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Abstract 

Biological systems remain unperturbed (are robust) in the face of certain genetic and 

environmental challenges. Robustness allows exploration of ecological adaptations. It is unclear 

what factors contribute to increasing robustness. Gene duplication has been considered to 

increase genetic robustness through functional redundancy, accelerating the evolution of novel 

functions. However, recent findings have brought the link between duplication and robustness 

into question. In particular, it remains elusive whether ancient duplicates still bear potential for 

innovation through preserved redundancy and robustness. Here we have investigated this question 

by evolving the yeast Saccharomyces cerevisiae for 2,200 generations under conditions allowing 

the accumulation of deleterious mutations and put, for the first time, mechanisms of mutational 

robustness to test. S. cerevisiae declined in fitness along the evolution experiment but this decline 

decelerated in later passages suggesting functional compensation of mutated genes. We re-

sequenced 28 genomes from experimentally evolved S. cerevisiae lines and found that mutations 

accumulated more in duplicates than in singletons, and this enrichment of mutations was found 

mainly in genes that originated through small-scale duplications. Genetically interacting 

duplicates showed similar selection signatures and fixed more amino acid replacing mutations 

than expected. Regulatory robustness of duplicates was supported in our experiment by a larger 

enrichment for mutations at the promoters of duplicates than at those of singletons. Analyses of 

yeast gene expression under different environmental conditions showed larger variation in 

duplicate’s expression than that of singletons under a range of stress conditions, sparking the idea 

that regulatory robustness allowed exploration of a wider range of phenotypic responses to 

environmental stresses, hence faster adaptations. Our data provide strong support for the 

persistence of genetic and regulatory robustness in ancient duplicates and for the role of this 

robustness in the evolution of adaptations to various stresses.  
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Introduction 

Biological systems are inherently robust to perturbations, maintaining the same phenotypes in the 

face of environmental and genetic challenges (Gu et al. 2003; Stelling et al. 2004; Wagner 2005b). 

Robustness is key to the emergence of biological complexity and diversification as more robust 

systems can explore a larger set of phenotypes, allowing more potential for evolving novel 

adaptations (Draghi et al. 2010; Payne and Wagner 2014). Determining the factors providing 

systems with robustness would pave the way for a more complete understanding of the origin of 

adaptations and biological complexity. However, despite major efforts in understanding 

robustness (Wagner 2012), the factors that increase robustness of biological systems and their 

characterization remain to be determined. 

Gene duplication has been considered to have a major role in genetic robustness (Lynch and 

Conery 2000), as the presence of two copies performing identical or overlapping functions 

confers immunity to the deleterious effects of mutations occurring in one of the gene copies. 

Additionally, gene duplication has been credited with great importance in generating evolutionary 

novelties (Ohno 1999) because the selection-free exploration of the genotype space, due to 

genetic redundancy, allows one gene copy to probe a wider range of phenotypes (Payne and 

Wagner 2014). Arguably, gene duplication provides an invaluable opportunity to explore the link 

between genetic robustness and evolvability. Indeed, a number of studies have shown that major 

gene duplication events, such as whole-genome duplications in Angiosperms (Wendel 2000; 

Blanc and Wolfe 2004a) and animals (Otto and Whitton 2000; Hoegg et al. 2004), are 

concomitant with the emergence of morphological, metabolic, and physiological innovations 

(Otto and Whitton 2000; Holub 2001; Lespinet et al. 2002; Hoegg et al. 2004; Kim et al. 2004; 

Maere et al. 2005). 

Despite the apparent causal link between gene duplication and evolutionary innovation, the 

neutral exploration of genotype space by a duplicated gene requires the persistence of both gene 

copies for long periods. This clashes with the evolutionary instability of genetic redundancy, 
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illustrated by the fact that 92% of duplicates in Saccharomyces cerevisiae, originated through 

whole-genome duplication (WGD) roughly 100 MYA (Wolfe and Shields 1997), have returned to 

single gene copies in extant S. cerevisiae. The rate of preservation of genes in duplicate varies, 

however, among organisms, with some exhibiting up to 30% of their genes in duplicate (Blanc 

and Wolfe 2004b; Cui et al. 2006). Genetic robustness, along with other factors such as selection 

for increasing gene dosage (Conant and Wolfe 2008) and gene balance (Birchler et al. 2005; 

Freeling and Thomas 2006), has been proposed to allow the persistence of genes in duplicate for 

longer periods of time, thereby providing opportunity for innovation through mutation (Gu et al. 

2003; Fares et al. 2013). This claim is supported by larger fitness effects associated with the 

deletion of singletons compared to duplicates in yeast (Gu et al. 2003), functional compensation 

of deleted gene copies (VanderSluis et al. 2010), higher robustness of duplicates to transient gene 

knock-downs in Caenorhabditis elegans (Conant and Wagner 2004), and the contribution of gene 

duplicates to back-up against deleterious human mutations (Hsiao and Vitkup 2008). Recent 

studies have challenged, however, the link between gene duplication and genetic robustness, 

revealing a more complex relationship between duplicate preservation, genetic redundancy and 

robustness. For example, using synthetic lethality genetic maps, Ihmel and colleagues found that 

duplicates, although exhibiting functional compensation, account for only 25% of the mutational 

robustness of a system (Ihmels et al. 2007). Furthermore, Wagner (Wagner 2000) analyzed a 

number of duplicated genes and found no evidence of compensatory effects for null mutations 

between gene copies with high sequence or expression similarities. Moreover, a recent study has 

shown that in natural populations of yeast, close duplicates are unlikely to provide substantial 

functional compensation (Plata and Vitkup 2013). Thus, it is unresolved whether gene duplication 

provides mutational robustness through genetic redundancy. Since genetic redundancy and 

robustness are directly linked to evolvability, finding whether or not gene duplication provides 

sufficient genetic robustness to overcome the energetic and metabolic cost of maintaining 

additional genetic material is crucial to link gene duplication with the evolution of novel traits. 
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Also, finding appreciable genetic redundancy between the copies of ancient duplicates would 

support their potential for future biological innovations. 

The studies so far conducted to probe the link between gene duplication, genetic redundancy, and 

mutational robustness have been obscured by the complex mixture of the genomic signatures of 

natural selection and genetic drift. These mixed signatures make it difficult to disentangle the role 

of genetic redundancy and mutational robustness in the emergence of novel functions from that of 

selection favoring adaptive mutations. Moreover, most studies ignore the role of the mechanism 

of duplication, whole genome duplication (WGD) vs small-scale duplications (SSD), in providing 

mutational robustness, and thus opportunity for innovation (Carretero-Paulet and Fares 2012; 

Fares et al. 2013). It is expected that present genetic robustness and incomplete functional 

compensation of today´s duplicates are the remainders of an ancient larger genetic robustness that 

emerged at the time of gene duplication. Owing to the functional diversification of duplicates, 

quantification of preserved genetic robustness is complex and requires a direct test of the 

robustness of current, long-term preserved duplicates to deleterious mutations. Therefore, a 

definitive resolution of the controversy of whether ancient gene duplicates provide genetic 

robustness must come from testing the impact of deleterious mutations on duplicates in 

comparison with singletons. In this study we resolved the controversy by conducting an 

experiment that allows the accumulation of deleterious mutations in the genome of S. cerevisiae. 

Using experimental evolution allows disentangling adaptive mutations from deleterious and 

neutral mutations and testing hypotheses under tightly controlled experimental conditions, which 

is not possible in comparative genomics studies. We test, for the first time, whether duplicates 

tolerate more deleterious mutations in their coding and regulatory regions than expected under the 

assumption of no genetic robustness. 

 

Results 

The Deleterious Mutational Spectrum of Experimentally Evolved Lines of S. cerevisiae 
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Starting from a single colony, five S. cerevisiae msh2 deficient haploid lineages were created (see 

Methods). Each line was passaged on YPD media, by re-streaking a single colony every 48-72 

hours, for approximately 2,200 generations of S. cerevisiae (Figure 1). 28 genomes, including the 

ancestral genome and three to six genomes per evolved line, were re-sequenced (Supplementary 

tables S1 to S5). Single Nucleotide Polymorphisms (SNPs) and insertions and deletions (indels) 

that arose in the evolved lines were detected by subtracting them from those in the ancestral 

genome. Across all five experimentally evolving lines we identified a total of 430 non-

synonymous SNPs (NSNPs) affecting 412 genes (171 affecting 160 duplicates and 259 affecting 

252 singletons, Figure 2A), 179 synonymous SNPs (SSNPs, 70 affecting 67 duplicates and 109 in 

108 singletons), 527 insertions and deletions (indels: 163 affecting duplicates and 364 affecting 

singletons) and 2,720 mutations (including SNPs and indels) in intergenic regions. A region of 

600 bps upstream of the transcription start site was also examined to identify SNPs in regulatory 

gene regions, and 2,385 mutations (including SNPs and indels) were identified, of which 1,415 

mutations fell upstream of 860 singleton genes and 970 mutations upstream of 598 genes in 

duplicate (Figure 2B). Most indels in coding regions fell within homopolymeric and repetitive 

regions; hence we focused on SNPs and not indels when studying coding genes. 

Since the transfer of populations of evolving yeast was clonal (e.g., new generations were 

propagated from a single ancestral colony), mutations in early generations were identified within 

the set of mutations in later generations. This increase in mutational load and the strong genetic 

drift effect mostly allow the accumulation of deleterious non-lethal mutations, although some 

fixed mutations were very likely neutral as well. Indeed, the fitness of the strains declined with 

the generation time (Figure 3). Importantly, while the rate of fitness decline decreased around 

passage 50 (Figure 4), the fixation of NSNPs and SSNPs continued increasing linearly after 

passage 50 (inner plot in Figure 4). The contrasting patterns of fitness decline and mutation 

accumulation dynamics suggest the fixation of compensatory mutations buffering the effects of 

deleterious mutations, either through intra-gene molecular interactions or by functional 
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compensation between functionally related genes. It is noteworthy that some of the 

experimentally evolving lines recovered fitness after passage 70, after which the slope of the 

growth curve became positive (Figure 4). The general fitness decline trend was not equivalent for 

all evolution lines, with appreciable differences among these lines during the exponential growth 

phase and diauxic shift (Figure 3). Such differences reflect the influence of early mutations on the 

growth rates of the evolution lines and the subsequent ability of compensatory mutations to 

overcome these growth defects. 

Gene duplicates are more enriched for NSNPs than singletons  

We tested whether duplicates in the five experimentally evolving lines of S. cerevisiae 

accumulated more NSNPs than singletons. As most NSNPs are expected to be deleterious, 

duplicates enrichment for NSNPs would support their higher tolerance to such mutations 

compared to singletons. Since each duplicated gene has two copies that are functionally 

overlapping to a larger or lesser extent (i.e., they are not independent as singletons are), we 

analyzed the distribution of NSNPs among duplicates in two ways: randomly sampling a copy of 

a gene pair with NSNPs and testing duplicates enrichment for NSNPs, or considering each gene 

copy an independent gene. 

Random sampling yielded 95 duplicated genes out of the 1120 pairs with a NSNP, a number 

pointing to enrichment of duplicates with NSNPs when compared to singletons (Fisher’s exact 

test: odds ratio F = 1.59, P = 3.56 x 10-4). In the second analysis we considered all genes in 

duplicate as independent genes (e.g., 2240 genes and not 1120 duplicate pairs). Of the 430 

NSNPs, 171 affected 160 duplicated genes (7.14 % of all duplicates) and 259 affected 252 

singletons (5.50% of singleton genes) (Figure 5A). Duplicates were significantly more enriched 

for NSNPs compared to singletons (Fisher´s exact test: F = 1.32, P = 9.31 x 10-3). Of all mutated 

genes, only 17 encode ribosomal proteins, of which 6 were duplicated and 11 were singletons, 

with no significant difference between these two datasets (Fisher´s exact test: F = 0.88, P = 1). 

Removal of ribosomal proteins from our datasets had no effects on the results. We examined the 
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distribution of NSNPs in evolutionarily conserved non-synonymous sites. The rate of NSNP per 

site was larger for duplicates (6.84 x 10-5 NSNPs per site) than for singletons (5.44 x 10-5 NSNPs 

per site, F = 1.21, P = 0.039). To analyze NSNPs with effects on genes functions we first 

calculated the conservation of positions in multiple sequence alignments that comprised S. 

cerevisiae and the closest orthologs and then examined the distribution of NSNPs at these 

positions. The conservation of each position was calculated as the Conservation Coefficients 

(CC) using the entropy equation (Cover and Thomas 2006; Halabi et al. 2009; Ruiz-Gonzalez and 

Fares 2013): 

�� � ��
����� ��

���

����
� �1 	 ��

���
 �� ����
���

������
;  � � ��, �, �, ��    (eq. 1) 

In this equation, the conservation coefficient (CC) of a nucleotide (a) at a position (k) in a 

multiple sequence alignment is defined as the entropy of the observed frequency of a at k (��
���) 

relative to the background frequency of a in all proteins (q(a)). Therefore, the more conserved the 

site the higher the CC. This measure is preferable to other standard measures because CC is a 

non-linear function of ��
���  that rises more and more steeply as ��

��� approaches 1 (Halabi et al. 

2009). Therefore, for all but the least conserved positions, the overall conservation of each 

position in the alignment is well approximated by CC. We identified a total of 1.21 x 105 sites 

that were more conserved than the mean for the protein of which 3.95 x 104 belonged to 

duplicates and 8.22 x 104 to singletons. Roughly, we found 70 and 105 NSNPs at conserved sites 

and 14 NSNPs (3.54 x 10-4 NSNPs per site) and 13 NSNPs (1.58 x 10-4 NSNPs per site) at very 

highly conserved sites (e.g., sites that were 2 standard deviations from the mean) in duplicates 

and singletons, respectively, with the difference indicating enrichment of duplicates for NSNPs 

compared to singletons (Fisher´s exact test: F = 2.24, P = 0.039).  

Duplicates originated by WGD and SSD exhibit differences in their mutual functional 

dependencies and evolutionary fates. On the one hand, SSDs have been suggested to present 

larger genetic redundancy than WGDs, a mechanism proposed to have allowed the long-term 
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persistence of SSDs in the genomes through genetic robustness and the opportunity to explore 

novel functions (Hakes et al. 2007; Carretero-Paulet and Fares 2012; Fares et al. 2013). WGDs, 

on the other hand, have been proposed to partition ancestral functions making the copies of the 

duplicated gene less redundant (Fares et al. 2013). Given their differences, we classified the 

duplicates into being either WGDs or SSDs, yielding 554 pairs of WGDs and 560 pairs of SSDs 

(a number of duplicates were of dubious classification and were left out of the analyses). 72 

WGDs (12.99% of WGDs pairs and 6.49% of all WGDs) presented one copy with a NSNP, while 

88 SSDs (15.71% of the pairs and 7.86% of all SSDs) were affected by a NSNP (Figure 5B). 

WGDs were not enriched for NSNPs when taking each gene copy as an independent gene (1108 

genes) (Fisher´s exact test: F = 1.20, P = 0.19). In contrast to WGDs, SSDs were enriched for 

NSNPs compared to singletons when taking gene copies independently (1120 genes) (Fisher´s 

exact test: F = 1.47, P = 3x10-3, Figure 5B). These results were similar when considering number 

of SNPs per non-synonymous sites: WGDs were not enriched for NSNPs (Fisher´s exact test: F = 

1.06, P = 0.68), while SSDs were (Fisher´s exact test: F = 1.29, P = 0.03). The difference 

between SSDs and WGDs was not due to SSDs enrichment for younger, hence more genetically 

redundant, gene copies, as SSDs showed similar sequence divergence levels to WGDs (e.g., see 

Fares et al. 2013), and thus were of the same age group as WGDs. Moreover, amino acid 

divergence between SSDs gene copies was larger for SSDs with NSNPs (1.14) than without 

(0.87) (Wilcoxon rank test: P = 7.02 x 10-8). Since SSDs with NSNPs were neither younger or 

contained more similar gene copies, our results demonstrate higher mutational robustness of 

duplicates than singletons mainly driven by SSDs and not WGDs in S. cerevisiae. 

Genetically interacting duplicate gene copies are enriched for NSNPs  

To test whether the enrichment for NSNPs among duplicates is the result of their robustness to 

mutations, we determined the distribution of NSNPs among duplicates in which both copies 

interact genetically and those in which gene copies do not interact. Two copies are considered to 

be genetically redundant if they lead to significantly larger aggravating effects when deleted than 
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the multiplicative effect of single gene copy deletions. To identify such genetic interactions, we 

used the comprehensive genetic interaction network of a previous study (Costanzo et al. 2010). 

This network comprises 6.5 million genetic interactions covering about 75% of the total S. 

cerevisiae genome, including 1,682 duplicates and 2,863 singletons. We identified 762,768 

(11.38% of all genetic interactions tested) significant genetic interactions. Of these interactions, 

416 belonged to interactions between duplicate gene copies, of which 161 (130 significant 

interactions and 31 synthetic lethal interactions identified from (Dean et al. 2008)) pairs (38.70% 

of the duplicates pairs tested) were significant interactions and 255 pairs were not significant. 

Assuming that duplicate gene copies behaved independently we should expect 47 of the 416 pairs 

of duplicates tested to present genetic interactions (11.38% x 416 pairs tested). However, the 

number of pairs with both copies interacting (161) is significantly larger than expected (binomial 

test: P < 2.2 x 10-16), indicating that duplicates compensate each other’s functions. 

If genetic redundancy provides robustness to mutations due to the functional overlap by gene 

ancestry between gene copies, then duplicate pairs with genetic redundancy, and thus genetically 

interacting, should be more enriched for NSNPs than expected. Of all the duplicates in which 

both gene copies were interacting (161), 22 presented a NSNP in one gene copy (13.66% of the 

pairs). We tested whether duplicates with genetic interactions were more enriched for NSNPs 

than pairs of genetically interacting singletons, a finding that would support larger tolerance in 

duplicates than singletons for NSNPs due to genetic redundancy and not to the interaction with 

functions common to both gene copies (Fares et al. 2013). Unlike duplicates, in which each gene 

is counted once in terms of interactions, singletons with large number of interactions, hence 

present in many pairs, may enrich for NSNPs when mutated. To compare duplicates to 

independent pairs of singletons we did the following: a) listed all singletons with a known genetic 

interaction, b) randomly picked 161 pairs (same duplicates sample size) of interacting singletons 

such that once a gene is present in a pair, this is removed from all subsequent samplings to avoid 

overrepresentation of highly interacting genes, c) calculated the number of pairs with a NSNP, 
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and d) repeated this procedure 10,000 times. The distribution built from the 10,000 samples had a 

mean in 11.54 pairs with NSNPs and a standard deviation of 3.25. When compared to this 

distribution, interacting duplicates were significantly enriched for NSNPs (Figure 6A; under a 

normal distribution: P = 1.70 x 10-3). 

We compared the evolution of duplicates to that of distributions built from singletons, as above, 

for WGDs and SSDs. Of the 22 pairs of duplicates with interacting copies and with NSNPs, 9 

were WGDs (out of 117 WGDs with genetically interacting gene copies: 7.69% of the interacting 

WGDs) and 13 were SSDs (out of 44 SSDs with genetically interacting gene copies: 29.54% of 

SSDs).  Genetically interacting WGDs were not more enriched for NSNPs than expected (Figure 

6B; under a normal distribution: P = 0.58), while SSDs were (Figure 6C; under a normal 

distribution: P = 10-4). Interestingly, taking all duplicates together (WGDs and SSDs) in which 

gene pairs were genetically interacting, we found no significant enrichment for NSNPs when 

compared to duplicates with no evidence of interaction between their gene copies (Fisher´s exact 

test: F = 0.87, P = 0.67). However, SSDs showed strong enrichment for NSNPs among duplicates 

with interacting copies compared to those with non-interacting copies (Fisher´s exact test: F = 

2.69, P = 0.02), while the opposite, although not significant, was true for WGDs (Fisher´s exact 

test: F = 0.44, P = 0.05). 

Duplicate gene copies with NSNPs preserve their genetic redundancy and robustness 

evolving under similar selective constraints 

Larger redundancy between the gene copies of duplicates, and thus mutational robustness, is 

expected between genes copies complementing each other´s functions to a large extent. If 

mutational robustness, through functional compensation, is a strong selective constraint 

preserving genes in duplicate, then gene copies with mutational robustness should be under 

similar selective constraints. While the absence of NSNPs in a fraction of genes in duplicate is 

not indicative of a lack of functional link between their copies, greater similarity in the selective 

constraints between those gene copies with NSNPs than those without NSNPs would provide 
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additional evidence in support of functional redundancy. To test this hypothesis, we estimated the 

non-synonymous-to-synonymous rates ratio (ω = dN/dS), an indicator of the strength of selection 

acting in protein-coding genes, for each of the genes in S. cerevisiae for which an ortholog could 

be found in S. paradoxus using the model of Goldman and Yang as implemented in the program 

PAMLv4.7 (Yang 2007). We compared ω between the duplicate gene copies a and b (Ca,b) as: 

��,
 � ��
������

���
         (eq.2) 

We took absolute values for the difference in the ω values to make the comparison between the 

set of duplicates with and without NSNPs easier to interpret. If the gene copies of a duplicate 

evolve similarly, then their rate of evolution (ω) should be more similar to one another, and thus 

Ca,b should be smaller. As expected, pairs of duplicates with NSNPs exhibited lower C values 

(Mean C = 0.527 ± 0.035) than those without NSNPs (Mean C = 0.640 ± 0.018), and this 

difference was significant (t test: t = 2.18, d.f. = 263.68, P = 5x10-3). The high similarities in ω 

between gene copies with NSNPs could be a byproduct of the high similarities in their expression 

levels (Drummond et al. 2005). We therefore analyzed the difference in the expression levels 

(DE) between the copies (a and b) of a duplicate as: 

 ���,
 � ��
��������

�����
         (eq.3)  

Expression levels were obtained using RNA sequencing data and are available in table S4 from a 

previous study (Nagalakshmi et al. 2008). Duplicates with NSNPs did not show higher similarity 

in the expression levels of their gene copies compared to duplicates without NSNPs (Mean ΔEa,b 

for duplicates with NSNPs = 0.81; Mean ΔEa,b for duplicates without NSNPs = 0.79; Wilcoxon 

rank test: P = 0.41). 

Regulatory robustness in duplicates 

Functional diversification of S. cerevisiae gene duplicates could have taken place at the level of 

expression regulation, protein function, or both. In a scenario in which duplicates are robust to 

factors perturbing their regulation, changes in the expression of a gene copy should have 
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minimum effect on the cell as the other copy performs the functions needed. This robustness, 

would allow the evolution of the expression of the other copy to optimize the functions of the 

duplicate in different conditions (e.g., under stress). Under this scenario, duplicates may have 

been kept not to increase the dosage of their encoded functions but to provide regulatory 

robustness, which in turn may have allowed the evolvability or optimization of the duplicate gene 

functions under a different set of growth conditions. Accordingly, duplicates should be more 

robust to mutations in their promoters than singletons are, while this should not necessarily be the 

case under selection for increased gene dosage.  

To test this hypothesis, we examined whether the regulatory regions of duplicated genes have 

accumulated more mutations than those of singleton genes under our experimental conditions, 

indicating greater expression robustness of duplicates than singletons. We identified all mutations 

600 bp upstream the initiation of transcription of duplicated genes and singletons to include all 

the elements of the promoter (Ohler and Niemann 2001). We found 2,720 mutations in intergenic 

regions of which 2,385 mutations were in the promoter regions for the five experimental lines all 

together (Tables S1 to S5). Of these mutations, 970 affected upstream regions of 598 duplicated 

genes (26.69% of all duplicates), while 1,415 fell in the upstream regions of 860 singletons 

(18.78% of all singletons) (Figure 7). The number of duplicates with mutations in promoter 

regions was significantly larger than that of singletons (Fisher’s exact test: F = 1.58, P = 1.63x10-

13). 

Since many of the mutations in promoters may fall within very variable regions that are 

unimportant for gene regulation, we sought to investigate whether those mutations identified in 

promoter regions may have an effect on gene regulation. To do so, we calculated the conservation 

of promoter nucleotide sites at which we observed a mutation using the entropy equation 

provided earlier (eq.1). Mutations within conserved regions are generally important for gene 

regulation because they are sites where transcription factors bind. We generated multiple 

alignments for the intergenic regions upstream genes from S. cerevisiae and five other closely 
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related yeast orthologs. Sites of duplicates promoters affected by SNPs were more conserved on 

average than those of singletons (Wilcoxon rank test: P < 2.2 x 10-16; Figure 8A). Interestingly, 

duplicates showed SNPs at sites more conserved than expected given the alignment of duplicate 

promoter regions (Wilcoxon rank test: P = 0.03; Figure 8A), while singletons showed less 

conservation at sites with SNPs than at those without (Wilcoxon rank test: P < 2.2 x 10-16; Figure 

8A). These results indicate that duplicates are more plastic in terms of expression of their genes 

resulting from their higher robustness to regulatory mutations while singletons are less tolerant of 

changes in their regulatory regions. This observation is not the result of the different conservation 

levels of the promoters of duplicates compared to singletons (Figure 8A). A case in point is 

PEX27, a gene encoding a peripheral peroxisomal membrane protein involved in controlling 

peroxisome size and number. The sites of its promoter affected by a SNP showed a conservation 

(C = 1.81), significantly beyond the mean conservation of the intergenic region upstream PEX27 

(Figure 8B). Conversely, the singleton gene STE24, a highly conserved zinc metalloprotease, is 

very intolerant to regulatory changes allowing mutations only at non-important, less conserved 

promoter regions (Figure 8B).  

We also analyzed WGDs and SSDs separately, comparing each of these datasets with singletons. 

We found 511 mutations in the promoters of 323 WGDs, a number significantly larger than that 

expected when compared to singletons (Fisher´s exact test: F = 1.78, P = 1.59x10-13). Likewise, 

the number of mutations in the promoter regions of SSDs (459 mutations affecting 275 SSDs) 

was significantly larger than that for singletons (Fisher´s exact test: F = 1.41, P = 2.03x10-5). 

Altogether, these data support a greater regulatory robustness for duplicates than singletons and 

provide support to the hypothesis of functional overlap in different conditions against the 

prediction of neo-functionalization after gene duplication. Indeed, for 88% of duplicates with 

mutations in their upstream regulatory regions, both copies overlapped in their subcellular 

location (Supplementary table S6), indicating the potential to perform similar functions. This sub-
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cellular co-localization of duplicates occurred significantly more often than expected by chance 

for any random pair of gene copies (Expected: 76%; Binomial test: P = 7.96 x 10-10). 

To determine if regulatory robustness has been an important force in the evolution of duplicates, 

in particular to respond to various environmental challenges, we tested whether the variation in 

gene expression is larger in duplicates than singletons in 32 stress growth conditions 

(Supplementary table S7), available from the Saccharomyces Genome Database (SGD: 

http://www.yeastgenome.org/download-data/expression). Variation in the expression of the 

copies of regulatory robust duplicates should have less effect on the cell than variations in the 

expression of singletons, with the former allowing adaptation to various environmental conditions 

without compromising the performance of the normal function. To test this, we calculated the 

amount of gene expression variation (DE) of singletons and duplicates between S. cerevisiae 

strains grown under standard conditions (Ei) and strains subjected to some stress condition (Ej) as: 

����� � ��
��������

�
��������
         (eq.4) 

In general, the variation in gene expression for duplicates was significantly more recurrent (24 

out of the 32 conditions) than that for singletons (Supplementary table S7 and Figure 8C) 

(Wilcoxon signed rank test with continuity correction: V = 384.50, P = 7x10-3). In only eight of 

the conditions, singletons showed similar or larger variation in their expression levels than 

duplicates (Figure 8C and Supplementary table S7). Interestingly, there were no significant 

differences in the variation of gene expression between SSDs and WGDs (Figure 8C). In 

conclusion, our data support larger regulatory robustness for duplicates than singletons. The 

relative role of SSDs and WGDs in such robustness requires, however, further investigation. 

 

Discussion 

Our results strongly support the persistence of mutational robustness in duplicates after roughly 

100 MY of evolution in S. cerevisiae, likely resulting from the preservation of genetic 
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redundancy and functional compensation. First, we show that gene duplicates are more tolerant to 

deleterious mutations in coding regions than singletons. This tolerance to deleterious mutations is 

larger when duplicates interact genetically; supporting the hypothesis that functional 

compensation provides robustness to mutations. Importantly, SSDs are more tolerant to 

deleterious mutations than WGDs in agreement with a model in which SSDs are more likely to 

generate novel functions than WGDs, as SSDs are less constrained by dosage balance than 

WGDs (Hakes et al. 2007; Fares et al. 2013). Second, the gene copies of duplicates with NSNPs 

present more similar rates of evolution than those with no tolerance for NSNPs. This similarity in 

the rates of evolution is the result of stronger constraints to preserve duplicates that compensate 

each other´s functions, and thus evolve together at the protein sequence level. It is interesting that 

duplicate copies with NSNPs are more similar in their selective constraints than those without 

NSNPs at short evolutionary times (e.g., 2,200 generations). Examination of earlier time points of 

the evolution experiment does not provide enough statistical power to distinguish the functional 

divergence between duplicates with and without NSNPs, likely because the genomic target for 

compensatory evolution at the start of the experiment is very small. Prolonging our evolution 

experiment may provide stronger signatures of similar constraints between duplicates with 

functional complementation because the target for compensatory evolution (that is, compensatory 

SNPs in functionally related duplicate copies) may be substantially larger as the number of 

neutral genome sites declines. Notwithstanding the possibility of stronger signatures of 

evolutionary homogeneity at longer evolution times, we show that duplicates with NSNPs in our 

evolution experiment already exhibit higher similarity in their selective constraints than those 

without NSNPs. Finally, genes in duplicate are more tolerant to mutations in their regulatory 

regions than singletons are. These hypothetically higher tolerances to regulatory changes in 

duplicates are consistent with the higher variation in gene expression for duplicates compared to 

singletons in an array of different stress conditions. Remarkably, the patterns for regulatory 

robustness in duplicates are a stronger signature of genes retained in duplicate than the pattern of 
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functional robustness. This indicates that regulatory robustness may have been key in the 

adaptation to various stress conditions, hence favoring the preservation of both gene copies. 

The different patterns of tolerance to deleterious mutations observed in our study reflect the 

systems´ determinants of preservation of genes in duplicate. Indeed, a number of hypotheses have 

been put forward to explain the survival of genes in double copy: a) selection for increased gene 

dosage (Conant and Wolfe 2008); b) increased genetic robustness (Gu et al. 2003); c) fast 

functional divergence after gene duplication (Force et al. 1999; He and Zhang 2005; Des Marais 

and Rausher 2008; Barkman and Zhang 2009), and d) expression divergence after gene 

duplication (Francino 2005). Many of these forces may have occurred simultaneously in one 

single organism, in particular after the duplication of the entire genome in Saccharomyces. 

However, mutational robustness provides the most plausible explanation for the fast adaptation to 

novel environmental challenges when the mechanisms of robustness become impaired. An 

example of such adaptive mechanism is that of the preference of Saccharomyces species for 

glucose in anaerobic conditions, and thus diversion from respiration towards fermentation.  It has 

been suggested that such a metabolism, which is characterized by an increased glycolytic flux 

owing to an excess of genes of energy metabolism (Kuepfer et al. 2005), is linked to WGD 

(Conant and Wolfe 2007). Regulatory robustness, as supported in our study, and a rapid selective 

advantage for growing in excess glucose through fermentation (Piskur et al. 2006; Conant and 

Wolfe 2007) may have allowed the survival of duplicated genes encoding glycolytic enzymes, 

overcoming the metabolic cost of gene duplication (Wagner 2005a; Gerstein et al. 2006). The 

exploration and adaptation to a new niche characterized by an excess of glucose, may have 

allowed the competitive colonization and the diversification of Saccharomyces species through 

the regulatory robustness and survival of duplicated glycolytic enzymes. Our view supports a 

model in which after gene duplication, one gene copy diverges very quickly in some functions but 

not in others. The functional overlap of gene copies provides the system with robustness to 

mutations for a short period of time until new functions are found by one copy and selective 
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constraints are restored on both copies at a similar level (Fares et al. 2013). The functional 

overlap between both gene copies and the acquisition of new functions by one copy both 

contribute to the plasticity of duplicates to respond to new challenging environments. Therefore, 

mutational and environmental robustness are tightly linked and both are necessary for 

preservation and innovation through gene duplication. 

The question that remains is: could robustness persist for long periods once adaptations to novel 

environmental conditions had emerged? Gu and colleagues (Gu et al. 2003) evaluated the role of 

gene duplication in genetic robustness using fitness measures of single gene deletions. They 

found that gene duplication masks the fitness effects of null mutations, confirming that duplicates 

provide genetic robustness, through functional compensation, even after a long period of 

evolutionary divergence. The masking of genetic interactions, and thus functional compensation, 

between the copies of gene duplicates was also confirmed in a recent study using large-scale 

genetic networks (VanderSluis et al. 2010). Moreover, appreciable signatures of functional 

compensation have also been found in another study that used genetic interaction profiles in S. 

cerevisiae (Ihmels et al. 2007). Finally, redundant interactions have been found between ancient 

duplicates in transcriptional regulation networks (Teichmann and Babu 2004). While recent 

studies have highlighted the lack of functional compensation in natural populations as evidence 

against genetic redundancy (Plata and Vitkup 2013), we find that these scenarios are not 

conflicting, as one –adaptation to novel environments—is the result of the other—mutational and 

regulatory robustness through genetic redundancy. Indeed, robustness to mutations, both in the 

coding and regulatory regions, provides ample opportunity for novel traits and adaptations to 

emerge (Wagner 2012; Payne and Wagner 2014), eventually leading to bewildering biological 

diversification (Wray 2007). At the molecular systems level, genetic redundancy, robustness, and 

divergence after gene duplication may lead to evolutionary leaps through a change in the 

architecture and function of molecular networks, such that different daughters of a duplicated 

gene may be part of different sub-networks (van Noort et al. 2003; Blanc and Wolfe 2004b; 
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Piskur and Langkjaer 2004), or may themselves form semi-independent daughter networks 

(Conant and Wolfe 2006). Our analyses strongly confirm the pervasive persistence of signatures 

of ancient genetic redundancy that may be the source for novel adaptations yet to occur. Based on 

our findings, and those of previous studies, we propose that genetic and regulatory redundancy go 

hand-in-hand in providing robustness and opportunity for innovation. Under this hypothesis, the 

emergence of a novel function requires the survival of initially redundant genetic material, its 

functional divergence and the fine-tuned regulation of the expression of novel functions. This 

divergence in a biologically complex and dynamic molecular network can provide ample 

phenotypic plasticity, and thus evolvability, in the face of environmental challenges (Wagner 

2014). In conclusion, we resolve the controversy on the role of gene duplication in genetic 

robustness through functional redundancy and compensation and its role in the emergence of 

adaptations to various stresses. 

Methods 

Evolution experiments 

Yeast Strains, Plasmids, and Evolution Experiment 

The yeast haploid strain Y06240 (BY4741; Mata; his3D1; leu2D0; met15D0; ura3D0; 

msh2::kanMX4) was obtained from Euroscarf. This msh2 deletion strain is deficient in mismatch 

repair (MMR). Msh2 forms a complex with Msh6 that recognizes and initiates the repair of single 

base mismatches or small one or two nucleotide insertions/deletions (Habraken et al. 1996). 

Strains lacking Msh2 are predicted to have an increased mutation rate of between 6 and 40 fold 

compared to wild-type (Kunz et al. 1998). 

Our evolution experiments started with a single-colony founded population, from which we 

derived five evolving lineages of Y06240 (Figure 1). These clonal populations were serially 

passaged onto YPD by repeated streaking, each passage resulting from re-streaking a single 

colony. Since populations were clonally transmitted from generation to generation, this 

experiment simulated a mutation accumulation (MA) Muller ratchet dynamic. Therefore, in 
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principle, our experiment was free of selection, allowing thereby the fixation of deleterious, or 

slightly deleterious, non-lethal mutations. However, since cells were growing in rich media, genes 

not essential under our experimental conditions may have accumulated neutral mutations. Re-

streaking was carried out every 48-72 h as required. Each lineage was passaged 100 times, an 

estimated 2200 generations in total (~22 generations per passage x 100 passages). A glycerol 

stock of each lineage was prepared every 10 passages (~220 generations) and stored at -80oC. To 

estimate fitness costs of mutations, each evolved lineage prepared for glycerol stock was 

compared for growth against the starting Y06240 ancestor. Cells were grown routinely in YPD 

media (2% [w/v] Bacto-peptone, 1% [w/v] Yeast extract, 2% [w/v] Glucose). When solid media 

was required 2% [w/v] Bacto-agar was added. We constructed growth curves for each of the 

experimentally evolving lines at those passages at which we sequenced the genomes. Growth 

rates were estimated and adjusted for the initial cell density and medium used as in a previous 

study (Fares et al. 2013). Each strain was grown in triplicate in 4ml YPD medium at 30 °C. The 

absorbance was measured at 600 nm and cells diluted culture was then placed in duplicate wells 

of a 96-well plate and grown for 24h at 30 °C with shaking in a synergy HT plate reader (BioTek). 

At 30 minutes intervals, the absorbance at 600 num was measured. Growth curves were generated 

for each strain by plotting the mean of the absorbance measurements over time. 

Whole Genome Sequencing 

In order to map spontaneous mutations occurring during the evolution experiment, whole genome 

sequencing of the ancestor and each evolved line was carried out. Genomes were sequenced for 

four lines at passages 20, 30, 50, 70, 90 and 100, and for one line (MA5) at passages 20, 50 and 

90. Genomic DNA preparations were obtained using the Wizard Genomic DNA Purification Kit 

(Promega) as recommended by the manufacturer. DNA was quantified spectrophotometrically 

using a nanodrop and flurometrically using a Qubit Florometer. Illumina sequencing libraries 

were constructed from all strains to be sequenced by sonicating 1.5 µg of DNA using a bioruptor 

(Diagenode) until fragment sizes < 2,000 bp were obtained. Following A-tail end-repair, Illumina 
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adaptors were ligated to the fragment ends. Samples were run on a low melting temperature 2% 

agarose gel and DNA excised and eluted from the 175-225 bp range. PCR amplification was used 

to enrich fragments to generate final sequencing libraries at a concentration of 10nM. An Illumina 

Genome Analyser II platform was used for sequencing and indexed samples were run on three 

separate flow cells, with two strains per lane of a flow cell using the paired-end module. After 

removal of the index sequence, 34 or 74 bp reads were obtained.  

Mapping mutations 

Sequencing reads were converted from Illumina quality scores into Sanger quality scores. We 

then used the breseq v 0.24rc (version 4) 

(http://barricklab.org/twiki/bin/view/Lab/ToolsBacterialGenomeResequencing) pipeline for 

aligning (using Bowtie2 (Langmead and Salzberg 2012)) the Illumina reads to Saccharomyces 

cerevisiae genome (EF2 version 59, Ensembl) (Flicek et al. 2011) and to identifying SNPs and 

indels. Individual runs of breseq, with junction prediction disabled but otherwise default 

parameters, were preformed for the ancestral sequence, as well as, each passage for each of the 

five lines. Finally, the gdtool from breseq was used to create a list containing the union of 

mutation in each lineage and the ancestral, and in-house script were run to create tables 

containing all SNPs and indels for each lineage (including the ancestral) (Supplementary tables 

S2-5). 

Identifying SSD and WGDs 

Duplicate gene pairs were defined as the resulting best reciprocal hits from all-against-all 

BLAST-searches using BLASTP with an E-value cutoff of 1E-5 and a bit score cutoff of 50 

(Altschul et al. 1997). Duplicates were further classified as originated through the whole genome 

duplication that took place roughly 100-150 MYA according to the reconciled list provided by the 

YGOB (Yeast Gene Order Browser, http://wolfe.gen.tcd.ie/ygob/) (Byrne and Wolfe 2005). All 

other duplicates were considered to originate through SSD events. To ascertain that the set of 

SSDs was not enriched for younger duplicates than the set of WGDs, we measured the divergence 
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between SSD gene copies and that of WGD gene copies using synonymous nucleotide 

substitutions estimated under the model of G&Y in PAMLv4.7 (Yang 2007) and Poisson-

corrected amino acid distances. The final set of SSDs contained 560 pairs with equivalent 

synonymous and divergence levels to that of the set of WGDs (556). 

Genetic interaction data 

We used the latest update of the genetic functional chart of S. cerevisiae (Costanzo et al. 2010) 

(Supplementary files S4 and S5 from http://drygin.ccbr.utoronto.ca/~costanzo2009/). This 

functional map is based on the synthetic genetic array methodology (Tong et al. 2001), in which 

synthetic lethal genetic interactions are systematically mapped by producing single and double 

mutants (Tong et al. 2004). In their study, Costanzo and colleagues (Costanzo et al. 2010) 

identified digenic interactions as those double mutants that show a significant deviation in fitness 

compared to the multiplicative fitness effects of the two single mutants, that is, epistasis (ε) (Mani 

et al. 2008). Negative interactions (ε-) refer to those double mutants causing more severe defects 

than the multiplicative effects of the single mutants, with synthetic lethality being the extreme 

case. Positive interactions (ε+) are those causing less consequence than the multiplicative effects 

of single mutants. Defects were measured in terms of colony sizes. 

Data Access: 

Sequenced strains are available at NCBI Sequence Read Archive (SRA; 

http://www.ncbi.nlm.nih.gov/sra), with accession number SRP012321. 
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Figure 1. The evolution experiment of the Saccharomyces cerevisiae haploid Δmsh2 strain. We 

started five independent evolution experiments from a single ancestral colony. Every 48 hours, 

we picked randomly one colony and transferred it to another plate. The experiment involved 100 

passages, corresponding to roughly 2,200 generations (G) of S. cerevisiae. Single colonies were 

isolated for genome sequencing at passages 20, 30, 50, 70, 90, and 100 and growth was assayed at 

those time points of the experiment. Every ten passages, a single colony was frozen at -80°C 

obtaining a yeast fossil record. 

Figure 2. Genome wide distribution of single nucleotide polymorphisms (SNPs) along the 

experimental evolution of Saccharomyces cerevisiae in singletons (blue vertical lines) and 

duplicates (red vertical lines). (A) Distribution of non-synonymous SNPs in protein coding 

regions of singletons and duplicates in the 16 S. cerevisiae chromosomes (chromosome I to XVI). 

(B) Distribution of SNPs in the promoter regions of singletons and duplicates. Yellow circles 

refer to the chromosomal centromere. We also represent mutations in mitochondria (Mit). 

Figure 3. Saccharomyces cerevisiae fitness declines along the evolution experiment. We 

represent the growth curves for six isolated colonies at different passages (p20, p30, p50, p70, 

p90, and p100) for each of the five independently evolved lines of S. cerevisiae (msh2-1 to msh2-

5, corresponding to lines MA1 to MA5). Growth were measured using absorbance at 600 nm. 

Figure 4. Saccharomyces cerevisiae declines in fitness in the first passages of its evolution and 

recovers fitness in the later passages. We show the deceleration in the rate of growth decline as 

the experimental evolution proceeds. We took the logarithm of the optic density measured in 

stationary phase for cells isolated at different passage points of the experiment. Each dot is the 

median of four different growth curves. The inner plot in the upper right-most corner represents 

the dynamic of accumulation of synonymous and non-synonymoys SNPs (SSNPs and NSNPs, 
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respectively), across the experiment for the six passage points averaged for all five 

experimentally evolving lineages. 

Figure 5. Duplicates tolerate more non-synonymous SNPs (NSNPs) than singletons. (A) A larger 

proportion of duplicates accumulate NSNPs (black portions) than singletons. (B) Most of the 

tolerance to NSNPs is found in duplicates originated by small-scale duplications (SSDs), while 

those originated by whole-genome duplication (WGD) are not more enriched for NSNPs than 

singletons when taking each duplicate as an independent gene. 

Figure 6. Duplicate gene copies that interact genetically are more enriched for non-synonymous 

SNPs (NSNPs) than genetically interacting singletons. We built a distribution of singleton 

interacting pairs randomly sampled that was not biased by highly interacting singleton. (A) 

Duplicates interacting pairs are more enriched for NSNPs than expected (black arrow, probability 

of the number of observed duplicates with NSNPs is indicated above the arrow). (B) Whole-

genome duplicates (WGDs) pairs with interacting gene copies are not more enriched than 

expected. (C) Small-scale duplicates (SSDs) with interacting gene copies are more enriched for 

NSNPs than expected. 

Figure 7. The number of SNPs in the promoter regions of duplicates (black column) is larger 

than that in the promoters of singletons (white column). This figure is built taking only those 

SNPs that fall within the 600 nucleotides upstream coding regions. 

Figure 8. Duplicates show more expression plasticity than singletons under stress conditions. (A) 

Mutations at duplicates promoters occur at more conserved regions than those at singleton 

promoters. Conservation coefficient is calculated by measuring the amount of entropy in each 

nucleotide site of the alignment that comprised upstream regions of genes in S. cerevisiae and at 

least five other closely related orthologs. Duplicates show larger conservation in their mutated 

sites than expected, while singletons show less conservation than expected. (B) Two examples of 
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the conservation of mutated sites at a duplicate (PEX27) and singleton (STE24) promoter regions. 

Red dots represent mutated nucleotide sites during our evolution experiment. The first site from 

the initiation codon is also labeled (+1). (C) We analyzed 32 stress conditions from various 

independent studies (Supplementary table S7). The phenotypic (expression) plasticity of genes, 

both the duplicates and singletons, was calculated as the difference in the expression of the gene 

between two environmental conditions (Ei and Ej): ∆���� � ��
��������

�
��������
. Duplicates with larger 

expression plasticity were colored in red, squares are colored in blue that becomes lighter as the 

difference in expression decreases between the duplicates, and light yellow indicates that the 

corresponding information is not sufficiently large to perform statistical tests. 
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