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A Comparison of Random Coefficient
Modelling and Geographically Weighted
Regression for Spatially Non-stationary
Regression Problems

CHRIS BRUNSDON, MURRAY AITKIN, STEWART
FOTHERINGHAM & MARTIN CHARLTON

ABSTRACT  The problem of locally varying coefficients in geographical applications is
considered. Two approaches to this are then discussed—geographically weighted regres-
sion and random coefficient models. The latter is considered in two forms: firstly, the
case that only the intercept coefficient is randonm: and then the case in which all
coefficients are random. All these techniques are applied to a data set devived from the
1991 UK Census of Population relating to limiting long-term illness.

Introduction

In many geographical models, there are strong arguments that the relationships
between variables are not fixed over space. Consider, for example, the case of a house
price prediction model, or hedonic model. Such a model attempts to predict the
market price of a house by considering the component parts of the house, such as
the number of bathrooms. number of bedrooms, size of garden and so on. However,
although it is likely that all these variables will influence the price of the house, the
degree of influence may well vary geographically. For example, areas close to good
schools may well be popular with house buyers having families with several small
children. These buyers may also place greater premiums than average on a second
bathroom. or a large number of bedrooms. Another example is that of local crime
rates: the causes ol crime may well differ from one place to another, so that observed
correlations between potential ‘explanatory” variables and crime rates may well differ
from place to place. A similar situation could occur in epidemiology. A high (or low)
incidence of some disease could be caused by different phenomena in different places.

Generally, considering processes in this way presents an interesting geographical
approach. Rather than modelling a “global’ relationship between a set of variables,
an approach that allows the nature of the model to change spatially could be used
instead. For example, an often-used model is the general linear model (GLM). Here,
the mean level of the ith response variable, E{y,). modelled as a function of the
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regression parameter vector, ff and a vector of predictor variables. .X;: thus:
G[E(y)]=PX; (1

G is referred te as the link function. In a typical geographical application, the index
i would refer to a location, and X, would refer to a set of predictor variables
measured at that location. However, the régression parameter vector f§ is the same
for all locations and therefore the relationship between the predictor and response
variables remains the same everywhere. To model the phenomena discussed earlier,
f would need to vary from place to place, giving a revised model:

GLEw)] = fi X, (2)

If there was some way of estimating the vector ff; at each location, then spatially
varying parameters of models could be mapped using a geographic information
system (GIS). It is intended that this should provide greater insight into the
geographical context of the process being modelled through a graphical representa-
tion of the changing geographical characteristics of the relationships. Unfortunately,
without further information, there are some problems with model identifiability. If
the n f§; values are allowed to take any values, then for most data sets there will be
an infinite number of fi;’s solving equation (2) with E(y;) = y;. To tackle this problem.
some constraining assumptions must be placed on the nature of the fi/’s.

Two very different approaches to this are random coefficients modelling (RCM)
and geographically weighted regression (GWR). In RCM., the f§; are considered as
random quantities. The problem of model calibration then becomes a problem of
estimating the probability distribution of the fs, and then of using Bayes™ theorem
to provide estimates of the probability distribution of each f; given X; and y;. This
in turn will lead to a point estimate of each f,.

In GWR (Brunsdon et al., 1996), the f3; are not assumed to be random, but are
assumed to be a function of the coordinates in geographical space of the /th
observation, (i;, v;). If we are dealing in zonal data, then (u;. v;) should represent the
centroid of the ith zone. The regression model now becomes

GLE(: = Bluy. v)) X, (3)

Thus, f can be regarded as a vector of functions of two variables. say
LA, v). fau, v), o Lo, )], GWR uses kernel-based techniques to obtain estimates
of 11, f... [, given the w5, v/’s, X7s and y/s. To obtain the fi; estimates here, one
uses the values of these function estimates at (u;, v;).

Despite the clear differences between the two approaches, there are some common
qualities. Most notably, both approaches are in part non-parametric. In RCM. no
assumptions are made about the probability distribution of the random fs. In
GWR, no assumptions (apart from continuity) are made about /,, f5... f,,. Thus,
both approaches allow reasonable flexibility in modelling although in different ways.
The major difference is perhaps the fact that GWR takes spatial location explicitly
into account. while RCM does not.

The aim of this paper is to contrast the two methods by using them to analyze
the same data set. This data set is derived from the OPCS 1991 Census of Great
Britain and Northern Ireland, and was drawn up to investigate the relationship
between limiting long-term illness (LLTT) and a number of social factors. In the next
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section, the data will be discussed. Following this, GWR and RCM will be discussed
in more detail; in particular, two variants of RCM will be considered—one in which
only the intercept term varies randomly, and one in which all terms do. Following
this. the results of the analyses will be reported. The paper will conclude with a
discussion of these results.

The LLTI Data Set

A set of predictor variables was chosen to represent various hypothesized contri-
butory factors to the prevalence of LLTI. These are listed in the following. These
are based on the chapter by Rees (Rees; 1995) in the Census User’s Handbook for 1991,

e LLTI: The percentage of persons in households in each ward where a member of
the household has some LLTI. This is the response variable. Note that to control
for different age profiles in areas, this is only computed for people aged 4565
an age category that is perhaps most likely to suffer from LLTT as a result of
working in the extractive industries.

o CROWD: This is the proportion of households in each census ward having an
average of more than one person per room. This is an attempt to measure the
level of cramped housing conditions in each ward.

e DENSITY: This is the housing density of each ward. measured in millions per
square kilometer. This is intended to measure ‘rurality’ of areas. Note the
differences between this and the previous variable—a remote village with poor
housing conditions may well score low in this variable but high in the previous.

o UNEMP: The proportion of unemployment persons in an area. This is generally
regarded as a measure of economic well-being for an area.

e SCLASSI: The proportion of heads of households whose jobs are classed in social
class 1 in the census. These are professional and managerial occupations. While
the previous variable measures general well-being. this measures affluence.

e SPFAM: The proportion of single-parent families in an area. This is an attempt
to measure the nature of household composition in areas.

The dependent variable here is assumed to be LLTI and the remaining variables are
used as predictors. In the statistical analysis package SAS, the ratios were calculated
as follows (census cells are addressed as CNNnnnn where NN is the table number
and nnnn is the cell number within that table.);

LLTI = 10000+((Ci20019 + C120022 + C120025)/
(C020133 + C020144 + C020155 + C020166)):

UNEMP = 10000=(C0B0134/C080020);

CROWD = 10000+(C230001 — C230002)/C230001;

SPFAM = 10000 = (C400046/C400001);

SCLASS| = 10000 =(C900007 /C900002);

DENSITY = 10000 +(C230001/AREA);

All data are taken from the 1991 UK census local base statistics at ward level.

Random Intercept Models

The analysis presented here is based on a generalization of the binomial logit model,
in which the number of people with LLTI in the area (UK Census Ward) is treated
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as binomial with the number of “trials’ equal to the population size of the area, and
regression model linear in the five explanatory variables X. So the regression model
is #; = p'X; for the ith area.

In this form the model is not a two-level variance component model, as there are
no individual-level variables, only aggregated individual and district-level variables.

Over the 595 wards in the study, this model is much too rigid, as we may expect
that the logistic model cannot be a full specification over the whole region of all the
important variation in the proportion of LLTI. Many relevant variables may have
been omitted from the model, leading to misspecification of the simple logit model.

A simple way of representing this misspecification is by including a random
intercept z in the model, with an unspecified distribution. We may think of this as
representing all the omitted variables Z from the model, weighted by their respective
regression coefficients, so that we have omitted a term y'Z from the model. But since
the distribution of the unobserved variable Z is unknown, this is entirely equivalent
to the omission of a single variable z with an unknown distribution, appearing as a
random intercept term in the model. The model then becomes 1, =z; + f'X;. Such a
model is known by statisticians as an ‘overdispersed’ or “unobserved heterogeneity’
model, as the random intercept induces additional variation in the response beyond
that in the ‘core’ binomial logit model.

Recent advances in computational modelling (Aitkin, 1996) allow us to fit such
models easily by (non-parametric) maximum likelihood (NPML), simultaneously
estimating the regression coefficients B for the observed explanatory variables X and
the distribution of the random intercept term as well. This distribution is estimated
as a discrete distribution with masses 7, on a finite number of mass points z,: the
overall distribution of the response is therefore a mixed binomial distribution.

Random Coefficient Models

The foregoing analysis can be extended to general random coefficient models. The
simple overdispersed model assumes that all regression coefficients except the inter-
cept are constant over wards. But this can be relaxed and the model extended 1o a
quite general random regression coefficient model in which some or all the explana-
tory variables have slopes that vary across distriets.

Consider a simple example with a variable x,; whose coefficient f§, varies across
wards. We index it by B; = i, -+ u;, where u; represents variation about a ‘mean’ f,.
The regression coefficients f§, of the remaining variables X, are fixed. Then condi-
tional on w; and z;, the regression model is

Hi= BiXy; + BaXap + 5+ wixy

while marginally z; and , have an unknown joint distribution z(z, u).

By estimating the joint distribution of z; and u; non-parametrically, we obtain the
NPML as a discrete distribution on a finite number of points in the (z,4) plane. with
an estimated mass 7, and estimated mass points 2, and u in the kth component.

We follow this approach in the NPML analysis of the logistic model over the 595
wards. All the regression coefficients are allowed to be random over the wards, and
we allow 10 components in the mixture—that is, the random slopes are defined by
at most 10 distinct points in the six-dimensional space of the regression coefficients
and intercept. This restriction to 10 is rather arbitrary. and more components in the
mixture could be allowed.
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To provide a “fitted” model for each district, we use the general properties of
empirical Bayes shrinkage, to “shrink” the regression coefficients of the individual
within-ward regressions towards the common mean of the coefficients over wards.
s0 providing a more stable prediction for each ward. especially those with small
population bases.

The fitted values of the LLTI proportions in this analysis are based on the
posterior (‘shrunken’) means of the regression coefficients for each ward. Note that
there is no connection between adjacent wards: this leads to a greater appearance of
randomness, or variation, in the fitted proportions between wards than for locally
weighted regression or other methods which build in dependence between adjacent
or neighbouring districts.

Geographically Weighted Regression

The problem here is to provide estimates of P(u;, v;). for each location i, This is
achieved by considering data for places in the vicinity of the point location (u;. vl
For example, il’ one drew a circle of some radius, say r, around one particular (1, v;).
and calibrated an ordinary least squares regression model only on the basis of
observations within this circle, then the B obtained could be thought of as an estimate
of the regression parameter vector in the vicinity of (u;. v,). In short, it is an estimate
of P(u;, v,). or fi; using the notation of equation (2). By evaluating i for each (1. v;).
it is possible to obtain a set of estimates of spatially varying parameters without
specifying a functional form for the spatial variation. In a sense, this technique “lets
the data speak for itself” when providing estimates of each f§,. With some modifica-
tions, this is the underlying concept of GWR.

An initial consideration of this technique may raise issues relating to the notion
of the ‘circle of inclusion” of observations around each (i,.v,). This circle has been
specified to have radius . but what value should r take? Another issue that may be
raised is the binary nature of inclusion of observations in the regression model
calibration. An observation whose distance from (u;, v,) falls just below r will be
included in the model, whereas one whose distance just exceeds this quantity will be
excluded. It seems unnatural that the spatial association between the variables ends
so abruptly.

The regression model centred around each (w,.v;) could be thought of as a
weighted regression, with observations in the circle of inclusion weighted as umity,
and other observations weighted as zero. Thus, for a given (u,. v;). the weight =z,
given to observation & would be

i i i
gy = ) (4)
0. otherwise

where dy is the distance between the locations of observations i and & However,
there is no reason 1o restrict the weighting function to a step function in this way. It
is also possible 1o relate d,; to =, with a continuous function. For example. a
Gaussian distance decay-based weighting would be achieved by

Uy = exp( — d%/12h%)

Here. the value of the weight would decay gradually with distance. to the extent that
when dy = h the weighting would be about 0.03.
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Functions such as this will be referred to as kernel functions or kernels, and
denoted by the letter K as in ik = K(dy). In each case, the constant /i provides some
control of the range of “circle of influence’ of the geographical data, as r does in the
basic step-function example, but the degree of weighting decays with distance rather
than suddenly dropping to zero when a certain distance is reached. Generally.
desirable features of a kernel function K are

e K(0)=1.
L ] limdﬂ‘K(d)z 0.
e K is a monotone decreasing function for positive real numbers.

It is also interesting to note that although we have restricted our attention to
estimating fi; values at points in space corresponding to the geographical locations
of the observations, the same methodology can be applied to any point.

Another important issue in GWR is the choice of h—sometimes referred to as the
kernel bandwidth. As stated earlier, this can greatly affect the properties of the f§
estimates. Following the advice of Silverman (1986) when considering kernel density
estimates, there are occasions when subjective choice lends itself well to the problem
in hand. If one has strong theoretically based prior beliefs about the value of 4 in a
given situation, then it seems reasonable to make use of them.

However, there are many situations in which no such theoretical understandings
exist, and in these cases some form of automatic, data-led choice of /i may be more
appropriate. One method suggested here is that of least squares cross-validation. A
common calibration technique is that of least squares, Suppose for a pre-specified
kernel function, the predicted value of y; from GWR is denoted (as a function of h)
by #(h). The sum of squared errors may then be written as

SS(h) =Y [y, — (W] (5)
i

A logical choice may then be to find / minimizing equation (5). However, at this
stage. a problem is encountered. As h—0. #(h)— ;. so that equation (5) is minimized
when /i = 0. To sée why this is the case, note that for all K functions, o; = 1, and that
if i#k, then h—0 = o, -0, so that the weighted regression is dominated by the
term for observation i. This suggests that an unmodified least squares automatic
choice of h would always suggest h =0, or possibly result in computational errors,
This problem can be avoided if, for each i, a GWR estimate of y, is obtained by
omitting the ith observation from the model. This is equivalent (o replacing the
kernel function K by a modified function K* such that

K*0)=0
K*d)=K(d), ifd#0

If the modified GWR estimate of y; is denoted by §,(h), then the cross-validated sum
of squared errors is denoted by

CVSS(h) =3, lyi— 7)1 6

Choosing / to minimize equation (6) provides a method for choosing & automatically
that does not suffer from the problems encountered by working with equation (5).
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Table 1. Correlation matrix for the LLTI data

Variable DENSITY LLTI SCLASSI SPFAM UNEMP
CROWD 0,249 0371 —0.501 0.382 .557
DENSITY 0.271 — 0,185 0.149 0,450
LLTI —0.458 0.237 0.711
SCLASSI —10.249 — 0,438
SPFAM 0.374
Results

For the LLTI data, both the random coefficient model and the GWR approach were
used to obtain estimates of f#;. Since each [, is a six-dimensional vector. each analysis
yields six maps, one for each element of f; over the 595 census wards. Firstly,
however, one should consider the results of fitting the global model shown in
equation (1).

A table of correlations between the variables is shown in Table 1. From this. it
may be seen that although the predictor variables are far from independent. there
are no correlations sufficiently high to cause problems with collinearity. The largest
correlation is between LLTI and male unemployment—perhaps this is hardly surpris-
ing. as several studies have already highlighted linkages between deprivation and
health problems (for example, see Townshend er al., 1988).

Next. the regression model itsell will be considered. Results for this are given in
Table 2. From this, it can be seen that, at least globally. every variable has a
statistically significant coefficient except SPFAM. The general fit of the model, as
measured by the R statistic, is good. Perhaps the most surprising results are the
coefficients for DENSITY and CROWD, which are both negative. However. although
it is possible that cramped housing and urban environments contribute to ill health,
it is also the case that once people have become ill they may tend to move away from
the worst environments. Also considering the relationship demographically, many
elderly people are likely to suffer from LLTI, but these people are less likely to live
in crowded households, as any children they have are likely to have left home. They
are also likely to retire to rural areas in some cases, and so this demographic factor
is likely to influence the coefficients for the CROWD and DENSITY variables,

The results of calibrating a GWR model for the LLTI data are now discussed.
Firstly, spatial referencing must be considered, Data observations here correspond
to census wards, the second smallest aggregational unit used in the 1991 census.
After using Newton’s method to minimize expression (6) with respect o /i1, a value
of 17.1 km was chosen. The results of fitting this GWR are given in Figures 1-6.

Firstly, consider the map for the density coefficient. This is particularly interesting,

Table 2. Results of global regression model ( R? = 0.547)

Variable f Coefficient SE (h) Significance
CONSTANT 13.52 8] p< DOl
CROWD =7:592 248 p<0.01
DENSITY —4.506 1.62 p<001
SCLASSI —17.40 2,634 p<0.01
SPFAM ~1.700 1.452 NS

UNEMP 46.07 2,411 p=0.01
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L] <37
Bi37-67
Ples-5.4
BWlss5-117
Bli18-155
Bis5-185
Wiss-207
B >-2s8

Figure 1. GWR results (coefficient: constant term).

b <as
Ela35--06
Bl-os5-31
Wa2-94
Wos5-155
Bi56-208
P209-258
B -9

Figure 2. GWR results (coefficient: crowded households),
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B <84
-184--100
Wos-37
Ws36-11
M-1.0-16
W17-53
[s.4-11.0
] »=1311

Figure 3. GWR results (coefficient: housing density).

B <9
Ws19-481
W4s0-392
W-39.1-319
W-318-253
Bl-25.2--163
[l162-38
E >=37

Figure 4. GWR results (coefficient: social class 1).
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] <29
Ol79-438
Bls7-28
Bl27-02
Wo1-27
Bi2s-54

Wss5-91

B >-52

Figure 5. GWR results (coefficient: single-parent families).

L < 53.6
[B53.6- 60.4
B60.5-66.1
Wes.2-757
B7s5-88
Bss9-1020
W102.1-115.1
B >-1152

Figure 6. GWR results (coefficient: unemployment).
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as the coefficient takes both positive and negative values. In particular, in an area to
the north-east. there is a strong negative relationship (so that high density implies
low LLTI), whereas in most other areas the relationship is positive. The latter is
perhaps what one would intuitively expect to see—urban areas having a greater
prevalence of long-term illness. But, one has to consider that in the Durham area
there is a strong tradition of employment in the coal mining industry. Coal mining
communities exist typically in pit villages—which are relatively sparsely populated
compared to urban areas. It is also well known that a number of illnesses are
associated with working in coal mines. In contrast, the main city in this area is
Durham City, and much employment within the city is associated with its university,
cathedral, shops and tourism industry. There are considerably fewer illnesses associ-
ated with occupations of this sort. In the context of this locality, a negative
association between population density and LLTT is not surprising. However, when
one looks further south on the map 1o the county of North Yorkshire, the areas
having lower housing density are associated with more traditional rural communities.
and so the more usual positive association between housing density and illness is seen.

Next, the maps of results for the RCMs are considered. In this instance, the non-
parametric distribution estimators for the coefficients were based on 10 mass
points—the maximum possible when using the GLIM macros. The shrinkage esti-
mates of the ward-based coefficients are shown in Figures 7-13. Here. the mapped
patierns exhibit more ‘noise’ than their GWR counterparts. However, this is hardly
surprising given the spatial smoothing inherent in the GWR calibration process. In
some cases. however. there are notable similarities between the two processes. For
example, the estimate of the intercept term in the random intercept model has high

[

Ll <4187

[ 14187 -4.367
[T4.368-4.707
Bl 4.708-5.011
BW5.012-5.203
Bl 5.204 - 5.359
W 5.360 -5.512
B >-553

Figure 7. RCM results (random coefficient: unemployment),
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1 <1350

[F11.350-1.542
B1543-1.779
B 1780-1.952
1953 -2.045
B 2046-2.187
21882449
B >-240

Figure 8. RCM results (random coefficient: crowding).

] <-0219
0l-0.219--0.111
§i-0.110 --0.010
B -0.009 - 0.024
o025 -0.043
B 0.044 - 0.082
M 0.083-0.131
B >=0132

Figure 9. RCM results (random coefficient: single parents).
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B <1485
Ml -1.485--1.358
il -1357--1.310
M -1.309--1.270
Wl -1.269--1.210
-1.209--1.115
[]-1.114--0.889
[l >=-0888

Figure 10. RCM results (random coefficient: social class 1).

B <04
W -0.411-0.195
I -0.194-0.008
W o.009-0.271
Wo.272-0.529
[ 0.530-0.709
[Tlo.710-0.838
> = 0.839

Figure 11. RCM results (random coefficient: housing density).
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[ <-2.684

[ -2.684--2.643
W -2.642--2.623
B 2622-261
Il -2.610--2.593
2592 - -2.562
W -2.561--2.477
B >-245

Figare 12. RCM results (random coefficient: intercept).

!Q < -1.266
[0]-1.266 - -1.185
B-1.184 --1.102
B -1.101--1.028
W -1.027-0.939
B -0.938--0.846
W -0.845-0.814
B >-o083

Figure 13. Random intercept model result (fixed model: intercept).
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values in urban areas, as does the intercept estimate from GWR. However, the RCM
model also exhibits some much lower values associated with other urban wards, In
this sense. there are some notable differences between the two models.

Conclusions

In this paper. two very different approaches to modelling variability in regression
parameters are considered. Both lend themselves to mapping—and are, therefore.
GlS-able in accordance with Openshaw’s requirement (Openshaw, 1994). However,
the two analyses yield very different sets of results. GWR provides estimates using a
mechanism that is essentially based on spatial smoothing, whereas the random
coefficient model makes no spatial assumptions. The estimates in this case are
‘shrunk’ towards a global mean value, but no special attempt is made to reduce
spatial ‘roughness’ in any way. The results of the two analyses reflect this difference
in estimation procedure. Both sets of RCM maps appear less smooth than the
corresponding GWR maps.

Which of the two approaches should be used? To answer this question, one needs
to decide whether equation (2) or (3) best reflects the process used to generate the
data. If the latter is most like the “tru¢’ process. then RCM will allow noise in the
model to introduce roughness into the local coefficient estimates. If the former is a
better reflection of reality, the smoothing process in GWR will give unrealistically
smooth estimates of the coefficient estimates. Thus, in the first instance. GWR is the
better approach, while in the second some form of RCM would be better. Of course,
if'in reality there are no local effects, then a global regression model would provide
the best approach.

Unfortunately. without prior knowledge. a choice is difficult to make. Perhaps
what is needed is some means of comparing the competing models for a given data
set—something equivalent to a Mallows’ C, statistic (Mallows, 1973) or an Akaike
information criterion (Akaike, 1973). In addition to this, perhaps some understanding
of how each of the techniques behaves when applied in situations where one of the
competing models prevails would be useful. For example, when there is no spatial
pattern in the coefficients in reality. what kind of patterns does GWR generate?
Similarly, if there is a strong geographical pattern, how likely is it that an RCM-
based approach will detect it? Questions of this type can perhaps be investigated
using simulation techniques.

In summary, this study has been useful in identifying at least three possible
approaches to the identification of local variation in regression models. However, an
important question that has been uncovered is that of choosing which method is the
most appropriate. It is perhaps of extreme importance 1o gquantitative geographers
that locally varying models may be formulated. but it should also be noted that there
is a broad spectrum of such models and that any advances in the specification and
calibration of such models should be accompanied by parallel research in the areas
of model choice and model validation in the context of competing explanations.
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