summarised as follows.

(1) Assign the initial values of S (e.g. using a global Poisson regression model).
(2) Apply GWPR to the adjusted residual to estimate geographically varying parameters

and calculate the non-parametric smoother S (equation (42)).
(3) Use equation (41) or (44) to update the �xed parameters, S(l+1).
(4) Iterate step (2) and (3) until convergence.

It should be noted that step (2) needs iteration as explained in Section 3.1 so that this
algorithm has two loops: an implicit inner loop of the non-parametric part within step (2)
and an outer loop of the parametric part shown as steps (2) and (3).

‡The term ‘mixed model’ is used here to denote a model in which some of the parameters are held constant over
space and others are allowed to vary spatially. This is in contradistinction to the more established use to denote a
model in which there is a stochastic/�xed parameter split.
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4.3. Inference and model comparison of semi-parametric GWPR
Standard errors and the e�ective number of parameters for model comparisons can be de�ned
for semi-parametric GWPR based on the same arguments for GWPR in Section 3. From
equation (43), the asymptomatic variance–covariance matrix of Ŝ, cov( Ŝ) is obtained as

cov( Ŝ)=C�A−1Ct� (45)

where

C�=(XtparA(I − S)Xpar)−1XtparA(I − S) (46)

The standard error of the mth estimates are given by

se(�m)=
√
Cov( Ŝ)m (47)

where Cov( Ŝ)m is the mth diagonal element of the asymptomatic variance–covariance matrix.
By equations (42) and (43), estimated linear predictors can be written as a product of the

smoother matrix with the vector of the adjusted dependent variable:

Ŵ+Xpar Ŝ=Tz (48)

where

T=S+ (I − S)Xpar(XtparA(I − S)Xpar)−1XtparA(I − S)z (49)

Recalling the argument in Section 3.3, a natural de�nition of the e�ective number of param-
eters for model comparisons, Ks, is

Ks= trace(T) (50)

By using AICc, we can obtain the best (i.e. MAICE) bandwidth of the non-parametric part
in semi-parametric GWPR. We can also compare other possible models with AICc. One in-
teresting comparison is between a fully geographically varying parameter model (full GWPR)
and a semi-parametric GWPR in which only one parameter (associated with a particular vari-
able) is assumed to be geographically �xed but the remaining parameters are allowed to vary
geographically. Through this comparison, we can judge the signi�cance of the spatial variation
in each set of local estimates in the full GWPR model. If AICc of the full GWPR model is
higher (i.e. worse) than that of the semi-parametric GWPR model, with a particular parameter
held constant, there is little evidence to suggest this particular relationship varies over space.
However, if the AICc of the full model is lower (i.e. the model �t is better), then there is
evidence that this particular relationship varies spatially. This comparison can be done for
each relationship in the model in turn.

5. A GWPR ANALYSIS OF WORKING-AGE MORTALITY IN THE TOKYO
METROPOLITAN AREA

5.1. The Problem and the Data

It is recognized that within all societies there are persistent spatial variations in health statistics:
the worst health records are generally associated with the most deprived areas. The strength
of the relationship between ‘health’ and ‘wealth/deprivation’ should be a concern to all gov-
ernments that espouse ideals of equality. Consequently, there are many studies which try to
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quantify aspects of the link between ‘health’ and ‘wealth/deprivation’ [3, 5, 9, 37, 38]. How-
ever, the vast majority of studies to date have attempted to link some measurement of health
to various socio-economic and environmental characteristics using a ‘global’ model which may
disguise some interesting spatial variations in relationships. Here, we use a local model, that of
GWPR, to examine the relationship between mortality rates and socio-economic factors across
the metropolitan area of Tokyo. We demonstrate how the use of local modelling provides a
great deal more information to health analysts than does traditional global modelling.
The study area, that of the Tokyo metropolitan area, is enclosed by an approxim ate 70 km

radius from the centroid of the Chiyoda ward of Tokyo where the Imperial Palace is located.
The area consists of 262 municipality zones and approximately corresponds to the functional
region of Tokyo City, the core part of the Tokyo metropolitan area. The data to be analysed in
this study are the working-age death rates of those aged 25–64 years in 1990. Age–sex speci�c
populations and deaths are taken from the 1990 national census and the 1990 vital statistics in
Japan, respectively. Age groups are de�ned by �ve-year age intervals. The expected number
of deaths for each zone i is calculated by

Ei=
∑
sex

∑
age
rsex; age × psex; age; i

sex ∈ {male; female}
age ∈ {25–29; 30–34; : : : ; 60–64}

(51)

where r and p are the national sex–age speci�c mortality rate and regional population size,
respectively.
Nakaya [14, 39] analysed mortality rates of infant and elderly people in the same area. These

mortality patterns, particularly those of elderly people, show clear geographical patterns char-
acterised by concentric and sectoral variations that match well aspects of the socio-economic
structure of the Tokyo metropolitan area. Figure 1(a) shows the distribution of SMR across
the 262 municipality zones. Summary statistics across the 262 zones for observed death counts
and standard mortality rates for the 25–64 age group are given in Table I.

5.2. Kernel mapping

In Figure 1(a) the geographical pattern of working-age deaths is not clear, mainly because
the number of deaths tends to be small, particularly in peripheral zones. This problem is
often called the small-number problem. To overcome this problem, geographical aggregation
of areal units is a straightforward way to obtain statistically more reliable estimates of regional
parameters [14]. Kernel mapping can be used as an analogy to geographical aggregation here.
To determine an appropriate bandwidth size, we compared the values of the AICc statistic
associated with kernel mapping at many di�erent bandwidths. Recall that kernel mapping
is a special case of a GWPR model which contains only the intercept term (Section 2.4).
We tested bandwidth sizes from 3 to 70 km in steps of 1km with a Gaussian �xed kernel.§

§A range of bandwidths between 3 and 70 kms was examined. The smallest bandwidth is dictated by the amount
of data in each local regression—any smaller bandwidth would not allow reliable local parameters to be estimated.
The largest value is an approximation to the radius of the region. Any larger values would create overly smooth
parameter surfaces which would hide any local variations.
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Figure 1. Geographical distribution of working-age mortality in the Tokyo metropolitan area as
of 1990; (a) SMR based on 262 municipalities; and (b) kernel map of SMR.

Table I. Summary statistics from the 262 zones.

Observed death count SMR 25–64

Max. 1215 2.41
Min. 4 0.57
Mean 176.2 0.99
S.D. 216.5 0.22

The result of this procedure suggested an appropriate bandwidth for kernel mapping
of 5 km.
The resultant kernel mapping is shown in Figure 1(b) which presents a smoothed picture

of the geographical distribution of working-age deaths. Low rates are mainly found in the
ring of suburbs surrounding the city’s core. The inner and peripheral zones tend to have
higher working-age mortality rates. We can also see some sectoral divisions of mortality. For
instance, the industrial zones in the so-called Shitamachi area are characterised by higher
mortality rates, while the western sector of Tokyo City, the so-called Yamanote area, has
lower mortality rates.
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5.3. Global Poisson regression

To examine possible determinants of the geographical patterns of working-age mortality rates
described above, we �rst calibrated a traditional global Poisson regression model relating
counts of working-age mortality to an o�set variable, which is the expected number of
working-age deaths based on the demographic composition of each zone and national mor-
tality rates for these demographic sectors, and to four socio-economic covariates as shown
below.

Ôi = Ei exp(− 0:032
(−4:6)

− 0:092
(−14:1)

PRO + 0:077
(11:1)

OLD

− 0:050
(−5:5)

OWNH + 0:035
(5:8)

UNEMP) (52)

The AICc associated with this model is 399.5 which is meaningless on its own but which
we will later compare to other models. The values in parenthesis are t values which indicate
that all the global parameter estimates are signi�cant at the 1 per cent level. Each explanatory
variable is standardized to have zero mean and one standard deviation so that the values of
regression parameters are comparable for evaluating the degree-of-contribution to the model.
The �rst explanatory variable (PRO) is the proportion of professional and technical workers

in each zone. As the proportion of such workers in a zone increases, the working-age mortality
decreases. This variable acts as a surrogate for high socio-economic status and the ability to
a�ord better access to medical resources. The explanatory power of this variable is the highest
of the four explanatory variables.
The second most important explanatory variable is the proportion of elderly people (aged

over 64) within each zone (OLD). Higher counts of working-age mortality are found in areas
with higher proportions of elderly people. Such areas having high proportions of elderly tend
to be those which are relatively deprived in inner city or rural parts of the metropolitan area.
The younger population have moved away from such relatively deprived areas in search of
better opportunities and/or living conditions.
The third explanatory variable is the rate of house-ownership (OWNH) that re�ects house-

hold a�uence and living conditions. The index is also inversely related to the degree of
urbanisation: the rate tends to be higher in rural and suburban zones due to the land price
decline away from the core metropolitan zones. The mortality counts tend to be low where
the rate of home ownership is high.
The fourth variable is unemployment rate (UNEMP). The mortality counts tend to be higher

where unemployment rates are high, although this is the weakest of the four explanatory
variables.

5.4. Model selection using GWPR

The global parameter estimates from the Poisson model appear to make intuitive sense in terms
of the association between working-age mortality and the four ecological variables describ-
ing the Tokyo metropolitan area. However, in accepting this model we would be implicitly
assuming that these relationships are the same everywhere within the study area. This might
turn out to be a reasonable assumption but we should not simply accept it without further
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Figure 2. Bandwidth selection by AICc for GWPR models; (a) relationship between
bandwidth size and AICc; (b) relationship between bandwidth size, deviance and

e�ective number of parameters.

examination. It could be, for instance, that these global averages reported in the calibration
of the traditional model hide some interesting local relationships.
The research question is then to examine whether there are any meaningful spatial variations

in the relationships between working-age mortality and the four explanatory variables in the
model. To address this issue, we calibrated GWPR and semi-parametric GWPR models using
software written by the authors.¶ Bandwidth size for each model is separately determined by
the same method as that used for kernel mapping: applying bandwidth sizes ranging from
5 to 70 km in steps of 1km to �nd the lowest AICc as the indicator of optimal bandwidth
size.‖ Figure 2(a) shows the relationship between AICc and bandwidth size for two selected
models. One of these is a full GWPR model in which all the parameters were allowed to
vary spatially and one is a semi-parametric model in which the parameters associated with
the variables PRO and UNEMP are allowed to vary spatially while the parameters associated
with the variables OLD and OWNH are held constant. In both cases the optimal bandwidth
was around 15 km. Figure 2(b) shows the increase in deviance of the model (D) and the
decrease in the e�ective number of parameters in the model (K) as the bandwidth increases.
As the bandwidth increases, the model becomes less accurate and tends towards the global

¶Details of Windows-based software for GWR (GWR 3.5) are available at www.may.ie/NCG/GWR or by emailing
Stewart.Fotheringham@may.ie. This software is written in FORTRAN but with a user-friendly Windows-based front-
end that allows GWR models to be calibrated by simple point and click operations. The calibrations of GWPR and
its semi-parametric variants described in this paper were undertaken with a code written in C. This code will be
incorporated into the next version of the GWR software to be released by early 2005.
‖The authors’ software for GWR contains the option of using either AICc or cross-validation (CV) for bandwidth
selection. We chose to use AICc here mainly because this function contains a more proper penalty for model
complexity in a local modelling context and so is less likely to lead to an over-paramaterized model than CV and
conventional AIC. However, we recognize that more research is needed into the properties of the various statistics
that can be used for bandwidth selection in GWR and its variants.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2695–2717



GEOGRAPHICALLY WEIGHTED POISSON REGRESSION 2711

Table II. Summary statistics of model comparisons.

Bandwidth Deviance K AICc Di� AICc

Kernel map 5 km 343.2 66.5 522.3 161.1
Global PR NA 389.3 5.0 399.5 38.3
GWPR 17 km 304.5 28.1 367.7 6.5
SGWPR(OWNH;OLD;UNEMP) 17 km 318.8 24.7 373.5 12.3
SGWPR(PRO;OLD;UNEMP) 16 km 304.0 26.9 364.2 3.0
SGWPR(PRO;OWNH;UNEMP) 15 km 296.2 29.8 363.6 2.4
SGWPR(PRO;OLD;OWNH) 16 km 316.9 25.8 374.4 13.2
SGWPR(PRO;UNEMP) 15 km 308.0 24.0 361.2 0.0

Notes: SGWPR(X ; Y ; Z) indicates a semi-parametric geographically weighted Poisson regression model
in which only the parameters of the variables X , Y and Z are allowed to vary spatially. Di� AICc is
the di�erence of AICc of a model from that of the best model, SGWPR(PRO;UNEMP).

model both in terms of model �t and number of parameters. Table II contains a summary of
the results of the full GWPR model and the semi-parametric model along with several other
models that are discussed below.
The results in Table II highlight several interesting features of the relationships being in-

vestigated. A comparison of the AICc values suggests that the worst ‘model’ is that of the
kernel map which contains no explanatory variables and simply allows the intercept term
to vary locally. The global Poisson model with four explanatory variables is the next worst
performing model and all the GWPR models outperform the global model suggesting that
there is spatial non-stationarity in at least some of the relationships being examined.
The optimal model is a semi-parametric one, SGWPR(PRO;UNEMP), in which the param-

eters associated with the variables OLD and OWNH are held constant and the parameters
associated with the variables PRO and UNEMP are allowed to vary spatially. This suggests
that the relationships between working-age mortality and these latter two variables are not
stationary but vary over the study region for some reason. The calibrated version of this
model is

Ôi = Ei exp(�̂0(ui) + �̂PRO(ui)PRO + 0:069(9:2)
OLD

− 0:063
(−4:7)

OWNH + �̂UNEMP(ui)UNEMP) (53)

where the constant term and two of the four regression parameters are geographically varying.
The estimated �xed parameters and their associated t values are shown and are similar to those
in the global model.
Through comparisons of the AICc value associated with the full GWPR with those of the

semi-parametric GWPRs in which only one regression parameter is �xed and the other three
are allowed to vary spatially, we can also examine whether the spatial variation of a local
regression parameter is meaningful. As explained in Section 3.3, better models are indicated
by lower AICc values although a common rule-of-thumb is that if the di�erence in AICc
values between two models is less than or equal to 2 [32], there is no substantive di�erence
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in the performance of the two models. By comparing the AICc values in this way, it is clear
that when the parameters of the variables OWNH, OLD and UNEMP are allowed to vary
spatially but the parameters of the variable PRO are held constant over space, this produces
a poorer model than the full GWPR model (the AICc for the former is 373.5; the AICc for
the latter is 367.7). Similarly, when the other three sets of parameters are allowed to vary
spatially but the parameter for UNEMP is �xed (AICc=374:4), the model is worse than the
full GWPR model. In comparison the optimal model, in which only the parameters for the
variables PRO and UNEMP are allowed to vary, a semi-parametric model which also allows
the parameters of OLD to vary performs marginally worse. Similarly, allowing the parameters
of the variable OWNH to vary as well as those for PRO and UNEMP produces a marginally
worse performance.
These results strongly suggest that the relationships between working-age mortality and the

two variables, OLD and OWNH, are stationary over space but that the relationships between
working-age mortality and PRO and UNEMP are not stationary but vary over space. We now
examine these two relationships more closely.

5.5. Interpretation of geographical parameter variations

The above results suggest that the relationships between working-age mortality and the per-
centage of employment in professional occupations and between working-age mortality and
unemployment rates vary spatially. The spatial variations in these local parameters can be
mapped as shown in Figures 3 and 4. The local parameter surfaces depicted in these two
maps are taken from the semi-parametric model in which only these two parameters were
allowed to vary spatially. We de�ne a standard odds ratio showing the sensitivity of working-
age death to a change of one standard deviation of each explanatory variable, SD(xk), as

Oddsk(ui)= exp(�k(ui) SD(xk)) (54)

where SD(xk) is the standard deviation of kth variable (k is PRO or UNEMP here). It should
be noted again that every explanatory variable was standardized in this study so that SD(xk)
is equal to one for all k. In Figures 3 and 4, these odds ratios are shown by monochrome
gradation with contour lines of pseudo t values.
In Figure 3, the local estimates when exponentiated are all less than 1.0 which suggests

that as the proportion of professional people in a zone increases, working-age mortality tends
to decrease. Apart from the eastern part of the region, the general spatial pattern of the
local estimates suggests that the sensitivity of working-age mortality to variations in the
proportion of professional people in each zone increases toward the central part of the area
with ridges along the major railway lines. This general pattern of sensitivity indicates that the
socio-economic gradient of health would be clearer in densely inhabited areas in and around
Tokyo City. A larger socio-economic inequality of health is likely to emerge through larger
inequalities in living conditions and levels of social support across di�erent income groups
within urban areas than within rural areas (cf. References [37, 38]).
An exception to this general pattern is found in the eastern part of the region between

Chiba City and the Paci�c Ocean where the local odds are much lower. This is an area
where suburban development has not been as intense as in the west (note the low density
of railway lines) but where new residential developments of white-collar workers commuting
to Chiba or Tokyo were developed in the 1980s primarily near to the railway lines for ease
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Figure 3. Spatial distributions of PRO and its sensitivity to working-age SMR: (a) map of odds
ratio of PRO; (b) map of PRO distribution.

of commuting. These new developments have created a strong local contrast between the
relatively healthy commuter suburbs occupied by newcomers and the relatively unhealthy
rural areas in the region.
As is evident on the right-hand map in Figure 3 showing the distribution of professional

workers throughout the region, Tsukuba City has a much higher proportion of professional
people than its surrounding rural areas. However, there is no strong local contrast in working-
age mortality patterns and the relationship between the proportion of professional people and
working-age mortality is almost negligible. Tsukuba Science City has been developed since
around 1980 by moving governmental research institutes and universities from Tokyo. A
‘Tsukuba Syndrome’, a pseudonym for mental disorders caused by a feeling of being trapped
in an isolated arti�cial environment, has been reported among professional people in the city
during 1980s [40]. Thus the health gap between newly resident professional workers and the
original rural inhabitants is much smaller around Tsukuba City than in other areas such as
Chiba City and consequently the local e�ect of variations in professional employment on SMR
around Tsukuba is very small.
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Figure 4. Spatial distributions of UNEMP and its sensitivity to working-age SMR: (a) map of
odds ratio of UNEMP; (b) map of UNEMP distribution.

The spatial variation of the local parameter estimates associated with the unemployment
variable is shown in Figure 4. The local estimates are positive in some areas (odds¿1)
and negative in others (odds¡1). The areas where signi�cant positive relationships occur are
generally urbanized areas in the south–west and industrialized areas surrounding Tokyo Bay.
In these areas, as unemployment rates increase, working-age mortality increases. However,
the area having the strongest positive relationship is a rural coastal zone in the far eastern
edge of the region. This area is dominated by the �shing and tourism industries. Declining
trends in employment in these sectors might explain the strong local relationship between
unemployment and working-age mortality.
In most other parts of the study area, the relationship between working-age mortality and

unemployment is very weak, as shown by the pseudo t values. These zones are largely
agricultural areas where unemployment tends to be masked by temporary employment and by
underemployment on family farms.

6. CONCLUDING REMARKS

The approach of geographically weighted Poisson regression (GWPR) described here can be
considered to be a natural extension or integration of two conventional statistical tools for
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disease map analysis: kernel mapping [30, 41] and Poisson regression modelling [14, 19, 20].
While the traditional kernel methodology in spatial epidemiology is used for disease mapping
to reveal geographical variations of disease/health levels, GWPR is used to reveal geographical
variations in relationships. Through the use of GWPR we can look for meaningful geograph-
ical drifts and/or spatial anomalies (clusters) in the associations between health outcomes and
various socio-economic and environmental variables.
Within a geographical information systems environment, this new method of analysis can

be easily used as a new visualisation and explorative spatial analysis technique. It would
also be possible to extend our approach of geographically weighted regression to a general
linear modelling framework by following similar arguments to those set out here. Particularly,
binomial logistic modelling of health data with geographically varying coe�cient models may
be useful for analysing case-control data at the individual level with detailed geographical
referencing in order to avoid ecological fallacy problem [42].
We should mention that the idea to combine kernel mapping and regression models for dis-

ease map analysis is not new. Originally, spatial kernel weighting was introduced to estimate
smoothed surface of disease rates [41, 43]. Such kernel mapping has been extended to take
into account geographically invariant e�ects of explanatory variables (i.e. invariant regression
parameters with a spatial varying intercept term) [44, 45]. Rather than assuming invariant ef-
fects on explanatory variables, however, GWPR postulates that unknown (contextual) factors
regulating disease distribution can alter the association of disease with covariates. We expect
that the information on the spatial variation of the association of disease rate with covari-
ates will provide important clues to understanding geographical contextual e�ects regulating
disease distributions.
Most importantly, GWPR is proposed here to increase attention on the local nature of

ecological associations in health studies. As discussed in Reference [6], the e�ort to measure
local properties has a close relationship with the mode of geographical thought stressing
geographical contextuality/locality. It is hoped that this approach will add value to spatial
ecological studies of disease and health and will lead to further advances of understanding in
this area.
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