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Abstract 

In this thesis, results are presented and discussed on the synthesis of polypyrrole-

chitosan composite films.  These films were investigated for the incorporation and 

release of methyl orange (a model anionic dopant), dexamethasone (an anti-

inflammatory drug) and oxacillin (an antibiotic). All drug-doped films were grown at 

a constant potential of 0.80 V vs SCE until a charge density of 0.25 C cm-2 was 

achieved. Initially, a novel approach was developed to prepare the polypyrrole-

chitosan composite films by electrochemically polymerising pyrrole in a chitosan 

hydrogel network directly on an electrode surface. The electrochemical properties of 

the chitosan and the polypyrrole films differ, however the properties of polypyrrole 

are not adversely affected by the presence of chitosan, and it appears that the chitosan 

provides some mechanical reinforcement to the composite. 

 

A second approach was investigated and in this case, chitosan was cast on to the doped 

polypyrrole post electropolymerisation and then cured under an infrared lamp. This 

was found to be more suitable for incorporating larger anionic species. A 

comprehensive electrochemical characterisation of the polypyrrole-chitosan 

composite films was obtained using cyclic voltammetry and electrochemical 

impedance spectroscopy. The redox peaks were identified and explained in terms of 

anion transport for the polypyrrole-chloride films and cation transport for polypyrrole-

methyl orange films. Electrochemical impedance data were fitted to equivalent circuits 

and the charge transfer resistance, the double-layer capacitance, charge-storage 

capacitance, and conductivity were determined. The morphology of the composites 

varied with the dopant. Using scanning electron microscopy (SEM), the typical 

cauliflower structure was observed for the chloride-doped films, tubular-like structures 

were seen for the methyl orange-doped polymer films and the oxacillin-doped polymer 



 

 

 

 

 
x 

 

  

films were smooth. The adhesion properties were tested using the “peel-test” and the 

adhesion properties improved with the addition of the chitosan layer.  

 

A constant potential was used to release methyl orange and oxacillin from the 

corresponding composites, and the stimulated release was investigated at various 

potentials, while the release was also investigated at open-circuit potentials. UV-

visible spectroscopy was used to determine the concentrations of methyl orange and 

oxacillin. The release of methyl orange increased with an increase in the release period 

and as the applied potential was varied from 0.30 V to −0.60 V vs SCE. The release 

of oxacillin, on the other hand, did not vary significantly as a function of the applied 

potential, but did vary over time. The presence of chitosan did not significantly 

influence the release of oxacillin at 0.30 V vs SCE or at open-circuit potentials but did 

have an effect on the release at −0.60 V vs SCE.  
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1. Introduction and Literature Review 

1.1 Research Topic and Relevance 

The initial aim of this study was to prepare a composite of a conducting polymer 

(polypyrrole) with a natural polysaccharide (chitosan) with the view that such a composite 

could be useful for biomedical engineering. The polypyrrole-chitosan composite was 

successfully prepared using electropolymerisation. Previous work from this laboratory 

supports the utilising of polypyrrole in biomedical applications. For example, polypyrrole 

was deposited on to medical grade titanium and was found to be biocompatable1, 2, it was 

used to detect dopamine3-5 and it was a suitable candidate for the inclusion and release of 

anionic drugs6-8. The specific properties of polypyrrole are greatly influenced by the 

dopant7, 9 and polymerisation technique10. However in some cases, polypyrrole can give 

a brittle amorphous material10. By combining chitosan with polypyrrole this may be 

prevented. This research topic is relevant to biomedical applications where polypyrrole 

and chitosan have independently shown promising results for tissue regeneration 

applications and drug delivery applications.  

 

1.2 Objectives and Achievements 

The main objective of the present work was to electropolymerise pyrrole within a chitosan 

polymer matrix on an electrode surface which would give some mechanical reinforcement 

to the polypyrrole without adversely affecting its electrochemical and electronic 

properties. In the early stages of this research work, polypyrrole doped with chloride 

anions, was successfully formed in the chitosan polymer matrix. However, this was not 

possible with larger anions and as an alternative; chitosan was cast on to the doped 

polypyrrole post electropolymerisation and cured under an infrared lamp.  

Other objectives were to study the electrochemical and electronic properties using cyclic 

voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The doped 

polypyrrole was assessed with and without the chitosan to determine the effects of 

chitosan on the electrochemical and electronic properties. The polypyrrole was doped 
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with anions of various sizes, chloride, methyl orange (as a model drug), dexamethasone 

(as an anti-inflammatory drug) and oxacillin (as an antibiotic). In Table 1.1 the dopants 

used in this study and their molecular structure, weights and pKa values are summarised. 

The nature and size of the dopant anions and the release medium play crucial roles in the 

successful incorporation and release of the anion from polypyrrole11, this will be 

discussed further in Section 1.4.2.1.  

 

Table 1.1: The structure, molecular weight (M), and the pKa values in aqueous solution for the anions 

of the model drugs used in this study. 

dopant anion structure M of sodium 

salt (g mol-1) 

pKa 

chloride (Cl-) Cl


 58.44 - 

methyl orange 

(MO-) 

 

 

327.33 3.8 

dexamethasone 

(Dex2-) 

 

 

516.40 6.4 

oxacillin (Ox-) 

 

 

423.42 2.7 
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All materials chosen in this study were relevant to biomedical applications. 

Electropolymerisation was performed at room temperature using a constant potential and 

using distilled water as the solvent. The electropolymerisation electrolyte was maintained 

near a neutral pH (pH at approximately 6.0 to 6.3) and the costs of the dopants were taken 

into consideration. It is worth mentioning that the films were not designed to deliver 

therapeutic amounts of the drug but to determine how the dopant affects the nature of the 

polypyrrole film and how it would respond also with the addition of chitosan. Dopants 

facilitate a way of altering the polypyrrole films properties. In this chapter, a description 

of conducting polymers is given with an emphasis on polypyrrole and its use and 

modifications for biomedical applications. Then, chitosan is considered and finally 

polypyrrole-chitosan composites are introduced and discussed.  

1.3 Conducting polymers (CP) 

Historically, polymers exhibiting conductivity were once considered undesirable12, this 

section introduces seminal work that revolutionised conducting polymers. In 1862, 

Letherby reported the first the anodic oxidation of aniline to form polyaniline on a 

platinum electrode using electrolysis12.  In 1876, Goppelsroeder discovered that 

oligomers were formed by anodic oxidation of aniline13. In 1916, Angeli and Alessandri 

obtained polypyrrole (Ppy) from a solution of pyrrole and hydrogen peroxide14, at the 

time it was called “pyrrole black”. In 1958, Natta et al.15 were the first to synthesis 

polyacetylene using a Ziegler-Natta catalyst. They reported that the films of cis and tran 

PA had metallic-like appearance, but they did not have good conductivity16,17.  In 1963, 

McNeil et al.18, 19 prepared polypyrrole from the pyrolysis of tetraiodopyrrole, they were 

the first to recognise that polypyrrole had semiconducting properties which decreased 

when exposured to water vapour and oxygen. In 1968, Dall’olio et al. were the first to 

prepare polypyrrole from the electrochemical oxidation of pyrrole14. In 1975, Green and 

Street20 reported the first conducting conjugated inorganic polymer, polysulfur nitride. 

They reported that the polymer had metallic conductivity and becomes superconducting 

at 0.26 ± 0.03 K. In 1977, Shirakawa, MacDiarmid, and Heeger were the first to achieve 

a conducting conjugated organic polymer, partially oxidised polyacetylene, shown in 

Figure 1.1. They discovered that by oxidising polyacetylene (PA) with chloride, bromine, 
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or iodine vapour, they made the PA 1 × 107 times more conducting21. This breakthrough 

in conducting conjugated organic polymers has led to extensive research in the field of 

conducting polymers. In 2000, the Nobel prize in Chemistry was awarded to MacDiarmid, 

Heeger, and Shirawaka, “for the discovery and development of electrically conducting 

polymers”22.   

 
 

acetylene 

molecules 

 polymerisation   

 

 

polyacetylene 

 oxidation   

 

 

radical cation 

 charge transport   

 

 

 

Figure 1.1: Polymerisation of acetylene, showing charge transport. 

Although PA, which is a non-aromatic polyene, has metal-like conductivity, the use of 

PA is limited because it is air sensitive23-26. The development of aromatic conducting 

polyheterocycles and their derivatives particularly; polyaniline (PANI), polypyrrole 

(Ppy), polythiophene (PT) and poly(3,4-ethylenedioxythiophene) (PEDOT) have 

received because of their good stability, conductivity and ease of synthesis26.  Figure 1.2 

shows the structure of the most commonly encountered conducting polymers in the 
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literature along with their electrical conductivities and type of doping. Electrical 

conductivity is the ability of a material to pass an electric current; it is a fundamental 

property of conducting polymers. Doping is the process of oxidising (p-doping) or 

reducing (n-doping) a neutral polymer which is balanced by a counter anion or cation 

(i.e., dopant), respectively. This is discussed further in section 1.3.1. 

 

  

polyacetylene (PA) polypyrrole (Ppy) 

 
 

polythiophene (PT) 
poly(3,4-ethylenedioxythiophene) 

(PEDOT) 

 

polyaniline (PANI) 

Figure 1.2: Chemical structures of the most common conducting polymers.  
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Table 1.2: Conductivity of common organic conducting polymers adapted from Collier et al.27 

Conducting polymers Conductivity (Ω-1 cm-1) Type of doping 

Polyacetylene (PA) 200 - 1000 n, p 

Polydiphenylamine (PDPA) 500 n, p 

Polyaniline (PANI) 5 n, p 

Polypyrrole (Ppy) 40 - 200 p 

Polythiophene (PT) 10 - 100 p 

Poly(3,4ethylenedioxythiophene) 

(PEDOT) 

1 - 50 n, p 

 

1.3.1 The conductivity and doping levels of conducting polymers  

Conductivity (σ) is the ability of a material to pass an electric current, it relates the current 

density  (I) to the electric field (E), as shown in Equation 1.1: 

𝐼 =  σ 𝐸 (1.1) 

Where σ is the conductivity of the conductor in Ω-1 m-1, I is the magnitude of current 

density in A m-2, and 𝐸 is the magnitude of the electric field in V m-1. Materials are often 

classified in terms of their conductivity. In general, materials with conductivities less than 

10-8 Ω-1 m-1 are classified as insulators, e.g., diamond, materials with conductivities 

between 10-8 and 102 Ω-1 m-1 are classified as semi-conductors, e.g., silicon, and materials 

with conductivities greater than 102 Ω-1 m-1 are classified as conductors, such as metals28. 

This is illustrated in Figure 1.3 where the materials are classified in terms of the 

conductivity values. Conducting polymers have a broad range of conductivities, varying 

from that of insulators to metals. The variation in conductivities is attributed to the 

number of different polymers, dopants and available doping levels. Typical values for the 

conductivity in the range 102 to 105 Ω-1 m-1 are observed for doped PANI, Ppy, PT and 

their derivatives29.  
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 σ (Ω-1 m-1) 

Figure 1.3: Classification of materials in order of electrical conductivity, σ.28 

 

Conductivity in conjugated polymers is attributed to the unique alternating double and 

single bonds that form the π conjugated system (delocalised 2pz orbitals). Along the 

backbone of conducting polymers, σ-bonds hold each carbon atom together by 

concentrating electrons between them. The π-bonds, which constitute the second bond in 

each double bond, strengthen the connection between their atoms by attracting electrons 

above and below the plane of the molecule. This forms delocalised 2pz orbitals which 

allows the generation and movement of charge carrier entities such as solitons, polarons 

and bipolarons30. 

A summary is given here of Brédas and Street’s electronic band structure of solids to 

describe the conductivity of conducting polymers, in their publication, they give a 

comprehensive description of charge carrier entities; solitons, polarons, and bipolarons.  

A soliton is formed at the transition point between two co-existing conjugated structures 

called “domains”, on the same conducting polymer molecule. It results from two 

competing domains that satisfy the condition of degeneracy i.e., they have the same 

ground state. This allows the soliton to move freely as the overall charge on both sides of 

the domain is the same31. Heeger et al.30 have identified solitons as being the primary 
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charge carriers in trans-PA, this may explain the wide conductivity range of PA in Table 

1.2. Most conducting polymers, such as polypyrrole, do not satisfy the condition of 

degeneracy because they only have a near degeneracy, for this reason polaron and 

bipolarons are the main charge carriers in conducting polymers30. 

A polaron is formed through an oxidation or reduction reaction which leaves a positive 

or negative charge on the polymer. The portion of the polymer subjected to this process 

is distorted by the local excess of charge which is stabilised by the electrostatic interaction 

of a dopant anion or cation. This process forms localised electronic states within the band 

gap31.  

A bipolaron is formed through further oxidation or reduction of the polymer. In this case 

the distortion due to the local excess of charge is greater than that of a polaron due to the 

effect of double charging. The formation of a bipolaron results when the stabilisation 

energy gained by the interaction with the distorted lattice -is larger than the coulomb 

repulsion between the two charges of the same sign. This process forms bipolaron 

electronic states inside the band gap31. 

The delocalisation of electrons is limited by both disorder and coulombic forces between 

electrons and holes. However, these polymer systems are only conducting when doped 

and the electrical conduction depends on the extent of doping. Doping is the process of 

oxidising (p-doping) or reducing (n-doping) a neutral polymer and providing a counter 

anion or cation (i.e., dopant), respectively. Polypyrrole is a p-doped conducting polymer. 

The ordered motion of these charge carrier ions along the conjugated conducting polymer 

backbone produces electrical conductivity.  

Polymers and materials in general, can be characterised based on their electrical 

conductivity as insulators, semiconductors or conductors. Brédas and Street31 used the 

electronic band structure of solids to describe the conductivity of conducting polymers. 

As shown in Figure 1.4, the highest occupied electronic levels gives the valance band 

(VB) and the lowest unoccupied level, gives the conduction band (CB). The band gap 

(Eg) between the VB and the CB determines the conducting properties of the polymer, as 

shown in the band gap diagram in Figure 1.4. If Eg > 10 eV, it is difficult to excite 

electrons into the CB and an insulator forms. In semiconductors, Eg is approximately 1 
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eV, which means the gap is small enough that electrons can be excited between the VB 

and CB. For conductors, the VB overlaps the CB resulting in the CB being partially filled 

with electrons and metallic conduction is observed. The smaller the band gap energy (i.e., 

the distance between the conduction and valence bands) the more conductive the material 

becomes.  

 

Insulator Semi-conductor Conductor 

   

 

   

   

   

Figure 1.4: Band gap diagram, depicting the difference in energy band gaps Eg for an insulator, 

semi-conductor and conductor. 

 

Conjugated polymers are essentially insulating until doped, doping can be performed 

chemically or electrochemically. Upon doping, the conjugated polymer becomes a 

conducting system and a net charge of zero is produced due to the close association of 

counter ions with the charged polymer backbone. This process introduces charge carriers, 

in the form of charged polarons, i.e., radical ions, or bipolarons, i.e., dications or dianions, 

into the polymer26, as shown for polypyrrole in Figure 1.5. The ordered movement of 

these charge carriers along the conjugated Ppy backbone gives rise to electrical 

conductivity.   

CB 

VB 

CB 

VB 

CB 

VB 

Eg > 10 eV Eg ~ 1 eV No Eg  
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I 

 

 

 polypyrrole  

-e- 

II 

 

 

 
Polaron (radical cation showing lattice distorted, quinoid-like, 

structure)  

 

-e- 

III 

 

 

 Bipolaron (dication showing strong lattice distortion)  

Figure 1.5: Structural representation of (I) neutral Ppy, (II) partially oxidised Ppy with the 

formation of a polaron, (III) fully oxidised Ppy with the formation of a bipolaron. 

 

In the undoped state, the Ppy band gap is 3.2 eV. The attraction of an electron in one 

repeat-unit to the nuclei in the neighbouring unit leads to the formation of a polaron. A 

quinoid-like geometry occurs with the formation of the polaron (Figure 1.5 II) and this 

extends to about four pyrrole rings. The polaron levels are about 0.5 eV away from the 

band edges, as shown in Figure 1.6 a. The polaron binding energy is 0.12 eV, constituting 
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the difference between the 0.49 eV decrease in ionisation energy and the 0.37 eV (𝝅 +  𝝈) 

energy required to bring about a change in geometry. When a second electron is taken out 

of the chain a bipolaron is formed, as shown in Figure 1.5 III. The empty bipolaron 

electronic levels in the band gap are approximately 0.75 eV away from the band edges 

(Figure 1.6 b). The bipolaron binding energy is 0.69 eV meaning that a bipolaron is 

favoured over two polarons by 0.45 eV31.  At high doping levels bipolaron bands are 

formed as shown in Figure 1.6 c. 

 

 CB  CB  CB  

   

VB VB VB 

(a) (b) (c) 

Figure 1.6: Evolution of polypyrrole band structure upon doping (a) low doping level, polaron 

formation, (b) moderate doping level, bipolaron formation, (c) high (33 mol %) doping level, 

formation of bipolaron bands.31 

 

1.3.2 Synthesis of polypyrrole 

The synthesis of conducting polymers is described in detail in several papers 23, 32-40. 

Conducting polymers can be synthesised in different ways36 using chemical 

polymerisation, electrochemical polymerisation, photochemical polymerisation41, 

metathesis polymerisation42, concentrated emulsion polymerisation43, inclusion 

polymerisation44, solid-state polymerisation45, plasma polymerisation46, pyrolysis47, and 

soluble precursor polymer preparation48.  

Polypyrrole is commonly synthesised by electrochemical methods or polymerised 

chemically with an oxidising agent. The chemical synthesis of polypyrrole involves the 

use of a chemical oxidant, such as ammonium peroxydisulfate ((NH
4
)

2
S

2
O

8
), hydrogen 

0.53 eV 

0.49 eV 

0.79 eV 

0.75 eV 

3.2 eV 3.6 eV 

0.39 eV 

0.45 eV 
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peroxide (H
2
O

2
) and salts containing transition metal ions, for example, Fe 3 , Cu 2 , Cr

6 , Ce 4 , Ru 3  and Mn 7 salts49.  Wang et al.50 evaluated the biocompatibility of 

chemically and electrochemically prepared polypyrrole, and they found that there were 

no adverse effects on cell cultures or on the animal models.  Generally hydrogen 

peroxide51 and ferric chloride50, 52 (FeCl
3
) are the preferred oxidants for biomedical 

considerations. The monomer can be oxidised in the appropriate solution leading to 

chemically active cation radicals of the monomer. These cation radicals attack the 

monomer molecules and results in the formation of an insoluble polymer. However, with 

this method it is difficult to deposit the CP onto a surface, as most of the CP precipitates 

within the solution phase. Chemical deposition of CPs can also be achieved using 

techniques such as vapour phase polymerisation (VPP). VPP is a technique in which the 

monomer is introduced to an oxidant-coated substrate in vapour form. Polymerisation 

then takes place at the oxidant vapour interface. VPP can be either chemical vapour phase 

polymerisation (CVPP) or electrochemical vapour phase polymerisation (EVPP). CVPP 

is a solvent free process used to give uniform, thin and highly conducting polymer layers 

on different substrates53. This ensures that polymerisation only occurs at the desired 

surface with no bulk polymerisation taking place in the solution. The advantage of VPP 

is that the CP layers can be obtained on insulating surfaces unlike electrochemical 

polymerisation which is restricted to metal, carbon or other conducting materials54. Spin 

coating, solvent casting or printing are other common techniques available for depositing 

thin and even polymer coatings53. However, most conducting polymers are difficult to 

process using these techniques because they are insoluble in most solvents. Table 1.3 

compares the advantages and disadvantages of chemical and electrochemical synthesis 

routes in the formation of conducting polymers. 

  



                                                                                                                        Chapter 1 

 

 

 
14 

 

  

Table 1.3: Comparison of chemical and electrochemical synthetic routes of the polymerisation of 

pyrrole, adapted from Guimard et al.26 

Synthesis method for 

preparing Ppy 
Advantages Disadvantages 

Chemical polymerisation  Large yields  Cannot make thin films 

 
Can be functionalised in 

order to modify properties 

Chemical synthesis is 

longer, more complicated 

and more expensive 

   

Electrochemical 

polymerisation 

Ease of synthesis, 

particularly thin films 

Difficult to remove from 

substrate  

 Doping is simultaneous 
Not suitable for growth 

on many substrates 

1.3.2.1 Electropolymerisation mechanism of pyrrole 

Various mechanisms for the electropolymerisation of pyrrole have been proposed and an 

excellent review is given by Sadki et al.55. The mechanism described here is a summary 

of that proposed by Sadki et al., which is based on the version originally proposed by 

Diaz et al.40 in 1988. Waltman and Bargon56 have confirmed this mechanism by 

theoretical studies based on the correlation between the reactivity and the unpaired 

electron density of the radical cations55. 

The mechanism proposed by Diaz is shown in Scheme 1.1. The initial step is the oxidation 

of pyrrole to form a radical cation. In chemical polymerisation the radical cation formed 

from the oxidation of the monomer attacks another monomer molecule generating a dimer 

radical cation. However, electrochemical polymerisation differs as the concentration of 

radical cations in the diffusion layer is much greater than the concentration of neutral 

monomers.  The electron transfer is faster than the diffusion of pyrrole to the electrode 

surface and the concentration of the cation radicals increase. Polymerisation occurs 
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through a radical-radical coupling which results in a radical dication, as shown in Scheme 

1.1.  

These monomeric radical cations can undergo different reactions depending on their 

reactivity. The more stable cations diffuse into solution away from the electrode surface 

as a soluble product. The very reactive cations may react randomly with solvent or 

nucleophiles in the vicinity of the electrode and diffuse into solution as a soluble 

product55. Between this reactivity the radical cations undergo a dimerisation reaction. The 

resonance structure at with the radical is at the 2-position is the most stable (having a 

greater unpaired electron density). Coupling between two radicals produces a dihydromer 

cation, and deprotonation occurs to give a neutral dimer product. The polymerisation 

follows with the oxidation of the dimer into a radical cation. Since the unpaired electron 

is now delocalised over the two rings the oxidation potential is lower than the monomer, 

thus the dimer is more inclined to oxidise, and another consequence of this stabilisation 

is that the dimer radical cation becomes less reactive than the monomer. The 5-5′ α-

position resonance form predominates, where the dimer radical cation at the 5-position 

reacts with the radical cation at the 2-position to form a trimer dication which 

deprotonates to give a neutral trimer. A neutral trimer is produced from the electro-

oxidation of a trimer cation radical, which has several resonance forms (not shown here). 

The trimer 5-5′ α-positions and the 3-3′ β-positions can undergo coupling reactions with 

the other oligomers. The α-coupling will prevail until the oligomer chains increase along 

with the delocalisation of unpaired electrons resulting in a higher probability of β-bonds 

formed. The propagation continues with the same sequence of oxidation, coupling and 

deprotonation until the final polymer product is obtained, which is an oxidised form of 

polypyrrole with a positive charge for every three to four pyrrole units which are 

counterbalanced by anions14. This mechanism is believed to represent the 

electropolymerisation of pyrrole. Electron spin resonance (EPR) spectroscopy failed to 

identify the pyrrole radical when investigated using spin-trapping techniques; this 

supports the dimerisation pathway which follows the radical cation coupling pathway10, 

14, 31. The loss of hydrogen from the α‐position indicated in the mechanism in Scheme 1.1 

is in good agreement with the observed drop in pH of the solution during 

polymerisation57. In addition, Genies et al.58 used chronoabsorption to investigate the 
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rate‐determining step (RDS) during film growth and concluded that the RDS is a coupling 

process and not monomer diffusion towards the electrode.  
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Scheme 1.1: Electrochemical polymerisation of pyrrole. 
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1.3.2.2 The influence of the electrochemical polymerisation parameters  

Electrochemical polymerisation can be performed by using constant potential 

(galvanostatic), constant voltage (potentiostatic) or sweeping potentials (cyclic 

voltammetry). The synthesis results in a Ppy film doped with an anion at the surface of 

the working electrode. It is important that the working electrode does not oxidise 

concurrently with the pyrrole monomer. The electrode material also effects adhesion. 

Generally, substrates such as platinum, gold, indium tin oxide (ITO) and glassy carbon 

are chosen as the working electrode, however, a range of active metals which form oxides 

have also been used1, 59-62. The potential window is also significant. Polypyrrole films 

prepared at lower current densities (< 1.0 mA cm‐2), or at anodic potentials less than 0.80 

V vs SCE, tend to be more dense and compact with homogeneous surfaces. Polymers 

deposited at higher current densities (> 5.0 mA cm‐2) or greater than 0.90 V vs SCE, are 

inclined to form porous structures with irregular surfaces63, 64. Furthermore, if the 

potential remains too high, over‐oxidation occurs, reducing the electroactivity, and thus, 

the conductivity of the polymer. The polymer degrades resulting in a decrease in 

mechanical properties and loss of adhesion from the substrate. Oxidation of the monomer 

occurs at higher potentials than the redox properties of polypyrrole and during synthesis 

side reactions, crosslinking and overoxidation is possible65. Overoxidation of polypyrrole 

occurs with the formation of C═O functional groups in the polymer backbone, as well as 

the formation of CO2 at sufficiently positive potentials66. The structure of overoxidised 

polypyrrole is shown in Figure 1.7. The coupling of the radical cations has a significant 

influence on the conductivity of the polypyrrole films. Waltman and Bargon56 used 

theoretical calculations to predict the probability of α and β coupling occurring during 

electropolymerisation, β-coupling leads to disruption in conjugation, this increases the 

band gap and thus reduces the conductivity of the Ppy.   

 

Figure 1.7: Representative structure of overoxidised polypyrrole, showing a ketone functional 

group. 
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Variation in the doping level67 and the dopant used during synthesis has an effect on the 

film thickness, surface roughness, morphology68, 69, surface energy and wettability70. 

Dopants of various sizes have been studied including chlorides (Cl  )71, 72, perchlorates 

(ClO 

4
)73, 74, nitrates (NO 

3
)72, para‐toluene sulfonate (pTS  )75 poly(styrene sulfonate)76, 

77 and dodecyl benzene sulfonate (DBS  )78, 79. When Ppy is doped with smaller anions, 

anion exchange is mainly displayed due to the high mobility of the small anions in the 

polymer matrix. Cation exchange generally takes place when Ppy is doped with large and 

bulky shaped anions, such as DBS  . However, when counterions are medium in size, like 

pTS   for example, Ppy exhibits both anion and cation exchange behaviour. The 

concentration of pyrrole is another important factor. Yuan et al.80 observed an increase in 

conductivity with increased pyrrole concentration. They explained this observation by 

applying the concept of electroneutrality coupling31. The more Ppy+ sites produced for 

internal charge compensation in higher pyrrole concentrations, the more efficiently the 

anion will compensate the positive charge of the resulting Ppy+. 

Solvent, pH and temperature during synthesis also affect the final properties of the 

polymer. Comparison across different solvents is difficult due to the solubility of the 

dopant and the pH variations. Acetonitrile is a common solvent used in organic systems81, 

82. Several studies have been carried out comparing the electrodeposition of Ppy in the 

presence of water, acetonitrile and mixtures of both water and acetonitrile81. Although the 

monomer oxidation potential is independent of the pH, the pH has an effect on the 

reactivity and stability of the Ppy formed at the electrode. In general, protons are produced 

after each oxidation at the electrode which consequently decreases the pH near the 

electrode. Zhou and Heinze57 investigated the influence of pH on electropolymerisation 

of pyrrole from acetonitrile and found that neutral or weakly acidic pH favours 

polymerisation. This is consistent with Pletcher and co‐workers81 who also found this to 

be the case when preparing a Ppy film at a Pt electrode from solutions of varying pH. In 

addition, pH affects the speed of polymerisation with Ppy forming more favourably with 

the addition of protons83, slower in neutral pH, and not forming at all in basic solutions. 

However, a very low pH results in the formation of a film of low conductivity. This is 

due to the acid catalysed formation of non‐conjugated trimers which further react to form 

a partly conjugated Ppy or become incorporated into the film84. While at basic conditions, 
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cation radicals become deprotonated to neutral radicals which interferes with the radical‐

radical coupling reaction85.  

Finally, temperature plays an important role in the electropolymerisation. Sangian et al.86 

applied a low current density and a low temperature (−31˚C) as a novel way of producing 

porous Ppy resulting in high conductivity. The rate of the electropolymerisation reaction 

is increased with increasing temperatures, however the Ppy that is deposited on the 

electrode is more likely to become over‐oxidised and this has an insulating effect which 

hinders the further growth of the Ppy. 

 

1.4 Polypyrrole for biomedical applications  

There is ample evidence that polypyrrole is a promising candidate for biomedical 

applications and it is generally regarded that Ppy is biocompatible11, 13, 50, 87. Some of the 

applications of polypyrrole and the associated advantages and disadvantages are 

summarised in Table 1.4. The potential applications range from artificial muscles, 

biosensors, neural probes, drug delivery to tissue engineering. The nature of the dopant 

and other excipients present, surface roughness, surface energy, conductivity and 

mechanical properties must also be considered11. In 1994, Wong et al.88 used polypyrrole 

to modulate cellular activity in mammalian cells. They demonstrated that extracellular 

matrix molecules, such as fibronectin, adsorb efficiently onto polypyrrole thin films and 

support cell attachment under serum-free conditions, suggesting that electrically 

conducting polymers may represent a type of culture substrate which could provide a non-

invasive means to control the shape and function of adherent cells. This implied that if 

Ppy could modulate cellular reactions then it could be possible to limit the toxicity of 

implantable devices by incorporating biomolecules to influence biocompatibility opening 

up new vistas for polypyrrole in biomedical applications. In 2001 both the EU and the US 

FDA established new policies and guidelines (Directive 2004/27/EC) for drug/device 

combination products due to increased clinical and commercial interest89. To date there 

are a number of FDA approved devices capable of electrical stimulation of the body, 

including pacemakers (bladder, cardiac, diaphragmatic and gastric), electrodes for deep-
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brain stimulation (for the treatment of dystonia, essential tremor and Parkinson's disease), 

and spinal cord stimulators for pain management90.  

Table 1.4: Polypyrrole in biomedical applications, adapted from Guimard et al. 26 

Application  Description of 

application 

Advantages Disadvantages Ref. 

Artificial 

muscles 

Device with 

electrochemo-

mechanical 

properties 

(volume change) 

capable of 

creating a 

mechanical force 

Operational in 

physiological 

conditions. 

Requires low 

voltage (< 1.0 V) 

for actuation. 

Light weight 

Short term 

redox stability. 

Delamination. 

Response 

limited by ion 

mobility 

26, 91-96 

Biosensors Device 

containing 

biomolecules as 

sensing elements, 

integrated with 

electrical 

transducer 

Electrochemical 

synthesis on 

metal electrode. 

Possible surface 

modifications. 

Efficient electric 

charge transfer 

from bio-reaction. 

Cost of 

biocomponents 

Hydrophobicity 

can denature 

entrapped 

proteins 

3, 26, 97-

101 

Neural 

Probes 

Implantable 

electrode for 

recording or 

stimulating 

neuronal activity 

Biocompatibility 

Good 

conductivity 

Increased surface 

area, decreased 

impedance 

Poor electrical 

stability 

Stimulus 

induced 

depression of 

neuronal 

excitability102 

52, 103-

105 

Drug Delivery Implantable 

device capable of 

delivering drugs 

Controlled release 

possible 

Ease of synthesis 

Issues with 

long-term 

stability. Not 

suitable for all 

drugs 

6, 63, 87, 

106-109 

Tissue 

engineering 

Biocompatible, 

biodegradable 

scaffolds or cell 

culture substrates 

containing stimuli 

to enhance tissue 

regeneration 

Biocompatible 

Good 

conductivity 

Modification to 

include chemical 

cues 

Challenging 

Chemical, 

mechanical, and 

topological 

properties 

relevant to 

operation 

27, 90, 

110-112 
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1.4.1 Polypyrrole in tissue engineering applications and neuroprosthetics 

There are several publications that review conducting polymers in biomedical 

applications11, 13, 26, 50. Most cells respond to physical, chemical and electrical stimuli113, 

this is especially true for neurons. Polypyrrole has been reported to support cell adhesion 

and viability of many different cell types and has been shown to stimulate skeletal 

myoblasts111 and cardiac myocytes114. Since 1994, Ppy has been reported to support cell 

adhesion and growth of a number of different cell types, including endothelial cells88, 115, 

rat pheochromocytoma (PC12) cells27, neurons and support cells105, 116, 117. George et 

al.118 demonstrate that 3-D Ppy substrates can have a progressively positive 

biocompatibility profile with central nervous system (CNS) parenchyma in vivo. These 

results support future investigations aimed at using Ppy in the design and manufacture of 

neural prosthetics that are capable of integrating with CNS tissues based on specific 

chemical and physical properties of the Ppy polymer. Such prosthetics should enable 

reliable transmission of external and internal electrical signals for significant 

postoperative periods. Moreover, if judiciously formulated, they may stimulate damaged 

neural tissues to repair and reconnect. Conducting polymer coatings could potentially 

improve the electrode-tissue communication by providing a high surface area to cell and 

tissue integration and by significantly improving the charge transfer while requiring lower 

power to operate. Charge transfer is improved through reduced impedance and greater 

selectivity for both recording and stimulating applications. Since conducting polymers 

are typically softer materials, it is also hypothesised that inflammation is reduced due to 

the reduction in strain mismatch between tissue and electrode surface52. The outcome of 

this reduced inflammatory reaction is a decrease in thickness of the surrounding non-

conductive fibrous tissue purported to cause signal degeneration52. Nodular polymeric 

structures can encourage cell attachment to produce a more intimate communication with 

neural tissue compared to conventional metallic electrodes, such as platinum and gold, 

which have minimal interactions with tissue119, 120.  

1.4.2 Polypyrrole in drug delivery applications 

Controlled release polymer systems have been widely investigated since the introduction 

of the sustained release of proteins and macromolecules in 1976121. Not all drugs are 
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suitable for use in a conducting polymer based drug delivery system. Drugs evaluated for 

the suitability of drug delivery devices are generally commercially available drugs. The 

drug must not be electroactive at the potentials the system will experience during 

synthesised or during its working life. The biological activity of the drug could be 

compromised as a consequence of electroactivity11. The pKa of the drug must be 

considered as the charge on the drug will influence drug loading, film formation, and 

releasing capabilities6. Zinger and Miller122 showed that glutamate and dopamine can be 

released from a polypyrrole membrane using potential control. Pyo et al.123 have 

demonstrated the release of adenosine 5′-triphosphate (ATP). Anionic drugs can be 

incorporated into the Ppy matrix during electrochemical polymerisation. Kontturi et al.63 

reported the controlled release of tosylate, salicylate, and naproxen. Cationic drugs have 

also been reported to have been incorporated into conducting polymers. Thompson et 

al.124 discussed the mechanism for the incorporation of neurotrophin-3 (NT-3+) into 

polypyrrole which involved a combination of electrostatic and hydrophobic interactions 

between the drug, anionic dopant, para-toluene sulfonate (pTS  ) and the polymer, along 

with physical entrapment. Hepal and Mahdavi125 used a polypyrrole composite as an ion 

gate membrane for the release of the cationic drug chlorpromazine.  Anionic β‐

cyclodextrins (CD) were used as dopants to prepare Ppy and this allowed for subsequent 

incorporation of neutral drugs. The uncharged antipsychotic drug, N‐

methylphenothiazine (NMP), was loaded into CD doped Ppy by immersing the film in a 

0.10 mol dm-3 NMP solution. The NMP was loaded into Ppy through encapsulation as the 

drug preferentially moves into the hydrophobic interior of the CD106.  

Implant associated infection is a common problem with implantable devices126. 

Antibiotic-loaded coatings on an implant present a straight forward approach for 

preventing implant associated infection126. The advantage of an antibiotic-loaded coating 

on an implant is that it can provide an immediate response to local infection but does not 

require an additional carrier for antibacterial agents other than the implant itself. This is 

most relevant to contemporary cementless orthopaedic implants which have increased in 

popularity due to overall better results in young patients compared to cemented 

prostheses127.  
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1.4.2.1 Drug release strategies 

The first reported controlled release system based on Ppy was reported by Zinger and 

Miller122 when glutamate anions were released on reduction of Ppy. More than 14 times 

the amount of glutamate was released when Ppy was exposed to a reduction potential of 

–1.00 V vs SCE than if no electrical stimulation was applied. In the late 1980s, Zhou and 

co‐workers128, 129 demonstrated the release of dopamine from Ppy derivatives. By the 

1990s several accounts in the literature were available on the release of anionic species 

such as anthraquinone‐2,6‐disulfonic acid (ASQA) from Ppy films and these were 

measured as a function of redox states130. These publications demonstrate the release of 

anionic species through the application of a reduction potential. Cationic species such as 

chlorpromazine have been shown to be incorporated into a Ppy/melanin composite on 

reduction and released upon application of an oxidation potential125. Actuation has also 

been used to achieve drug release. Sviriskis et al.131 demonstrated that the cationic drug, 

risperidone, could be released through the application of a reduction potential when the 

Ppy film was swollen to allow a greater diffusion of the drug.  

Various forms of electrical stimulation can be applied to Ppy in an attempt to control the 

release of drugs, including constant potential, step potential (switching between step 

potentials) or CV (sweeping between potentials at a set rate)11. As the Ppy redox state is 

altered a charged bioactive species will alternately experience attraction forces and the 

absence of attraction forces. Actuation can occur as the Ppy is switched between its redox 

states which may also influence drug movement. Several papers have compared step 

potentials with CV to release drugs. CV appears to be the more proficient method to 

release the ions64, 123, 130, 132, 133. However, there are several drawbacks to this method. 

Thompson et al.124 reported that CV released NT-3+ at faster rates than using either 

rapidly alternating potential steps or current pulses but the Ppy film was delaminated from 

the electrode upon handling. Contact with the underlying electrode was maintained when 

stimulation in the form of pulses, current or pulsed potential, was applied. Wadhwa et 

al.132 also found that CV was the more efficient method to stimulate drug release but after 

30 cycles at 100 mV s-1 cracks appeared in the Ppy film. This cracking is likely to be due 

to polymer actuation. Polymer delamination from the electrode and polymer cracking are 

both serious limitations for devices designed to release drugs over an extended period of 
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time. Furthermore, a drug release device that relies on CV is a far more complex 

electronic device than one relying on alternating pulses of potential or current. For these 

reasons, electrically stimulated release by CV may not necessarily be the best option. The 

most important electrochemical parameters to be considered, therefore, are the potential 

limits selected, the length of time spent at these limits and the corresponding redox states 

of the polymer11. 

Not all of the citations reviewed used stimulated release protocols. Aoki et al.134 

demonstrated that cells cultured on indium-tin oxide (ITO) showed a decrease of 

catecholamine release (neurotransmitter), compared to cells cultured on polypyrrole-

coated iridium-tin oxide. They also demonstrated that cells cultured on a Ppy-coated ITO 

plate could be kept in culture, without any significant changes in morphology and in the 

secretory responsiveness to acetylcholine as compared with cells cultured on collagen. In 

contrast, the cells cultured on the ITO plate lost the responsiveness, while the amount of 

catecholamines synthesised was affected little by both Ppy and ITO surfaces. It is 

suggested that Ppy supports the secretory function of the chromaffin cells when they are 

cultured on the surface of the polymer135. This research suggested early on that Ppy 

modified electrodes had advantages over traditional electrodes and that the modified 

electrodes support cell function. Alikacem et al.136 studied the responses of various cell 

types on commercially available Ppy-woven polyester fabric known as Contex. Four 

different grades of conductivity were compared with uncoated polyester. Optimal cell 

responses were found for the Contex sample of intermediate conductivity. Collier et al.27 

showed that in vitro compatibility tests of a composite of Ppy and hyaluronic acid on PC-

12 (rat phaechromocytoma) cells confirmed the attachment and viability of the cells. 

These studies demonstrate that Ppy has enhanced neuroprosthetics interactions without 

applied external stimulus.  

Some studies have shown that drugs can diffuse and exchange with the surrounding media 

without electrical stimulation108, 132, 137, 138. Figure 1.8 illustrates how a drug may diffuse 

from a polymer matrix with respects to time. 
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Figure: 1.8: Drug release from a polymer matrix. 

 

Korsmeyer-Peppa’s model can be used to analyse the release of therapeutic compounds 

from a polymeric matrix139 when the release mechanism is unknown or there is a mix of 

release phenomena involved, 

 
𝑀𝑡
𝑀∞

 =  𝐾𝑡
𝑛 

(1.2) 

where 𝑀𝑡  is the amount of drug release at time t, 𝑀∞ is the amount of drug released at 

infinite time, 𝐾𝑡 is the release rate constant and n is the an exponent of release. In this 

model, the value of n characterises the release mechanism of the drug140, 141, release has 

a diffusion mechanism if n = 0.5 and is a zero-order release model if n = 1.  

Novel methods of increasing the amount of drug that can be loaded into the polymers are 

continually being developed and these include increasing the surface area142 by forming 

nanostructures on the surface of the polymer137, 143. Traditional methods include 

increasing polymer thickness which corresponds to increased drug loading. However, 

polymer film thickness can affect the release of the drug. The rate of charge passed during 

electrochemical polymerisation affects the speed of polymer deposition and subsequently 

the density, thickness and morphology of the film64. Some research groups have reported 

the increase of polymer thickness with an increase in the total amount of drug that can be 

incorporated and thus released. Most of these studies compared films prepared under the 

same synthesis parameters. Assuming the doping level remains fairly constant, then a 

higher amount of polymer corresponds with more drug incorporated, and subsequently 
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more drug available for release. However, the level of drug release does not increase 

linearly with increasing film thickness; thinner films release a greater percentage of the 

incorporated drug than thicker films129, 133. This may be due to thicker films being less 

electroactive129 and changes in the diffusion coefficient with changing film thickness133.  

Wallace and co‐workers130 studied the factors influencing the release of ASQA from Ppy 

films. They demonstrated that the characteristics of the release medium, such as pH, ionic 

strength, polarity and hydrophobicity all affect the properties of Ppy and the release of 

the drugs. To correlate in vitro and in vivo release, the media used should mimic the 

targeted local environment where the system will be used. 

 

1.5 Chitosan 

Chitosan is derived from the deacetylation of chitin, the second most abundant polymer 

after cellulose. Chitin is often obtained from the waste of the seafood processing industry. 

It is subjected to N-deacetylation by treatment with a 40 to 45% NaOH solution, followed 

by purification procedures. The structure of chitosan is shown in Figure 1.8, it is a 

copolymer of N-acetyl-D-glucosamine and D-glucosamine144 making it analogous to the 

structure of cellulose. It has a three dimensional α-helical configuration stabilised by 

intramolecular hydrogen bonding145. Chitosan is insoluble in most solvents and water, but 

the presence of amino groups renders it soluble in acidic solutions146, it has a pKa of about 

6.3147. The solubilisation occurs by protonation of the –NH2 function on the C-2 position 

of the D-glucosamine repeat unit, whereby the polysaccharide is converted to a 

polyelectrolyte in acidic media. Chitosan is the only pseudo-natural cationic polymer and 

thus, it finds many applications that follow from its unique character148.  
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Figure 1.9: Structure of chitosan. 

Chitosan hydrogels have been studied for biomedical and pharmaceutical applications. 

There are several definition offered for a hydrogel149, the IUPAC definition of a hydrogel 

is simply a gel in which the swelling agent is water150, Peppas defined hydrogels as 

macromolecular networks swollen in water or biological fluids149, 151. In this work, 

chitosan was observed to swell but the swelling index was not determined because of the 

restrictive volume size. Figure 1.10 shows the structures of chitosan crosslinked with 

itself reproduced from Gurny et al.’s149 review of chitosan hydrogels. Crosslinking can 

occur between two chitosan units which may or may not belong to the same polymeric 

chain152. Alvarez-Lorenzo et al.153 reported chitosan crosslinked with itself that exhibit 

pH-sensitive swelling. Argüelles-Monal154 reported chitosan crosslinked with itself 

exhibit properties of an amorphous elastomer (gel). The reason they offer is that a network 

of chitosan crosslinked with itself may be stabilised by hydrophobic associations of N-

acetyl groups, which restricted the mobility of a few covalent crosslinking points.  

 

Figure 1.10: Structure of chitosan hydrogel crosslinked with itself149. 
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It is important to realise that chitosan is not a single chemical product, it can be described 

as chitin which has been sufficiently deacetylated to form soluble amine salts155, the 

degree of deacetylation necessary to obtain a soluble product being 40 to 98%. The grade 

of chitosan used in this thesis is classified as ≥ 75%. The molecular weights of chitosan 

polymers vary between 50 kDa to 2000 kDa. Physicochemical properties can be changed 

by varying the degree of deacetylation. Generally, increasing the molecular weight of 

chitosan increases the tensile strength, elongation and moisture absorption whereas an 

increase in deacetylation of chitosan can either decrease or increase depending on 

molecular weight156. The higher the degree of deacetylation the more brittle and less 

hydrophilic it becomes156.  

The solubility of chitosan is highly influenced by the distribution of the amino groups, 

the molecular weight and the degree of deacetylation, indicating that the manufacturing 

process of chitosan can affect its solubility aspects157, 158. In alkali medium, the elastic 

modulus increases as the pH increases due to the re-association of hydrogen bonds 

between networks159. Chitosan with a degree of acetylation of 40 % has been found to be 

soluble up to a pH of 9.0, whereas chitosan with a degree of deacetylation of 85% is 

soluble up to a pH of 6.5, however solubility is also greatly influenced by the presence of 

salts in solution, and the ionic strength of the solution. The solubility of chitosan is lower 

at higher ionic strength. The microstructure of the polymer also contributes to 

dissolution160. Structure can be controlled by drying temperature, and lyophilisation is 

generally used to produce porous structures resembling “sponge”161, 162. An increase in 

the drying temperature results in decreased pore size. Infrared heating offers many 

advantages over conventional drying methods and it involves the exposure of a material 

to electromagnetic radiation, which facilitates drying from the inside out. Srinivasa et 

al.163 observed that when films were dried using infrared (IR), they were superior in 

preserving desirable functional characteristics of the chitosan films. Although subtle 

variations in their crystallinity pattern were observed between differently dried chitosan 

films, no significant differences were observed in their properties. IR drying was found 

to be more efficient and produced more uniform films than the oven dried films. The 

tensile strength of the IR dried films (49.58 to 52.34 MPa) were less than that of the air 

dried films (56.78 to 59.38 MPa). There were no significant differences reported for burst 



                                                                                                                        Chapter 1 

 

 

 
30 

 

  

strength values, water vapour and oxygen transmission rate values in oven and IR dried 

films compared to the air dried films. 

1.5.1 Biomedical applications 

The interest in chitosan can be attributed to its unique chemical properties and various 

biological activities. The polycationic nature of chitosan contributes to its mucoadhesive 

properties164. It has been investigated for potential use in gene delivery165, vaccines 166, 

and as an antimicrobial agent167. The structure of chitosan partially resembles 

glycosaminoglycans, which are important components of the connective tissue. As such, 

chitosan has been investigated for use in tissue engineering168-170. The regenerative 

properties of chitosan have been utilised to develop chitosan based wound dressings 

which have been approved by the FDA171.  

Chitosan has been investigated as a pharmaceutical excipient172 for tablet binding and as 

a granulating agent for tablet formulations. Miyazaki et al.173 showed that chitosan had a 

sustained release effect on diltiazem (calcium channel blocker). Bhise et al.174 designed 

sustained release systems for the anionic drug naproxen using chitosan as a drug carrier 

matrix. Mura et al.175 showed that chitosan can favourably affect the naproxen dissolution 

properties, yielding a dissolution efficiency improvement of up to about 8 times. Ilango 

et al.176 demonstrated that chitosan has a sustained release effect on ibuprofen in vivo. It 

has also been shown that chitosan microspheres containing amoxicillin and metronidazole 

could improve the local absorption eradicating Helicobacter pylori infection177. Making 

use of its in situ gelling properties, chitosan has been investigated for ophthalmic drug 

formulations178. 

Other uses of chitosan are in food, cosmetics and water treatment. The versatility of 

chitosan is very promising179. However, the findings made by different researchers on the 

effects of molecular weight and degree of deacetylation on these properties are still 

controversial180. The list of chitosan-based pharmaceutical and biomedical based 

technology is exhaustive. Bernkop-Schnürch181 , Singla182, 183 and Kumar160 have 

published excellent reviews on the application of chitosan in the biomedical industry. 
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1.6 Polypyrrole/chitosan composites 

Figure 1.9 shows a bar chart illustrating a bibliometric analysis of the term 

polypyrrole/chitosan and shows the number of publications during the period 1992 to 

2013. It is clear that the number of publications is increasing every year. The leading 

proponents, Sadrolhosseini et al.184 have focused on the optical, electrical and thermal 

properties of the composite with the proposed application focused on electromagnetic 

interference (EMI) shielding. The analytical techniques and results shown by 

Sadrolhosseini et al.184 are quite different to the body of work presented in this thesis. 

The first publication of polypyrrole-chitosan is a patent185, the composite was prepared 

by chemical oxidation and the composite was dissolved in water making it a suitable 

material for biosensor that can immobilise enzymes. This patent is significant because it 

proposes a biomedical application. In 2004, the first paper on a polypyrrole chitosan 

composite was reported by Khor and Whey186 where they employed chemical oxidation 

to prepare the composite and reported poor conductivity. Their endeavour was to prepare 

covalently bonded polypyrrole chitosan composites. Li et al.187-190 have reported novel 

nanocomposites of polypyrrole-chitosan. Yalçinkaya et al.191 prepared a polypyrrole-

chitosan composite on a platinum electrode, in the presence of oxalic acid using cyclic 

voltammetry. Huang et al.192 reported the electrical regulation of schwann cells using 

polypyrrole chitosan composites prepared by chemical oxidation of pyrrole powder 

suspended in a solution of chitosan and then cast in a petri dish. Recently, Sajesh et al. 

112 reported polypyrrole based conducting scaffolds by incorporating polypyrrole-alginate 

(Ppy-Alg) blended with chitosan using a lyophilisation technique. They employed this 

composite as a substrate for bone tissue engineering. A blend of Ppy-Alg was developed 

by oxidative chemical synthesis of polypyrrole using FeCl3 as an oxidising agent. In vitro 

biomineralisation ability of the scaffold was assessed and thus the effectiveness of Ppy–

Alg/chitosan scaffold in the field of tissue engineering was evaluated.  
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Figure 1.9: The numbers of publications using the term “polypyrrole chitosan” in their titles or 

abstracts, a total of 27 are accounted for including all publication types since 1992. Bibliometric 

analysis by SciFinder®.  

 

1.7 Challenges  

1.7.1 Electrical properties 

As mentioned in Section 1.3.1 the high conductivity of polypyrrole is attributed to the 

dopant ions that serve as an electrical bridge between the polymer units. Long-term 

instability is a main drawback of conducting polymers193 and for conductive implants, 

such as neural probes, dopant stability is important for electrical preservation194. Few 

articles have reported the lifetime of their conducting polymer products. It was reported 

that Ppy doped with large anions can maintain conductivity for twenty years195, and Ppy 

doped with amphiphilic anions can reduce the influence of water and oxygen85. The 

potentials at which the overoxidation of Ppy occurs depends on the pH values of the 

aqueous solutions196, and the species responsible for overoxidation have been identified 

as hydroxyl anions. On the contrary, the use of hydroxyl radical scavengers, such as 

methanol and dimethylthiourea, increases the stability of polypyrrole films under anodic 

potentials197. Indeed, optimising a material involves some sort of trade off. Kim et al.198 

found that polypyrrole blended with a hydrogel had a negative effect on the electrical 
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conductivity of the conducting polymer as it caused both physical and chemical changes 

in the polymer. 

 

1.7.2 Biological and physical properties 

Some difficulties have been reported when bioactive molecules are incorporated during 

synthesis of Ppy. These include interference with polymer growth and decreased 

adherence of polymer to the underlying electrode122, 199. Adherence is an extremely 

important factor for electrically stimulated drug release. Thompson et al.199 addressed this 

issue by utilising a two layered synthesis approach, whereby a layer of Ppy doped with 

pTS   was initially deposited onto the electrode before the second layer of Ppy containing 

the pTS   and a bioactive molecule was deposited. This maintained the mechanical 

properties of Ppy and greatly improved adhesion of the polymer to the underlying 

electrode. Not all drugs can be released from Ppy, for example, Konturri et al.63 found 

that nicoside did not release from Ppy upon reduction despite it being a smaller anion 

than naproxen. In an attempt to overcome this issue, Ppy was prepared with the 2-

naphalene sulfonate as it is twice the size of nicoside. This demonstrated that the size of 

the drug is not the only governing factor in drug release. For conducting polymers in 

biomedical applications most research is focused on the electrical characterisation, 

chemical composition and biological response with a gap in the performance metrics and 

mechanical properties.  “Chitosan” applies to polymers of varying characteristics making 

cross referencing difficult to discern. 

 

1.8 Summary 

From the literature review, it is clear that there is interest in doping polypyrrole with 

therapeutic compounds; this has been supported by positive results from many studies. 

Particularly in the area of cell culture support and neural interfaces, in vitro studies have 

been encouraging (Section 1.4.1). Polypyrrole can be easily doped and undoped by 



                                                                                                                        Chapter 1 

 

 

 
34 

 

  

switching the potential, however many studies have shown that it is not necessary to 

control the potential for satisfactory results.  

The greatest challenge is the long-term optimisation of Ppy to maintain its performance52. 

Chitosan can offer improved mechanical properties, it is insoluble in water but its 

hydrophilic properties make it an interesting hydrogel. Pure polypyrrole and pure chitosan 

films differ significantly in properties. Publications of polypyrrole with chitosan have 

been investigated, however the work presented in this thesis has taken a novel approach 

by electrochemically polymerising pyrrole in a chitosan hydrogel network directly on an 

electrode surface. The advantage of this procedure is that a comprehensive 

electrochemical characterisation can be obtained. These results are presented and 

discussed in Chapter 3. Polypyrrole chloride, which is a well-documented conducting 

polymer, was used in this study for comparison with the more novel anions such as methyl 

orange (Chapter 4) and oxacillin (Chapter 5). 
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2 Experimental 

2.1  Introduction 

In this chapter, the techniques employed and the theory of the techniques used for the 

fabricating and characterisation of the composite material, polypyrrole with chitosan, are 

presented. One of the advantages of fabricating composite materials is that the new 

material can exhibit optimised performance, e.g., improved mechanical properties. The 

challenge with composite materials is that the heterogeneous nature of the material can 

make analysing the structure-property relationships difficult and well-established 

characterisation techniques are limited1. However, in this research project with careful 

experimental design a detailed study of the electrochemical behaviour of the composite 

materials was possible.  

Electrochemical synthesis experiments and a number of electroanalytical techniques were 

used throughout this study. The polypyrrole films (Ppy) were electrochemically 

synthesised with various anionic dopants to give PpyA, where A represents the anionic 

dopant.  PpyA and chitosan composites were prepared by drop casting chitosan solution 

either on the metal substrate prior to electropolymerisation (Chapter 3) or as a layer at the 

PpyA interfaces, post-electropolymerisation. Traditional techniques used to characterise 

the materials in Chapter 3 were FT-IR (structural properties) and DSC (thermal 

properties). In Chapters 3, 4 and 5, SEM-EDX (morphology) was used. In Chapters 4 and 

5 the composite yields were too small to obtain FT-IR or DSC results, and SEM-EDX 

served as an alternative characterisation technique. A simple microfabrication technique 

was developed for preparing drug doped polypyrrole composites and each chapter 

includes a comparison between the PpyA with and without the chitosan. The release of 

the dopant was monitored using UV-visible spectroscopy by applying an electrical 

stimulus or no electrical stimulus. 
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2.2  The electrochemical set-up 

Electrochemistry is the study of chemical processes involving the transfer of electrons to 

or from an electrode surface, and the electrochemical measurements rely on these 

processes to provide readable data. According to Faraday’s law of electrolysis, the 

amount of a substance deposited or evolved (𝑚) during electrolysis is directly 

proportional to the current (𝐼) and the time (𝑡), i.e., the quantity of charge per unit area of 

a substance is related to the magnitude of the current.  

 𝑚 =
M𝐼𝑡

𝑛𝐹
 =
M𝑄

𝑛𝐹
 (2.1) 

In this equation, M is the molar mass of the substance, n is the number of moles of 

electrons, F is Faraday’s constant and Q is the amount of charge consumed during 

electrolysis2-4. A wide range of electrochemical experiments can be performed with a 

commercial electrochemical workstation. The potential can be controlled and the 

resulting current is measured, giving the potentiostatic techniques or the current can be 

controlled and the potential is measured, giving the galvanostatic techniques.  

2.2.1 The electrochemical workstation 

The electrochemical measurements, including open-circuit potential, potentiostatic and 

cyclic voltammetry, were performed with a Solartron model SI1285 or SI1287 

electrochemical interface operated by Scribner Associates’ CorrWare for Windows™, 

Version 2.1. The CorrView programme for Windows™, Version 2.3, was used to display, 

analyse and graph the data. The potententiostat was connected to an electrochemical cell, 

as shown in Figure 2.1. The impedance measurements were performed using a Solartron 

Frequency response analyser, model SI1250 and SI1255B, coupled to a Solartron SI1287 

electrochemical interface operated by Scribner Associates’ ZPlot for Windows™, 

Version 2.1. The ZView programme for Windows™, Version 2.3, was used to display, 

analyse and graph the data. The electrochemical quartz crystal microbalance experiments 

were performed with a CH Instrument Potentiostat / Galvanostat, model CHI 440B, 

linked with a crystal oscillator. The experiments were operated by CHI Software package 

for Windows™, Version 1.0.0.1.  
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Figure 2.1: The electrochemical workstation: potentiostat and electrochemical cell. 

 

2.2.2 The electrochemical cell 

A conventional three electrode cell configuration was used to record the electrochemical 

data. The cell consisted of a glass sample vial with a capacity of 10 cm3 fitted with a 

customised polytetrafluoroethylene (PTFE) lid to accommodate a reference electrode 

(RE), a working electrode (WE) and a counter electrode (CE). The electrodes were 

connected to a potentiostat coupled to a compatible PC which collected and analysed the 

data, as depicted in Figure 2.1. A different cell design was used for the EQCM 

measurements and this is described in Section 2.4.5.  

A saturated calomel electrode (SCE) was the reference electrode (RE) used most 

frequently except for when carrying out EQCM experiments. In this case, a custom made 

silver/silver chloride (Ag|AgCl) reference electrode was used. All potentials in this work 

are quoted against the reference electrode. The standard electrode potentials of the SCE 

and Ag|AgCl reference electrodes in aqueous solution are 0.241 V and 0.197 V, 

respectively, versus a standard hydrogen electrode (SHE) at 25 ºC. The SCE was serviced 

regularly by refilling the internal solution with a saturated solution of super-purum KCl 

WE 

RE 

CE 
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(99.999+ %, Merck) and by checking the potential against a “virgin” SCE using a 

multimeter.  

All electrode materials were supplied by Goodfellow Cambridge Ltd. and were sliced into 

discs with lengths of 1 cm. A platinum disc (99.99 % purity) with a diameter of 4 mm, 

and a gold disc (99.99 % purity) with a diameter of 3 mm, were employed as the 

electrodes. An electrical contact was made with copper wire glued with conducting silver 

epoxy to the base of the electrode. It was then encased in PTFE and secured in place by 

a non-conducting epoxy resin, a schematic of which is illustrated in Figure 2.2. The 

electrodes were polished with successively finer grades (30 μm, 15 μm, 6 μm and 1 μm) 

of diamond polishes (Buehler MetaDi Monocrystalline Diamond suspension) and 0.5 μm 

Al2O3 slurry on a Buehler micro‐cloth, sonicated and rinsed with ethanol and distilled 

water to ensure a clean surface. Occasionally it was necessary to remove the polymer film 

from the electrode surface, and this was achieved using a Buehler METASERV grinder 

polisher with a Buehler SiC grinding paper (Grit P 2500). The electrode was then polished 

using the diamond polishes and Al2O3 slurry.   

 

 

 

 

 

 

 

 

The counter electrode (CE) was a platinum wire with a high surface area of high purity 

(99.99+ %) supplied by Goodfellow Cambridge Ltd. Before every set of experiments, the 

Figure 2.2: Illustration of disc electrode.  
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Non-conducting 
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counter electrode was brushed with Buehler SiC grinding paper (Grit P 2500), cleaned 

with a cloth, sonicated in distilled water and finally rinsed with distilled water. 

All experiments were carried out at atmospheric conditions, unless otherwise stated (room 

temperature 23 ± 2 ºC). The supporting electrolytes were aqueous solutions of inorganic 

and organic salts.  

 

The electrochemical cell was controlled by the potentiostat, as depicted in Figure 2.1. The 

block diagram in Figure 2.3 summarises the working relationship between the potentiostat 

and electrochemical cell. The potentiostat measures the voltage, VWE, or the current of the 

working electrode, IWE. It controls the voltage between the working electrode and counter 

electrode pair (VWC = VWE – VCE), and adjusts this voltage to maintain the potential 

difference between the working electrode and reference electrode (VWR = VWE – VRE) 

which it detects through a high-impedance feedback loop, where VRE is a given arbitrary 

value. The current flow is measured between the counter electrode and working electrode 

(ICE = IWE + IRE), and the potentiostat imposes a negative bias5 so that the value of IRE is 

zero and ICE = IWE. If the solution has a high conductivity, then the current-voltage is not 

disturbed by the solution resistance, which creates an iR drop in the cell. The voltage is 

equal to the product of current and resistance, in accordance with Ohm’s law, V = iR. 

When the current flow is appreciable the measured potential is distorted and shifts by an 

amount equal to iR, where R is the solution resistance6. 
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Figure 2.3: Block diagram representing the working relationship between a potentiostat and an 

electrochemical cell. Adapted from Bard and Faulkner7. 

  

Function

Generator
Potentiostat

WE

RE

CE

VWC = VWE - VCE

VWR = VWE - VRE
VWR = VWE - VRE

IWE

ICE

IRE



Chapter 2 

 

 

 

53 

 

  

2.3 Chemicals and preparation of polymers 

This section briefly summarises the techniques used to prepare the composite films, while 

the parameters are discussed in more detail in the relevant results sections.  

2.3.1 Chemicals 

The chemicals used in this research project were pyrrole (98 %), chitosan from shrimp 

shells (≥75 % deacetylated), lysozyme from chicken egg white (~70000 U mg-1), methyl 

orange ACS reagent (85 % dye content), oxacillin sodium salt (~95 % TLC) and 

dexamethasone 21-phosphate disodium salt (≥ 98 %). The sodium chloride, sodium 

phosphate monobasic monohydrate, sodium hydroxide, calcium chloride, potassium 

chloride and lithium perchlorate were all ACS reagents (≥ 98 %). The hydrochloric acid, 

acetone, ethanoic acid and ethanol were AnalaR grade reagents supplied by VWR. High 

purity nitrogen and argon (99.95 %) were supplied by BOC. Distilled water was used to 

make up the solutions and Milli-Q purified water (14 MΩ cm, pH = 5.0) was used to make 

up the phosphate saline buffer. All the chemicals were used without further purification 

except for pyrrole (98 %). The pyrrole monomer was distilled under vacuum and stored 

in the dark at −18 C under nitrogen, prior to use. Solution properties, such as pH and 

ionic conductivity, were determined using an Orion model 720A pH meter and a Jenway 

4510 conductivity meter, respectively. The equipment was calibrated each time prior to 

experimental analysis using buffered solutions, pH 7.0 and 4.0, obtained from Fluka for 

calibration of the pH meter, and 0.01 mol dm-3 KCl from Sigma for calibration of the 

conductivity meter.  

2.3.2 Preparation of chitosan solution 

The chitosan solution was prepared by dissolving 0.125 g of chitosan in 25 cm3 of 2.0 

mol dm-3 ethanoic acid to give a 0.5 % (w/v) chitosan solution. The solution was stirred 

for 180 min using a magnetic stirrer and then it was filtered using Whatman™ filter paper. 

Chitosan films were deposited using a drop cast technique. The 0.5 % (w/v) chitosan 

solution was drop cast on to the electrode surface (10 μL / 0.13 cm2), the film was dried 

for 10 min under an infrared lamp (55-60 ºC) then let cool for 10 min. Occasionally, when 
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stand-alone experiments (e.g. gravimetric analysis) were performed on the chitosan film, 

microfilms were prepared by pipetting several quantities of the chitosan solution, 10 μL/ 

0.13 cm2, on to clear PVC sheets. They were cured as above and peeled away from the 

PVC substrate. 

2.3.3 Preparation of polymers 

The polypyrrole films doped with different anions were deposited from a solution 

containing the pyrrole monomer and an aqueous solution containing the anion as the 

supporting electrolyte. The formulation of the monomer electrolyte solutions for the films 

is summarised in Table 2.1, where the concentration of the pyrrole monomer was 

maintained at 0.1 or 0.2 mol dm-3. The polymerisation solutions were prepared on a daily 

basis as it was of prime importance that the experimental parameters used were 

reproducible. The PpyA (where A is the dopant species) films were formed 

electrochemically at a constant potential of 0.80 V vs. SCE for a fixed duration or until 

the desired charge density was reached. The electrochemical preparation of 

PpyCl/chitosan is discussed in Chapter 3, PpyMO/chitosan is discussed in Chapter 4, and 

finally PpyOx/chitosan is discussed in Chapter 5.  

Table 2.1: Summary of the formulation of the aqueous solutions used to fabricate the Ppy films. 

 

2.3.4 Vapour phase polymerisation of pyrrole on to chitosan 

The vapour phase polymerisation (VPP) of pyrrole to form a polypyrrole film with 

chitosan was investigated as a trial preparation method for obtaining greater yields. 

Winther‐Jensen et al.8 reported the successful VPP of pyrrole and a similar protocol was 

Film Pyrrole (mol dm-3) Dopant (mol dm-3)  

Polypyrrole chloride (PpyCl) 0.1 0.10 

Polypyrrole methyl orange (PpyMO) 0.1 0.01 

Polypyrrole dexamethasone (PpyDex) 0.1 0.01 

Polypyrrole oxacillin (PpyOx) 0.2 0.02 
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followed in this work. The chitosan film was prepared by pipetting 10 cm3 of 0.5% (w/v) 

chitosan solution onto a transparent PVC sheet. The film was dried under an IR lamp (55-

60 ºC) for 15 min. A solution of 0.5 mol dm-3 ferric chloride hexahydrate (FeCl3∙6H2O, 

Sigma-Aldrich) in methanol was prepared as the oxidising agent. The chitosan film was 

peeled from the PVC and pre-treated by dipping the film into the oxidising solution and 

let air dry. The film was suspended over 1 cm3 of pyrrole monomer in a closed sample 

vial for 5 min at room temperature, 23 ± 2 ºC. The polymerisation was observed 

instantaneously. The film was washed in methanol to remove unreacted oxidant, pyrrole 

monomer and by-products (FeCl2). 

 

2.4 Experimental techniques  

A number of different techniques were employed in the formation and characterisation of 

the polypyrrole films and the polypyrrole with chitosan films. These techniques are 

described in this section.  

2.4.1 Potentiostatic technique 

In this experiment, a constant potential is applied to the electrode and the resulting current 

is measured as a function of time, I = f(t). The experiment can be performed for a fixed 

duration or until a particular current or charge is reached. The data acquisition rate was 

set at five points per second. This technique was used as the preferred method to deposit 

the polymer films by applying a constant potential of 0.80 V vs. SCE to the electrode in 

the monomer-containing solution. Typical plots are shown in Figure 2.4, which depict the 

current-time response, the corresponding charge-time plot and the potential variation with 

time during the oxidation of the pyrrole. Sometimes it is more informative to plot the 

charge passed as a function of the time, as shown in Figure 2.4. The charge can be 

calculated at any time from the integral of the current.  

It is well known that Ppy is reduced with the application of a cathodic potential and the 

dopant (depending on size) is forced out of the polymer so the polypyrrole can maintain 

its neutrality (Ppy+A- + e- → Ppyo + A-)9. In this work constant potentials were applied, 
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varying from 0.3 V (a potential greater than the open-circuit potential) to 0.00 V, −0.30 

V, −0.60 V and −0.90 V vs SCE, to reduce the polymer films and release the dopant 

species. 

 

 

2.4.2 Cyclic voltammetry 

Cyclic voltammetry (CV) is one of the most useful and widely applied techniques in 

electrochemistry10. It involves sweeping the applied potential between two potential 

limits at a constant scan rate and the resulting current is monitored. In this study, it was 

used to evaluate the suitability and the stability of the dopant species, i.e., its redox 

stability within the limits of proton reduction and water oxidation and to determine the 

redox behaviour of the polymer films.  

In cyclic voltammetry, there are three main responses that depend on the reversibility of 

the redox process and each response is characterised by a different shape of the 

voltammogram, as shown in Figure 2.5. Adsorption processes can also be identified and 

these give rise to a different shape of the voltammogram, as shown in Figure 2.5(d). Three 

(A) (B) (C) 

   

 

Figure 2.4: Potentiostat transients for the oxidation of pyrrole at 0.80 V vs. SCE (A) the current-

time plot (B) the charge-time plot used to determine the total charge consumed on oxidation and 

(C) step waveform applied. 
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key parameters, the peak current (𝐼𝑝), the peak potential (𝐸𝑝), and the potential width at 

half peak (𝐸𝑝 – 𝐸𝑝⁄2) are used to describe the reversibility of the redox process. The 

dependence of each parameter on the scan rate, 𝑣, allows further characterisation of the 

electrochemical system. The 𝐸𝑝 does not change with 𝑣 for reversible (Nernstian) 

systems, however for irreversible and quasi-reversible redox processes 𝐸𝑝 increases with 

increasing 𝑣. The 𝐼𝑝 changes linearly with 𝑣1 2⁄  for reversible and quasi-reversible 

systems and with 𝑣 for reversible adsorbed species. The correlation between 𝐼𝑝 and 𝑣1 2⁄  

for quasi-reversible systems depend on scan rate and the electron transfer rate constant. 

Generally there is no correlation between 𝐼𝑝 and 𝑣1 2⁄  at high scan rates and for reactions 

which display slow electron transfer kinetics11. The cyclic voltammogram shown in 

Figure 2.5 (a) is an example of a reversible reaction. A reversible cyclic voltammogram 

can be obtained if both the oxidation and reduction species are in equilibrium with one 

another and if the kinetics of the electron transfer process is fast. A theoretical expression 

for the peak current for a reversible cyclic voltammogram can be derived as a function of 

the scan rate to give the Randles-Ševčik expression12 (Equation 2.2). According to this 

relationship, the dependence of the peak current, Ip, on the scan rate, 𝑣, follows a 

characteristic square-root law, which provides evidence of the presence of a diffusional-

controlled process12.  

 𝐼𝑝  =  0.4463𝑛𝐹𝐴𝑐𝐵
∗√
𝑛𝐹𝑣𝐷

𝑅𝑇
 (2.2) 

In this equation, 𝑛  is the number of electrons, 𝐹 is Faraday’s constant, 𝐴  is the electrode 

area (cm2), 𝑐𝐵
∗   is the bulk concentration of the electrolyte (mol cm-3), 𝑣 is the scan rate 

(V s-1) and 𝐷 is the apparent diffusion coefficient (cm2 s-1). It can be seen that the peak 

current is proportional to the concentration of the electroactive species and the square‐

root of the scan rate and diffusion coefficient. Therefore, a linear relationship between 

the current and the square‐root of the scan rate indicates that the redox reaction of the 

electroactive species conforms to the Randles-Ševčik equation and is governed to some 

extent by a diffusion‐controlled process.  



Chapter 2 

 

 

 

58 

 

  

Figure 2.5 (A) represents a reversible reactions, the ratio of the peak currents, | 𝐼𝑝𝑎/𝐼𝑝𝑐| =

1.0 and the difference in the peak potentials, ∆𝐸𝑝 = 2.218𝑅𝑇/𝑛𝐹 = 57/𝑛 mV at 298 

K, and is independent of scan rate10. Figure 5.2 B shows an irreversible reaction the 

potential width at half peak, |𝐸𝑝 – 𝐸𝑝⁄2| = 48/𝛼𝑛 mV at 298 K and increases as the scan 

rate increases13. If the charge transfer processes at the interface are slower, then the 

equilibrium condition does not prevail, and the reaction becomes quasi-reversible, as 

shown in Figure 2.5 (C). In this case, |𝐸𝑝 – 𝐸𝑝⁄2| = 26∆(𝛬, 𝛼) mV at   298 K and 

increases as the scan rate increases7. The factor ∆(𝛬, 𝛼) is a function of 𝛼 and 𝛬, where 𝛼 

is the transfer coefficient and 𝛬 = 𝑘0 (𝑣𝐷𝐹/𝑅𝑇)1 2⁄⁄ , 𝐷 is the diffusion coefficient of the 

electroactive species and 𝑘0 is the standard heterogeneous rate constant, for quasi-

reversible systems 𝑘0 is between 1 × 10-1 and 1 × 10-5 cm s-1. As 𝛬 increases the 

properties become reversible14. Reversible voltammogramms are not always governed by 

diffusional processes; Figure 5.2 (D) shows the voltammogram of an adsorption response, 

here ∆𝐸𝑝/2  = 90/𝑛 mV. The diagnostics for these systems are covered in many text 

books7, 10, 15, 16. 
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(A) Reversible (B) Irreversible 

 
 

(C) Quasi-reversible (D) Adsorption 

 

 

 

Figure 2.5: Cyclic voltammograms (CV) for (A) Reversible, (B) Irreversible, (C) Quasi-

reversible and (D) Adsorption processes showing the peak current (𝑰𝒑), peak potential (𝑬𝒑), 

and potential width at half peak (𝑬𝒑 – 𝑬𝒑⁄𝟐).
11 
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2.4.3 Open-circuit potential 

In open-circuit potential experiments the “free” potential of the cell is monitored as a 

function of time. The experiment can be performed for a fixed duration or until a 

particular potential is reached, the result is a potential-time plot. The data acquisition rate 

was set at one point per second. This technique was used to determine the potential of the 

polymers and monitor changes in the oxidation state over a period of time in various 

solutions. It was also used to investigate the anion leaching from the polymer films (drug 

release without electrical stimuli). In this case a magnetic stirrer was used to aid diffusion 

of the released dopant at the electrode surface. 

2.4.4 Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy, EIS, was used to investigate the charge transfer 

resistance, double layer capacitance, redox capacitance or charge storage capacitance, and 

conductivity of the Ppy doped with various anionic species, and in the presence of 

chitosan. Experiments were recorded over a frequency range from 65,000 to 0.008 Hz at 

various applied potentials, this frequency range was sufficient to capture. As impedance 

is only applicable to electrochemical systems that behave linearly and are in a steady state 

condition, the polymer films were conditioned for 120 min to ensure the system was under 

steady-state conditions before the measurements were performed. Furthermore, the 

perturbing sinusoidal voltage was maintained at 10 mV, which is sufficiently small to 

keep the overall state of the system unchanged. The frequency of the AC wave was varied 

allowing the impedance of the system to be obtained as a function of frequency.  

The underlining principle of EIS is that it is a transfer function between potential and 

current as shown in Equation 2.3. 

 𝐸(𝑡) =  ∆𝐸 sin(𝜔𝑡) 
𝑍(𝜔)
→   𝐼(𝑡) =  ∆𝐼 sin(𝜔𝑡 +  θ) (2.3) 
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In this analysis, 𝜔 (𝜔 = 2𝜋𝑓, 𝑓 is the frequency) is the angular frequency of the 

sinusoidal potential perturbation, and θ is the phase difference (phase angle, phase shift) 

between the potential and current. The impedance (𝑍) is defined using Equation 2.4, 

where 𝑍′and 𝑍′′are the real and imaginary components of Z, respectively, and i = (−1)1/2. 

 𝑍 =  
𝐸(𝑡)

𝐼(𝑡)
=  𝑍′ + i𝑍′′ (2.4) 

Impedance data can be plotted with the imaginary impedance (𝑍′′) versus the real 

impedance (𝑍′) at each sampled frequency giving a complex plot or the Nyquist plot, or 

the data may be plotted as the logarithm of the total impedance, |Z|, and the phase angle, θ, 

versus the logarithm of the frequency, giving a Bode plot. Typical Nyquist and Bode plots 

are shown in Figure 2.6. Once collected, the impedance data are usually fitted to 

equivalent circuits. The aim in fitting the experimental data to an equivalent circuit is to 

mimic the impedance response, where each circuit element is selected to correspond to a 

real physical component in the electrochemical cell. 

(A) Complex plot (B) Bode plot 

 

 

 

 

Figure 2.6: The impedance response of a typical polypyrrole film (A) complex plot or “Nyquist” 

plot and (B) the Bode plot. 
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The Zview software was used to fit the experimental data to equivalent electrical models. 

Initial estimates of the required parameters were obtained and then refined using a non-

linear least square iterative process to improve the fit for the experimental data, the 

number of iterations was 100. Representative equivalent circuit model used in this study 

are presented in Figure 2.7. The two main circuit elements used were resistors and 

constant phase elements. The Zview software computes values for each component and 

estimates the error and % error by testing several solutions close to the best fit value by 

determining how much the value must change before the goodness of fit begins to 

decrease.  

A 

 

B 

 

C 

 

 

Figure 2.7: Electrical equivalent circuit model, where Rs is the solution resistance, CPEHF is the 

constant phase element used at high frequency, Rct is the charge-transfer resistance and the 

CPELF is the constant phase element at low frequency. 

Rs CPE1

R1

CPE2

R2 CPE3

Element Freedom Value Error Error %

Rs Free(+) 12.05 0.064727 0.53715

CPE1-T Free(+) 0.0014786 8.6489E-05 5.8494

CPE1-P Free(+) 0.63115 0.0092909 1.4721

R1 Free(+) 27.17 0.75692 2.7859

CPE2-T Free(+) 0.0030513 1.0649E-05 0.349

CPE2-P Free(+) 0.74372 0.002375 0.31934

R2 Free(+) 11873 445.74 3.7542

CPE3-T Fixed(X) 0 N/A N/A

CPE3-P Fixed(X) 1 N/A N/A

Chi-Squared: 0.0004954

Weighted Sum of Squares: 0.059943

Data File: C:\Users\emer\Documents\Emer PhD\PhD Year 4\Drug Release\Methyl Orange\EIS\PM 0.1 V\ppymo01van4.z

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\2 CPE 2 R.mdl

Mode: Run Fitting / Selected Points (0 - 63)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Rs CPE1

Rct CPE2

Element Freedom Value Error Error %

Rs Free(+) 95.15 N/A N/A

CPE1-T Free(+) 0.0037039 N/A N/A

CPE1-P Free(+) 0.77115 N/A N/A

Rct Free(+) 104 N/A N/A

CPE2-T Free(+) 0.010208 N/A N/A

CPE2-P Free(+) 1.024 N/A N/A

Data File:

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\3 CPE R R.mdl

Mode: Run Fitting / Selected Points (0 - 0)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Rs CPE1

R1

CPE2

R2 CPE3

Element Freedom Value Error Error %

Rs Free(+) 12.05 0.064727 0.53715

CPE1-T Free(+) 0.0014786 8.6489E-05 5.8494

CPE1-P Free(+) 0.63115 0.0092909 1.4721

R1 Free(+) 27.17 0.75692 2.7859

CPE2-T Free(+) 0.0030513 1.0649E-05 0.349

CPE2-P Free(+) 0.74372 0.002375 0.31934

R2 Free(+) 11873 445.74 3.7542

CPE3-T Fixed(X) 0 N/A N/A

CPE3-P Fixed(X) 1 N/A N/A

Chi-Squared: 0.0004954

Weighted Sum of Squares: 0.059943

Data File: C:\Users\emer\Documents\Emer PhD\PhD Year 4\Drug Release\Methyl Orange\EIS\PM 0.1 V\ppymo01van4.z

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\2 CPE 2 R.mdl

Mode: Run Fitting / Selected Points (0 - 63)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

  

 

  RS                  CPE               

      R 

RS            CPEHF                     

      RHF            CPELF                    

 

       RS                CPEHF                    CPEMF 

RHF                     RMF                 CPELF 
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The sum of squares (SS), sum of the squared deviations, and chi-squared (χ2) values were 

used to test whether the data were well described by the hypothesised function, i.e., it 

determines the goodness of fit. These important statistics are presented in the data tables 

of parameters for the circuit elements evaluated by fitting the impedance data to suitable 

equivalent circuits. As the system becomes more complex further circuit elements are 

added, and as a result the % error increases. For more complicated models a 10 % error 

was acceptable if the sum of squares < 1.0, however for simpler circuits, the error were 

less than 5 %.  

A resistor has no imaginary component therefore its magnitude is equal to the impedance 

of the system. Constant phase elements (CPE) define the inhomogeneity of the surface in 

EIS experiments and are often used to determine the capacitance of the interface17. A CPE 

has two parameters: T, an actual value, and α which is an exponent, as shown in Equation 

2.5, where 𝜔 is the angular frequency.  

 
1

𝑍
 = 𝑌 = T(i𝜔)𝛼 (2.5) 

The magnitude of the exponent gives information on the nature of the physical 

processes18. For α = 1.0, the CPE behaves as a capacitor, when α = 0 the CPE behaves as 

a resistor, when α = 0.5 diffusion processes are evident and for α = −1.0, the CPE behaves 

as an inductor. When α = 1.0, T has units of capacitance, F cm-2. When α ≠ 1.0, T has 

units of Ω-1 cm-2 sα. When determining interfacial or double layer capacitance at high 

frequency (CHF) it is incorrect to equate the CPE1-T as capacitance. Hsu and Mansfeld19 

proposed the use of Equation 2.6 for the correction of capacity to its real value when the 

CPE and R are parallel. 

 CHF = THF(𝜔”max)
𝛼−1 

(2.6) 

Jovic et al.20 concluded that only in the case of a CPE and R parallel connection is 

Equation 2.6 valid. Huang et al.21, 22 developed Equation 2.7 which is an adaption from 
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the relationship used by Brug et al.23 between the CPE1-T parameter and interfacial 

capacitance for a CPE and R in series.  

 corrected CHF = T𝐻𝐹
(1 𝛼)⁄  (

𝑅𝑠𝑅𝑇

𝑅𝑠 + 𝑅𝑇
)
1 𝛼⁄

 (2.7) 

According to Orazem and Tribollet24 Equation 2.7 is the most accurate for a disc electrode 

exhibiting faradaic behaviour and so it was used in this work to calculate the double layer 

capacitance at high frequency, CHF.  

The low frequency capacitance which is related to the charge storage in the film25-27, was 

estimated from the Bode plot. The data were normalised to the surface area and the 

solution resistance was found from the fitting. The solution resistance was then subtracted 

from the transmission line and an estimate of the capacitance was obtained from the Bode 

plot, where |Z| is plotted against the logarithm of frequency in radians. The estimated 

capacitance at low frequency was calculated using the expression in Equation 2.8 where 

𝜔 is the frequency and |Z| is the y-intercept at 𝜔 = 1 (log (𝜔) = 0).  

 |𝑍| =
1

𝜔𝐶
 (2.8) 

 

At low frequency the magnitude of the impedance |Z| changes linearly with the reciprocal 

of the angular frequency and thus the capacitance, CLF, can be estimated directly from the 

Bode plot (CLF = 1/slope). The calculation for determining CLF is independent of film 

thickness28, 29. The circuit element RHF represents resistance, or charge-transfer resistance, 

at high frequency which contains contributions from the electronic and ionic resistance30, 

shown in equation 2.9. The total resistance, RT, was computed using the expression in 

Equation 2.10 for resistors in series31.  

 RHF =  𝑅𝑒  +  𝑅𝑖 (2.9) 
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 RT = RHF  + RMF                (2.10) 

 

This resistance was then used to calculate the conductivity31, σT, as shown in Equation 

2.11, where d is the nominal thickness of the dry film.  

 σT = 
1

R𝑇
 ×  

𝑑

𝐴
 (2.11) 

 

2.4.5 Electrochemical quartz crystal microbalance (EQCM) 

EQCM is an acoustic wave microsensor that is capable of ultrasensitive mass 

measurements32. Under favourable conditions, a typical QCM can measure a mass change 

of 0.1 to 1.0 ng. This technique was utilised to obtain additional information on the 

polypyrrole films with chitosan and secondly to obtain the doping levels of oxacillin 

within the polypyrrole film. All EQCM experiments were carried out on a Chi440 EQCM 

and the equipment consisted of a quartz crystal oscillator, a potentiostat with a frequency 

counter and a computer. A schematic diagram, indicating the various components of the 

EQCM set‐up, is shown in Figure 2.8. The polymers were deposited onto polished Au 

quartz crystal electrodes (Cambria Scientific) with an exposed surface area of 0.20 cm2. 

The electrochemical cell consisted of a specially made PTFE holder in which the crystal 

was placed between two O-rings. The PTFE cell was assembled by carefully screwing 

the PTFE holder and PTFE cell body together. 
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Figure 2.8:  Schematic representation of a typical EQCM instrument. The top view of the EQCM-

crystal is also shown33. 

During each experiment only one side of the metal electrode surfaces is in contact with 

the electrolyte. The quartz crystal is supported by two wires, one to carry current to the 

gold layer and the other to allow for crystal vibration and to record the frequency. The 

set-up is completed using a platinum wire counter electrode and a custom made Ag|AgCl 

reference electrode. In EQCM measurements, the frequency of the oscillating quartz 

crystal is monitored. Changes in the frequency are observed as the mass of the crystal 

changes34. The changes in frequency are related to the changes in mass through the 

Sauerbrey equation35, which is given as Equation 2.12.  

 ∆𝑓 =  𝑓𝑐  – 𝑓𝑜  =  − 
2𝑓𝑜

2∆𝑚

𝐴(𝜌𝑞𝜇𝑞)
1 2⁄
 =  −𝐶𝑓∆𝑚 

(2.12) 

 

Here, 𝑓𝑜  is the resonant frequency,  ∆𝑚  is the mass change, 𝐴 is the acoustically active 

area of the electrode, 0.203 cm2, 𝜌𝑞 is the density of the quartz, 2.648 g cm-3, and 𝜇𝑞 is 

the shear modulus of the quartz, 2.947 x 1011 g cm-1 s-2. In this equation the change of 

resonant frequency (∆𝑓) is related to the change in mass (∆𝑚) per unit area (𝐴) times a 

constant. The frequency, therefore, decreases as the mass increases. The frequency is also 

sensitive to changes in the viscosity of the film and the Sauerbrey equation is only valid 

for rigid thin layers36. As a general rule, the equation is valid provided that the mass 

oscillator 

crystal 

WE 

RE 
CE 

PTFE holder 

PTFE cell body 

PTFE lid 
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change, ∆𝑚, is less than 1 % of the mass of the quartz crystal. It does not take into account 

solvent participation and it also assumes the current efficiency for the 

electropolymerisation of the monomer is 100 %10. The EQCM allows the simultaneous 

recording of the current-potential and mass changes at the AT-cut quartz crystal electrode. 

The technique can be used to measure the mass-to-charge ratio of electrodeposited 

materials and compare it to theoretical values in order to identify their nature. The 

potentiostatic deposition of a generic compound can be outlined as follows: 

Aaq + Baq + ne–  Cs E = const. 

The average mass-to-charge ratio R for the electrodeposition of C is given by Equation 

2.13 a derivation of Faraday’s law, to estimate the doping levels of anions in 

polypyrrole37. 

 𝑅 =  
∆𝑚𝐶
|𝑄𝐶|

=  ±
𝑀(𝐶)

𝑛𝐹
 

 (2.13) 

Here, ΔmC and 𝑄𝐶  are the experimental mass and charge of deposition calculated from 

the frequency change and the time integral of the current, respectively. The ratio R is 

simply the deposited mass per unit of charge (g C-1), and it corresponds to the ratio of the 

molar mass of the deposit, 𝑀(𝐶), and the charge consumed per mole of it, nF. The 

absolute value of 𝑄𝐶 is used in order to obtain R > 0 for increasing mass (ΔmC > 0) and R 

< 0 for decreasing mass (ΔmC < 0) for both oxidation (𝑄𝐶 > 0) and reduction (𝑄𝐶 < 0) 

processes11. 

 

2.4.6 Scanning electron microscopy (SEM) with energy dispersive X-Ray (EDX) 

Analysis 

The morphology of the materials was analysed using scanning electron microscopy. 

Scanning electron microscopy (SEM) produces high resolution micrographs of a surface. 

SEM micrographs appear as 3-D images and are therefore useful for analysing the surface 

structure of the sample. The primary electrons coming from the source strike the surface 

of the sample to generate different types of signals categorised by elastic or inelastic 



Chapter 2 

 

 

 

68 

 

  

interactions38, as shown in Figure 2.9. The elastic scattering results from the deflection of 

incident electrons by atomic nuclei or shell electrons with similar energy. This, in turns, 

results in backscattered electrons (BSE) with negligible energy loss and scattering angles 

larger than 90. The inelastic scattering results from interactions of the incident electrons 

with the nuclei and core electrons of the material, and generates signals with substantial 

energy loss. Auger electrons and X-Ray emissions belong to this group. The incident 

beam has a characteristic penetration volume in the sample and each signal originates 

from a different part of the sample. The BSE electrons have sufficient energy (E  50 eV) 

to emerge from underneath the sample surface. Images generated from BSE electrons are 

characterised by Z contrast, with the brightness of the elements proportional to the atomic 

number (Z) as the backscattering yield increases with increasing Z. The resolution of 

these images is of the order of 1 μm because of the high energy of the BSE electrons. The 

secondary electrons, SE, have lower energy (E < 50 eV) and consequently give 

topographical information of the sample surface. The low energy of SE electrons allows 

a resolution of about 100 nm39. 

 

Figure 2.9: Schematic representation of the electron-material interaction in scanning electron 

microscopy (SEM)11.  

Auger electrons are emitted from atoms ionised by the incident electron beam and their 

energy is characteristic of the elements. The characteristic X-Ray signal is used to 

perform the chemical microanalysis of the sample surface. This technique is called energy 

dispersive X-Ray (EDX) analysis. Energy dispersive X-Ray analysis (EDX) is routinely 

carried out in combination with SEM. EDX allows the micro-elemental analysis of the 

top few micrometers of the sample. X-Ray signals are generated when the high-energy 
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electron beam hits the sample surface. A characteristic X-Ray signal is produced from the 

interaction of a beam electron with an inner shell electron of the sample. The inner 

electron is ejected and replaced by an outer shell electron. This process gives rise to the 

emission of X-Rays with energies corresponding to the energy separation of the levels 

involved in the electronic transition. Since each element has its characteristic orbital 

energies, the X-Rays emitted by the sample are related to its chemical composition. An 

X-Ray continuum is also generated by the deceleration of the beam electrons which gives 

the broad background signal present in all EDX spectra. This background has much lower 

intensity than the elemental peaks and does not represent an issue in the qualitative 

analysis of the samples. The transitions involved in the characteristic X-ray emission are 

labelled after the K, L, M, N electronic shells. The EDX lines are also named α, β or γ 

depending on which outer shell electrons make the transition to fill the electron vacancy. 

Transitions of electrons immediately after the emptied level are α, the following level are 

β and γ in order of increasing energy. An EDX spectrum consists of a series of peaks at a 

specific energy depending on the chemical element and with intensity proportional to the 

number of counts. The number of counts is proportional to both the amount of chemical 

element in the sample and to the energy carried by the associated X-Ray signal. The 

resolution of the EDX probe is given by the size of the volume of interaction of the 

electron beam with the sample. The size is usually a few microns. The interaction of the 

BSE electrons with the surrounding zones of the probed point (the beam spot) can cause 

the emission of X-Rays that add up to the signal belonging to the point of analysis, as 

shown in Figure 2.10. The extent of such interference is a major limitation that affects the 

quantitative analysis39. A quantitative EDX analysis is practicable only with high-quality 

flat-polished sample surfaces, and it must be performed against a known standard 

prepared and analysed in the same way. Quantitative analysis is possible by comparison 

of relative peak heights of the sample and a standard of known composition measured 

under the same conditions, however various correction factors due to matrix effects must 

be taken into account in order to obtain reliable data.  
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Figure 2.10: Schematic illustration of the effect of the surface roughness on the detection of the X-

Ray signal11.  

 

A Hitachi S-3200-N microscope equipped with an Oxford Instrument INCAx-act EDX 

system was used to analyse the composite materials. Most of the films were too thin to 

remove from the electrode surface without compromising the integrity of the material, so 

it was necessary to customise disc electrodes. The customised electrodes had a short shaft 

modified with threads and an adaptable aluminium sample holder was made with 

compatible threads so that the electrode easily screwed into it. In order to achieve high 

resolution micrographs the samples were sputter coated with a thin film of gold (1.5 nm) 

with an AGAR Automatic Sputter Coater coupled to an AGAR Terminating Film 

Thickness Monitor unit.  

 

2.4.7 Differential scanning calorimetry (DSC) 

A PerkinElmer Pyris 6.0 DSC controlled by Pyris Data software was used to measure and 

to record the thermal properties and heat capacity (𝐶𝑝) of the polymer films. The 

temperature range studied in this work was between 20 and 450 ˚C. A heating rate of 2 

˚C min-1 was used and all samples were maintained under nitrogen during the analysis.  

DSC is a thermoanalytical technique that compares the difference in the amount of heat 

(∆𝑞) required to increase the temperature of a sample and a reference (∆𝑇), with a well-

defined heat capacity, measured as a function of temperature, Equation 2.14.  
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 (𝐶𝑝) =  
∆𝑞

∆𝑇
 (2.14) 

A typical set-up is shown in Figure 2.11. A 1 mg of the sample was weighed and 

hermetically sealed in aluminium pans and both the sample and reference were 

maintained at the same temperature throughout the experiment. When the sample 

undergoes a physical transformation, such as a phase transition or thermal decomposition, 

heat must flow to or from the sample and this depends on whether the process is 

exothermic or endothermic. The difference in heat flow between the sample and reference 

also delivers the quantitative amount of energy absorbed or released during the 

transitions. This information can be obtained by integrating the endothermic and 

exothermic peaks.  

 

Figure 2.11: Schematic diagram of a DSC.  

 

2.4.8 Fourier transform infrared spectroscopy (FT-IR) 

Infrared spectroscopy is used for structural analysis as the functional group bands appear 

in the same range regardless of the molecular structure of the compound. The bands 

recorded in the low frequency region or the “fingerprint region”, from 700 to 1500 cm-1, 
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result from combined bending and stretching motions of the atoms and are unique for 

each compound. A PerkinElmer 2000 FT-IR model driven by Spectrum™ software was 

used to record the FT-IR data. All samples were prepared as potassium bromide pellets 

and were scanned between 4000 and 450 cm−1, using an average of 8 scans and 4 cm−1 

resolution. The spectra were compared to a background which was recorded of the air and 

under the same measurement conditions.  

 

2.4.9 Ultra violet visible spectroscopy (UV-Vis) 

UV‐visible spectroscopy measures the amount of ultraviolet and visible light transmitted 

or absorbed by a sample placed in a spectrometer. The wavelength at which a chemical 

absorbs light is a function of its electronic structure and the intensity of the light 

absorption is related to the amount of the chemical species between the light source and 

the detector. In addition, UV‐visible spectra can be used to identify some chemical 

species. A Varian Cary® 50 UV-Visible spectrometer controlled by Cary WinUV was 

used to record the UV-visible data. This spectrometer has a Xenon lamp and a maximum 

scan rate of 24 000 nm min-1. The scan mode was used to identify the maximum 

absorption (λmax) and measure the amount of the dopant species released from the 

polymer films. The spectrum was scanned between 600 and 300 nm for methyl orange 

and between 400 and 200 nm for oxacillin, as the λmax values vary with the nature of the 

drugs, Table 2.2. The spectra were collected and analysed to calculate the amount of drug 

released upon application of a reduction potential or at the open‐circuit potential. A quartz 

cuvette with a diameter of 1 cm was used for oxacillin and dexamethasone, while plastic 

disposable cuvettes were used for methyl orange detection. The amount of dopant 

released was determined by measuring the absorbance at the wavelength of maximum 

absorption (λmax) for the drug in question and applying the Beer‐Lambert law40, 

Equation 2.15.  

 𝐴 = log10 (
𝑃𝜆
0

𝑃𝜆
) =  𝜀𝑐𝑙 

(2.15) 
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Here, 𝐴 is the absorbance, 𝑃𝜆
0 is the power of incident radiation, 𝑃𝜆 is the power of 

transmitted radiation, ε is the molar absorption coefficient, l is the path length and 𝑐 is the 

concentration of the compound in solution. Calibration curves were generated for each 

drug. The slope was calculated from the linear relationship between the concentration and 

the absorbance. 

Table 2.2: Summary of the λmax values for the drug.  

Compound λmax (nm) 

Methyl Orange 465 

Oxacillin 205 

 

2.4.10 Adhesion tests of the polymer coatings  

The adhesion of polypyrrole to a metal substrate is vital to its application as a biomaterial 

particularly where good electrical contact is necessary for stimulated drug delivery. A 

simple qualitative peel test was used to determine the adhesive properties of the polymers 

on the metal substrate. This peel-test, described by Idla et al.41, involves the application 

of a clear pressure sensitive tape (sellotape™) to the polymer and rapidly peeling it away. 

If the coating remains intact it is considered adhesive while it is considered non-adhesive 

if the coating delaminates partially or wholly.  

2.4.11 Wettability test of polymer coatings 

The wettability (hydrophilicity) of a surface can be determined with the use of contact 

angel measurements with deionised water, the lower the contact angel, the more wettable 

(hydrophilic) the surface42. Contact angle measurements were made using the sessile drop 

technique analysed with the goniometer method using the FTA 1000 software package. 

A drop of deionised water is applied on the samples. The software uses the contrast 

between the light and dark regions to calculate the contact angel of the droplet.  



Chapter 2 

 

 

 

74 

 

  

2.4.12 Data-handling and statistics 

The data acquired from the experimental techniques are automatically stored as either 

binary files (.bin) or ASCII text files (.txt) so it was necessary to manually translate the 

data files into excel files (.xls) for mathematical and statistical analysis. The standard 

error bars are expressed in absolute units of measurement, represented by the standard 

error of the mean (𝑆𝐸𝑥̅), i.e., standard deviation (𝑠) divided by the square root of the 

sample size (𝑛), as shown in Equation 2.16.  

 𝑆𝐸𝑥̅ = 
𝑠

√𝑛
  

(2.16) 

 

Percent standard errors are expressed as a relative measured values 𝑆𝐸𝑥̅(%), where 𝑥̅ is 

the mean (Equation 2.17).  

 𝑆𝐸𝑥̅(%) =  
𝑆𝐸𝑥̅
𝑥̅
 × 100 %  (2.17) 

 

All experiments were carried out in triplicate unless otherwise stated. 
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3. Electrochemical synthesis and characterisation of 

polypyrrole chloride (PpyCl)/chitosan composite films 

 

 

3.1 Introduction 

Incorporating a natural bioactive material with a synthetic, semi-conducting material is a 

well-documented strategy for optimising the biological activity in biomedical materials1. 

In this chapter, films consisting of a blend of chitosan and polypyrrole were prepared and 

characterised for their electrical and physical properties. This chapter serves as a baseline 

study of a polypyrrole-chitosan composite film. Polypyrrole-chitosan composite films 

were prepared in two ways. The initial goal was to prepare polypyrrole (Ppy) in the 

presence of chitosan and this was successfully achieved. However, when the inclusion of 

larger anionic species (A) was investigated (results are presented and discussed in the 

proceeding chapters) it was found that the PpyA would not grow. A decision was made 

to grow the PpyA in the absence of chitosan and apply a layer of chitosan at the PpyA 

interface, post-electropolymerisation. This method has some advantages but the main 

drawback is the adhesion properties of the composite formed. Most of this chapter is 

devoted to polypyrrole grown in the presence of chitosan and herein will be denoted as 

Chit/PpyCl, while the rest of the thesis is devoted to PpyA (were A is the dopant) with 

chitosan added post electropolymerisation and will be denoted by PpyA/Chit.  

Polypyrrole is one of the most extensively studied conducting polymers2. The intense 

focus on polypyrrole is due to its easy synthesis, either through the chemical or 

electrochemical oxidation of its monomer (pyrrole), compatibility in aqueous systems, its 

commercial availability and intrinsic properties such as good redox properties, high 

electrical conductivity and good environmental stability3. Polypyrrole has several 

potential applications including batteries4, electrochemical sensors5, conductive textiles 

and fabrics6, electromagnetic interference (EMI) shielding7, anti-corrosion coatings8-10, 

mechanical actuators11 and drug delivery12. However, like other conducting polymers, 

polypyrrole itself cannot be easily fabricated as a thin film with good mechanical 
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properties. Polypyrrole blended with other polymers can overcome these practical 

limitations13, 14. Recently, blends of conducting polymers and hydrogels have received 

much attention, where these two materials have been integrated and investigated for 

biomedical applications, such as biosensors15, 16 and drug delivery17, 18.  

Chitosan is a polysaccharide made up of β-(1→4)-linked N-acetyl-D-glucosamine and D-

glucosamine units (Section 1.5, Figure 1.8), it is commercially produced from the 

deacetylation of chitin, the main component of the exoskeleton of crustacean shells, such 

as shrimp19. Chitosan is normally insoluble in aqueous solution above pH 7.0, however, 

in dilute acids (pH < 6.0) it becomes soluble20. It can be cast into films which possess 

hydrogel properties and for this reason it has a wide range of applications, such as 

wastewater treatment21, separation membranes22, food packaging23, wound healing and 

drug delivery24. The use of chitosan in drug delivery has received much attention as it is 

a commercially available pharmaceutical excipient due to its biocompatibility25. Chitosan 

itself is not sufficient to induce healing properties and is usually blended as a component 

with polyethylene glycol26 or polyglutamic acid27. 

Although polypyrrole has emerged as a promising material with substantial potential for 

biomedical applications28 and as a drug delivery system12, few of these studies have 

investigated the ion (biological molecules and drugs) transport within the polypyrrole 

blended with hydrogel. Even in an unstimulated (absence of an electrical stimulus) 

environment, polypyrrole can naturally auto undoped29, i.e., the release of anions to 

maintain charge neutrality. 

The first documented polypyrrole-chitosan composite was published by Hitoshi et al.30 

in 1992. They prepared the composite by oxidative chemical polymerisation in the 

presence of ferric p-toluene sulfonated trihydrate (I) and chitosan. They proposed that the 

composite could be widely used, particularly as a support material for enzyme 

immobilisation in biosensors. To date there have been some publications on these 

composites, usually in the presence of an additional component such as silver 

nanoparticles31, poly(DL-lactide)32 and silica33. As mentioned previously in Section 1.6, 

most of these reported composites are produced chemically. In this study, the composite 

was formed electrochemically as films, using a facile fabrication technique with 
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reproducible results and a comprehensive study of its electrochemical behaviour. In a 

more recent publication by Yalҫinkaya et al.34, the composite was formed 

electrochemically from an electrosynthesis solution containing chitosan, oxalic acid and 

pyrrole and applying a sweeping potential technique. Although a preliminary 

electrochemical evaluation of the composite was presented using cyclic voltammetry, it 

was difficult to discern redox peaks in the electrochemical data. However, the composite 

was well characterised using FT-IR and DSC, which is relevant to the work presented in 

this chapter.  

In-situ electropolymerisation of pyrrole has advantages over chemical polymerisation 

particularly for the immobilisation of biological species, such as neurotrophins35, 

hyaluronic acid36, enzymes37 (urease and glutamate dehydrogenases) and laminin peptide 

sequences38. For example, Haung et al.39 combined a degradable variation of a 

polypyrrole-chitosan composite seeded with schwann cells to promote nerve cell 

adhesion and proliferation with and without an electrical stimuli. 

This chapter presents the electrochemical synthesis and characterisation of a polypyrrole 

chitosan composite using chloride as a dopant. Chloride is a suitable anion because it is 

the most abundant physiological anion and is not cytotoxic to cells. Fonner et al.40 studied 

cell growth viability on Ppy films and found that thick films of polypyrrole doped with 

chloride performed better than films doped with ToS and PSS. The sequential steps 

involved in the synthesis of the chitosan-polypyrrole composite are summarised in Figure 

3.1. The steps vary from casting the chitosan film, curing the film under an IR lamp to 

the electropolymerisation of pyrrole. The sequence of steps varies with the formation of 

Chit/PpyCl or PpyCl/Chit. The results of an impedance study (EIS) are also presented 

and analysed using appropriate circuit models. On extensive literature review no 

references were found to contain discussions on the electrochemical properties of 

polypyrrole and chitosan composites using EIS, however, there are numerous reports on 

the electrochemical properties of polypyrrole with other polymeric materials16, 17, 41-45. As 

an example, Aylward et al.46 have analysed the anion and cation transport in composite 

films of polypyrrole with a sulfonated silica (ormosil) hydrogel. 
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Figure 3.1: Sequential steps in the synthesis of Chit/PpyCl and PpyCl/Chit. Both synthetic routes 

yield a conducting composite. 

 

3.2 Experimental  

 

All electrochemical experiments were carried out with a conventional three-electrode cell 

at room temperature (23  ± 2 ºC) at atmospheric conditions. All potentials were measured 
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and are quoted with respect to a saturated calomel reference electrode (SCE). The 

working electrode was a platinum disc electrode (0.13 cm2) and the counter electrode was 

platinum wire (≫ 0.13 cm2).  Potentiostatic experiments and cyclic voltammetry 

measurements were carried out on a Solartron 1287. The experiments were controlled by 

CorrWare and the data were analysed with CorrView. Electrochemical impedance 

measurements were carried out with a frequency response analyser (FRA), Solartron 1250 

or Solartron 1255B, coupled to a Solartron 1287 electrochemical interface. The 

experiments were controlled by Zplot and the data were analysed with ZView. All 

instrumentation, software and materials employed were described in Section 2.2.1 and 

2.2.2, and the chemicals used were discussed in Section 2.3.1. The wettability tests were 

performed at the Institute of Technology Tallaght (ITT).  

 

3.3 Results and discussion 

 

3.3.1 Redox stability of a chitosan coated electrode 

Cyclic voltammetry was used to gain information on the stability of a chitosan coated Pt 

electrode (Chit/Pt). The experiments were carried out on a bare Pt electrode and a chitosan 

coated Pt electrode by cycling the potential between –1.20 V and 1.00 V vs SCE at a scan 

rate of 50 mV s-1 in 0.1 mol dm-3 NaCl. Typical cyclic voltammograms are shown in 

Figure 3.2 for bare Pt and Chit/Pt. It is clear that both display similar redox properties 

which are dominated by H+ adsorption and H2(g) evolution between approximately –0.90 

V and –1.20 V vs SCE. This indicates that the electrochemistry of the bare Pt is 

dominant47. Interestingly, the small peak centred at –0.45 V vs SCE for the Pt electrode 

is not evident for the Chit/Pt, which suggests that the chitosan film is stable following 20 

cycles in the NaCl solution. 
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Figure 3.2: Cyclic voltammograms of a chitosan coated Pt electrode (20th cycle), the dashed trace 

corresponds to the bare Pt electrode in 0.1 mol dm-3 NaCl at 50 mV s-1. 

 

3.3.2 Electrochemical synthesis of the chitosan-polypyrrole chloride (Chit/ PpyCl) 

film 

During electrosynthesis of Chit/PpyCl, chloride was incorporated into the polymer film 

as an anionic dopant. Initial synthesis of Chit/PpyCl was carried out by cyclic 

voltammetry (data not shown). Pyrrole was found to oxidise at 0.65 V vs SCE with 

subsequent cycles resulting in an increase in the current indicating that the electroactive 

polymer was deposited. However, the films produced were uneven and lacked 

reproducibility and this method was not employed. Galvanostatic growth has been used 

to prepare conducting polymer films doped with hydrogels48. However, in this study all 

polymer films were synthesised by potentiostatic growth at a constant potential of 0.80 V 

vs SCE, as described in Section 2.4.1. This approach gave rise to highly reproducibility 

growth conditions. 

The 0.5 % (w/v) of chitosan dissolved in 2.0 mol dm-3 acetic acid solution was cast on to 

the Pt electrode and was cured under an IR lamp for 10 min and let cool for a further 10 
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min, as illustrated in Figure 3.1. The chitosan coated Pt electrode was immersed in the 

electrolyte for 60 min prior to electropolymerisation. As shown in Figure 3.3, where data 

are presented for the formation of PpyCl and Chit/PpyCl, the electropolymerisation of 

pyrrole (Py) is fast. The current-time profiles for PpyCl and Chit/PpyCl grow to a charge 

density of 2.2 C cm-2 are shown in Figure 3.3 A, these growth profiles are typical of 

pyrrole electropolymerisation, both current-time plots show an initial increase in the 

current due to the nucleation of the polymer and a current plateau indicating further film 

growth49. Although not evident in the current-time plots presented in Figure 3.3 A, on 

application of the potential there is an initial rapid decrease in the current, which arises 

from the charging of the double layer50. This charging current decays rapidly and is 

followed by the nucleation of the polymer and a rising current transient, resulting from 

the increasing area available for the electrochemical reaction, as conducting polypyrrole 

is deposited on the electrode surface50. The charge-time plots, presented in Figure 3.3 B, 

show a linear relationship between the charge and the electropolymerisation rate, 

indicating that the formation of both the conducting polymers films is successful and the 

polymers are deposited on the electrode surface47, 51. A high degree of reproducibility was 

achieved using this approach, both the current and charges recorded were essentially 

identical.  

Although the profiles presented in Figure 3.3 are similar for the PpyCl and Chit/PpyCl, a 

slightly lower rate of electropolymerisation is evident during the first 5 to 10 s for the 

Chit/PpyCl film, which corresponds to the nucleation of the film on the electrode 

substrate52. During the first 10 s the PpyCl grows rapidly, indicating efficient 

electropolymerisation. Although the rate of electroploymerisation is somewhat slower for 

the Chit/PpyCl film, both systems achieve similar current densities after about 50 s, 

indicating a faster rate of polypyrrole chain propagation within the hydrogel, after the 

initial nucleation period. Brahim et al.16 reported a similar phenomena within a poly(2-

hydroxyethyl methacrylate) hydrogel network and proposed that this is due to the 

manifestation of localised availability of pyrrole monomers within the swollen hydrogel 

network, which influence the initial oxidation and coupling of  polaronic species near the 
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electrode surface. Qualitatively, on visual inspection of the films, the PpyCl films appear 

as a shiny black film in contrast to the Chit/PpyCl which appears as a dull black film.  

 

A B 

  

Figure 3.3: Current-time plots (A) and charge-time plots (B) for the growth of polypyrrole chloride 

(···· PpyCl) and chitosan/polypyrrole chloride (― Chit/PpyCl). The films were prepared by 

potentiostatic electropolymerisation at 0.80 V vs SCE for 300 s yielding a charge density of 2.20 C 

cm-2 from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl. 

3.3.2.1 Influence of chitosan volume 

The optimum volume of chitosan solution cast on the Pt electrode depends on the 

electroactive surface area of the electrode (0.13 cm2). A higher wet volume yields a higher 

dry volume or, more specifically, a higher hydrated volume during the immersion step. 

The pyrrole monomer and anions have to diffuse through the hydrated chitosan film to 

the surface electrode where the electropolymerisation takes place; the higher the volume 

of chitosan the longer it will take to hydrate and the further the distance the monomer and 

anions have to diffuse through. Optimum volume, in this case, is considered to be the 

volume at which the PpyCl forms in the presence of chitosan to the same charge density 

and duration that PpyCl requires in the absence of chitosan (2.2 C cm-2). The chitosan 

solution was cast on to the Pt electrode and was cured under an IR lamp for 10 min and 

let cool for a further 10 min. The chitosan coated Pt electrode was immersed in the 

electrolyte for 60 min prior to electropolymerisation. The influence of the volume of 
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chitosan is evident on comparing the current-time plots presented in Figure 3.4. There 

was no current increase for a volume of 30 μL indicating that no polymer was deposited 

(volumes > 30 μL overflowed onto the epoxy casing). Indeed, there was no evidence of 

any polymer on the surface after the experiment. At a volume of 20 μL there was evidence 

of electropolymerisation and the optimum charge density was obtained but the duration 

of potentiostatic growth was in excess of 15 min. Exposing the PpyCl component of the 

composite to a high potential of 0.80 V vs SCE for long periods of time subjects the 

material to a risk of irreversible over-oxidation53, resulting in an undesirable insulating 

material. A volume of 10 μL was sufficient to obtain reproducible PpyCl films with an 

optimum charge density of 2.2 C cm-2 in 300 s. 

 

Figure 3.4: Current-time of PpyCl grown on a 0.13 cm2 Pt electrode coated with various volumes of 

5 % (w/v) chitosan (30 ־ ־ ־ μL), (···· 20 μL) and (― 10 μL). The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE in 0.1 mol dm-3 Py 0.1 mol dm-3 NaCl. 

 

3.3.2.2 Influence of immersion time 

The optimum duration for which the chitosan coated Pt electrode needed to be immersed 

in the monomer and electrolyte solution was investigated at 10 min intervals. These 

microfabrication processes are a very fast and facile way of blending polymers, ideally 

additional steps such as solution casting and curing should not add too much time to the 
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full process and they should be very reproducible. The immersion step is necessary to 

allow the dry chitosan film to hydrate. Optimum duration is considered to be the 

immersion time required to give the same charge density (2.2 C cm-2) and duration for 

the formation of PpyCl in the absence and presence of chitosan. Representative data are 

presented in Figure 3.5, where it is clear that after 20 min of immersion, the growth profile 

is very similar to the data recorded for the PpyCl film in the absence of chitosan, Figure 

3.3. At 0 min immersion, the current increases indicating some deposition, but there was 

no polymer on the electrode when visually inspected. At 10 min there was some polymer 

visible, and some attempts yielded the optimum charge density and the optimum growth 

time but these results did not have satisfactory reproducibility. An immersion time of 20 

min was found to be the optimum immersion time for the chitosan on the Pt electrode to 

swell in the electrolyte allowing the monomer and dopant to penetrate the chitosan layer.  

 

 

Figure 3.5: Current-time plots of PpyCl grown on a 0.13 cm2 Pt electrode coated with 10 μL of 5 % 

(w/v) chitosan immersed in the monomer electrolyte prior to electropolymerisation (0 ־ ־ ־ min),   (···· 

10 min) and (― 20 min). The films were prepared by potentiostatic electropolymerisation at 0.80 V 

vs SCE in 0.1 mol dm-3 Py 0.1 mol dm-3 NaCl. 
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3.3.3 Characterisation of the composite 

For the FT-IR and DSC characterisation techniques a stock of a representative sample 

was collected by carrying out numerous electrosynthesis experiments and carefully 

scraping the products away from the electrode surface with a scalpel. During the 

collection of the sample some of the polymer films stick to the blade and glass collection 

vial due to high surface energies presumably caused by the excess energy at the surface 

following electropolymerisation. For all these characterisation techniques, the PpyCl and 

Chit/PpyCl films were grown to a charge of 2.2 C cm-2 as attempts to remove thinner 

films were unsuccessful. The chitosan film was prepared by pipetting 1 cm3 of 0.5 % 

(w/v) chitosan solution on to a clear PVC sheet. It was cured under an IR lamp and peeled 

away from the PVC substrate and was ground using a pestle and mortar. For the FT-IR 

samples, the materials were ground with dehydrated KBr using a pestle and mortar and 

pressed between two dies to make discs (Section 2.4.8). Using the same stock of Ppy and 

ChitPpy, DSC was also used to gain thermoanalytical information (Section 2.4.7). Heat 

Capacity is routinely used in pharmaceutical and polymer industries because it can 

determine the energy requirements and temperature thresholds of processing, in this work 

it is used to analyse heating events. 

 

3.3.3.1 Composition of films (FT-IR) 

FT-IR spectra of polypyrrole, chitosan, and the composite film are shown in Figure 3.6. 

As mentioned in Section 3.3.2, the black colour observed for PpyCl and Chit/PpyCl 

testifies to its presence, however, the transparent chitosan film makes it difficult to 

visually confirm its presence. There is no data given here to confirm the presence of a 

dopant anion in the Ppy or Chit/Ppy FT-IR spectra which is generally the case for many 

reports34, 54-57. The band due to a C−Cl species may be superimposed by the polymer 

peaks present or it may appear outside the working range of the spectra recorded55. 

The FT-IR spectrum presented for the composite, Figure 3.6 (c), shows the main peaks 

of both constituents, PpyCl and chitosan, with the peak for the β−(1→4) glycosidic bond 

at 1157 cm-1, clearly evident in the composite. The strong absorption peak from 3750 – 
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3000 cm-1 may be assigned to the presence of water58. The peaks at  1638 cm-1 and 1636 

cm-1 in for Chitosan, Ppy and Chit/Ppy may also be assigned to the presence of water58, 

however, most reports assign this characteristic peak in Ppy to  C=C stretching34, 54, 59-62, 

in order to confirm that this peak is due to the C=C stretching a rigorous drying would 

be required, which was not done in this case. the black colour of polypyrrole yield 

relatively low intensity transmittance spectra.  To minimise ambiguity, the FT-IR is 

employed in this work to identify the chitosan in Chit/Ppy and does not purport to give a 

comprehensive analysis of FT-IR peaks. 

The peaks clearly seen at The FT-IR spectrum for chitosan shows a strong peak at 3390 

cm-1 which was assigned to the asymmetrical stretching vibration of the O−H 

superimposed to the N−H stretching band and inter hydrogen bonds of the 

polysaccharide, C−H stretching at 2870 cm-1. Polypyrrole also exhibits N−H stretching 

vibration at 3425 cm-1. Figure 3.7 shows the magnified “fingerprint” region of the FT-IR 

spectrum (1800 – 800 cm-1). Using the band assignments by Yalҫinkaya et al.34 the peak 

at 1654 cm-1 was assigned to the C=O stretching. Other clear peaks include the N−H 

bending at 1568 cm-1, the C−N stretching coupled with N−H deformation at 1423 cm-1, 

the symmetrical angular deformation of CH3 at 1374 cm-1, stretching of the C−N amino 

group at 1318 cm-1, the β−(1→4) glycosidic bond at 1137 cm-1, and the C−O−C 

stretching vibration at 1030 cm-1.   
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Figure 3.6: FT-IR spectra of (a) chitosan, (b) PpyCl and (c) Chit/PpyCl, showing the presence of 

the β−(1→4) glycosidic bond at 1157 cm-1 in chitosan and 1152 cm-1 in Chit/PpyCl. The stock 

films were prepared by repeating the potentiostatic electropolymerisation at 0.80 V vs SCE to a 

charge density of 2.20 C cm-2 (0.1 mol dm-3 Py 0.1 mol dm-3 NaCl) and removing the material 

with a scalpel. 

The spectrum of polypyrrole is shown in Figure 3.7 (b). Bands in the region of 1690 cm–

1 are characteristic of α, β-unsaturated ketones, which are reported to lie between 1707 

and 1687 cm–1 a nonconjugated carbonyl. The peak is assigned to the presence of a 

carbonyl group at the β-carbon of the pyrrole ring on overoxidation of the polymer and 

the concomitant CO2 peak at 2347 cm-1 is also observed54, 59. The peak at 1456 cm-1 is 

assigned to the C−N stretching vibration is characteristic of the Ppy ring, the peak at 1385 

cm-1 C=C/C−C stretching vibration64. 1318 cm-1 is ascribed to the =C−H in-plane 

deformation, the peak at 1121 cm-1 is ascribed to the C−N stretching vibration60-62. The 

peak at 1019 cm-1 is due to C−H in plane stretching, the peak at 966 cm-1 may be due to 

C−C out of plane vibration, while the peaks at 875 cm-1 and 744 cm-1 may be assigned to 

the =C−H out of plane vibration60-62, 65. According to Rodríguez et al.54 a peak at 1152 

cm-1 may indicate the presence of a conductive bipolaronic species of oxidised 

polypyrrole, its absence here suggests that the film is not in its conducting state but 

probably in a relaxed state.  
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The spectrum of the composite in Figure 3.7 (c), clearly indicates the presence of the 

β−(1→4) glycosidic bond at 1152 cm-1. The peak at 1636 cm-1 is assigned to the C=C 

stretch of the pyrrole ring.  

 

 

Figure 3.7: FT-IR spectra of (a) Chitosan (b) PpyCl and (c) Chit/PpyCl, is the fingerprint region. 

There is a small shift in the wavenumbers for the composite, indicating a weak interaction between 

the Ppy and Chit. The stock films were prepared by repeating the potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2 (0.1 mol dm-3 Py 0.1 mol 

dm-3 NaCl) and removing the material with a scalpel. 

On comparing this spectrum with that recorded for PpyCl and chitosan, it is clear that no 

new peaks are formed and no peaks disappear. However, there is a small shift in the 

wavenumber which may be due to variances in the experiments, but does not discount the 

possibility of weak chemical interactions between the polypyrrole and chitosan such as, 

van der Waals, hydrogen bonding or electrostatic interactions. The stretching vibration of 

the O−H and N−H stretching band make it difficult to discern if hydrogen bonds exist 

between the chitosan and polypyrrole. Yalҫinkaya et al.34 prepared a polypyrrole chitosan 

composite and as a result of FT-IR data they proposed a structural representation with 

hydrogen bonding which is adapted and shown in Figure 3.8. 
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Figure 3.8: Structural representation of the Chit/PpyCl composite34.  

 

3.3.3.2 Thermal properties (DSC) of films 

The thermal stability of 1 mg of dry polymers was studied by differential scanning 

calorimetry (DSC) under nitrogen to prevent atmospheric oxidation. The samples were 

heated from 20 ˚C to 450 ˚C at a heating rate of 2 ˚C min-1. The resulting DSC curves are 

shown in Figure 3.9, for the PpyCl, chitosan and composite, Chit/PpyCl. The curve for 

chitosan shows two distinct peaks, a broad endothermic peak is observed between 30 ºC 

and 105 ºC with a maximum at 62 ºC due to water elimination66 and an exothermic peak 

is observed at 270 ºC which is close to the recorded melting point of chitosan67. The 

degree of deacetylation of chitosan does not significantly affect the glass transition 

temperature of chitosan films68. For PpyCl and Chit/PpyCl there is a dip in the curve at 

320 ºC which may be due to the decomposition of the polymer69. 

When considering the data for the composite, it is likely that the chitosan content of the 

composite was too low for the characteristic peaks of chitosan to be obtained, however, 

it can be stated that the composite, Chit/PpyCl, exhibits a better thermal stability than 

chitosan and that the presence of chitosan does not compromise the high thermal stability 

of pure polypyrrole (> 400 ˚C). 
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Figure 3.9: DSC curve for 1.0 mg of (···· PpyCl), ( ־ ־ ־ Chitosan) and (― Chit/PpyCl), working 

temperature range studied was between 20 and 450 ˚C at a heating rate of 2 ˚C min-1 under 

nitrogen. The stock films were prepared by repeating the potentiostatic electropolymerisation at 

0.80 V vs SCE to a charge density of 2.20 C cm-2 (0.1 mol dm-3 Py 0.1 mol dm-3 NaCl) and 

removing the material with a scalpel. 

 

 

3.3.3.3 Morphology (SEM) of films 

Surface roughness is an inherent property of amorphous materials, the texture and 

roughness is an important consideration for cell adhesion in tissue regenerative 

technology. The surface topography of the polymers was studied by SEM. The scanning 

electron micrographs are presented in Figures 3.10, 3.11 and 3.12. The polymers were 

grown on a customised Pt electrode (Section 2.4.6) with a surface area of 0.13 cm2. The 

polymers were washed thoroughly with distilled water to ensure the removal of excess 

electrolyte (NaCl) on the surface. They were air dried for several hours before imaging. 

These samples were not sputter coated prior to imaging.  

Figure 3.10 shows a typical SEM micrograph of PpyCl which appears as globule 

structures or “cauliflower” structures, this is a well-documented morphology, typical of 
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the bulk polypyrrole49. The globules are made up of micro‐spherical grains, it has been 

reported that such a particular structure is related to the dopant intercalation difficulty in 

the disordered polymeric chain70, 71. 

The exterior surface of the chitosan was very smooth and had no visible contrast which 

made imaging difficult. Other groups have reported similar results stating that the films 

are reproducibly homogeneous, smooth and without any visible pores on the surface72,73. 

Figure 3.11 presents a typical SEM micrograph of a dry chitosan film with a defect 

deliberately made to allow imaging. The SEM micrograph of the polypyrrole chitosan 

composite is presented in Figure 3.12 and shows the same “cauliflower” morphology as 

the polypyrrole film, PpyCl74. For comparison the morphology of the PpyCl film is shown 

as an inset in the top right corner. The cauliflower structures have similar sizes for both 

the PpyCl and composite, however, the visible “folds” seen with the composite, Figure 

3.12, interconnecting the globules can be attributed to the presence of the chitosan.  

It is worth noting that the films homogenously cover the electrode without the appearance 

of any surface defects. EDX analysis was performed on these samples but similar spectra 

were recorded for the samples due to the abundance of C present at 0.3 keV in both the 

chitosan and polypyrrole. Chloride was detected at 2.62 keV in polypyrrole and the 

composite as the polymer films are doped with the chloride anions.  
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Figure 3.10: SEM micrograph of PpyCl grown on a 0.13 cm2 customised Pt electrode showing 

“cauliflower” morphology. The films were prepared by potentiostatic electropolymerisation at 

0.80 V vs SCE in 0.1 mol dm-3 Py 0.1 mol dm-3 NaCl grown to a charge density of 2.20 C cm-2. 

 

 

Figure 3.11: SEM micrograph of chitosan on a 0.13 cm2 customised Pt electrode with a 

purposely made defect to allow imaging as an alternative to a featureless chitosan film. 

5 μm 

30 μm 



                                                                                                                         Chapter 3 

 

 

 
97 

 

  

 

 

Figure 3.12: SEM micrograph of chitosan polypyrrole chloride, Chit/PpyCl, grown on a 0.13 

cm2 customised Pt electrode showing “cauliflower” morphology. The film was prepared by 

potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2 from a 

solution of 0.1 mol dm-3 Py 0.1 mol dm-3 NaCl. The inset in the top right corner is polypyrrole 

chloride grown in the same conditions in the absence of chitosan. 

 

3.3.3.4 Estimation of mass and doping levels 

Quartz crystal microbalance measurements (EQCM) were performed and analysed to 

obtain information on the mass of the deposited PpyCl film and the doping level. In these 

studies, the PpyCl was grown to a charge of 11 mC (55 mC cm-2) by applying a constant 

potential of 0.85 V vs Ag|AgCl reference electrode. The frequency-charge plot and mass‐

charge plots for PpyCl are shown in Figure 3.13 A and B, respectively. A decrease in 

frequency is related to an increase in mass75 described by the Sauerbrey relationship76 

(Equation 2.12 in Section 2.4.5).   

30 μm 
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A B 

  

Figure 3.13: Frequency-charge plot (A) and mass charge plot (B) for the electropolymerisation of 

pyrrole to generate PpyCl to a charge density of 75 mC cm-2 on an Au-EQCM crystal (0.20 cm2) 

recorded by EQCM measurements. The PpyCl was prepared by electropolymerisation at 0.80 V 

vs SCE.  

 

The Sauerbrey equation can be re-arranged to solve for the mass change, as shown in 

Equation 3.1. As discussed in in Section 2.4.5, this equation is only valid when the rigid 

film approximation is satisfied. This can be achieved by limiting the film thickness, for 

example; a 10 MHz quartz crystal is between 130 μm77 and 170 μm78 so a film thickness 

of 2 μm or less satisfies the rigid film approximation for a 10 MHz quartz crystal ( < 2 

%)77. Using a volume-to-charge ratio79 (𝐾) of 2.37 × 10-4 cm3 C-1 for chloride80 and a 

geometric area of 0.20 cm2 a PpyCl film grown to a charge density of 55 mC cm-2 is 

estimated to be 0.6 μm thick which agrees well with the approximation if we take into 

consideration that an 8 MHz quartz crystal is slightly thicker than a 10 MHz quartz 

crystal81 therefore a film thickness of 0.6 μm readily satisfies the rigid film approximation 

for an 8 MHz quartz crystal. (Terms are defined in Section 2.4.5).  
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The sensitivity factor (𝐶𝑓) was found to be 7.087 × 108 Hz cm2 g-1. There is a linear 

increase in mass with charge when the charge exceeds 5 mC cm-2. The doping level, p, of 

the polymer can be estimated with Equation 3.2 from the average slope of these mass-

charge curves, which was computed as R = 0.4209 mg C-1.  

𝑅 = 
𝑚

𝑄
=  
𝑀𝑚 + 𝑝 𝑀𝐴
(𝑛 + 𝑝)𝐹

 (3.2) 

Here 𝑀𝑚 and 𝑀𝐴 are the formula weights of the monomer and anion. In the case of the 

chloride-doped polypyrrole,  the molecular weight of pyrrole is 65.07 g mol-1 and chloride 

is 35.45 g mol-1. The number of electrons, n = 2 and the value of p for Ppy has been 

reported to range from 0.2 to 0.5 dopant molecules per pyrrole unit82. For simple dopant 

anions such as Cl  , the value of p is approximately 0.33, i.e., a 1:3 doping level. The 

value of p was calculated as 0.37 which is in reasonable agreement with the values 

reported in the literature. This value is slightly higher than the theoretical value where p 

≤ 0.33 but is still within experimental error. According to Snook et al.83 a possible cause 

for inaccuracies may be adsorbed ions.  

The average rate of growth of PpyCl was computed to be 2.03 mC s-1. This is considerably 

slower than the rate of growth on a conventional Au disc electrode and Pt disc electrode 

which was computed to be 7.81 mC s-1 and 8.03 mC s-1, respectively. The difference 

between the growth rates on a conventional Au disc and Pt disc can be explained in terms 

of the higher conductivity of Au facilitating a faster rate of electropolymerisation84.  

The thickness of the PpyCl films (𝛿𝑓𝑖𝑙𝑚) is directly proportional to the charge Q consumed 

during electropolymerisation80, as shown in Equation 3.3. 

 𝛿𝑓𝑖𝑙𝑚 = 𝐾
𝑄

𝐴
 (3.3) 

Here, 𝐴 is the geometric area of the film. For the PpyCl film grown to 2.2 C cm-2 and 0.25 

C cm-2 the thickness was calculated as 4.0 μm and 0.5 μm, respectively, using a volume-

to-charge ratio79 (𝐾) of 2.37 × 10-4 cm3 C-1 for chloride80 and a geometric area of 0.13 

cm2.  
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The equation used to calculate the theoretical mass assumes the current efficiency for the 

electropolymerisation of the pyrrole monomer is 100 %85.  

The calculated mass, doping levels and thickness of the PpyCl films are summarised in 

Table 3.1.  

 

Table 3.1: Summary of EQCM results, calculated mass, doping levels and thickness of PpyCl.  

Results PpyCl (Q = 55 mC cm-2) 

Mass (μg cm-2) 27 

Doping level, p 0.37 

Doping Ratio, 1:3 

Thickness (μm) 0.6 

 

 

3.3.4 Cyclic Voltammetry (CV) 

The electrochemical properties of PpyCl and Chit/PpyCl were characterised using cyclic 

voltammetry. The polymers were cycled in 0.1 mol dm-3 NaCl and the potential was swept 

from –0.95 V to 0.35 V vs SCE to avoid over-oxidising the polymer. Different scan rates, 

ranging from 5, 10, 25, 50, 100 and 150 mV s-1, were used. Representative data are shown 

in Figure 3.14, where the voltammograms presented in Figures 3.14 A and C show the 

current-potential response at different scan rates for PpyCl and Chit/PpyCl films. In 

Figure 3.14 B and D the voltammograms recorded at 10 mV s-1 are shown and compared 

to the electrochemical response of the bare Pt electrode using the same parameters. 

Reproducible voltammetric behaviour was attained after the first few cycles, usually 3 to 

4 cycles and the data shown in Figure 3.14 were recorded following 9 cycles.  

The voltammograms recorded for PpyCl and Chit/PpyCl are similar, showing a broad 

anodic peak and evidence of two reduction waves, which are more clearly evident in 

Figure 3.14 B and D. The anodic peak for PpyCl is centred at 0.10 V vs SCE at the higher 
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scan rates, but at low scan rates of 5 and 10 mV s-1, this anodic peak appears at about –

0.10 V vs SCE. There is a shift in the peak potential in the anodic direction with increasing 

scan rate and this is clearly shown in Figure 3.14 A.  A cathodic peak is centred at –0.15 

V vs SCE, and a drift in the peak is observed as the scan rate increases. A second cathodic 

peak is observed at –0.50 V vs SCE and drifts in the cathodic direction more significantly 

and becomes more pronounced at higher scan rates (> 10 mV s-1). This peak is associated 

with transient cation insertion86. Similar voltammograms for PpyCl have been published 

and discussed40, 87-90. The electroactivity of PpyCl is strongly influenced by ion transport 

properties, more specifically the anion transport, which has been extensively studied91-96. 

However, there is little voltammetric data published or discussed with regard to the 

Chit/PpyCl composite. As shown in Figure 3.14 C and D, the chitosan component does 

not significantly alter the overall redox properties of the film and similar data are recorded 

for the PpyCl and Chit/PpyCl composite films. The anodic peak for Chit/PpyCl is centred 

at 0.16 V vs SCE at higher scan rates but appears to shift in the anodic direction at slow 

scan rates. The corresponding cathodic peak is observed at approximately –0.20 V vs 

SCE, while a second cathodic peak is observed at –0.65 V vs SCE and is less pronounced 

at lower scan rates (< 50 mV s-1). The electrochemical response of the Chit/PpyCl 

composite is clearly shown in Figure 3.14 D where the voltammograms recorded with Pt 

are compared with the composite at 10 mV s-1. Two cathodic peaks are observed, centred 

at −0.20 V and −0.55 V vs SCE, which is similar to the data recorded for the PpyCl films 

(Figure 3.14 B). The latter peak is characteristic of cation insertion into polypyrrole46, 95.  

The electrochemical data are summarised in Table 3.2 for the main redox process, which 

appears to be predominantly the loss and uptake of anions. These polymer films doped 

with Cl   anions demonstrate redox asymmetry typical of conducting polymers97. The 

current ratios (𝐼𝑝𝑐 𝐼𝑝𝑎⁄ ) of the main cathodic and anodic peaks deviate from 1.0. The 

values were computed as 0.7 and 0.6, for PpyCl and Chit/PpyCl, respectively, at a scan 

rate of 50 mV s-1. This suggests that the system is not redox reversible47. The midpoint 

potential, 𝐸𝑚𝑖𝑑, was observed to shift to more positive potentials on increasing the scan 

rate from 5 to 150 mV s-1. The midpoint potentials increased by 95 mV for PpyCl (−108 

mV to 13 mV vs SCE) and 125 mV for Chit/PpyCl (−98 mV to 27 mV vs SCE). This 

indicates that the presence of the chitosan hydrogel has some effect on the anion 
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transport51. It is clear from the data presented in Table 3.2, that the electrochemical 

response of the PpyCl and Chit/PpyCl films are similar, with the peak currents increasing 

with scan rate and the peak separation increasing with scan rates, reaching values of 651 

and 747 mV at 150 mV s-1, respectively. 

A B 

  

C D 

  

Figure 3.14: Cyclic voltammograms (10th cycle) of PpyCl (A and B) and Chit/ PpyCl (C and D) 

coated Pt electrode in 0.1 mol dm-3 NaCl. The dashed traces in (B) and (D) correspond to the 

voltammograms of bare Pt electrode. The scan rates in mV s-1 are indicated on the plot. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl. 
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Table 3.2: Cyclic voltammetric data for the main redox process of PpyCl and Chit/PpyCl in 0.1 

mol dm-3 NaCl.  

PpyCl 

Scan rate 

(mV s-1) 

Emid (mV 

Vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −108 −66 1.0 1.0 

10 −93 −26 2.0 1.0 

25 −40 108 5.0 3.0 

50 24 325 9.0 6.0 

100 46 599 16.0 10.0 

150 13 651 20.0 12.0 

Chit/PpyCl 

Scan rate 

(mV s-1) 

Emid (mV  

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −98 −60 1.0 1.0 

10 −74 10 3.0 2.0 

25 −4 220 6.0 4.0 

50 69 533 11.0 7.0 

100 12 670 17.0 10.0 

150 27 747 26.0 16.0 

a Calculated from 1 2⁄ (𝐸𝑝,𝑐  +  𝐸𝑝,𝑎). 

b ∆𝐸𝑝  =  𝐸𝑝𝑎  −  𝐸𝑝𝑐 . 
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Using a generalised capacitance curve (current divided by the potential scan rate) as 

described by Levi et al.98, a more detailed analysis of the mass transfer processes can be 

obtained. A typical plot is presented in Figure 3.15 for the PpyCl and Chit/PpyCl films 

cycled at a scan rate of 5 mV s-1. The oxidation and reduction peaks can be seen more 

clearly at the slow scan rates in both the PpyCl and Chit/PpyCl films using this approach. 

Four peaks are visible and these are labelled as I, II, III and IV. The secondary redox 

cation exchange process, peak I and IV, is centred at –0.50 V vs SCE. During oxidation 

there are two competing processes: the expulsion of the cation and the inclusion of the 

anion. Conversely, during reduction the expulsion of the anion and inclusion of the cation 

are the two competing processes.  From Figure 3.15 it is clear that the anion transport is 

the dominant process during oxidation and reduction. The expulsion of the cation cannot 

be clearly seen even though the inclusion of the cation is clear and becomes more 

pronounced at faster scan rates. 

 

 

Figure 3.15: Generalised capacitance curve (where the current is divided by the scan rate v) 

for (― PpyCl) and (···· Chit/PpyCl) cycled in 0.1 mol dm-3 NaCl at 5 mV s-1. The films were 

prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl.  

The possible processes occurring at the peaks labelled I, II, III, and IV are described in 

Equations 3.4, 3.5, 3.6 and 3.7. On re-oxidation of the PpyCl the polymer backbone 
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becomes positively charged. The charge neutrality is achieved by the expulsion of the 

sodium ion (Equation 3.4) and the incorporation of the chloride ion (Equation 3.5) from 

the electrolyte. When the PpyCl is reduced during subsequent cycles, the chloride anion 

is expelled into the electrolyte (Equation 3.6) and in order to maintain overall charge 

neutrality a sodium ion from the electrolyte is incorporated into the polymer (Equation 

3.7).  

 

I: 0

nPpy
NaCl + Cl − e     0

nPpy 

nPpy
Cl + Na  (3.4) 

II: 0

nPpy 

nPpy
Cl + Cl  − e     

nPpy
Cl  + Cl   (3.5) 

III: 

nPpy
Cl + e     

nPpy 0

nPpy
Cl + Na + Cl  (3.6) 

IV: 0

nPpy 

nPpy
Cl  + Na  + e     0

nPpy
NaCl   (3.7) 

 

In Figure 3.16, plots are shown of the peak potential (𝐸𝑝) and peak current (𝐼𝑝) as a 

function of the scan rate for PpyCl and Chit/PpyCl. The data recorded for the PpyCl film 

is shown in Figure 3.16 A, while similar data are presented for the composite in Figure 

3.16 C. In both systems, the peak separation increases with scan rate and similar anodic 

peak potentials and cathodic peak potentials are observed with the PpyCl and Chit/PpyCl 

composite. The peak separations (∆𝐸𝑝) were 325 and 523 mV for PpyCl and Chit/PpyCl, 

respectively, at 50 mV s-1. The peak currents for PpyCl and Chit/PpyCl increase linearly 

with increasing scan rate, indicating the absence of a kinetic or charge-transport 

limitation95.  
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A B 

  

C D 

  

Figure 3.16: Peak potential plotted as a function of scan rate for PpyCl (A) and Chit/PpyCl (C) and 

peak current plotted as a function of scan rate PpyCl (C) and Chit/PpyCl (D) taken from the cyclic 

voltammograms (10th cycle) shown in Figure 3.14 A and C. Using the main anodic peak (●) and the 

main cathodic peak (□). The R2 values for the linear trendline are indicated. The films were prepared 

by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl 

was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl.  
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3.3.5 Open-circuit potential experiments  

The free potential, Eoc, of the PpyCl and Chit/PpyCl films was determined using open-

circuit potential measurements. Figure 3.17 shows typical open-circuit potential plots for 

PpyCl and Chit/PpyCl recorded over a 12 h period. The open-circuit potential of the 

PpyCl film decays gradually from an initial potential of 0.12 V vs SCE and then reaches 

a plateau after approximately 180 min. Similar potentials are observed with the 

Chit/PpyCl composite. However, for these composite films the potential reached a 

constant value between 30 min and 180 min, presumably due to the cationic chitosan 

hydrogel slowing down the diffusion of chloride ions. After about 180 min, the potential 

decays further before reaching a final plateau. The average potentials, recorded after the 

12 h period, were calculated as 0.04 V vs SCE for both films.  

 

 

Figure 3.17: Open circuit potential-time plot for (― PpyCl) and (···· Chit/PpyCl) films recorded 

in 0.1 mol dm-3 NaCl. PpyCl was prepared by potentiostatic electropolymerisation at 0.80 V vs 

SCE to a charge density of 2.20 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-

3 Py and 0.1 mol dm-3 NaCl.  
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3.3.6 Electrochemical impedance spectroscopy (EIS) studies 

This section contains a detailed study of the complex-impedance of chitosan (Section 

3.3.6.1), PpyCl (Section 3.3.6.2) and Chit/PpyCl (Section 3.3.6.3). The impedance 

response for chitosan, PpyCl and Chit/PpyCl is shown in the complex plane-impedance 

plots (Nyquist plots) and Bode plots in Figure 3.18. The imaginary and real components 

of the impedance are plotted to give the complex plane or Nyquist plots, while the 

modulus of the impedance and the phase angle are presented as a function of frequency 

to give the Bode plot. Reproducible results were obtained by polarising the electrodes at 

the required potential for 60 min. This period was sufficiently long to achieve steady-state 

conditions. The frequency range was varied from 65 kHz to 0.008 Hz. The impedance 

data, presented in Figure 3.18, were recorded for a Pt electrode coated with PpyCl, 

Chit/PpyCl films, 4 μm thick, and a chitosan film, 10 μL, at a constant potential of 0.10 

V vs SCE.  
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Figure 3.18: Complex-plane (A) and Bode impedance plots (B) for (― PpyCl), (···· Chit) and     (־ 

 Chit/PpyCl) coated 0.13 cm2 Pt electrodes at 0.10 V vs SCE in 0.1 mol dm-3 NaCl. Frequency ־ ־

range shown from 65 kHz to 0.008 Hz. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl was 

prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl.  
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equivalent circuits illustrated in Figure 3.19. using a non‐linear least squares fitting 

minimisation method in the ZView fitting programme described in Section 2.4.4. 

A 

 

B 

 

Figure 3.19: Equivalent circuits used for modelling the impedance data. 

 

The circuit element RHF represents resistance at high frequency, or charge-transfer 

resistance (Rct), which contains contributions from the electronic and ionic resistance99, 

as shown in Equation 3.8.  

 RHF =  𝑅𝑒  +  𝑅𝑖      (3.8) 

Here, 𝑅𝑒 is the electronic resistance and 𝑅𝑖 is the ionic resistance. CPEHF and CPELF 

elements are constant phase elements associated with high frequency impedance and low 

frequency impedance, respectively. Constant phase elements were used to determine the 

capacitance and were used rather than capacitors to take into account the inhomogeneity 

of the surface of the electrode100, 101.  

 

3.3.6.1 EIS of Chitosan films  

The complex-plane impedance plots and Bode plots for the chitosan films are shown in 

Figure 3.20 A and B, respectively. There are few reports on the impedance of chitosan, 

however in some studies the impedance of chitosan solutions was reported102. The spectra 

Rs CPE1

R1

CPE2

R2 CPE3

Element Freedom Value Error Error %

Rs Free(+) 12.05 0.064727 0.53715

CPE1-T Free(+) 0.0014786 8.6489E-05 5.8494

CPE1-P Free(+) 0.63115 0.0092909 1.4721

R1 Free(+) 27.17 0.75692 2.7859

CPE2-T Free(+) 0.0030513 1.0649E-05 0.349

CPE2-P Free(+) 0.74372 0.002375 0.31934

R2 Free(+) 11873 445.74 3.7542

CPE3-T Fixed(X) 0 N/A N/A

CPE3-P Fixed(X) 1 N/A N/A

Chi-Squared: 0.0004954

Weighted Sum of Squares: 0.059943

Data File: C:\Users\emer\Documents\Emer PhD\PhD Year 4\Drug Release\Methyl Orange\EIS\PM 0.1 V\ppymo01van4.z

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\2 CPE 2 R.mdl

Mode: Run Fitting / Selected Points (0 - 63)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Rs CPE1

Rct CPE2

Element Freedom Value Error Error %

Rs Free(+) 95.15 N/A N/A

CPE1-T Free(+) 0.0037039 N/A N/A

CPE1-P Free(+) 0.77115 N/A N/A

Rct Free(+) 104 N/A N/A

CPE2-T Free(+) 0.010208 N/A N/A

CPE2-P Free(+) 1.024 N/A N/A

Data File:

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\3 CPE R R.mdl

Mode: Run Fitting / Selected Points (0 - 0)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus
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in the Nyquist plot show semi-circular arcs which are characteristic of the sinusoidal 

impedance curve which means only a resistance occurs, satisfying restrictive diffusion 

conditions103.  

The high to medium frequency region of the Nyquist plot and the Bode plot show 

superimposed transmission lines regardless of the applied potential until the lower 

frequency is reached (≤ 20 - 25 Hz). A simple Randles circuit (Figure 3.19 A) was used 

to model the impedance response at each applied potential. These changes can be 

explained by considering the processes that take place in the chitosan film. 

 

A B 

 

 

 

Figure 3.20: Complex-plane impedance plots (A) and the Bode plots (B) for chitosan coated 0.13 

cm2 Pt electrodes at various potentials in 0.1 mol dm-3 NaCl. Potentials are indicated in V vs SCE. 

Frequency range shown from 65 kHz to 0.008 Hz. 

When water is incorporated into the chitosan film the free amino groups in the chitosan 

backbone become partially protonated102, as illustrated in Equation 3.9. 
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2NH + OH 2    

3NH  + OH  (3.9) 

The 

3NH  is bonded to the backbone of the chitosan but the OH is free to move 

(Equation 3.9).  The mobility of these OH  ions is connected with Equations 3.10 and 

3.11, where the adsorption of cations clearly limits the mobility of the ions. At 0.80 V vs 

SCE, the ions are immobilised as 

3NH
OH Cl , but as the potential is lowered, Equation 

3.10 occurs giving higher concentrations of the mobile 
OH ions. This is consistent with 

the low resistance observed at 0.20 V vs SCE. As the potential is decreased further from 

0.20 V to –0.60 V vs SCE, cation adsorption occurs limiting the mobility of counter-ions, 

as shown in Equation 3.11.  

 

 

3NH
OH Cl  + e     

2NH + 
Cl + 

OH  (3.10) 

 

3NH
OH  + 

Na  + e     
2NH

OH Na + H  (3.11) 
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The charge transfer resistance, R, and the corrected capacitance, C, are plotted as a 

function of the applied potential in Figure 3.21 and Figure 3.22, respectively. As 

discussed above, it is clearly evident from Table 3.3 and Figure 3.21 that the charge-

transfer resistance of the chitosan films vary with the potential, showing a minimum at 

0.20 V vs SCE and a maximum at −0.60 V vs SCE. 

Figure 3.22 shows the corrected capacitance, C, plotted as a function of the applied 

potential. The capacitance shows a maximum of 39 μF cm2 at 0.80 V vs SCE, the 

capacitance declines sharply to 22 μF cm2 with a minimum at 0.40 V vs SCE. Below 0.40 

V vs SCE the capacitance appears to be independent of potential and remains at 

approximately 25 μF cm2.  

 

 

Figure 3.21: Charge transfer resistance, R, of chitosan coated 0.13 cm2 Pt electrode plotted as a 

function of the applied potential in 0.1 mol dm-3 NaCl. n=3 
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Figure 3.22: Corrected capacitance of chitosan coated 0.126 cm2 Pt electrode plotted as a 

function of the applied potential in 0.1 mol dm-3 NaCl. n=3 

 

3.3.6.2 EIS of PpyCl films 

The complex-plane impedance plots and the Bode plots recorded for PpyCl show a range 

of electroactive behaviour, and the data are presented in Figures 3.23 and 3.24. In Figure 

3.23 A and B, the impedance data recorded at 0.80, 0.60, 0.40, 0.20 and 0.00 V vs SCE 

are presented. It is evident from these data that the resistance of the PpyCl film is low at 

these potentials, but increases as the potential is increased from 0.00 to 0.60 V vs SCE 

before increasing sharply at 0.80 V vs SCE. It is evident from these data that the PpyCl 

polymer coated electrode behaves like a simple capacitor and the complex plane 

impedance plot becomes almost vertical. The impedance spectrum consists of a ~ 45º 

Warburg-type transmission line which can be seen more clearly in the inset of Figure 3.23 

A. These data were fit to the equivalent circuit presented in Figure 3.19 B, which consists 

of an uncompensated solution resistance (RS = 11 Ω cm2) at the high frequency intercept. 

The CPEHF represents the high frequency capacitance, or double layer capacitance, in 

parallel with RHF. At oxidation potentials the value for RHF is dominated by 𝑅𝑖. Based on 
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the well-known high electronic conductivity of PpyCl when it is even slightly oxidised, 

it can be assumed that the electronic resistance is negligible95, i.e., (𝑅𝑖  ≫ 𝑅𝑒 ). CPELF 

represents the low frequency capacitance, in this CPELF was replaced with a capacitor for 

an improved fit and lower errors.  

Bowmaker et al.55 found that Ppy over-oxidises irreversibly at potentials higher than 0.50 

V vs SCE in the presence of chloride ions. This leads to a decrease in its redox activity 

and electronic conductivity as the β-C of pyrrole is oxidised to C=O104, 105. At 0.80 V vs 

SCE, the PpyCl becomes over-oxidised and was modelled with a simple Randles cell 

circuit, shown in Figure 3.19 A.  

A B 

 

 

 

Figure 3.23: Complex-plane impedance plots (A) and Bode plots (B) for PpyCl coated 0.13 cm2 Pt 

electrodes at various positive potentials in 0.1 mol dm-3 NaCl. Potentials are indicated in V vs SCE. 

Frequency range shown from 65 kHz to 0.008 Hz. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl. 
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In Figure 3.24 A and B, the complex-plane impedance plots and Bode plots are shown 

for PpyCl at a range of potentials varying from 0.00 to –0.80 V vs SCE. These data show 

a range of behaviours, with the resistance of the PpyCl film increasing tenfold from 0.00 

V to –0.20 V vs SCE and a further tenfold increase in resistance from –0.20 V to −0.40 

V vs SCE. The impedance response at 0.00 V vs SCE is almost vertical with a small ~ 

45º incline, while the impedance at –0.20 V vs SCE displays a semi-circular configuration 

at the intermediate to low frequency region. Again these data were fit with the equivalent 

circuit in Figure 3.19 B.  

At these potentials, the value for RHF may not be dominated by the ionic resistance, and 

the contribution of electronic resistance becomes more significant, (𝑅𝑖  < 𝑅𝑒 ), as the 

potential is varied from –0.40 V to –0.80 V vs SCE.  The PpyCl film becomes fully 

reduced at –0.80 V vs SCE and was modelled with the simple Randles cell circuit, shown 

in Figure 3.19 A. A summary of the values derived from the fitting is presented in Table 

3.4, and the high frequency resistance, RHF, and capacitance terms, CLF and CHF, are 

shown as a function of the applied potential in Figure 3.25.  
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Figure 3.24: Complex-plane impedance plots (A) and Bode plots (B) for PpyCl coated Pt electrodes 

at various negative potentials in 0.1 mol dm-3 NaCl. Potentials are indicated in V vs SCE. 

Frequency range shown from 65 kHz to 0.008 Hz. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl. 
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A 

 

B 

 

Figure 3.25: High frequency resistance, RHF (●), corrected high frequency capacitance, CHF (○) 

and low frequency capacitance, CLF, (■) plotted as a function of applied potential for PpyCl in 0.1 

mol dm-3 NaCl. The films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE 

to a charge density of 2.20 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py 

and 0.1 mol dm-3 NaCl. n=3 
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It is clearly evident from Table 3.4 and Figure 3.25 that the resistance, RHF is high at 0.80 

V vs SCE, and over-oxidation was identified as the probable cause104, 105. The RHF 

decreases considerably from 0.80 V to 0.60 V vs SCE, before reaching a minimum at 0.40 

V vs SCE. The values increase again as the PpyCl film is fully reduced. The corrected 

high frequency capacitance, due to the double layer, increases as the applied potential is 

reduced from 0.80 V to 0.40 V vs SCE, which corresponds to the anion exchange. Figure 

3.25 B shows a sharp peak in the low frequency capacitance possibly due to electron 

injection at the Pt│PpyCl interface and occurs close to the anion exchange at the 

PpyCl│electrolyte. The low frequency capacitance increases with the double layer 

capacitance and shows a maximum at 0.20 V vs SCE, possibly due to the increase in 

effective surface area106.  

3.3.6.3 EIS of Chit/PpyCl films 

The impedance data were recorded using the same parameters and under the same 

conditions as stated for PpyCl, Section 3.3.6.2. The impedance data of Chit/PpyCl are 

presented in Figures 3.26 A and B and 3.27 A and B. Again, the applied potential has a 

considerable influence on the impedance response. In Figure 3.26 A and B, impedance 

data recorded at 0.00, 0.20, 0.40, 0.60 and 0.80 V vs SCE are presented as Nyquist 

impedance plots and Bode plots, respectively. Figure 3.27 show the complex-impedance 

at applied potentials from 0.00 V to –0.80 V vs SCE   
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A B 

 

 

 

Figure 3.26: Complex-plane impedance plots (A) and Bode plots (B) for Chit/PpyCl coated 0.13 

cm2 Pt electrodes at various positive potentials in 0.1 mol dm-3 NaCl. Potentials are indicated in V 

vs SCE. Frequency range shown from 65 kHz to 0.008 Hz. The films were prepared by 

potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl 

was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl.  
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Figure 3.27: Complex-plane impedance plots (A) and Bode plots (B) for Chit/PpyCl coated Pt 

electrodes at various applied negative potentials in 0.1 mol dm-3 NaCl. Potentials are indicated in 

V vs SCE. Frequency range shown from 65 kHz to 0.008 Hz. The films were prepared by 

potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl 

was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl.  

The impedance data recorded from 0.60 V to −0.20 V vs SCE were analysed using the 

circuit in Figure 3.19 B. The simple Randles cell circuit, shown in Figure 3.19 A, was 

used to model the data at the lower applied potentials from –0.40 V to –0.60 V vs SCE. 

The fitted parameters are summarised in Table 3.5, while the charge-transfer resistance, 

RHF, and the corrected double layer capacitance terms, CHF and CLF, are plotted as a 

function of the applied potential in Figure 3.28. 
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It is evident from a comparison of the impedance data recorded for the PpyCl and 

Chit/PpyCl films that the impedance response is similar but not identical. In this potential 

range, PpyCl and Chit/PpyCl have low resistance values indicating good electronic 

conductivity and the chitosan has no adverse effect on the PpyCl. At lower potentials (–

0.40 V to –0.80 V vs SCE) a reduction process occurs and the resistance increases due to 

the loss of anions. The “Warburg-like” feature diminishes in the Chit/PpyCl and a circular 

arc indicative of the high charge-transfer resistance is observed in the impedance plots. 

The capacitance also decreases, this decrease in capacitance is observed as the dopant 

anion is released from the polymer film during reduction.  

The presence of chitosan appears to modify the reduction of the PpyCl component. The 

resistance at 0.60 V vs SCE is 7.88 Ω cm2 and 7.14 V vs SCE for Chit/PpyCl and PpyCl, 

respectively. The RHF values remain comparable as the potential is reduced to −0.20 V 

vs SCE. As the potential is further reduced the resistance of the Chit/PpyCl steadily 

increases to 911 Ω cm2 at −0.60 V vs SCE, whereas the resistance of PpyCl increases to 

2432 Ω cm2 at −0.60 V vs SCE. Frequency limits were difficult to attain for PpyCl at 

−0.80 V vs SCE, Chit/PpyCl on the other hand has an RHF value of 2180 Ω cm2 at −0.80 

V vs SCE, albeit with an increase in the sum of squares. This may be due to the mobility 

of counter-ions in the hydrogel. These results show that using chitosan in conjunction 

with PpyCl provides a good matrix for regulating ion-transport46.  

Again, the RHF and CHF values correspond showing a minimum in RHF of 7.88 Ω cm2 at 

0.60 V vs SCE and a corresponding maximum of 15.5 mF cm-2 for the capacitance, CHF. 

This CHF value is slightly higher than 5.94 mF cm-2 at 0.40 V vs SCE, which was obtained 

with the PpyCl film. The RHF maximum has shifted from 0.40 V vs SCE in PpyCl to 0.60 

V vs SCE in Chit/PpyCl. Similarly, the low frequency capacitance in Figure 3.28 has 

shifted from 0.20 V vs SCE for PpyCl to 0.40 V vs SCE for Chit/PpyCl. Maximum values 

obtained for the low frequency capacitance are similar at 91.7 mF cm-2 and 93.5 mF cm-

2 for PpyCl and Chit/PpyCl, respectively. The CLF values decrease as the potential 

decreases as the Chit/PpyCl becomes reduced due to the diminishing concentration of Cl

  anions in the film. The values are significantly different from that of chitosan in Figure 

3.21 and Figure 3.22.   
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A 

 

B 

 

Figure 3.28: High frequency resistance, RHF (●), corrected high frequency capacitance, CHF 

(○)and low frequency capacitance, CLF (■) plotted as a function of applied potential for 

Chit/PpyCl in 0.1 mol dm-3 NaCl. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2. The PpyCl was 

prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl. n=3 

 

3.3.6.4 Comparison between the composite films 

Most of this chapter is devoted to the Chit/PpyCl composite system. In subsequent 

chapters, results are presented for the PpyA/Chit system where A is an anion (Cl  , MO 
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, Dex2   and Ox  ). In this section a comparison is made between the two chloride systems, 

Chit/PpyCl and PpyCl/Chit. As shown in Figure 3.1, the difference between these two 

composites is the order of addition of chitosan, either pre-electropolymerisation or post-

electropolymerisation. In both cases 10 μL of chitosan was employed. However, the 

PpyCl component was deposited to a charge density of 2.2 and 0.25 C cm-2 for the 

Chit/PpyCl and PpyCl/Chit systems, respectively.  

The impedance responses of Chit/PpyCl and PpyCl/Chit are shown in Figure 3.29, where 

the impedance data were recorded at 0.10 V vs SCE in 0.1 mol dm-3 NaCl.  

A B 

 

 

 

Figure 3.29: Complex-plane impedance plot (A) and Bode plot (B) for (···· Chit/PpyCl), (― 

PpyCl/Chit), coated Pt electrodes at 0.10 V vs SCE in 0.1 mol dm-3 NaCl. Frequency range shown 

from 65 kHz to 0.008 Hz. The films were prepared by potentiostatic electropolymerisation at 0.80 

V vs SCE to a charge density of 2.20 C cm-2 for (···· Chit/PpyCl) and 0.25 C cm-2 for (― 

PpyCl/Chit). The Chit/PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 

NaCl on a chitosan coated Pt electrode. Chitosan was added post-electropolymerisation for (― 

PpyCl/Chit). 
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The complex impedance plot shows a notable difference at the high frequency region, 

which is more evident in the inset. There is also a notable difference in the impedance 

response at the lower frequencies. This is clearly evident from a comparison of the Bode 

plots. 

A summary of the data is presented in Table 3.6 along with PpyCl in the absence of 

chitosan and in the presence of chitosan, and pure chitosan is also included. The resistance 

values of PpyCl grown to different charge densities are similar but their double layer 

capacitance (corrected CHF) and low frequency capacitance are quite different. This may 

be explained by the difference in film thickness influencing the effective surface area107. 

Overall, the values recorded for the Chit/PpyCl and PpyCl (2.20 C cm-2) are similar, while 

the values obtained for the PpyCl/Chit and PpyCl (0.25 C cm-2) show a difference in 

resistance, this is possibly due to the influence that chitosan has on the ion mobility of 

chloride anions. Loss in conductivity is associated with reduced concentration of dopant 

species108, and chitosan may aid in the preservation of electroactivity if dedoping is 

reduced. The values obtained for PpyCl are in good agreement with data reported by Li 

and Qian109, taking into account the difference in electrode surface area. Chitosan has the 

highest resistance by three orders of magnitude due to the lack of conductivity. 

Table 3.6: A comparison of the composite films and their components. Corrected capacitance CHF, 

high frequency resistance RHF, and low frequency capacitance, CLF, in 0.1 mol dm-3 NaCl at 0.1 V vs 

SCE. 

Sample (0.10 V)  corrected CHF 

(mF cm-2) 

RHF (Ω cm2) CLF (mF cm-2) 

Chit/PpyCl (2.20 C cm-2) 56.83 ± 0.75 37.2 ± 1.57 49.72 ± 0.59 

PpyCl (2.20 C cm-2) 52.30 ± 0.84 9.5 ± 0.22 87.04 ± 1.41 

PpyCl/Chit (0.25 C cm-2) 0.28 ± 0.06 2.5 ± 0.08 7.44 ± 0.2 

PpyCl (0.25 C cm-2) 0.64 ± 0.03 14.9 ± 0.80 9.77 ± 1.37 

Chitosan  22.13 ± 0.44 2629 ± 93.45 - 
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3.4 Effect of lysozyme  

Biomedical materials for devices and drug delivery are an expanding area supporting the 

development of new drugs and therapeutics110. Natural polymers such as chitosan are of 

particular interest because of their non-toxic, biocompatible and antimicrobial 

properties111. This present study was carried out to evaluate the suitability of Chit/PpyCl 

in the development of biomedical materials by investigating the enzymatic resistance of 

the Chit/PpyCl coated electrode. If the material is to be used in biomedical applications 

the enzymes present in-vivo must be taken into consideration. For chitosan, the 

corresponding cleaving enzyme is chitosanase112 but it is expensive and unavailable in 

bulk113. In this study lysozyme was used as a ubiquitous enzyme because it is more 

abundant than chitosanase. Lysozyme is often used as an alternative to chitosanase for 

degradation studies of chitosan114, 115, which appears to target acetylated residues. Its 

mode of action is similar to that of lysozyme which causes the hydrolysis of the (1→4)-

β-glycosidic bond between N-acetyl-D-glucosamine residues116. Usually an enzymatic 

degradation study is carried out using a gravimetric technique115, 117 or by the 

determination of the reducing sugar content118. Unfortunately some difficulties were 

encountered when designing this degradation test. Therefore, in this study an in-vitro 

interaction of the chitosan with lysozyme was investigated using cyclic voltammetry 

(CV) in conjunction with the simultaneous measurements of the frequency response of 

an electrochemical quartz crystal microbalance (EQCM) electrode. The CV method was 

used to study peak current densities and peak potentials in relation to the lysozyme 

concentration in solution. Optimum measurement parameters were established using a 

gold disc electrode prior to using the Au-EQCM electrodes. The f0 value was obtained 

from each experiment and was used to calculate the sensitivity factor (Cf) in Equation 3.1, 

which was found to be 7.09 × 108 Hz cm2 g-1. The lysozyme solutions were refreshed 

daily to ensure continuous enzyme activity 
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3.4.1 The effect of lysozyme solution on chitosan using EQCM 

The volume of chitosan used to coat the Au-EQCM electrode was scaled-up from 10 µL 

for 0.13 cm2 to 16.2 µL for 0.20 cm2. The 0.5 % (w/v) chitosan solution was pipetted onto 

the Au-EQCM electrode and the film was forced dried under an IR lamp (50 to 55 °C) 

for 15 min. Prior to studying the effect of lysozyme on the chitosan coated Au-EQCM 

electrode, the bare Au-EQCM was cycled between 0.35 V and 0.50 V vs Ag|AgCl in 0.1 

mol dm-3 NaCl solution until a reproducible voltammetric profile was obtained. The 

quality of the data for chitosan coated Au-EQCM electrodes was validated by recording 

cyclic voltammograms on a conventional Au electrode. The quality of the Au-EQCM 

voltammograms were verified by comparing them with previously recorded data on 

conventional Au electrodes. Open-circuit potential and cyclic voltammetry measurements 

were used to study the effect of the lysozyme solution on the electrochemical system. 

Two characteristic regions were observed for the gold electrodes, the non-faradaic current 

region (–0.35 V to 0.20 V vs SCE), and the steady state anodic peak between 0.20 V and 

0.40 V vs SCE.  

Studies on the adsorption of lysozyme at different concentrations and its coadsorption 

with Cl   ions on Au in 0.1 mol dm-3 NaCl were performed for each concentration of 

lysozyme. The potential was cycled from –0.35 V to 0.50 V vs SCE. Representative data 

are shown in Figure 3.30 A and B where the voltammograms and the relative frequency 

were recorded in the presence of lysozyme with concentrations ranging from 1.5 g mL-1 

to 1.0 mg mL-1. Freier and Shoichet119 reported a maximum concention of lysozyme 

in human serum to be 1.5 μg mL. A 0.1 mol dm-3 NaCl solution served as the blank 

solution. There is little variation between the cyclic voltammograms and similar data are 

recorded in the lysozyme solutions. The relative frequency plots are similar for the blank 

solution and the solution containing 1.5 g mL-1 of lysozyme, while the plots are 

considerably different with the higher concentrations of lysozyme.  
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A B 

  

Figure 3.30: Representative EQCM data (A) cyclic voltammograms (10th cycle) and the 

corresponding (B) relative change in frequency (Δf) in different electrolyte solutions indicated in 

(A). Chit/PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl. The films 

were electropolymerisation at 0.80 V vs SCE to a charge density of 55 mC cm-2 on a chitosan coated 

Au-EQCM crystal (0.20 cm2). 

Although there are some reports in the literature of EQCM data on hydrogels120, 121, it is 

not viable to determine a change in mass because hydrogels oppose certain preconditions 

of the Sauerbrey equation (Equation 3.1)122. The hydrogels are known to swell which, in 

this case, could be excessive102. Possible contributions to changes in the relative 

frequency include changes in surface morphology due to swelling and solution viscosity. 

3.4.2 Open-circuit potential of Chit/PpyCl immersed in lysozyme solution 

Open-circuit potential experiments were carried out in an attempt to determine the 

stability of Chit/PpyCl in the presence of lysozyme. The Chit/PpyCl coated electrodes 

were immersed in centrifuge tubes containing 0.1 mol dm-3 NaCl (control/blank) and a 

solution of lysozyme, 1.5 μg mL-1 made up in 0.1 mol dm-3 NaCl (which served as an 

electrolyte). The solutions were refreshed daily over the 28 day period. The open-circuit 

potential is plotted as a function time, in days, for Chit/PpyCl immersed in 0.1 mol dm-3 

NaCl and in the lysozyme-containing solution, in Figure 3.31. It is clear from these data 

that the open-circuit potentials recorded for the blank and lysozyme-containing solutions 

are similar over the 28-day period. The open-circuit potentials are reasonably constant 

and only vary from 0.12 V to 0.15 V vs SCE over the 28 day period. There is no evidence 
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to indicate that the lysozyme solution has modified the properties of the Chit/PpyCl 

composite.  

After recording the open-circuit potential for 10 minutes, cyclic voltammetry was carried 

out over a short period of time (to avoid over-oxidation of the composite) in a small 

window between –0.35 and 0.50 V vs SCE, for 10 cycles at 50 mV s-1. Figure 3.32 shows 

the total charge consumed during the 10th cycle of the cyclic voltammograms recorded in 

the presence and absence of the lysozyme. In both cases, the Chit/PpyCl composites 

immersed in the blank and 1.5 μg mL-1 of lysozyme show a decrease in charge consumed 

during oxidative cycling (Figure 3.32 A) and a concomitant increase in charge consumed 

during reduction (Figure 3.32 B). Again, it can be concluded from these data that the 

lysozyme solutions have no significant effect on the stability of the Chit/PpyCl 

composites during electrochemical analysis. This is in good agreement to Ren and Ma’s 

report on the very slow degradation process of chitosan (degree acetylation between 71.7 

% and 93.5 %) in lysozyme over an 80 day period118.  

 

Figure 3.31: Open-circuit potential-time plots for Chit/PpyCl in 1.5 μg mL-1 lysozyme (●) and 0.1 

mol dm-3 NaCl (□). The films were prepared by potentiostatic electropolymerisation at 0.80 V vs 

SCE to a charge density of 2.20 C cm-2 from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl 

on to a chitosan coated Pt electrode. n=3 
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Figure 3.32: Total charge consumed during, 10th cycle. (A) oxidation (B) reduction, the Chit/PpyCl 

in 1.5 μg mL-1 lysozyme and NaCl is represented by (●) and (□), respectively. The films were prepared 

by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 2.20 C cm-2 from a 

solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl on to a chitosan coated Pt electrode. n=3 

 

3.5 Adhesion test 

The adhesion of polypyrrole to a metal substrate is pivotal to its applications, especially 

where good electrical contact is necessary. Generally in the case of inert metals (Pt and 

Au) there are no issues with the deposition and adhesion of polypyrrole, but the adhesion 

of polypyrrole films on some medical materials, for example titanium, is quite weak and 

the metal has to be pre-treated with an etchant to improve the deposition and adhesion. 

For some applications where a reduction potential is applied there can be a loss of 

adhesion even on inert metals. The loss of adhesion is associated with decreased 

capacitance123. A decrease in capacitance is observed when the dopant is released from 

the polymer film during reduction.124, 125  

The adhesion properties were determined by performing the peel-test described in Section 

2.4.10. The performance was classified using the methodology summarised in Table 3.7. 

In this case five classifications were employed, ranging from excellent adhesion where 

the films were only removed with mechanical grinding, to very poor adhesion properties, 
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where the adhesion properties of the films were lost during electropolymerisation.  A 

summary of the adhesion test results is provided in Table 3.8. In this table, the films 

indicated with E (+V) refer to the films grown at a fixed potential of 0.80 V vs SCE, 

while the films indicated with E (−V) refer to the reduced films. The reduced films were 

held at –0.90 V vs SCE for 10 min in 0.1 mol dm-3 NaCl after polymerisation. The films 

were then dried in a stream of air. It is clearly evident from Table 3.8 that the Chit/PpyCl 

composite has superior adhesion properties compared to the PpyCl film, with excellent 

adhesion properties when the composite is prepared or reduced. The adhesion properties 

of the chitosan film are equally good, while the reduced PpyCl films have poor adhesion 

properties.  

 

Table 3.7: A summary of how adhesion was qualitatively classified and the numbers used. 

Classification Description Result 

0 In addition to showing no detachment with the 

peel-test, mechanical grinding with grit paper is 

required to remove the film (1 out of 3 times).  

Excellent 

1 No detachment, manual polishing is required to 

remove film.  

Good 

2 Some detachment (1 out of 3 times).  Poor 

3 Detachment partially or wholly (2 out of 3 times).  Very Poor 

4 Complete fail of adhesion, detachment during 

potentiostatic experiments.  

Fail 
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Table 3.8: Summary of results from adhesion tests.  

Sample Classification Result 

PpyCl E (+ V) 1 Good 

Ppy/Chit E (+ V) 1 Good 

Chit/Ppy E (+ V) 0 Excellent 

PpyCl E (− V) 2 Poor 

Ppy/Chit E (− V) 1 Good 

Chit/Ppy E (− V) 0 Excellent 

Chitosan  1 Excellent 

 

 

3.6 Wettability of the composite 

According to Hallab et al.126 the cell adhesion properties of a material are superior when 

the material is hydrophilic. The wettability (hydrophilicity) of a surface can be easily 

determined with the use of contact angle measurements with deionised water, where the 

lower the contact angle, the more wettable (hydrophilic) the surface. Contact angle 

measurements were made using the sessile drop technique and analysed with the 

goniometer method. The contact angle was immediately measured after placing a drop of 

deionised water on each sample. An example of the image of the droplet during the 

contact angle measurement is shown in Figure 3.3. The contrast between the light and 

dark regions is used to calculate the contact angle of the droplet.  

The contact angles were measured for PpyCl, PpyCl/Chit, Chit/PpyCl and Chit and the 

data are summarised in Table 3.9. In some cases the contact angles were measured over 

a 60 s period to monitor any potential time variations. It is clear that the PpyCl films 
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grown to a charge density of 2.2 C cm-2 are the most hydrophilic with a contact angle of 

52º and showed no significant change within the first 10 s. 

 

A B 

  

Figure 3.33: Images of the silhouettes of the droplets from the contact angel measurement for 

chitosan (A) and PpyCl (B). The PpyCl was prepared by potentiostatic electropolymerisation at 

0.80 V vs SCE to a charge density of 2.20 C cm-2 from a solution of 0.1 mol dm-3 Py and 0.1 mol 

dm-3 NaCl.  

 

The chitosan films gave a high contact angle measurement of 95º in the first 10 s, which 

is characteristic of hydrophobicity. Indeed, Silva et al.73 reported similar results. At 60 s 

an average value of 75º was obtained for the chitosan film which is in good agreement 

with the literature values127,128.  For example, Hoven et al.128 reported similar values, 

however, they took their measurements within 5 s to eliminate errors caused by adsorption 

process. In the case of chitosan the contact angle of the water droplet decreased with time. 

Chitosan is a well-known hydrophilic polymer.129 These results can be explained by the 

fact that when the chitosan solution is drop cast and forced dried under an IR lamp prior 

to contact angle measurements it contains a negligible amount of water. Hydration then 

occurs, but this occurs slowly and is consistent with the decrease in the contact angles 

with increasing time. PpyCl has an average contact angle measurement of 52º which is in 

good agreement with the values reported by Thompson et al. 130 for Ppy doped with 

various dopants. The Chit/PpyCl has hydrophilic values similar to the PpyCl, indicating 
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that the PpyCl dominates the hydrophilic nature of the composite. In contrast, the 

PpyCl/Chit has a contact angle value of 70º after 1 s and this did not change significantly 

after 60 s even though it was dried prior to contact angle measurements. This may be 

connected to the fact that the PpyCl layer trapped some moisture which allowed some 

rehydration of the chitosan layer after curing under an IR lamp.  

 

Table 3.9: Average contact angles using deionised water obtained on polypyrrole chloride (PpyCl), 

chitosan (Chit), and the composites (PpyCl/Chit and Chit/PpyCl). n=2, with the exception of chitosan; 

n=3. 

Sample Contact angle θ  Result 

PpyCl 52º hydrophilic 

Chit (t = 1 s) 95º hydrophobic 

Chit (t = 60 s) 75º hydrophilic 

PpyCl/Chit 70º hydrophilic 

Chit/PpyCl 58º hydrophilic 

 

Hydrophobic and superhydrophobic chitosan films have been reported in the literature131. 

The superhydrophobic films are prepared in the presence of anionic surfactants and have 

been proposed for applications in antimicrobial surfaces.  

An interesting paper by Teh et al.132 shows a correlation between contact angle 

measurements of PpyDBS at stepped potentials, illustrating the switching between 

hydrophilic properties at negative potentials and increased hydrophobicity at increasing 

positive potentials.  
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3.7 Summary of results 

Conducting Chit/PpyCl composites, that retain the unique electrochemical behaviour of 

the inherently conducting polypyrrole component, have been electrochemically 

synthesised. The optimum formulation for Chit/PpyCl was found to comprise of 10 μL of 

0.5 % chitosan and 0.1 mol dm-3 pyrrole made up in a 0.1 mol dm-3 NaCl supporting 

electrolyte. A constant potential of 0.80 V vs SCE was applied for 5 min to yield a charge 

density of 2.2 C cm-2. The total preparation time was approximately 45 min in contrast to 

the hours and overnight steps required for chemical preparation documented in the 

literature133-135. The growth parameters and growth rate strongly suggest that at optimum 

conditions the chitosan swollen film (hydrogel) does not impede the growth of PpyCl on 

the electrode surface and through the hydrated film network.  

The FT-IR results distinguishes the composite film as a class I hybrid136 which has weak 

interactions, as opposed to a class II hybrid136 which has strong chemical interactions 

such as, ionic or covalent bonding. The FT-IR spectrum in Figure 3.7 clearly shows 

evidence for the successful preparation of PpyCl in the presence of chitosan. The DSC 

plot in Figure 3.6 shows that the composite exhibits a higher thermal stability than 

chitosan.  

The electrochemical properties were studied using cyclic voltammetry in Section 3.3.4 

and electrochemical impedance spectroscopy (EIS) was investigated in Section 3.3.6. The 

electroactivity of chitosan and PpyCl differ significantly. The composite behaves 

similarly to PpyCl, indicating that the chitosan does not adversely affect the PpyCl but 

may influence the ion transport. The conductivity of chitosan has not been reported (in 

the hydrated form), and it is difficult to compute because of the magnitude of swelling. 

However, using impedance measurements the difference in the resistance values between 

chitosan and PpyCl is over 1,000 fold due to a lack of electronic conductivity in the 

chitosan network.  

The lysozyme solution appeared to have little effect on the stability of the composite, 

even after an extended period of days (Section 3.4).  
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Improved adhesion was observed with the composite which is the most notable result on 

a macroscopic scale, as improved adhesion can enhance the operating lifetime and 

stability of polymers (Section 3.5).   

The preliminary wettability test was described in Section 3.6. Chitosan, PpyCl and 

Chit/PpyCl appeared to be hydrophilic, which is consistent with reports in the literature. 
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4. Electrochemical synthesis and characterisation of 

polypyrrole methyl orange (PpyMO)/chitosan composite 

films 

4.1 Introduction 

Films consisting of a blend of chitosan and polypyrrole doped with methyl orange were 

prepared and characterised for their electrical and physical properties. Methyl orange, 

Figure 4.1, is an intensely coloured azo compound commonly used as a dye. Its distinctive 

colour change from orange to red is easily observed between the narrow pH ranges of 4.4 

to 3.11. The absorption band of methyl orange is in the visible spectrum making it a 

suitable indicator for the titration of strong acids and weak bases, while its characteristic 

bright colour makes it an important dye for many industries such as, paint2, textile3, 4, 

leather5, printing, cosmetics6 and general chemical processing7. The azo linkage is the 

most labile portion of the dye molecule and is responsible for its toxicity8, 9; as a 

consequence it is a major industrial pollutant. Methyl orange has a hydrophilic group 

making it soluble in water10. 

 

 

Figure 4.1: Structure of methyl orange.  
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Kaynak and co-workers11 doped Ppy with sulfonic acid dyes varying in size. They found 

that Nuclear fast red has the highest conductivity of 4.7 mΩ-1 cm-1 and Naphthol Green 

B has the lowest conductivity of 8.73 μΩ-1 cm-1, and they suggest possible geometry 

effects of the dopant on the final product. In recent publications methyl orange was 

evaluated as a suitable candidate for semiconductor devices with a wide range of thermal 

stability12-14.  Dyeing materials are widely used in semiconductor devices due to their 

stability, having a conjugate structure and being rich in π-electrons15.  

Dyes like methyl orange can be found in some pharmacology studies, as an example 

Zbaida et al.16 compared the reduction of azo dyes, that are structurally related to 4-

(dimethylamino)-azobenzene (DAB), by rat liver microsomal cytochrome P-450. Mazur 

et al.17 reported the preparation of polypyrrole microvessels that are capable of 

encapsulating Nile Red, a solvatochromic dye that served as a model lipophilic drug in 

their study.  Lee and Chiang18 studied the drug release behaviour of poly(acrylic acid/N-

vinyl pyrrolidone)/chitosan hydrogels using phenol red and neutral red dyes. Lira et al.19 

reported the synthesis of a polyaniline-polyacrylamide hydrogel hybrid material for the 

controlled release of safranin, a cationic dye.  

In summary, methyl orange has a range of attractive properties, including its molecular 

size, its ability to absorb light (as it contains chromophores), it is inexpensive and 

possesses some interesting electrochemistry due to its conjugated structure15.  

In this study methyl orange was chosen as a model anionic dopant for the fabrication of 

a polypyrrole/anion composite. The use of polypyrrole (Ppy) as a suitable substrate for 

the controlled release of methyl orange was then investigated. Polypyrrole methyl orange 

(PpyMO) was successfully synthesised from a solution consisting of 0.05 mol dm-3 

pyrrole, 5.0 mmol dm-3 methyl orange and 0.025 mol dm-3 NaCl. However, aggregates of 

methyl orange were observed in the electrolyte solution on application of the potential to 

the electrode. When the concentration of NaCl was reduced to 0.01 mol dm-3 the 

concentration of aggregates was lowered. The NaCl was then removed from the 

electrosynthesis solution and as a consequence the polypyrrole methyl orange growth was 

compromised as the concentrations of methyl orange and pyrrole were relatively low. The 

electrosynthesis solution was then modified to consist of 0.1 mol dm-3 pyrrole and 0.01 
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mol dm-3 methyl orange dissolved in distilled water. No additional electrolyte was used 

and as a result no aggregates were formed in solution and competition between anionic 

species was eliminated. In this system the anionic methyl orange, MO  , was directly 

incorporated into the polypyrrole matrix as a dopant during electrosynthesis. The release 

of the MO  was investigated both with and without electrical stimulation. Attempts to 

make Chit/PpyMO were unsuccessful. The chitosan appeared to interact with the MO   

from the electrolyte solution. The pyrrole monomer could not interpenetrate the chitosan 

efficiently. Alternatively, chitosan was added post-electropolymerisation. The scheme for 

this process is depicted in Chapter 3, Figure 3.1. There are relatively few publications 

reported on the formation of Ppy/Chit with methyl orange. Chen et al.20 prepared a 

Ppy/Chit through static polymerisation using methyl orange as the dopant and Fe2(SO4)3 

as the oxidant. Other citations reveal that methyl orange is useful for soft templates when 

growing Ppy nanocomposites10, 21-25.  

 

4.2 Experimental 

Polypyrrole methyl orange films, PpyMO, were grown potentiostatically on to a platinum 

working electrode (surface area 0.13 cm2). The monomer solution consisted of 0.1 mol 

dm-3 pyrrole (Sigma-Aldrich, distilled under vacuum) and 0.01 mol dm-3 methyl orange 

(Sigma-Aldrich) in distilled water. The film was synthesised by applying a constant 

potential of 0.80 V vs SCE for approximately 3 min yielding a charge density of 0.25 C 

cm-2. The PpyMO films were rinsed with acetone, ethanol and distilled water to remove 

any unreacted monomer and undoped methyl orange. The chitosan film was prepared by 

drop casting 10 μL of 0.5% (w/v) chitosan solution directly on to the washed PpyMO film 

and then force dried under an infrared lamp for 10 min.   
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4.3 Results and discussion 

 

4.3.1 Redox properties of Methyl Orange  

Cyclic voltammetry was used to gain information on the stability of a methyl orange 

solution towards oxidation and reduction. The experiments were carried out on a bare Pt 

electrode by cycling between −1.20 V vs SCE and 1.00 V vs SCE, at a scan rate of 50 

mV s-1, in 0.01 mol dm-3 methyl orange or 0.1 mol dm-3 NaCl. Typical cyclic 

voltammograms are shown in Figure 4.2. The voltammograms recorded in NaCl display 

redox properties which are dominated by H+ adsorption and H2(g) evolution between 

approximately –0.90 V and –1.20 V vs SCE. This indicates that the electrochemistry of 

the bare Pt is dominant26. The voltammogram recorded in the presence of methyl orange 

has a similar profile but the current is considerably lower as a result of the lower 

conductivity. The methyl orange solution has a conductivity value of 0.7 mΩ-1 cm-1 

compared to a conductivity of 1.6 mΩ-1 cm-1 for the NaCl solution. No reduction or 

oxidation peaks were observed indicating that the MO solution is stable in this 

electrochemical window. Levine et al.16 reported the formal redox potential of methyl 

orange to be −1.48 V, with the oxidation and the reduction potentials at 1.02 V and −1.55 

V, respectively, with respect to SHE. It is evident from Figure 4.2 that there is a slight 

increase in the current at potentials higher than 0.85 V vs SCE, which may indicate some 

oxidation of methyl orange. However, there is no evidence of any redox reactions between 

−1.20 V and 0.85 V vs SCE and the PpyMO film can be formed at potentials below 0.85 

V vs SCE and the methyl orange released at potentials in the vicinity of −1.20 V vs SCE.   
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Figure 4.2: Cyclic voltammogram of a 0.13 cm2 bare platinum electrode (20th cycle) at 50 mV s-1 

in 0.01 mol dm-3 methyl orange (―) and 0.1 mol dm-3 NaCl (····).  

4.3.2 Electrochemical synthesis of the polypyrrole methyl orange film and 

composite 

In the literature, PpyMO was synthesised from a solution containing nitrates (NO


3 ) as a 

supporting electrolyte during galvanostatic synthesis27. Here, potentiostatic synthesis, 

similar to that shown in the previous chapter, was employed. It has been reported that 

changes of electrode potential in the early stages of film formation can disturb steady 

polymer growth, leading to poorer adhesion of the polymer film while films grown at a 

constant potential can achieve higher qualities, in terms of smoothness and adherence, 

than those grown at constant current28. In this study, no supporting electrolyte was used 

for the electrosynthesis of PpyMO to ensure that Ppy was only doped by the MO  . Initial 

attempts to synthesis Chit/PpyMO were unsuccessful so a decision was made to add the 

chitosan post-electropolymerisation. Figure 3.1 in Chapter 3 illustrates the sequential 

steps used to prepare a PpyA/Chit composite film. A range of monomer and dopant 

concentrations were tested until a formulation yielded a film grown to a charge of 0.25 C 

cm-2 in less than 5 min at 0.80 V vs SCE to prevent irreversible over-oxidation29. Typical 

current-time and charge-time plots recorded during the formation of PpyMO at 0.80 vs 

SCE are shown in Figure 4.3, while a schematic outlining the formation of PpyMO is 
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presented in Figure 4.4. For comparison, the profiles recorded during the formation of 

PpyCl, recorded under similar conditions with 0.1 mol dm-3 pyrrole and 0.1 mol dm-3 

NaCl at 0.80 V vs SCE, are shown. There is a considerable difference between the rates 

of electropolymerisation in the methyl orange and chloride-containing solutions. The 

PpyCl is deposited to a charge of 0.25 C cm-2 in 40 s, while 250 s are required to deposit 

the PpyMO. The charge increases in a linear manner during the formation of PpyCl. The 

average rate of growth for PpyCl grown to a charge density of 0.25 C cm-2 on a 

conventional Au disc electrode and Pt disc electrode was computed as 8.02 mC s-1 and 

7.53 mC s-1, respectively, indicating efficient growth of the polymer film30. The charge-

time plot is very different during the formation of PpyMO, Figure 4.3. The charge 

increases in a linear manner, but at a lower rate during the early stages of 

electropolymerisation, from 0 to 40 s. Then there is an increase in the rate of polymer 

deposition. The average rate of growth for PpyMO deposited to a charge density of 0.25 

C cm-2 on a conventional Au disc electrode and Pt disc electrode was computed to be 0.67 

mC s-1 and 0.64 mC s-1, respectively, which is considerably slower than the rate of 

formation of PpyCl. The slower growth rate may be explained by the slow diffusion of 

the relatively large MO   anion to the electrode surface31.  
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Figure 4.3: Current-time plots (A) and charge-time plots (B) for the growth of (― PpyMO) and 

(···· PpyCl). The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl 

and the PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. The films 

were electropolymerisation at 0.80 V vs SCE yielding a charge density of 0.25 C cm-2. 

 

 

Figure 4.4: Synthesis of polypyrrole with the incorporation of the methyl orange anion (MO-). 

To explore further the nature of the anion in the formation of the polypyrrole films, 

dexamethasone 21‐phosphate disodium salt (Dex) was chosen as the anion. It has a pKa 

of 6.432 and its chemical structure is shown in Figure 4.5. The presence of the phosphate 

group on the dexamethasone steroid ring structure imparts a negative charge to the drug 

(Dex2‐) making it suitable for incorporation as a dopant in polypyrrole33. 
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 Figure 4.5: Structure of Dexamethasone 21‐phosphate disodium salt (Dex2-). 

Dexamethasone is classified as a synthetic glucocorticosteroid and is used in several 

treatments, including the reduction of inflammation in the central nervous system and in 

the treatment of cancer34. It is thought to act through the glucocorticosteroid receptors 

found in most neurons and glial cells throughout the brain35. These pathways are involved 

in the inhibition of astrocyte proliferation36 and microglial activity37. Brand names of 

dexamethasone include Decadron®, Dexasone®, Diodex®, Hexadrol® and Maxidex®. 

It can also be given in tablet form or intravenously. It is also an ophthalmic drug38-40 and 

it is used to treat a variety of ocular diseases. Topical preparations are available as cream, 

gel and aerosol solution to treat skin disorders. There are several pro‐drug forms of 

dexamethasone41-43 used for the treatments mentioned above. There has been increasing 

reports in the literature of the use of dexamethasone in controlled release studies44-49. 

Wadha et al44. studied the controlled release of Dex2‐ from Ppy. The drug was 

incorporated into the polymer using a galvanostatic mode, while its release was carried 

out using cyclic voltammetry over a wide potential window, which is likely to 

compromise the integrity of the Ppy film. Wallace and co-workers45, 46 reported the 

electrochemical release of therapeutic levels of Dex2‐ from polyterthiophene. An 

oxidation potential was applied to inhibit the release of Dex2‐. They found that by 

applying a reduction potential the rate of drug release was not significantly increased 

when compared to an unstimulated film. It is clear from these studies that dexamethasone 

is an interesting drug and an ideal drug to compare with methyl orange.  



Chapter 4 

 

 

 
159 

 

  

The current-time and charge-time plots recorded during the formation of PpyDex are 

presented in Figure 4.6, while a schematic representing the formation of the film is 

presented in Figure 4.7. Again the rate of electropolymerisation was compared with the 

formation of PpyCl. It was found that by increasing the pyrrole concentration and 

reducing the concentration of dexamethasone a dilute formulation was sufficient to grow 

PpyDex on a Pt disc electrode at 0.80 V vs SCE to a charge of 0.25 C cm-2 in 3 min. The 

data presented in Figure 4.6 were recorded in 0.01 mol dm-3 dexamethasone with 0.1 mol 

dm-3 pyrrole. Again, the rate of electropolymerisation is lower than that recorded during 

the formation of PpyCl. The average rate of growth for PpyCl grown to a charge density 

of 0.25 C cm-2 on a Pt disc electrode was computed as 7.53 mC s-1. The average rate of 

growth for PpyDex was computed as 1.80 mC s-1, which is considerably slower than 

PpyCl but not as slow as PpyMO. The average rate of growth for PpyDex deposited at 

0.90 V vs SCE was computed to be 3.80 mC s-1, clearly showing that the rate of 

electropolymerisation is increased on the application of higher potentials. 

A B 

  

Figure 4.6: Current-time plots (A) and charge-time plots (B) for the growth of (― PpyDex) and 

(···· PpyCl) at 0.80 V vs SCE yielding a charge density of 0.25 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyDex was prepared from a 

solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 Dex. 
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Figure 4.7: Synthesis of polypyrrole with the incorporation of the dexamethasone.  

 

It is evident from these data that the rate of electropolymerisation is higher with the 

PpyDex compared to the PpyMO system, however on comparing the costs of the dopants, 

summarised in Table 4.1, it is clear that the dexamethasone is considerably more 

expensive making methyl orange the preferred dopant. 

Table 4.1: Comparison of the cost of dopants used, price taken from Sigma-Aldrich (October 2013).   

Although the PpyDex film was successfully formed at 0.80 V vs SCE and 0.90 V vs SCE, 

the dopant is expensive, as shown in Table 4.1, and all further studies were focussed on 

PpyMO. 

 

4.3.2.1 Morphology (SEM) 

The surface topography and morphology of the polymers was studied using SEM. The 

polymer was grown on a customised Pt electrode (Section 2.4.6) with a surface area of 

0.13 cm2. The polymer films were washed thoroughly with acetone, ethanol, and distilled 

water until washing ran clear to ensure the removal of excess electrolyte (MO-) on the 

Dopant Concentration (mol dm-3) Cost ex. VAT (per gram)  

chloride (Cl) 0.10 € 0.03 

methyl orange (MO) 0.01 € 0.35 

dexamethasone (Dex) 0.01 € 331.50 
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surface. They were air dried for several hours before imaging. These samples were sputter 

coated with 1.4 nm of gold prior to imaging.  

In Figures 4.8, 4.9 and 4.10, SEM micrographs of PpyCl and PpyMO grown to a charge 

density of 0.25 C cm-2 are shown. The polymer films appear as globule structures or 

“cauliflower” structures50, 51. As mentioned in Section 3.3.3.3 this morphology is typical 

of bulk polypyrrole. The globules are composed of micro‐spherical grains, it has been 

reported that this particular morphology is caused by the dopant intercalation difficulty 

in the disordered polymeric chain4, 52. The presence of these cauliflower structures in the 

PpyMO film is more clearly evident in Figure 4.10. It is also evident from Figure 4.9, that 

rods or tubular-like structures, consisting of methyl orange, are distributed across the 

surface of the film. It is clear from these micrographs that the morphology of the 

polypyrrole film changes in the presence of methyl orange. Although the typical 

cauliflower-like structures seen for polypyrrole films are present, tubular-like structures 

which decorate the surface are also evident with the PpyMO film27. These tubes have 

lengths up to 10 m and in some cases appear as branched structures.  These significant 

changes in the morphology of the polymers formed in the presence of methyl orange, 

clearly confirm that the methyl orange is effectively incorporated into the polypyrrole 

film. During the electropolymerisation of PpyMO, MO is also present as a precipitate on 

the surface of the polymer and as there is no other dopant available in the electrolyte to 

dope the polymer this film will be just referred to as PpyMO.  
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Figure 4.8: SEM micrograph of polypyrrole-chloride, PpyCl, grown on a 0.13 cm2 customised Pt 

electrode showing “cauliflower” morphology. The film was prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE in 0.1 mol dm-3 Py 0.1 mol dm-3 NaCl grown to a charge 

density of 0.25 C cm-2. 

 

 

Figure 4.9: SEM micrograph of polypyrrole methyl orange, PpyMO, grown on a 0.13 cm2 

customised Pt electrode showing “cauliflower” morphology with rod-like crystals of methyl orange 

adhered to the surface of the polymer. The film was prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE in 0.1 mol dm-3 Py 0.01 mol dm-3 MO grown to a charge 

density of 0.25 C cm-2. 

7 μm 
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Figure 4.10: SEM micrograph of polypyrrole methyl orange, PpyMO, at a higher magnification. 

The film was prepared by potentiostatic electropolymerisation at 0.80 V vs SCE in 0.1 mol dm-3 

Py 0.01 mol dm-3 MO grown to a charge density of 0.25 C cm-2. 

Real film thickness (𝛿𝑓𝑖𝑙𝑚) of PpyMO grown to different charge densities ranging from 

0.1 C cm-2 to 0.5 C cm-2 were measured from scanning electron microscopy (SEM) 

micrographs. The relationship between charge consumed during polymerisation and 

thickness is shown in Equation 3.3, Chapter 3. In Figure 4.11 B the thickness of the films 

is shown plotted as a function of the charge density and the linear regression provides the 

volume-to-charge ratio (𝐾)53. The 𝐾 value was found to be 2.25 ×104 cm3  C-1 for the 

polypyrrole methyl orange films.   

5 μm 
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Figure 4.11: Representative micrograph of PpyMO thickness (0.5 C cm-2), showing callipers (A) 

and a plot showing the dependence of charge consumed during synthesis with thickness, n = 4. 

 

4.3.2.2 EDX analysis  

EDX analysis was carried out to verify the presence of the methyl orange. The EDX 

spectrum in Figure 4.12 confirms the presence of carbon at 0.3 keV, sulphur at 2.45 keV 

and oxygen at 0.52 keV. Carbon is an elemental component of both polypyrrole and 

methyl orange, however, the sulphur and oxygen are elemental components of the anionic 

methyl orange (MO  ). The incorporation of MO as a dopant and precipitate on the surface 

of the polymer was shown previously (Section 4.3.2.1). Interestingly chloride also 

appears at 2.62 keV in the EDX spectra. EDX analyses of methyl orange on its own 

showed traces of chloride and this could explain the presence of chloride in the EDX 

spectrum. Other routes of contamination of Cl   anions could be from the reference 

electrode leaking into the electrolyte during synthesis as a consequence of the low 

conductivity of the electrosynthesis solution (0.7 mΩ-1 cm-1).  
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Figure 4.12: Representative EDX spectrum of PpyMO, showing x-axis from 0 to 12.5 keV. 

 

4.3.3 Cyclic Voltammetry (CV) 

The electrochemical properties of PpyCl and PpyMO were characterised using cyclic 

voltammetry. The polymers were grown to a charge density of 0.25 C cm-2. They were 

cycled in 0.1 mol dm-3 NaCl and the potential was swept from –0.95 V to 0.35 V vs SCE 

to avoid over-oxidising the polymer54. Different scan rates, ranging from 5, 10, 25, 50, 

100 to 150 mV s-1, were used. The voltammograms of PpyCl and PpyMO were compared 

to that recorded for Pt in the NaCl solution.  

 

4.3.3.1 Redox properties of PpyCl and PpyMO grown to a charge of 0.25 C cm-2 

Representative voltammograms are shown in Figure 4.13 for the PpyCl and PpyMO films 

deposited to a charge of 0.25 C cm-2 and cycled in 0.1 mol dm-3 NaCl. The data presented 

in the plots labelled A and C show the voltammograms recorded at different scan rates 

and the plots labelled B and D show a magnification of the voltammograms recorded at 

10 mV s-1 and compared to the electrochemical response of the bare Pt electrode. It is 

clear from the data presented in Figure 4.13 B and D that the voltammograms recorded 

for bare Pt are very different to the response obtained with the PpyCl and PpyMO 

modified Pt electrodes. There is no evidence for the adsorption of hydrogen ions or the 
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evolution of hydrogen gas when the Pt electrodes are modified with the polymer films.  

Reproducible voltammetric behaviour was attained with the polymer films after the first 

few cycles, usually 3 to 4 cycles and the data shown in Figure 4.13 were recorded 

following 9 cycles. It is clear that the voltammograms recorded for PpyMO (Figure 4.13 

C) and PpyCl (Figure 4.13 A) are different. Lower currents, particularly at the higher scan 

rates, are observed with the PpyMO films and the peak potentials vary considerably for 

the two polymer films. For the PpyCl film, the main redox peak for anion transport is 

centred at −0.10 V vs SCE, and the main anodic peak potential (𝐸𝑝𝑎) and the cathodic 

peak potential (𝐸𝑝𝑐) shift as the scan rate increases. A second cathodic peak appears at 

approximately −0.55 V vs SCE at a scan rate of 10 mV s-1, it also shifts in the cathodic 

direction by 160 mV and becomes more pronounced as the scan rate is increased to 150 

mV s-1. For PpyCl the dominating redox process is for anion transport, indeed similar 

voltammograms for PpyCl have been published and discussed55-58 and ion transport has 

been extensively studied59-64. Small ions like Cl  exhibit predominantly anion transport 

because of their mobility65. 

In contrast, Figure 4.13 C clearly shows that the main redox peak for PpyMO is at lower 

potentials than PpyCl. There is little voltammetric data published or discussed with regard 

to PpyMO, however the redox wave is in the region associated with cation transport66. 

The anodic peak potential (𝐸𝑝𝑎) shifts by 142 mV in the anodic direction as scan rate 

increases from 5 to 150 mV s-1. The cathodic peak potential (𝐸𝑝𝑐) is centred at −0.50 V 

vs SCE. No other significant peaks are observed although a mix of anion and cation 

transport has been reported for other small to medium sized sulphate based dopants67, 68 

and this may be the case for the PpyMO system. The PpyCl and PpyMO films 

demonstrate redox asymmetry typical of conducting polymers69. 

In Figure 4.14, plots are shown for the peak potential (𝐸𝑝) and peak current (𝐼𝑝) as a 

function of the scan rate for the cyclic voltammograms of PpyCl and PpyMO (shown in 

Figure 4.13). These data are also presented in Table 4.2. In PpyCl, the voltammetric peak 

associated with Cl   insertion is more susceptible to the change in scan rate than the 

voltammetric peak associated with Cl  expulsion. The peak associated with the transient 

Cl  insertion shifts to lower potentials with increased scan rate while the corresponding 
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cathodic peak remains at −0.13 V ± 23 mV as the scan rate increases with the exception 

of the data recorded at 5 mV s-1.  

A B 

  

C D 

  

Figure 4.13: Cyclic voltammograms (10th cycle) of PpyCl (A and B) and PpyMO (C and D) coated 

Pt electrode in 0.1 mol dm-3 NaCl. The dashed traces in (B) and (D) correspond to the 

voltammograms of bare Pt electrode. The scan rates in mV s-1 are indicated on the plot. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the 

PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. 
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A B 

  

C D 

  

Figure 4.14: Peak potential plotted as a function of scan rate for PpyCl (A) and PpyMO (C) and 

peak current plotted as a function of scan rate PpyCl (C) and PpyMO (D) taken from the cyclic 

voltammograms (10th cycle) shown in Figure 4.13 A and C. The main anodic peak (●) and the main 

cathodic peak (□). The R2 values for the linear trendline are indicated. The films were prepared by 

potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl 

was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was 

prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. 
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Table 4.2: Cyclic voltammetric data for the redox properties of PpyCl and PpyMO in 0.1 mol 

dm-3 NaCl. 

PpyCl 

Scan rate 

(mV s-1) 

Emid (V 

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.10 420 0.07 −0.08 

10 −0.03 250 0.25 −0.29 

25 −0.07 182 0.57 −0.55 

50 −0.11 -12 1.20 −1.03 

100 −0.11 25 2.66 −2.09 

150 −0.07 101 4.24 −3.10 

PpyMO 

Scan rate 

(mV s-1) 

Emid (V  

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.41 118 0.14 −0.29 

10 −0.42 170 0.24 −0.48 

25 −0.40 293 0.59 −0.96 

50 −0.41 267 1.12 −1.37 

100 −0.38 266 2.05 −2.27 

150 −0.35 280 2.86 −3.27 

a Calculated from 1 2⁄ (𝐸𝑝,𝑐  +  𝐸𝑝,𝑎). 

b ∆𝐸𝑝  =  𝐸𝑝𝑎  −  𝐸𝑝𝑐 . 
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It is clear from a comparison of the data presented in Figure 4.14 A and Figure 4.14 C 

that the peak separation is more significant in the PpyMO than in the PpyCl film. For 

PpyMO the voltammetric peak associated with Na+ expulsion shifts to more positive 

potentials by 142 mV as the scan rate increases from 5 to 150 mV s-1. The peak associated 

with the transient Na+ insertion is centred at −0.50 V ± 30 mV. When anionic transport 

is dominant the insertion of the anion species from the solution into the Ppy film is 

associated with a larger ohmic potential drop than its expulsion63.  When cation transport 

is dominant the insertion of the cation species into the film is associated with a larger 

ohmic potential drop than its expulsion. In both cases, the peak current increases in a 

linear manner with the scan rate, Figure 4.14 B and Figure 4.14 D, and higher currents 

are obtained with the PpyCl films. 

Table 4.2 shows the cyclic voltammetric data for the main redox process of PpyCl and 

PpyMO. The ratios of the peak currents (𝐼𝑝𝑎 𝐼𝑝𝑐⁄ ) were determined for the main redox 

peaks, and average values of 0.8 and 0.7 were calculated for PpyCl and PpyMO, 

respectively. The peak current ratios increased as the scan rate increased. This deviates 

from a reversible voltammetric response with a peak ratio of 1.070. The average peak-to-

peak separation, ∆𝐸𝑝, for PpyCl and PpyMO in 0.1 mol dm-3 NaCl was calculated to be 

121 mV and  232 mV, respectively. The other parameter determined from the cyclic 

voltammetric data is the midpoint potential, 𝐸𝑚𝑖𝑑, which is very different for the PpyCl 

and PpyMO films. The 𝐸𝑚𝑖𝑑 values were computed as −0.08 V vs SCE for PpyCl and 

−0.39 V vs SCE for PpyMO, at 298 K. For reversible systems, the 𝐸𝑚𝑖𝑑 values coincide 

with the thermodynamically defined formal potential70.  
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4.3.3.2 Redox properties of PpyCl/Chit and PpyMO/Chit grown to a charge density of 

0.25 C cm-2 

As detailed earlier, the chitosan layer was formed post-electropolymerisation to give the 

PpyCl/Chit and PpyMO/Chit composite. Figure 4.15 shows the cyclic voltammograms of 

the PpyCl/Chit and PpyMO/Chit deposited on a Pt electrode and cycled in 0.1 mol dm-3 

NaCl at 23 ºC. Again, the data presented in Figure 4.15 A show the voltammograms 

recorded for PpyCl/Chit at various scan rates, while the data shown in Figure 4.15 C 

represents the PpyMO/Chit film. The chitosan component does not significantly alter the 

overall redox properties of the chloride based composite. Figure 4.15 A shows a broad 

redox waves centred at 0.0 V vs SCE which is consistent with anion transport. The main 

anodic peak potential (𝐸𝑝𝑎) and cathodic peak potential (𝐸𝑝𝑐) shift as the scan rate is 

increased. A second cathodic peak appears at −0.50 V vs SCE at a scan rate of 5 mV s-1 

and remains centred at this potential, however it becomes less pronounced as the scan rate 

is increased to 50 mV s-1. Clearly the dominating redox process is for anion transport, 

which is similar to that obtained with the PpyCl film in Figure 4.13. The corresponding 

current-potential curves for PpyMO/Chit are shown in Figure 4.15 C. The anodic peak 

potential (𝐸𝑝𝑎) shifts in the anodic direction from about 0.0 V to 0.30 V vs SCE as the 

scan rate is increased from 5 to 150 mV s-1. The cathodic peak potential (𝐸𝑝𝑐) shifts in 

the cathodic direction from approximately −0.10 V to −0.40 V vs SCE as the scan rate 

is increased. At the low scan rates (< 25 mV s-1) a second cathodic peak is observed at 

−0.50 V vs SCE. Again, these voltammograms are consistent with cation transport, which 

is similar to that observed with the PpyMO film, Figure 4.12. However, there is also 

evidence of anion transport, with the incorporation and expulsion of chloride anions.   



Chapter 4 

 

 

 
172 

 

  

A B 

  

C D 

  

Figure 4.15: Cyclic voltammograms (10th cycle) of PpyCl/Chit (A and B) and PpyMO/Chit (C and 

D) coated Pt electrode in 0.1 mol dm-3 NaCl. The dashed traces in (B) and (D) correspond to the 

voltammograms of bare Pt electrode. The scan rates in mV s-1 are indicated on the plot. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the 

PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. Chitosan was 

added post-polymerisation.  
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In Figure 4.16, plots are shown for the peak potential (𝐸𝑝) and peak current (𝐼𝑝) as a 

function of the scan rate for the cyclic voltammograms of PpyCl/Chit and PpyMO/Chit 

presented in Figure 4.15. In PpyCl/Chit (Figure 4.16 A) there is a difference of 100 mV 

between the maximum and minimum values of (𝐸𝑝𝑎) which occur at 5 and 25 mV s-1, 

respectively. This voltammetric peak associated with Cl  insertion is more susceptible to 

the change in scan rate than the voltammetric peak associated with Cl  expulsion.  

The peak associated with the transient Cl  insertion shifts slightly to lower potentials with 

increased scan rate, possibly due to uncompensated resistance as the scan rate increases.  

The peak separation is more significant in the PpyMO/Chit than in the PpyCl/Chit, as 

evident from a comparison of Figure 4.16 A and Figure 4.16 C. For PpyMO/Chit the 

voltammetric peak associated with Na+ insertion is difficult to discern at the higher scan 

rates, as shown in Figure 4.15. However the peak potentials recorded at the lower scan 

rates are clear and these are plotted in Figure 4.16 C. The corresponding cathodic peak 

varies significantly with the scan rate, giving a peak separation of 0.78 V at 150 mV s-1.  

In contrast to PpyMO, Figure 4.14, which has a peak associated with Na+ insertion at 

−0.50 V vs SCE, the PpyMO/Chit appears to be dominated also by anionic transport. The 

insertion of the ionic species from the solution into the Ppy film is associated with a larger 

ohmic potential drop than its expulsion63. Clearly the ionic species interact with the 

chitosan-modified surface of the electrode. The peak currents for PpyCl/Chit and 

PpyMO/Chit increase linearly with increasing scan rate, indicating the absence of a 

kinetic or charge-transport limitation63. The linear current increase with scan rate may 

suggest good rate ability71 attributed to the effective accessibility of electrolyte through 

the PpyCl/Chit and PpyMO/Chit composites. 

Table 4.4 shows the cyclic voltammetric data for the main redox process of PpyCl/Chit 

and PpyMO/Chit. The peak current ratios (𝐼𝑝𝑎 𝐼𝑝𝑐⁄ ) were determined and average values 

of 1.1 and 1.3 were calculated for PpyCl/Chit and PpyMO/Chit, respectively. The peak 

current ratios increased as the scan rate increased. This deviates from a reversible 

voltammetric response with a peak ratio of 1.070. The average peak-to-peak separation, 

∆𝐸𝑝, for PpyCl/Chit and PpyMO/Chit in 0.1 mol dm-3 NaCl was calculated to be 115 mV 
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and 425 mV, respectively. The peak-to-peak separation values are similar for PpyCl and 

PpyCl/Chit, however, there is almost a two-fold higher value obtained for PpyMO/Chit 

compared to PpyMO. The 𝐸𝑚𝑖𝑑 values were computed to be −0.03 V vs SCE for 

PpyCl/Chit and −0.06 V vs SCE for PpyMO/Chit, at 298 K.  
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Figure 4.16: Peak potential plotted as a function of scan rate for PpyCl/Chit (A) and PpyMO/Chit 

(C) and peak current plotted as a function of scan rate PpyCl/Chit (C) and PpyMO/Chit (D) taken 

from the cyclic voltammograms (10th cycle) shown in Figure 4.13 A and C. The main anodic peak 

(●) and the main cathodic peak (□). The R2 values for the linear trendline are indicated. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the 

PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. Chitosan was 

added post-polymerisation. 
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Table 4.3: Cyclic voltammetric data for the redox properties of PpyCl/Chit and PpyMO/Chit in 

0.1 mol dm-3 NaCl. 

PpyCl/Chit 

Scan rate 

(mV s-1) 

Emid (V 

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 0.00 120 0.10 −0.10 

10 −0.01 120 0.22 −0.21 

25 −0.06 100 0.59 −0.54 

50 −0.05 40 1.22 −1.10 

100 −0.04 140 2.46 −2.19 

150 −0.04 170 3.82 −3.16 

PpyMO/Chit 

Scan rate 

(mV s-1) 

Emid (V 

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.05 187 0.15 −0.14 

10 −0.05 225 0.30 −0.26 

25 −0.05 308 0.78 −0.62 

50 −0.06 445 1.57 −1.17 

100 −0.08 592 3.13 −2.18 

150 −0.05 789 5.12 −3.29 

a Calculated from 1 2⁄ (𝐸𝑝,𝑐  +  𝐸𝑝,𝑎). 

b ∆𝐸𝑝  =  𝐸𝑝𝑎  −  𝐸𝑝𝑐 . 
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A direct comparison of the cyclic voltammograms recorded for PpyMO and PpyCl is 

shown in Figure 4.17 A, while corresponding data are presented in Figure 4.17 B for the 

PpyMO/Chit and PpyCl/Chit films. These voltammograms were recorded at 50 mV s-1. 

The significant role of the chitosan layer can be clearly seen. It is also evident that the 

chitosan layer exerts more influence on the PpyMO system; with evidence for both cation 

and anion transport with the chitosan layer, but predominately cation transport with the 

PpyMO films. 

 

A B 

  

Figure 4.17: Cyclic voltammograms for the redox properties of PpyA (A) and PpyA/Chit (B) in 0.1 

mol dm-3 NaCl on a 0.13 cm-2 Pt electrode at 50 mV s-1. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was prepared from a 

solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. For PpyA/Chit (B), chitosan was added post-

polymerisation. 

 

A more detailed analysis of the mass transfer process can be obtained as described by 

Levi et al.72 using a generalised capacitance curve (current divided by the potential scan 

rate). Figure 4.18 shows a typical plot for the PpyCl (A) and PpyMO (B) cycled at a scan 

rate of 5 mV s-1. The oxidation and reduction peaks can be seen more clearly at the slow 
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scan rates in both the PpyCl and PpyMO films using this approach. Four peaks are visible 

and these are labelled as I, II, III and IV. Figure 4.18 A presents PpyCl. The secondary 

redox cation exchange process, Peak I and IV, is centred at –0.50 V vs SCE. During 

oxidation there are two competing processes: the expulsion of the cation and the inclusion 

of the anion. Conversely, during reduction the expulsion of the anion and inclusion of the 

cation are the two competing processes73.  Figure 4.18 B presents PpyMO. The secondary 

redox cation exchange process, Peak I and IV, is centred at        –0.50 V vs SCE. The 

PpyCl/Chit film reaches a maximum capacitance of approximately 25 mF cm-2, whereas 

the PpyMO film reaches a maximum capacitance of approximately 50 mF cm-2. This 

suggests PpyMO has better charge storage ability74 that PpyCl and bare Pt which has a 

capacitance of 6.62 mF cm-2 (data not shown). 

 

A B 

  

Figure 4.18: Generalised capacitance curve (where the current is divided by the scan rate v) for 

PpyCl (A) and PpyMO (B) cycled in 0.1 mol dm-3 NaCl at 5 mV s-1. The dashed traces indicate the 

chitosan-coated composite. The films were prepared by potentiostatic electropolymerisation at 

0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 

mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was prepared from a solution of 0.1 mol dm-3 

Py and 0.01 mol dm-3 MO. For PpyA/Chit (B), chitosan was added post-polymerisation. 
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The possible processes occurring at the peaks labelled I, II, III, and IV are described in 

Equations 4.1, 4.2, 4.3 and 4.4. On re-oxidation of the PpyMO (Figure 4.18 B, peaks I 

and II) the polymer backbone becomes positively charged. The charge neutrality is 

achieved by the expulsion of the sodium ion (Equation 4.1) and the incorporation of the 

chloride ion (Equation 4.2) from the electrolyte. When the PpyMO is reduced during 

subsequent cycles (Figure 4.18 B, peaks III and IV), the chloride anion is expelled into 

the electrolyte (Equation 4.3) and in order to maintain overall charge neutrality a sodium 

ion from the electrolyte is incorporated into the polymer (Equation 4.4). 

 

I: 0

nPpy NaMO + Cl − e     0

nPpy 

nPpy MO + Cl + 

Na  

(4.1) 

II: 0

nPpy 

nPpy MO + Cl  − e     

nPpy 

nPpy MO Cl   (4.2) 

III: 

nPpy 

nPpy MO Cl  + e     0

nPpy 

nPpy MO + Na + 

Cl  

(4.3) 

IV: 0

nPpy 

nPpy MO  + Na  + e

  

  0

nPpy NaMO   (4.4) 

 

4.3.4 Electrochemical impedance spectroscopy (EIS) 

Complex plane-impedance plots (Nyquist plots) and Bode plots were recorded for 

PpyMO, PpyMO/Chit, PpyCl and PpyCl/Chit. The PpyMO and PpyCl films were grown 

to a charge density of 0.25 C cm-2 at a Pt electrode. The impedance measurements were 

recorded at fixed potentials of –0.90, −0.60, −0.30, −0.10, 0.0, 0.10 and 0.30 V vs SCE 

in 0.1 mol dm-3 NaCl. Four measurements were recorded at each potential with a 60 min 

period between each measurement, to reduce the effect of hysteresis63. The polymer film 
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is in a totally reduced state at –0.90 V vs SCE54, and as the potential is increased the films 

are oxidised, and the different applied potentials represent varying degrees of oxidation. 

 

These data sets were fitted to the equivalent circuits illustrated in Figure 4.19 using a non‐

linear least squares fitting minimisation method in the ZView fitting programme 

described in Section 2.4.4. The real axis intercept at high frequency coincides with the 

uncompensated solution resistance (RS) and is independent of the applied potential63. A 

Randles circuit (Figure 4.19) was used to model the impedance response at each applied 

potential, and then additional circuit elements were considered. A more complex circuit 

was used to model the impedance of PpyMO at −0.90 V vs SCE, with a second RC time 

constant incorporated into the model, which describes two RC processes occurring at 

different rates75, Figure 4.19 B. All data were normalised to the surface area of the Pt 

electrode, 0.13 cm2.  

 

A 

 

B 

 

 

Figure 4.19: Equivalent circuits used for modelling the impedance data. 

 

Rs CPE1

Rct CPE2

Element Freedom Value Error Error %

Rs Free(+) 95.15 N/A N/A

CPE1-T Free(+) 0.0037039 N/A N/A

CPE1-P Free(+) 0.77115 N/A N/A

Rct Free(+) 104 N/A N/A

CPE2-T Free(+) 0.010208 N/A N/A

CPE2-P Free(+) 1.024 N/A N/A

Data File:

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\3 CPE R R.mdl

Mode: Run Fitting / Selected Points (0 - 0)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Rs CPE1

R1

CPE2

R2 CPE3

Element Freedom Value Error Error %

Rs Free(+) 12.05 0.064727 0.53715

CPE1-T Free(+) 0.0014786 8.6489E-05 5.8494

CPE1-P Free(+) 0.63115 0.0092909 1.4721

R1 Free(+) 27.17 0.75692 2.7859

CPE2-T Free(+) 0.0030513 1.0649E-05 0.349

CPE2-P Free(+) 0.74372 0.002375 0.31934

R2 Free(+) 11873 445.74 3.7542

CPE3-T Fixed(X) 0 N/A N/A

CPE3-P Fixed(X) 1 N/A N/A

Chi-Squared: 0.0004954

Weighted Sum of Squares: 0.059943

Data File: C:\Users\emer\Documents\Emer PhD\PhD Year 4\Drug Release\Methyl Orange\EIS\PM 0.1 V\ppymo01van4.z

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\2 CPE 2 R.mdl

Mode: Run Fitting / Selected Points (0 - 63)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

       RS                CPEHF                    CPEMF 

 

RHF                     RMF                 CPELF 

  

  

RS            CPEHF                     

 

      RHF            CPELF                     
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4.3.4.1 EIS of PpyMO films 

The complex-plane impedance (Nyquist) plots and Bode plots for PpyMO are shown in 

Figure 4.20 A and B, respectively. The parameters extracted from the equivalent circuit 

model were used to determine the double layer capacitance (Cdl) which was corrected to 

units of capacitance. Some of the parameters from the equivalent circuit for PpyMO films 

at different redox states are shown in Table 4.5 and this includes the solution resistance, 

RS, the constant phase element (CPEHF), which has an exponent between 0.5 and 1.0, and 

the charge-transfer resistance, RHF is also included. The capacitance term, CLF, was 

estimated directly from the Bode plot (CLF = 1/slope)76, 77 as described in Section 2.4.4 

equation 2.8.  

A B 

 

 

 

Figure 4.20: Complex-plane impedance plot (A) for PpyMO coated 0.13 cm2 Pt electrodes at 

various potentials in 0.1 mol dm-3 NaCl. The Bode plot (B) shows the logarithm of the impedance 

and the phase angle against the logarithm of frequency. Potentials are indicated in V vs SCE. 

Frequency range shown from 65 kHz to 0.005 Hz. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was prepared from a 

solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO.  
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At higher potentials a 45º “Warburg-type” linear region is observed in the high-medium 

frequency range as the redox reaction induced by the ac potential wave penetrates the 

PpyMO film. This is more clearly shown in Figure 4.21 A. At lower potentials a 

compressed semicircular arc is observed in the high frequency range, due to parallel 

resistance-capacitance elements which is typical of polymer coated electrodes exhibiting 

ion transport78. This is clearly evident in Figure 4.21 B. The impedance response in these 

regions is particularly important for determining mass transfer parameters. As the 

frequency is decreased the transmission line becomes nearly vertical where the 

polymer|metal electrode behaves like a capacitor. The deviation from an ideal impedance 

spectrum is thought to be due to irregular thickness and morphology of the polymer 

surface79. Tables 4.4 and 4.5 summarise the parameters for the circuit elements evaluated 

by fitting the impedance data of PpyCl and PpyMO, respectively.  

 

A B 

  

Figure 4.21: Complex plane-impedance plot of a PpyMO coated 0.13 cm2 Pt electrode measured 

at 0.30 V vs SCE (A) and -0.30 V vs SCE (B) in 0.1 mol dm-3 NaCl. The frequency is indicated on 

the plot. The films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a 

charge density of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 

mol dm-3 NaCl and the PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-

3 MO.  
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The RHF resistance term presented in Tables 4.4 and 4.5 can be considered as the charge-

transfer resistance. The RHF increases sharply by three orders of magnitude with a 

minimum at 0.30 V vs SCE and a maximum at −0.60 V vs SCE (1.35 kΩ cm2) for the 

PpyCl film, Table 4.4. As the potential is varied from 0.30 V vs SCE to −0.60 V vs SCE 

the PpyCl is reduced from an oxidised state to a neutral state and the resistance increases. 

However, a decrease in the resistance is observed at −0.90 V vs SCE. This may be 

attributed to a decrease in the ionic resistance due to the insertion of Na+, as shown in 

Equation 4.5.  

 0

nPpy 

nPpy Cl  + Na  + e     0

nPpy NaCl   (4.5) 

The ingress of cations in a Ppy film was studied by Plieth et al.80 and they found a strong 

increase in mass at potentials below −0.70 V during EQCM measurements as the pores 

in the film became saturated with hydrated cations.  

The RHF values obtained for PpyMO, Table 4.5, appear independent of potential for redox 

potentials higher than −0.30 V vs SCE. At potentials lower than −0.30 V vs SCE, it can 

be clearly seen that the RHF becomes potential dependent and the resistance increases 

sharply by approximately 230 Ω cm2, with a maximum at −0.90 V vs SCE. 

The total resistance, RT, was computed using the expression in Equation 4.6 for resistors 

in series. This resistance was then used to calculate the conductivity, σT, as shown in 

Equation 4.6, where d is the nominal thickness of the dry film, 5.0 ×10-5 and 5.6 ×10-5 

cm for PpyCl and PpyMO respectively, and A is the geometric surface area of the 

electrode (0.13 cm2). 

 RT = RHF  + RMF                 (4.6) 

 

 σT = 
1

R𝑇
 ×  

𝑑

𝐴
 

(4.7) 

The total resistance, RT, and the conductivity, σT, of the PpyCl and PpyMO films were 

plotted as a function of applied potential and representative plots are presented in Figure 
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4.22. The conductivity of the PpyCl decreases sharply by 100.6 μS cm-1 with a maximum 

at 0.30 V vs SCE and a minimum at −0.60 V vs SCE as the Ppy is reduced and the charge 

carrier (Cl  ) concentration in the film decreases. A slight increase of 0.3 μS cm-1 is 

observed at −0.90 V vs SCE, which is consistent with the ingress of Na+, Equation 4.5. 

The resistance decreases as the applied potential is varied from 0.30 V vs SCE to −0.60 

V vs SCE and again there is a slight decrease in the resistance at −0.90 V vs SCE. 
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A B 

  

Figure 4.22: Plots of resistance, RT, (A), and conductivity, σT, (B), as a function of applied potential 

for PpyCl (●) and PpyMO (○) in 0.1 mol dm-3 NaCl. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was 

prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was prepared 

from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO.  

 

The conductivity of the PpyMO film is comparably lower than the PpyCl when polarised 

in the oxidised state, Figure 4.22 B. Similarly, the resistance is somewhat higher, Figure 

4.22 A. The conductivity increases as the PpyMO is reduced, Equation 4.8, and the 

concentration of the charge carriers (Na+) is increased. 

 0

nPpy 

nPpy MO  + Na  + e

  

  0

nPpy NaMO   (4.8) 

The high frequency capacitance, CHF, shown in Tables 4.4 and 4.5, was calculated using 

the expression provided in Equation 4.9 and the low frequency capacitance, CLF, was 

estimated directly from the Bode plot (CLF = 1/slope). 
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 corrected 𝐶𝐻𝐹  =  𝑇𝐻𝐹
(1 𝑃⁄ ) (

𝑅𝑆𝑅𝐻𝐹

𝑅𝑆 + 𝑅𝐻𝐹
)
1−𝑃 𝑃⁄

 
                (4.9) 

In Figure 4.23, the high frequency capacitance, CHF, and the low frequency capacitance, 

CLF are plotted as a function of the applied potential for the PpyMO and PpyCl films. It 

is evident from these plots that there is some variation between the capacitance of the 

PpyCl and PpyMO films. The PpyCl film shows a decrease in CHF as the Ppy film releases 

chloride anions to the surrounding electrolyte, with a maximum at 0.30 V vs SCE and a 

minimum at −0.60 V vs SCE. The CHF of PpyMO is comparably lower than PpyCl when 

polarised in the oxidised state and decreases tenfold between 0.20 and 0.0 V vs SCE. At 

potentials lower than 0.0 V vs SCE, the CHF appears to be independent of potential. The 

CLF decreases steadily for PpyCl as the charge storage capacity of the film matrix 

decreases. Interestingly, the CLF increases for PpyMO as the applied potential is reduced 

from 0.10 V to −0.30 V vs SCE followed by a minimum value at −0.60 V vs SCE. This 

high capacity is attributed to cation transport and corresponds to the cyclic voltammogram 

in Figure 4.13 B.  

A B 

  

Figure 4.23: Plots of corrected double layer capacitance, CHF, (A), and low frequency capacitance, 

CLF, (B), as a function of applied potential for PpyCl (●) and PpyMO (○) in 0.1 mol dm-3 NaCl. 

The films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge 

density of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol 

dm-3 NaCl and the PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 

MO.  
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4.3.4.2 EIS analysis of PpyMO/Chit 

The impedance of PpyCl/Chit and PpyMO/Chit was measured as a function of the applied 

potential, using an approach similar to that used to record the impedance in Section 

4.3.4.1. Typical complex-plane impedance plots and Bode plots recorded for 

PpyMO/Chit at potentials varying from 0.30 V to −0.90 V vs SCE are shown in Figure 

4.24. Again, it is evident from these data that the impedance response changes as the 

applied potential is varied. The impedance is lower at 0.30 V vs SCE and increases as the 

potential is varied from 0.30 V to −0.60 V vs SCE. The resistance of the PpyMO/Chit 

film is somewhat higher than that obtained for PpyMO. This is consistent with a higher 

resistance to ion transport due to the presence of the chitosan. 

These data were fitted to the equivalent circuit in Figure 4.19 and the data obtained are 

summarised in Tables 4.6 and 4.7. The RHF increases sharply by three orders of magnitude 

with a minimum at 0.10 V vs SCE and a maximum at −0.90 V vs SCE (0.84 kΩ cm2) for 

the PpyCl/Chit film, Table 4.6. As the potential is varied from 0.30 V vs SCE to −0.90 

V vs SCE the PpyCl/Chit is reduced from an oxidised state to a neutral state and the 

resistance increases. However, the PpyCl/Chit is oxidised to a lesser extent than the PpyCl 

in Section 4.3.4.1. This may be due to the mobility of Cl  . The RHF values obtained for 

PpyMO/Chit, Table 4.7, appear independent of potential for redox potentials higher than 

−0.30 V vs SCE. At potentials lower than −0.30 V vs SCE, it can be clearly seen that the 

RHF becomes potential dependent and the resistance increases sharply by approximately 

0.73 kΩ cm2, with a maximum at −0.60 V vs SCE and a decrease in the resistance is 

observed at −0.90 V vs SCE. Again, this may be attributed to a decrease in the ionic 

resistance due to the insertion of cations.   

Again, the total resistance, RT, was computed using the expression in Equation 4.6 for 

resistors in series. The presence of chitosan makes it difficult to determine the polymer 

films thickness and thus the conductivity, σT, was not determined. Figure 4.25 shows a 

direct comparison between the resistance of PpyCl/Chit and PpyMO/Chit where the total 

resistance is plotted as a function of applied potential. Again, it is clear from this plot that 
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the resistance of the polymer films, PpyCl/Chit and PpyMO/Chit, increases as the 

potential is varied from 0.10 V vs SCE to −0.90 V vs SCE. 

A B 

 

 

 

Figure 4.24: Complex-plane impedance plot (A) for PpyMO/Chit coated 0.13 cm2 Pt electrodes at 

various potentials in 0.1 mol dm-3 NaCl. The Bode plot (B) shows the logarithm of the impedance 

and the phase angle against the logarithm of frequency. Potentials are indicated in V vs SCE. 

Frequency range shown from 65 kHz to 0.005 Hz. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyMO was 

prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. Chitosan was added post-

polymerisation. 
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Figure 4.25: Plots of resistance, RT, as a function of applied potential for PpyCl/Chit (●) and 

PpyMO/Chit (○) in 0.1 mol dm-3 NaCl. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was prepared from a 

solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. Chitosan was added post-polymerisation. 

 

In Figure 4.26, the high frequency capacitance, CHF, and the low frequency capacitance, 

CLF are plotted as a function of the applied potential for the PpyMO/Chit and PpyCl/Chit 

films. It is evident from these plots that in the presence of chitosan the CHF values are 

much lower for PpyCl/Chit and PpyMO/Chit films than the PpyCl and PpyMO films, 

Figure 4.23 A. The PpyCl/Chit film shows a decrease in CHF as the Ppy film releases 

chloride anions to the surrounding electrolyte, with a maximum at 0.30 V vs SCE and a 

minimum at −0.90 V vs SCE. The CHF of PpyMO in Figure 4.23 A was comparably lower 

than PpyCl when polarised in the oxidised state, here in Figure 4.26 A the difference is 

negligible. At potentials lower than 0.0 V vs SCE, the CHF appears to be independent of 

potential. Overall the CLF decreases steadily for PpyCl/Chit as the charge storage capacity 

of the film matrix decreases80, with the exception of 0.00 V vs SCE. Interestingly again, 

the CLF increases for PpyMO/Chit as the applied potential is reduced from 0.10 V to −0.30 

V vs SCE, followed by a minimum value at −0.60 V vs SCE but to a lesser extent than 

that observed in Figure 4.23 B. This high capacity is attributed to cation transport and 

corresponds to the cyclic voltammograms in Figure 4.15 B.  
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A B 

  

Figure 4.26: Plots of corrected double layer capacitance, CHF, (A), and low frequency capacitance, 

CLF, (B), as a function of applied potential for PpyCl/Chit (●) and PpyMO/Chit (○) in 0.1 mol dm-

3 NaCl. The films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a 

charge density of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 

0.1 mol dm-3 NaCl and the PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol 

dm-3 MO. Chitosan was added post-polymerisation. 

 

 

4.3.4.3   A comparison between the PpyCl and PpyMO films with respect to its 

resistance and capacitance. 

A direct comparison of the impedance responses for PpyMO, PpyMO/Chit, PpyCl and 

PpyCl/Chit are shown in Figure 4.27, while corresponding data are presented in Table 

4.8. These spectra were recorded at 0.10 V vs SCE. The significant role of the different 

anionic dopants can be clearly seen. The PpyCl films have lower resistance (RT) and lower 

capacitance than the PpyMO films and the low frequency capacitance (CLF) is higher for 

the PpyCl films than the PpyMO films. It is also evident that the chitosan layer exerts 

little effect on the PpyA systems at this applied potential. However, PpyA/Chit shows a 

slight decrease in the resistance. Although the conductivity of the PpyA/Chit could not 
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be determined, the presence of chitosan appears to hinder the mobility of the anions and 

results in a loss of the conductivity which is associated with reduced concentration of 

dopant species81.  

 

A B 

 

 

 

Figure 4.27: Complex-plane impedance plot (A) and Bode plot (B), for PpyA and PpyA/Chit coated 

0.13 cm2 Pt electrodes at 0.1 V vs SCE in 0.1 mol dm-3 NaCl. The films were prepared by 

potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl 

was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was 

prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol dm-3 MO. Chitosan was added post-

polymerisation. 
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Table 4.8: Summary of the parameters extracted from fitting the impedance data recorded at 0.10 V 

vs SCE for the PpyA and PpyA/Chit composites in 0.1 mol dm-3 NaCl. PpyA films were grown to a 

charge density of 0.25 C cm-2.  

Sample  

(0.10 V)  

corrected 

CHF  

(mF cm-2) 

RT  

(Ω cm2) 

CLF  

(mF cm-2) 

σT 

(μS cm-1) 

PpyMO 0.40 ±0.05 75.42 ± 2.38 5.01 ± 0.00 5.91 ± 0.41 

PpyCl  0.64 ± 0.03 14.96 ± 0.80 9.78 ± 1.37 21.61± 1.09 

PpyMO/Chit 0.47 ± 0.06 56.46 ± 1.64 6.81 ± 0.47 - 

PpyCl/Chit  0.28 ± 0.06 2.54 ± 0.08 7.44 ± 0.20 - 

 

4.3.5 Adhesion test 

The adhesion test were performed by applying cellotape™ onto the sample as described 

in Section 2.4.10.  The adhesion properties were classified using the methodology 

summarised in Table 3.8, Chapter 3. A summary of the adhesion test results is provided 

in Table 4.9. In this table, the films indicated with E (+V) refer to the films grown at a 

fixed potential of 0.80 V vs SCE, while the films indicated with E (−V) refer to the 

reduced films. The reduced films were held at –0.90 V vs SCE for 10 min in 0.1 mol dm-

3 NaCl after polymerisation. The films were then dried in a stream of air. It is clearly 

evident from Table 4.9 that the PpyCl/Chit composite has superior adhesion properties 

compared to the PpyCl and PpyMO films, with excellent adhesion properties when the 

composite is prepared or reduced. The adhesion properties of the chitosan film are equally 

good, while the reduced PpyCl and PpyMO films have poor adhesion properties.  
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Table 4.9: Summary of results from adhesion tests.  

Sample Classification Result 

PpyCl E (+ V) 1 Good 

PpyCl/Chit E (+ V) 0 Excellent 

PpyMO E (+ V) 1 Good 

PpyMO/Chit E (+ V) 0 Excellent 

PpyCl E (− V) 2 Poor 

PpyCl/Chit E (− V) 1 Good 

PpyMO E (− V) 3 Very Poor 

PpyMO/Chit E (− V) 2 Poor 

 

 

4.3.6 Methyl orange release studies 

The methyl orange release studies were carried out by applying a constant potential as a 

function of time. All release experiments were carried out in a three electrode system with 

a SCE reference electrode, a platinum counter electrode and the working electrode was a 

PpyMO coated platinum electrode. The electrolyte used in the release studies was 0.1 mol 

dm-3 NaCl (4 cm3). All experiments were carried out in triplicate and with stirring to assist 

the diffusion of the released compound at the electrode surface through the bulk solution.  

Methyl orange was detected using UV-visible spectroscopy. Spectra were recorded on a 

Cary 50 conc spectrophotometer controlled by Cary Win UV software and 5 cm3 plastic 

cuvettes (1 cm path length) were used. Typical spectra recorded at different 

concentrations of methyl orange are shown in Figure 4.28. It is clear that the methyl 

orange absorbs strongly in the region of 350 to 550 nm with a peak absorbance, or max, 

at 465 nm. A calibration curve of methyl orange at the λmax (465 nm) was produced to 

calculate the concentration of methyl orange released from the polymer films. The 

spectrum was recorded between 300 and 600 nm in order to confirm the absence of 
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interferences. The calibration curve is presented in Figure 4.29 and a straight line 

relationship, with a R2 value of 0.998, was obtained, which indicates that the data agree 

well with the Beer-Lambert Law82, Equation 4.10. It is clear that the absorbance is directly 

proportional to the concentration of the methyl orange dissolved in solution. 

𝐴 = 𝜀𝑐𝑑     (4.10) 

The slope of the linear plot was 27.7 x 103 mol-1 dm3 giving the extinction coefficient, , 

a value of 27.7 x 103 mol-1 dm3 cm-1 for methyl orange at 465 nm in 0.1 mol-1 dm3 NaCl. 

Chen et al. reported the molar extinction coefficient of 21.6 x 103 mol-1 dm3 for methyl 

orange at 464 nm in water83. 
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Figure 4.28: UV-visible spectra of methyl orange at different concentrations, ranging from 25 μmol 

dm-3 to 1 μmol dm-3 in 0.1 mol dm-3 NaCl. 

 

 

Figure 4.29: Calibration curve of methyl orange used to determine the concentration of methyl 

orange released from the PpyMO and PpyMO/Chit films in 0.1 mol dm-3 NaCl.  
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Figure 4.30 A and B show the release of MO   from PpyMO and PpyMO/Chit films over 

a 30-min period as a function of the applied potential. For the PpyMO an excess of 0.4 

μmol dm-3 was released after 10 min. The concentration of MO- released from the PpyMO 

film increased as the applied potential decreased. The maximum concentration of MO- 

(1.0 μmol dm-3) released occurs at −0.60 V vs SCE after 30 min, while the minimum 

concentration of MO released occurred at 0.30 V vs SCE. At this potential the PpyMO 

film is in an oxidised state but the methyl orange is released as the methyl orange is 

solvated when in contact with the aqueous electrolyte14. At a release potential of −0.90 

V vs SCE, the PpyMO film became delaminated, which can occur at negative potentials84, 

this can be used to explain the lower released concentrations at this potential, Figure 4.30 

A.  

As shown in Figure 4.30 B, for the PpyMO/Chit composite, the release of MO   is slower 

during the first 20 min probably because of the hydration of the dehydrated chitosan layer 

in the electrolyte solution. An excess of 1.2 μmol dm-3 MO  was released after 30 min at 

all the release potentials. The minimum release of MO   occurs at 0.30 V vs SCE, in 

contrast to PpyMO, the release of MO is impeded by the presence of the chitosan layer.  

At −0.90 V vs SCE the PpyMO/Chit remains adhered to the surface of the Pt electrode 

and thus relatively high concentrations of MO  are released, particularly after 20 or 30 

min. It is clear from Figure 4.30, that the concentration of MO   increases with the release 

period and there is a more significant increase in the concentration of MO  as the release 

period is increased from 10 to 30 min for the PpyMO/Chit composite, Figure 4.30 B. 

Again, this may be related to the hydration of the chitosan layer. The concentration of 

MO   decreases slightly at −0.90 V, this may be due to an increase in the availability of 

protons in the vicinity of the electrode surface which may protonate the amine groups of 

the chitosan, thereby increasing the electrostatic attraction of negatively charged methyl 

orange species to the positively charged chitosan85-87. 

  



Chapter 4 

 

 

 
201 

 

  

A B 

  

Figure 4.30: Concentration of MO- released from PpyMO (A) and PpyMO/Chit (B) as a function 

of the applied potential and release period. The data were averaged over 4 determinations, n = 4. 

The films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge 

density of 0.25 C cm-2. The PpyMO was prepared from a solution of 0.1 mol dm-3 Py and 0.01 mol 

dm-3 MO. Chitosan was added post-polymerisation. 

The release of MO   was also monitored at the open-circuit potential (OCP). These release 

studies were carried out over a longer period of time, and the average concentration of 

MO   released from PpyMO at 60 min and 1440 min (24 hr) was found to be 27 μmol 

dm-3 and 60 μmol dm-3, respectively. The average concentration of MO   released from 

PpyMO/Chit at 60 min and 1440 min (24 hr) was found to be 18 μmol dm-3 and 42 μmol 

dm-3, respectively. The lower concentration of MO released from PpyMO/Chit is possibly 

attributed to the adsorption of methyl orange onto the chitosan moiety. The cationic 

properties of the chitosan88 may impart an overall positive charge at the electrode|solution 

interface which may slow down the ion transport74. Huang et al.89 showed the dependence 

of pH on adsorption kinetics due to the electrostatic attraction between protonated 

chitosan (RNH


3 ) and the methyl orange anion (RSO


3 ), Equation 4.11.  

  RNH


3  + RSO


3    RNH 3 O 3 SR (4.11) 

As the pH increases there are less protonated groups and more hydroxyl groups90. 
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4.4 Summary 

In this chapter, polypyrrole was successfully doped with methyl orange in the absence of 

an additional supporting electrolyte. The PpyMO films were characterised and discussed 

prior to carrying out the release of methyl orange from the film. The morphology of the 

PpyMO was similar to that of PpyCl; both exhibit globular “cauliflower” morphology50, 

51. However, tubular-like structures27, consistent with methyl orange, were evident on the 

surface of the PpyMO films. The films appeared to be free from surface defects and the 

adhesion properties of PpyCl and PpyMO were overall satisfactory. 

For comparison purposes, dexamethasone was incorporated into polypyrrole. The growth 

rates, determined from the quantitative analysis of the Q-t curve, are summarised for the 

PpyCl, PpyMO and PpyDex films in Table 4.10. Although the growth rate of PpyDex is 

higher than PpyMO, the dexamethasone is very expensive and all further studies were 

focussed on the PpyMO system.  

 

Table 4.10: Summary of growth rates for the formation of PpyCl, PpyMO and PpyDex. 

Films (0.25 C cm-2) Growth rate (mC s-1) 

PpyCl 7.8 

PpyMO 0.7 

PpyDex (0.8 V) 1.8 

PpyDex (0.9 V) 3.8 

 

The redox properties of PpyCl, PpyMO, PpyCl/Chit and PpyMO/Chit were analysed by 

CV. The films exhibit classical features of apparent non-kinetic hysteresis69, 91. The peak 

currents were proportional to the scan rate. The peak shape and peak position varied 

depending on the dominant ion exchange and inclusion or expulsion process. In the case 

for PpyCl, the Cl   is more mobile than Na+ and the PpyCl and PpyCl/Chit exhibit a 
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dominant anion exchange process, while PpyMO clearly shows a dominant cation 

exchange. The voltammograms of the PpyMO/Chit system are consistent with both cation 

and anion exchange, indicating the significant role of the chitosan layer. Electrochemical 

impedance data were recorded for the polymer films and the composites and a range of 

electrochemical behaviour was observed at different applied potentials. The charge-

transfer resistance increased as the PpyCl film was reduced from an oxidised state to a 

neutral state. The charge-transfer resistance of PpyMO was lower and this is consistent 

with the ingress of Na+ ions as the PpyMO film is reduced80.  

The concentration of methyl orange released from PpyMO and PpyMO/Chit by electrical 

stimulation into the cell was detected using visible spectroscopy. In both cases, for 

PpyMO and PpyMO/Chit, as the potential was decreased from 0.30 V to −0.60 V vs SCE, 

the concentration of methyl orange increased. The concentration also increased as a 

function of time. However, the release of MO   from PpyMO at −0.90 V vs SCE was 

influenced by the adhesion properties of the PpyMO film. This was not observed with the 

PpyMO/Chit composite which further supports the improved adhesion properties when 

chitosan is present.  
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5. Electrochemical synthesis and characterisation of 

polypyrrole oxacillin (PpyOx)/chitosan composite films 

 

 

5.1 Introduction 

Oxacillin sodium (5 methyl-3 phenyl-4-isoxazolyl penicillin sodium) is classified as a 

beta-lactam antibiotic in the penicillin class1. Oxacillin (Ox) is derived from 6-

aminopenicillanic acid, and it is a semisynthetic penicillinase-resistant penicillin. It was 

developed by Beechams by adding an acyl side chain to a penicillin molecule. The acyl 

side chain sterically inhibits the action of penicillinase by preventing disruption (opening) 

of the β-lactam ring. Thus oxacillin, along with methicillin and nafcillin, is a member of 

a group of β-lactams referred to as penicillinase resistant penicillins. It is used in its 

sodium salt, Figure 5.1, for parenteral administration. It is not destroyed by the 

penicillinase and it has low toxicity for the host but it is effective against most gram-

positive bacteria in humans and animals2 including pathogens (streptococci, 

staphylococci, pneumococci), clostridia, some gram-negative gonococci, some 

spirochetes (Treponema pallidum and T. pertenue) and some fungi3. Certain strains of 

some target species, e.g., staphylococci, secrete the enzyme penicillinase, which 

inactivates penicillin and confers resistance to the antibiotic. Oxacillin is used in the 

treatment of osteomyelitis, septicaemia and endocarditis1.  

 

Figure 5.1: Structure of oxacillin sodium salt. 
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With regard to the pharmacology of oxacillin, it acts by binding to serum proteins, mainly 

albumin. The mechanism of action of oxacillin is by attachment to penicillin-binding 

proteins (PBPs), which results in the inhibition of cell wall peptidoglycan synthesis and 

inactivation of inhibitors to autolytic enzymes. The degree of protein binding reported for 

oxacillin is 94.2% ± 2.1%. Brand names of oxacillin include Bactocill®, Bristopen®, 

Cryptocillin® and Oxacillin for injection, USP ADD-Vantage®. Administration of 500 

mg gives a peak serum level of 43 μg/mL after 5 min with a half-life of 20-30 min. It has 

a pKa of 2.73. Antibiotics investigated for implantable devices include amoxicillin, 

carbenicillin, cefanamol4, 5, gentiamicin6 ofloxacin7 trobramycin8 rifampicin9 and 

vanomycin10. A six hour post implantation “decisive period” has been identified during 

which prevention of bacterial adhesion is critical to the long-term success of an implant11. 

Various synthetic polymers and natural polymers have been evaluated as suitable 

antibiotic carriers. Chitosan has emerged as an attractive material as its exhibits superior 

biocompatibility and promotion of healthy cell growth12, 13. 

 There are no publications of polypyrrole doped with oxacillin, but there are a few 

citations containing conducting polymers doped with other antibiotics14, 15. Clinical 

studies have shown synergistic effects with chitosan and β-lactams against MRSA16. 

Oxacillin dissociates as a salt and it has good solubility in water making it a suitable 

anionic dopant for polypyrrole. The cost of oxacillin is compared with methyl orange, 

dexamethasone and chloride in Table 5.1. Oxacillin is considerably more expensive than 

methyl orange, but it is favourable when compared with the cost of dexamethasone. 

Table 5.1: Comparison of the cost of dopants used, price taken from Sigma-Aldrich (October 2013).   

dopant Concentration (mol dm-3) Cost ex. VAT (per gram)  

chloride (Cl) 0.10 € 0.03 

methyl orange (MO) 0.01 € 0.35 

dexamethasone (Dex) 0.01 € 331.50 

oxacillin (Ox) 0.02 €30.50 
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5.2 Experimental 

Polypyrrole oxacillin films were grown potentiostatically on to a platinum working 

electrode (surface area 0.13 cm2). The monomer solution consisted of 0.2 mol dm-3 

pyrrole (Sigma-Aldrich, distilled under vacuum) and 0.02 mol dm-3 oxacillin (Sigma-

Aldrich) in distilled water. The electropolymerisation solution has a pH of 6.3. The film 

was synthesised by applying a constant potential of 0.80 V vs SCE for 5 min yielding a 

charge density of 0.25 C cm-2. The polypyrrole oxacillin films were rinsed with ethanol 

and distilled water to remove any unreacted monomer and oxacillin. The chitosan film 

was prepared by drop casting 10 μL of 0.5% (w/v) chitosan solution directly on to the 

washed polypyrrole oxacillin film. The chitosan-loaded film was force dried under an 

infrared lamp for 10 min. The electroanalytical experiments, such as cyclic voltammetry 

(CV) and electrochemical impedance spectroscopy (EIS), were carried out in a solution 

of phosphate buffer saline (PBS) solution. The PBS solution contained 0.15 NaCl mol 

dm-3, 0.04 NaH2PO4 mol dm-3 and 0.04 NaOH mol dm-3 made up in deionized water to 

give pH 7.417.  

 

5.3 Results and discussion 

 

5.3.1 Redox properties of Oxacillin 

Cyclic voltammetry was used to determine the electrochemical stability of an oxacillin 

solution during oxidation and reduction. The experiments were carried out on a bare Pt 

electrode by cycling between −1.20 V vs SCE and 1.00 V vs SCE at a scan rate of 50 

mV s-1 in 0.02 mol dm-3 Ox and 0.1 mol dm-3 PBS. Typical voltammograms, recorded in 

the presence and absence of oxacillin, are shown in Figure 5.2. The redox properties of 

Pt in the PBS solution are dominated by H+ adsorption and H2(g) evolution18 between 

approximately –0.90 V and –1.20 V vs SCE. The voltammogram recorded in the oxacillin 
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solution has a similar profile to the methyl orange shown in Chapter 4 (Section 4.3.1). 

The conductivity of the oxacillin solution was 1.2 mΩ-1 cm-1 compared to 19.7 mΩ-1 cm-

1 for the PBS solution. This variation in the conductivity of the two solutions can be used 

to explain the lower currents recorded in the oxacillin solution. Importantly, no reduction 

or oxidation peaks were observed indicating that the Ox solution is stable. It is worth 

mentioning that no formal redox potential, oxidation or reduction potentials have been 

reported for oxacillin.  

 

 

Figure 5.2: Cyclic voltammograms of a bare platinum electrode (20th cycle) at 50 mV s-1 in 0.02 

mol dm-3 Ox (―) PBS solution (····). 

 

5.3.2 Electrochemical synthesis of the polypyrrole oxacillin (PpyOx) films 

There are very few publications on conducting polymers doped with antibiotics. 

Sirivisoot et al. have studied polypyrrole doped with penicillin/streptomycin15, 19, 20. 

However, no publications were found to contain polypyrrole doped with oxacillin. The 

polypyrrole oxacillin films were deposited from an electropolymerisation solution 

containing 0.2 mol dm-3 pyrrole, which is higher than the concentration used in previous 

chapters. However this higher concentration was required for optimum growth. No 

additional anions were added to the electrosynthesis solution to ensure that polypyrrole 
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(Ppy) was only doped by the oxacillin (Ox). The concentration of the oxacillin solution 

was 0.02 mol dm-3. Potentiostatic growth was the preferred method of electrosynthesis. 

A constant potential of 0.80 V vs SCE was used to achieve electropolymerisation until a 

charge density of 0.25 C cm-2 was obtained. A typical current-time (I-t) curve is shown 

in Figure 5.3 A, where the time required for achieving a charge density of  0.25 C cm-2 is 

approximately 8 min. On application of the potential, there is an initial rapid decrease in 

the current, which arises from the charging of the double layer21. This charging current 

decays rapidly and is then followed by a slower rise, at about 5 to 10 s, as the polypyrrole 

film begins to nucleate and deposit at the surface of the electrode22.  At longer times, 

greater than 50 s, the current reaches a steady state.  A homogenous black, glossy film 

was obtained on the surface of the electrode. Figure 5.3 B shows the comparative I-t 

curves and charge-time (Q-t) plots for the nucleation process23, 24 of PpyCl and PpyOx. 

There is a steep linear charge-time plot for the formation of the PpyCl film and the charge-

time plot is linear at longer electropolymerisation times, from 50 to 500 s, for the PpyOx 

film.  It can be clearly seen that the currents and the rate of electropolymerisation are 

higher for the PpyCl system and that it takes a much shorter period, 30 s for the PpyCl to 

deposit. The difference in growth rate is likely to be due to the size of the anions, Cl   

(58.44 g mol-1) and Ox   (423.42 g mol-1), there may be a slow diffusion of the relatively 

large Ox   anion to the electrode25, another possibility is that the higher charge density on 

the oxygen atoms of the oxacillin causes a much stronger interaction with the pyrrole 

oligomer, altering the configuration of the oligomer26. In Scheme 5.1 the proposed 

synthesis of PpyOx during electropolymerisation is illustrated. The anionic oxacillin, Ox-

, becomes incorporated in to the polypyrrole to satisfy electroneutrality.  

 

Scheme 5.1: Synthesis of polypyrrole oxacillin with the incorporation of oxacillin. 
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A 

 

B C 

  

Figure 5.3: Current-time plots (A) for the growth of (― PpyOx) and current-time plots (B) for the 

formation of (···· PpyCl) and (― PpyOx) at 0.80 V vs SCE yielding a charge density of 0.25 C cm-

2. Charge-time plots (C) for the growth of (― PpyOx) and (···· PpyCl). The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyOx was prepared from a 

solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. The films were electropolymerisation at 0.80 V 

vs SCE yielding a charge density of 0.25 C cm-2. 
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5.3.2.1 Rates of growth on different metallic substrates 

The deposition of PpyOx on different substrates was studied at 0.80 V vs SCE from a 

solution containing 0.2 mol dm-3 pyrrole and 0.02 mol dm-3 oxacillin. Figure 5.4 shows 

the current-time and charge-time curves for PpyOx on different metallic substrates. In all 

cases very good reproducibility was obtained. It is evident that the PpyOx grows at 

different rates. During the early stages of deposition, the rate of electropolymerisation is 

higher at the Pt electrode, however at longer electropolymerisation periods more efficient 

deposition is achieved with the Ti-EQCM (quartz crystal microbalance) electrode. This 

is evident in the charge-time plots, Figure 5.4 B. The average rate of growth of PpyOx 

was computed to be 0.39 mC s-1 for a Pt disc electrode, 0.30 mC s-1 for an Au disc 

electrode and 0.55 mC s-1 on a Ti-EQCM electrode. These rates for the formation of 

PpyOx are considerably slower than those obtained for PpyCl. The average rate of growth 

for PpyCl to a charge density of 0.25 C cm-2 on a conventional Au disc electrode and Pt 

disc electrode was calculated as 8.03 mC s-1 and 7.81 mC s-1, respectively. Interestingly, 

PpyOx was successfully deposited at the Ti-EQCM electrodes, however, the PpyCl and 

PpyMO films did not form on the Ti-EQCM electrode.  

A B 

  

Figure 5.4: Current-time and charge-time plots for the formation of PpyOx on Pt, Au and Ti-

EQCM electrodes. PpyOx was prepared from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. 

The films were electropolymerisation at 0.80 V vs SCE.  
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5.3.2.2 Estimation of mass and doping levels using EQCM method 

Quartz crystal microbalance measurements (EQCM) were performed and analysed to 

obtain information on the mass and the doping level of the deposited PpyOx film. In these 

studies, the PpyOx was grown on a Ti-EQCM electrode to a charge of 15 mC (75 mC cm-

2) by applying a constant potential of 0.85 V vs Ag|AgCl. The frequency-charge plot and 

mass‐charge plots for PpyOx are shown in Figure 5.5 A and B, respectively. A decrease 

in frequency is related to an increase in mass27 according to the Sauerbrey relationship28, 

the terms are defined in Section 2.4.5. The Sauerbrey equation can be re-arranged to solve 

for the mass change, as shown in Equation 5.1. The mass values plotted in Figure 5.5 B 

were obtained using this relationship. The sensitivity factor (𝐶𝑓) was found 

experimentally to be 7.9897 × 108 Hz cm2 g-1.  

 
∆𝑚 =  − 

𝐴√(𝜌𝑞𝜇𝑞)

2𝑓𝑜2
 =  

1

𝐶𝑓
∆𝑓 

(5.1) 

There is a linear increase in mass with charge when the charge exceeds 5 mC cm-2 

(approximately 17 s), as shown in Figure 5.5. The R2 value of 0.9996 indicates good 

linearity.  The doping level, p, of the polymer was estimated using Equation 5.2 and the 

average slope of these mass-charge curves was computed as R = 0.4436 mg C-1.  

𝑅 = 
𝑚

𝑄
=  
𝑀𝑚 + 𝑝 𝑀𝐴
(𝑛 + 𝑝)𝐹

    (5.2) 

Here 𝑀𝑚 and 𝑀𝐴 are the formula weights of the monomer and anion. In the case of 

polypyrrole oxacillin,  the molecular weight of pyrrole is 65.07 g mol-1 and oxacillin is 

423.42  g mol-1, and the number of electrons, n = 2. The value of p was calculated as 0.04 

which is very low but reasonable when the size of the Ox   is considered. The value of p 

for Ppy has been reported to range from 0.2 to 0.5 dopant species per pyrrole unit29-31. 

For simple dopant anions such as Cl-, the value of p is approximately 0.33, i.e., a 1:3 

doping level. This value of 0.04 is much less than the calculated value for Cl   and 

corresponds to a 1:13 doping level. However, this value is in good agreement with the 

analysis reported by Song et al.32 where dopant levels ranging from 2.5 to 15 were 
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obtained for polypyrrole doped with dodecylbenzenesulfonic acid. The equation used to 

calculate the theoretical mass does not take into account solvent participation and it also 

assumes the current efficiency for the electropolymerisation of the monomer is 100 %33.  

The calculated mass and doping levels of the PpyOx and PpyCl films are summarised in 

Table 5.1. There is a considerable variation in the doping levels and it is also clear that 

the mass of the final film, deposited to a charge density of 0.25 C cm-2, is higher for the 

PpyOx film. Again, this is connected with the larger mass of the oxacillin25. 

A B 

  

Figure 5.5: Frequency-charge plot (A) and mass-charge plot (B) for the electropolymerisation of 

pyrrole to generate PpyOx recorded by EQCM measurements. PpyOx was prepared from a 

solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. The films were electropolymerisation at 0.80 V 

vs SCE to a charge density of 75 mC cm-2 on a Ti-EQCM crystal (0.20 cm2). 

 

Table 5.2: Summary of EQCM results, calculated mass, doping levels and doping ratio of PpyOx. 

 PpyOx (Q = 75 mC cm-2) 

Mass (μg cm-2) 31 

Doping level, p 0.04 

Doping ratio 1:13 
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5.3.3 SEM-EDX 

The surface topography and morphology of the polymers was studied using SEM. The 

polymer films were grown on a customised Pt electrode (Section 2.4.6) with a surface 

area of 0.126 cm2. The polymer films were washed thoroughly with ethanol and distilled 

water to ensure the removal of excess electrolyte (Ox  ) on the surface. They were air 

dried for several hours before imaging. These samples were sputter coated with 1.5 nm 

of gold prior to imaging.  

A typical micrograph of PpyOx is shown in Figure 5.6, while the micrograph obtained 

for PpyCl is shown in the inset of Figure 5.6. The PpyOx and PpyCl films (inset) were 

deposited to a charge density of 0.25 C cm-2. The PpyCl shows the typical “cauliflower” 

structure of bulk polypyrrole21, 34. The surface of the PpyOx film was very smooth, as 

evident from Figure 5.6, and had no visible contrast which made imaging difficult. In the 

previous chapter, methyl orange was also present as a precipitate on the surface of the 

polymer. It is clear from these micrographs that the morphology of the polypyrrole film 

changes in the presence of oxacillin. Here the evidence of a precipitate may be subtle and 

cannot be disregarded, however, the film will be just referred to as PpyOx as there are no 

other dopants available to dope it.  

The cross sections of PpyOx deposited to a charge density of 0.25 C cm-2 and 0.40 C cm-

2 are shown in Figure 5.7. Using these cross sections, the film thickness of PpyOx 

deposited to a charge density of 0.25 C cm-2 was estimated at 1.50 ± 0.15 μm. The film 

thickness of PpyCl grown to the same charge density was calculated as 0.5 μm. The higher 

film thickness obtained with the PpyOx film is consistent with the higher mass values, 

shown in Table 5.2. Although the PpyOx films appear compact it is clear that the cross 

sections possess some structure, this is clearly evident in Figure 5.7 B, where a greater 

film thickness is achieved. Stankovic et al.37 reported that films doped with ClO4


 yielded 

films thicker than the theoretical prediction. Other studies have experienced variability in 

correlating film thickness with charge passed; they suggest that the current density during 

synthesis affects the chain length and disorder38-40. 
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Figure 5.6: SEM micrograph of PpyOx and PpyCl is shown in the inset. The films were grown on 

a 0.13 cm2 customised Pt electrode by potentiostatic electropolymerisation at 0.80 V vs SCE to 

yield a charge density of 0.25 C cm-2. The PpyOx was prepared from a solution of 0.2 mol dm-3 Py 

0.02 mol dm-3 Ox and the PpyCl was prepared from a solution of 0.1 mol dm-3 Py 0.1 mol dm-3 

NaCl.  

 

A B 

  

Figure 5.7: Cross section areas of PpyOx grown to a charge density of 0.25 C cm-2 (A) and 0.40 C 

cm-2 (B) on a 0.13 cm2 customised Pt electrode. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE in 0.2 mol dm-3 Py 0.02 mol dm-3 Ox.  
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5.3.3.1 EDX analysis 

EDX analysis was carried out to verify the presence of  oxacillin. The EDX spectrum 

presented in Figure 5.8 confirms the presence of carbon at 0.3 keV, sulphur at 2.45 keV 

and oxygen at 0.52 keV. Carbon is an elemental component of both polypyrrole and 

oxacillin, however, the sulphur and oxygen are elemental components of anionic dopant 

(Ox  ), clearly indicating the incorporation of Ox   during the formation of the 

polypyrrole film. 

 

 

Figure 5.8: Representative EDX spectrum of PpyOx, showing x-axis from 0.0 to 12.5 keV. 

 

 

5.3.4 Cyclic Voltammetry 

The electrochemical properties of PpyCl and PpyOx in the presence and absence of 

chitosan were characterised using cyclic voltammetry. The polymers were grown to a 

charge density of 0.25 C cm-2. They were cycled in a 0.1 mol dm-3 PBS solution (pH 7.4 

and a conductivity of 17 mS cm-1) and the potential was swept from –0.95 V to 0.35 V vs 

SCE to avoid over-oxidising the polymer41. Different scan rates, ranging from 5, 10, 25, 

50, 100 to 150 mV s-1, were used. Representative data are shown in Figure 5.9 for the 
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PpyCl and PpyOx films and the voltammograms shown in Figure 5.10 were recorded for 

the PpyCl/Chit and PpyOx composites. The voltammograms presented in the plots 

labelled A and C show the current-potential response at different scan rates and the plots 

labelled B and D show a magnification of the voltammograms recorded at 10 mV s-1 

compared to the electrochemical response of the bare Pt electrode using the same 

parameters. Reproducible voltammetric behaviour was attained after the first few cycles, 

usually 3 to 4 cycles and the data shown in Figure 5.9 and Figure 5.10 are of the 10th 

cycles.  

 

5.3.4.1 Redox properties of PpyCl and PpyOx  

The voltammograms recorded for PpyCl in PBS are presented in Figure 5.9 A and Figure 

5.9 B. These voltammograms are similar to the voltammograms for PpyCl in NaCl 

solution (Figure 4.14 A) but there is some difference in the shape of the peaks. This may 

be attributed to the difference in the nature of the anions incorporated into the film during 

cycling42.  In the NaCl solution, small and mobile Cl   anions are available, while the 

phosphate anions, HPO
2

4 and H2PO


4 , are larger. At slow scan rates (< 25 mV  s-1) the 

most prominent peak is centred at −0.50 V vs SCE and is associated with cation (Na+) 

insertion43 from the electrolyte (PBS solution). At increasing scan rates (> 25 mV s-1) the 

redox peaks associated with the insertion of the Na+ species and the anionic species are 

all clearly visible and increase in intensity. The redox peaks for anion transport appear 

centred at approximately −0.10 V vs SCE and shift to lower potentials as the scan rate is 

increased to 150 mV s-1.  The anodic peak which extends from −0.40 V vs SCE to 0.20 

V vs SCE is broad and the anodic peak potential (𝐸𝑝𝑎) increases with scan rate. The 

dominating redox process is for anion transport. Indeed, similar voltammograms for 

PpyCl have been published and discussed43-46 and ion transport has been extensively 

studied47-52. Figure 5.9 C shows that the main redox peaks for PpyOx are at lower 

potentials than PpyCl. This is more clearly evident on comparing the voltammograms 

presented in Figure 5.9 B and D. These potential are in the region associated with cation 

transport53, 54. The anodic peak potential (𝐸𝑝𝑎) remains centred at −0.37 V vs SCE. The 
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cathodic peak potential (𝐸𝑝𝑐) shifts from −0.48 V to −0.65 V vs SCE as the scan rate 

increases. The PpyOx films do not show any other significant peaks during cycling in 

PBS solution; this indicates that cation transport is dominant51, 54, 55.  

A B 

  

C D 

  

Figure 5.9: Cyclic voltammograms (10th cycle) of PpyCl (A and B) and PpyMO (C and D) coated 

Pt electrode in PBS solution. The dashed traces in (B) and (D) correspond to the voltammograms 

of bare Pt electrode. The scan rates in mV s-1 are indicated on the plot. The films were prepared 

by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The 

PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyOx was 

prepared from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox.  
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The peak potentials and peak currents were recorded as a function of the scan rate from 

the cyclic voltammograms of the PpyCl and PpyOx films cycled in PBS solution. These 

data are plotted in Figure 5.10 where the peak potential  (𝐸𝑝) and peak current (𝐼𝑝) are 

shown as a function of scan rate.  For PpyCl (Figure 5.10 A) the voltammetric peaks 

associated with cation (Na+) exchange are not significantly susceptible to changes in the 

scan rate, the anodic peak occurs at −0.49 ± 0.05 V vs SCE  for Na+ expulsion and the 

corresponding cathodic peak for Na+ insertion occurs at −0.51 ± 0.04 V vs SCE. For 

PpyOx (Figure 5.10 C) the cathodic peak potential associated with cation (Na+) insertion 

varies with scan rate while the anodic peak potential associated with cation (Na+) 

expulsion varies only slightly with increasing scan rate. The anodic peak potential 

remains centred at approximately −0.37 ±0.04 V vs SCE, while the cathodic peak 

potential shifts by 167 mV as the scan rate increases. This may suggest that when cation 

transport is dominant the insertion of the cation species into the film is associated with a 

larger ohmic potential drop than its expulsion. When anionic transport is dominant the 

insertion of the ionic species from the solution into the Ppy film is associated with a larger 

ohmic potential drop than its expulsion51.  It is clear that the peak separation is more 

significant for PpyOx than PpyCl. As shown in Figure 5.10 B and Figure 5.10 D the peak 

current increases in a linear manner with the scan rate. It is also evident that the peak 

currents are higher for the PpyOx film.  

Table 5.3 shows data for the cation redox process of PpyCl and PpyOx. The peak current 

ratios (𝐼𝑝𝑎 𝐼𝑝𝑐⁄ ) were determined for the main redox peaks, and averages values of 0.08 

and 0.14 were calculated for PpyCl and PpyOx, respectively. This deviates from a 

reversible voltammetric response with a peak ratio of 1.0. The average peak-to-peak 

separation, ∆𝐸𝑝, for PpyCl and PpyOx in 0.1 mol dm-3 PBS solution was calculated to be 

11 mV and 190 mV, respectively. The midpoint potential, 𝐸𝑚𝑖𝑑, was computed to be 

−0.50 V vs SCE for PpyCl and −0.10 V vs SCE for PpyOx, at 298 K. 
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Table 5.3: Cyclic voltammetric data for the redox properties of PpyCl and PpyOx in PBS 

solution. 

PpyCl 

Scan rate 

(mV s-1) 

Emid (V 

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.47 78 0.02 −0.32 

10 −0.48 56 0.02 −0.50 

25 −0.54 −7 0.03 −0.61 

50 −0.49 −81 0.06 −1.01 

100 −0.48 −35 0.26 −1.73 

150 −0.54 56 0.43 −2.47 

PpyOx 

Scan rate 

(mV s-1) 

Emid (V  

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.04 78 0.11 −0.29 

10 −0.06 118 0.29 0.20 

25 −0.09 173 0.62 −1.05 

50 −0.13 250 1.06 −2.23 

100 −0.13 253 1.71 −4.33 

150 −0.13 267 2.65 −5.98 

a Calculated from 1 2⁄ (𝐸𝑝,𝑐  +  𝐸𝑝,𝑎). 

b ∆𝐸𝑝  =  𝐸𝑝𝑎  −  𝐸𝑝𝑐 . 
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A B 

  

C D 

  

Figure 5.10: Peak potential plotted as a function of scan rate for PpyCl (A) and PpyOx (C) and 

peak current plotted as a function of scan rate PpyCl (C) and PpyOx (D) taken from the cyclic 

voltammograms (10th cycle) in PBS solution shown in Figure 5.9 A and C. The main anodic peak 

(●) and the main cathodic peak (□). The R2 values for the linear trendline are indicated. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the 

PpyOx was prepared from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. 
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5.3.4.2 Redox properties of PpyCl/Chit and PpyOx/Chit grown to a charge density of 

0.25 C cm-2 

As detailed earlier, the chitosan layer was formed post-electropolymerisation to give the 

PpyCl/Chit and PpyOx/Chit composite. Figure 5.11 shows the cyclic voltammograms of 

the PpyCl/Chit and PpyMO/Chit deposited on a Pt electrode and cycled in 0.1 mol dm-3 

PBS at 23 ºC. Again, the data presented in Figure 5.11 A show the voltammograms 

recorded for PpyCl/Chit at various scan rates, while the data shown in Figure 5.11 C 

represents the PpyOx/Chit film. In Figure 5.11 B and Figure 5.11 D the voltammograms 

recorded for bare Pt are compared with the PpyCl/Chit and PpyOx/Chit composites.  It is 

clear that the chitosan component does alter the overall shape of the voltammograms 

when cycled in PBS solution. Figure 5.11 A shows the I-E curve for the PpyCl/Chit coated 

electrode. In the presence of chitosan the main redox peaks are centred at −0.54 V vs 

SCE similar to PpyCl in Figure 5.9. The cathodic peak potential (𝐸𝑝𝑐) and the anodic 

peak potential (𝐸𝑝𝑎) shifts slightly by approximately 50 mV with increasing scan rate. 

The anodic peak current associated with cation expulsion is slightly higher for the 

PpyCl/Chit composite than the PpyCl film. Clearly the dominating redox process is for 

cation transport in the PpyCl/Chit composite. This may be as a result of the chitosan layer 

hindering the egress of anions, if an anion is unable to leave the film during the reduction 

process than cation (Na+) insertion is expected56.  

The corresponding I-E curve for PpyOx/Chit is shown in Figure 5.11 C. The anodic peak 

potential (𝐸𝑝𝑎) remains centred at −0.23 V vs SCE. The cathodic peak potential (𝐸𝑝𝑐) 

shifts to more negative potentials from approximately −0.40 V vs SCE to −0.70 V vs 

SCE as the scan rate is increased from 25 to 150 mV s-1. Furthermore, the peaks become 

sharper and increase in intensity as the scan rate is increased.  
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A B 

  

C D 

  

Figure 5.11: Cyclic voltammograms (10th cycle) of PpyCl/Chit (A and B) and PpyOx/Chit (C and 

D) coated Pt electrode in PBS solution. The dashed traces in (B) and (D) correspond to the 

voltammograms of bare Pt electrode. The scan rates in mV s-1 are indicated on the plot. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the 

PpyOx was prepared from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. Chitosan was added 

post-polymerisation. 
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In Figure 5.12, plots are shown for the peak potential (𝐸𝑝) and peak current (𝐼𝑝) as a 

function of the scan rate for the cyclic voltammograms of PpyCl/Chit and PpyOx/Chit 

shown in Figure 5.11. There is a linear relationship between the peak current and the scan 

rate, which is similar to the response obtained with the PpyCl and PpyOx films, Figure 

5.10. In PpyCl/Chit (Figure 5.12 A) there is a difference of 100 mV between the 

maximum and minimum values of (𝐸𝑝𝑎) which occur at 5 and 25 mV s-1, respectively. 

The voltammetric peak associated with Na+ insertion is more susceptible to the change in 

scan rate than the voltammetric peak associated with Na+ expulsion.  

The peak separation is more significant in the PpyOx/Chit than in the PpyCl/Chit. The 

peak current ratios (𝐼𝑝𝑎 𝐼𝑝𝑐⁄ ) were determined for the main redox peaks, and average 

values of 0.08 and 0.67 were calculated for PpyCl/Chit and PpyOx/Chit, respectively. 

This deviates from a reversible response with a peak ratio of 1.018. The peak-to-peak 

separation, ∆𝐸𝑝, at 50 mV s-1 for PpyCl/Chit and PpyOx/Chit in 0.1 mol dm-3 PBS 

solution was calculated to be 68 mV and  257 mV, respectively. The other parameter 

determined from the cyclic voltammetric data is the midpoint potential, 𝐸𝑚𝑖𝑑 which was 

computed to be −0.54 V vs SCE for PpyCl/Chit and −0.39 V vs SCE for PpyOx/Chit, at 

298 K. These data are summarised in Table 5.4. 
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Table 5.4: Cyclic voltammetric data for the redox properties of PpyCl/Chit and PpyOx/Chit 

recorded in PBS solution. 

PpyCl/Chit 

Scan rate 

(mV s-1) 

Emid (V 

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.58 104 0.04 −0.26 

10 −0.60 55 0.08 −0.39 

25 −0.51 42 0.09 −0.67 

50 −0.47 68 0.28 −1.16 

100 −0.52 6 0.48 −2.07 

150 −0.55 16 0.74 −2.97 

PpyOx/Chit 

Scan rate 

(mV s-1) 

Emid (V  

vs SCE)a 

∆𝐸𝑝 (mV)b 𝐼𝑝𝑎 (mA cm-2) 𝐼𝑝𝑐 (mA cm-2) 

5 −0.39 281 0.20 −0.32 

10 −0.39 263 0.34 −0.51 

25 −0.34 217 0.75 −0.97 

50 −0.36 257 1.35 −2.06 

100 −0.40 385 2.37 −3.54 

150 −0.46 493 3.15 −5.01 

a Calculated from 1 2⁄ (𝐸𝑝,𝑐  +  𝐸𝑝,𝑎). 

b ∆𝐸𝑝  =  𝐸𝑝𝑎  −  𝐸𝑝𝑐 . 
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A B 

  

C D 

  

Figure 5.12: Peak potential plotted as a function of scan rate for PpyCl/Chit (A) and PpyOx/Chit 

(C) and peak current plotted as a function of scan rate PpyCl/Chit (C) and PpyOx/Chit (D) taken 

from the cyclic voltammograms (10th cycle) in PBS shown in Figure 5.11 A and C. The main anodic 

peak (●) and the main cathodic peak (□). The R2 values for the linear trendline are indicated. The 

films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density 

of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl 

and the PpyOx was prepared from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. Chitosan 

was added post-polymerisation. 
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A direct comparison of the cyclic voltammograms recorded for PpyCl and PpyOx in PBS 

is shown in Figure 5.13 A, while corresponding data are presented in Figure 5.13 B for 

the PpyCl/Chit and PpyOx/Chit. These voltammograms were recorded at 50 mV s-1. In 

Figure 5.13 A, there is evidence of mixed ion transport for the PpyCl films, with peaks I, 

II, III and IV clearly visible, but for the PpyOx film, the transport appears to be 

predominately cationic. This has been reported for other large sulfonate doped 

polypyrrole films41, 55, 57-59. Again, the significant role of the chitosan layer can be clearly 

seen on comparing the voltammograms in Figure 5.13 A and Figure 5.13 B.  

A B 

  

Figure 5.13: Generalised capacitance curve (where the current is divided by the scan rate v) for 

PpyCl (A) and PpyOx (B) cycled in PBS solution at 5 mV s-1. The dashed traces indicate the 

chitosan-coated composite. The films were prepared by potentiostatic electropolymerisation at 

0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 

mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyOx was prepared from a solution of 0.2 mol dm-3 

Py and 0.02 mol dm-3 Ox. For PpyA/Chit (B), chitosan was added post-polymerisation. 

 

The possible processes occurring at the peaks labelled I, II, III, and IV are described in 

Equations 5.3, 5.4, 5.5 and 5.6. On re-oxidation of the PpyOx (Figure 5.13 A, peaks I and 

II) the polymer backbone becomes positively charged. The charge neutrality is achieved 

by the expulsion of the sodium ion (Equation 5.3) and the incorporation of the phosphate 
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ions (HPO
2

4 or H2PO


4 ) from the electrolyte as shown in Equation 5.4. When the PpyOx 

is reduced during subsequent cycles (Figure 5.13 B, peaks III and IV), the phosphate 

anion is expelled into the electrolyte (Equation 5.5) and in order to maintain overall 

charge neutrality a sodium ion from the electrolyte is incorporated into the polymer film 

(Equation 5.6). 

I: 0

nPpy NaOx + HPO
2

4 − e   
  

0

nPpy 

nPpy Ox + HPO
2

4 + 

Na  

(5.3) 

II: 0

nPpy 

nPpy Ox +HPO
2

4 − e

  

  



nPpy 

nPpy Ox  HPO
2

4  
(5.4) 

III: 

nPpy 

nPpy Ox  + HPO
2

4  +  

e   
  

0

nPpy 

nPpy Ox + Na +      

HPO
2

4  

(5.5) 

IV: 0

nPpy 

nPpy Ox  + Na  + e     
0

nPpy NaOx   (5.6) 

 

5.3.5 Electrochemical Impedance spectroscopy  

Complex plane-impedance plots (Nyquist plots) and Bode plots were recorded for PpyOx 

and PpyOx/Chit. The impedance data were recorded for a Pt electrode coated with PpyOx 

and PpyOx/Chit films, and the PpyOx moiety was grown to a charge density of 0.25 C 

cm-2. The imaginary and real components of the impedance are plotted to give the 

complex plane or Nyquist plots, while the modulus of the impedance and the phase angle 

are presented as a function of frequency to give the Bode plot. Reproducible results were 

obtained by polarising the electrodes at the required potential for 60 min. This period was 

sufficiently long to achieve steady-state conditions to reduce the effect of hysteresis60. 

The frequency range was varied from 65 kHz to 0.005 Hz.  
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The impedance measurements were recorded at fixed potentials of –0.90, −0.60, −0.30, 

−0.10, 0.0, 0.10 and 0.30 V vs SCE in PBS solution. The polymer film is in a totally 

reduced state at –0.90 V vs SCE, and as the potential is increased the films are oxidised, 

and the different applied potentials represent varying degrees of oxidation. 

The real axis intercept at high frequency (> 12.5 kHz) coincides with the uncompensated 

solution resistance (RS) and is independent of the applied potential51. A simple Randles 

circuit (Figure 5.14) was used as a starting point to model the impedance response at each 

applied potential, and then additional circuit elements were considered. A more complex 

circuit was used to model the impedance of PpyOx at −0.90 V vs SCE, with a second RC 

time constant incorporated into the model, which describes two RC processes occurring 

at different rates61. Figure 5.14 B. All data were normalised to the surface area of the Pt 

electrode, 0.13 cm2. 

The parameters extracted from the equivalent circuit model were used to determine the 

high frequency capacitance or (CPEHF) which was corrected to units of capacitance. 

The low frequency capacitance CLF, can be estimated directly from the Bode plot (CLF = 

1/slope). The calculation for determining CLF is described in Section 2.4.4 equation 2.8 

and is independent of film thickness62, 63. 

A 

 

B 

 

 

Figure 5.14: Equivalent circuits used for modelling the impedance data. 

Rs CPE1

Rct CPE2

Element Freedom Value Error Error %

Rs Free(+) 95.15 N/A N/A

CPE1-T Free(+) 0.0037039 N/A N/A

CPE1-P Free(+) 0.77115 N/A N/A

Rct Free(+) 104 N/A N/A

CPE2-T Free(+) 0.010208 N/A N/A

CPE2-P Free(+) 1.024 N/A N/A

Data File:

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\3 CPE R R.mdl

Mode: Run Fitting / Selected Points (0 - 0)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Rs CPE1

R1

CPE2

R2 CPE3

Element Freedom Value Error Error %

Rs Free(+) 12.05 0.064727 0.53715

CPE1-T Free(+) 0.0014786 8.6489E-05 5.8494

CPE1-P Free(+) 0.63115 0.0092909 1.4721

R1 Free(+) 27.17 0.75692 2.7859

CPE2-T Free(+) 0.0030513 1.0649E-05 0.349

CPE2-P Free(+) 0.74372 0.002375 0.31934

R2 Free(+) 11873 445.74 3.7542

CPE3-T Fixed(X) 0 N/A N/A

CPE3-P Fixed(X) 1 N/A N/A

Chi-Squared: 0.0004954

Weighted Sum of Squares: 0.059943

Data File: C:\Users\emer\Documents\Emer PhD\PhD Year 4\Drug Release\Methyl Orange\EIS\PM 0.1 V\ppymo01van4.z

Circuit Model File: C:\Users\emer\Documents\Emer PhD\MSc Year 2\Experiment 15\Impedance Results\Circuit model\2 CPE 2 R.mdl

Mode: Run Fitting / Selected Points (0 - 63)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus
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5.3.5.1 EIS of PpyOx films 

The complex-plane impedance (Nyquist) plots and Bode plots for PpyOx are shown in 

Figure 5.15 A and B, respectively. Some of the parameters from the equivalent circuit for 

PpyOx films at different redox states are shown in Table 5.5.  

A B 

 

 

 

Figure 5.15: Complex-plane impedance plot (A) for PpyOx coated 0.13 cm2 Pt electrodes at various 

potentials in PBS solution. The Bode plot (B) shows the logarithm of the impedance and the phase 

angle against the logarithm of frequency. Potentials are indicated in V vs SCE. Frequency range 

shown from 65 kHz to 0.005 Hz. The films were prepared by potentiostatic electropolymerisation 

at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared from a solution of 

0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyOx was prepared from a solution of 0.2 mol 

dm-3 Py and 0.02 mol dm-3 Ox. 

 

At higher potentials a “Warburg-type” linear region is observed in the high-medium 

frequency range. At lower potentials a compressed semicircular arc is observed in the 

high frequency range, due to parallel resistance-capacitance elements which is typical of 

polymer coated electrodes exhibiting ion transport43. The impedance response in these 

regions is particularly important for determining mass transfer parameters53, 64. As the 
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frequency is decreased the transmission line becomes nearly vertical where the 

polymer|metal electrode behaves like a capacitor. The deviation from an ideal impedance 

spectrum is thought to be due to irregular thickness and morphology of the polymer 

surface65, 66. In Tables 5.5 and 5.6 the parameters obtained from fitting the impedance 

data to the circuit elements are summarised for the PpyCl and PpyOx films, respectively. 
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The RHF resistance term presented in Tables 5.5 and 5.6 can be considered as the charge-

transfer resistance. The values obtained for PpyCl in PBS are similar to that of PpyCl in 

NaCl, Section 4.3.4 (Table 4.4). The RHF increases sharply by three orders of magnitude 

with a minimum at 0.30 V vs SCE and a maximum at −0.60 V vs SCE (1.31 kΩ cm2) for 

the PpyCl film, Table 5.5. As the potential is varied from 0.30 V vs SCE to −0.60 V vs 

SCE, the PpyCl is reduced from an oxidised state to a neutral state and the resistance 

increases54. Again, a decrease in the resistance is observed at −0.90 V vs SCE. This may 

be attributed to a decrease in the ionic resistance due to the insertion of cations67 (Na+).  

The RHF values obtained for PpyOx, Table 5.6, decrease from 0.30 V vs SCE and remain 

low between 0.00 V vs SCE and −0.30 V vs SCE at 1.12 ± 0.15 Ω cm2. The resistance 

increases sharply by approximately 260 Ω cm2, with a maximum at −0.60 V vs SCE.  

The total resistance, RT, was computed using the expression in Equation 5.7 for resistors 

in series. This resistance was then used to calculate the conductivity, σT, as shown in 

Equation 5.8, where d is the nominal thickness of the dry film, 5.0 ×10-5 cm and 1.5 ×10-

4 cm for PpyCl and PpyOx respectively, and A is the geometric surface area of the 

electrode (0.13 cm2). 

 RT = RHF  + RMF                 (5.7) 

 

 σT = 
1

R𝑇
 ×  

𝑑

𝐴
 (5.8) 

The total resistance, RT, and the conductivity, σT, of the PpyCl and PpyOx films were 

plotted as a function of the applied potential and representative plots are presented in 

Figure 5.16. The conductivity of the PpyCl film decreases sharply by 12.07 μS cm-1 with 

a maximum at 0.30 V vs SCE and a minimum at −0.60 V vs SCE as the Ppy is reduced 

and the charge carrier (Cl  ) concentration in the film decreases. A slight increase of 0.88 

μS cm-1 is observed at −0.90 V vs SCE, which is consistent with the ingress of cations67, 

68 (Na+).  
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For PpyOx the conductivity is lower than PpyCl at 0.30 V vs SCE, however the 

conductivity increases and remains high, at approximately 721 ± 95 μS cm-1, when the 

potential is varied from 0.00 V vs SCE to −0.30 V vs SCE. The conductivity decreases 

sharply at −0.60 V vs SCE and there is a further slight decrease in the conductivity at 

−0.90 V vs SCE. This high conductivity may be associated with the high concentration 

of ions trapped in the PpyOx film. Also, the PpyOx film has a thicker film than the PpyCl 

film, Figure 5.7, and it appears less porous, Figure 5.6. Zhang et al.69 compared the Rct 

(RHF) values of a Cl  doped and sulfonate doped Ppy films and found lower resistance 

values for the sulfonate doped Ppy, which agrees well with the values obtained for the 

PpyOx films. 

The corrected CHF and CLF capacitance terms of the PpyCl and PpyOx films are plotted 

as a function of potential in Figure 5.17. It is evident from the plots in Figure 5.17 that 

there is some variation between the capacitance of the PpyCl and PpyOx films. The PpyCl 

film shows a decrease in CHF as the Ppy film releases chloride anions to the surrounding 

electrolyte, with a maximum at 0.00 V vs SCE and a minimum at −0.60 V vs SCE. The 

CHF of PpyOx is lower when polarised in the oxidised state and increases tenfold between 

−0.10 V and −0.30 V vs SCE. The CLF decreases steadily for PpyCl as the charge storage 

capacity of the film matrix decreases67. Interestingly, the CLF increases for PpyOx as the 

applied potential is reduced from 0.30 V to −0.30 V vs SCE followed by a minimum 

value at −0.60 V vs SCE. This high capacitance is attributed to cation transport and 

corresponds to the cyclic voltammograms in Figure 5.13 A.  
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A B 

  

Figure 5.16: Plots of resistance, RT, (A), and conductivity, σT, (B), as a function of applied 

potential for PpyCl (●) and PpyOx (○) in PBS solution. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was 

prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyOx was prepared 

from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. n=3 

A B 

  

Figure 5.17: Plots of corrected double layer capacitance, CHF, (A), and low frequency capacitance, 

CLF, (B), as a function of applied potential for PpyCl (●) and PpyMO (○) inPBS solution. The films 

were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 

C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the 

PpyOx was prepared from a solution of 0.1 mol dm-3 Py and 0.02 mol dm-3 Ox. n=3 
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5.3.5.2 EIS of PpyOx/Chit films 

The impedance of PpyCl/Chit and PpyOx/Chit was measured as a function of the applied 

potential, using an approach similar to that used to record the impedance in Section 

5.3.5.1. Typical complex-plane impedance plots and Bode plots recorded for PpyOx/Chit 

at potentials varying from 0.30 V to −0.90 V vs SCE are shown in Figure 5.18. Again, it 

is evident from these data that the impedance response changes as the applied potential is 

varied. The impedance is lower at 0.30 V vs SCE and increases as the potential is varied 

from 0.30 V to −0.60 V vs SCE. The resistance of the PpyOx/Chit film is somewhat 

higher than that obtained for PpyOx. This is consistent with a higher resistance to ion 

transport due to the presence of the chitosan. 

A B 

 

 

 

Figure 5.18: Complex-plane impedance plot (A) for PpyOx/Chit coated 0.13 cm2 Pt electrodes at 

various potentials in PBS solution. The Bode plot (B) shows the logarithm of the impedance and 

the phase angle against the logarithm of frequency. Potentials are indicated in V vs SCE. 

Frequency range shown from 65 kHz to 0.005 Hz. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. PpyOx was prepared 

from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. Chitosan was added post-polymerisation. 
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These data were fitted to the equivalent circuit in Figure 5.14 and the data obtained are 

summarised in Tables 5.7 and 5.8. The RHF values for the PpyCl/Chit reach a minimum 

of 63 Ω cm2 at 0.30 V vs SCE and a maximum at −0.90 V vs SCE, Table 5.7. As the 

potential is varied from 0.30 V vs SCE to −0.90 V vs SCE the PpyCl/Chit film is 

converted from an oxidised state to a neutral state and the resistance increases.  

The RHF values obtained for PpyOx/Chit, Table 5.8, range from  a minimum value of 21.5 

Ω cm2 obtained at 0.0 V vs SCE to a maximum value of 314 Ω cm2 obtained at −0.60 V 

vs SCE and a further slight decrease in the resistance is observed at −0.90 V vs SCE. 

This may be attributed to a decrease in the ionic resistance due to the insertion of cations. 

Again, the total resistance, RT, was computed using the expression in Equation 4.6 for 

resistors in series. The presence of chitosan makes it difficult to determine the polymer 

film thickness and thus the conductivity, σT, was not determined. Figure 5.19 shows a 

direct comparison between the resistance of PpyCl/Chit and PpyOx/Chit where the total 

resistance is plotted as a function of applied potential. It is clear from this plot that the 

resistance of the polymer films, PpyCl/Chit and PpyOx/Chit, increases as the potential is 

varied from 0.10 V vs SCE to −0.60 V vs SCE. The lowest resistance (RT) value for 

PpyOx/Chit was found at −0.10 V vs SCE while the lowest resistance was observed at 

0.00 V vs SCE for the PpyCl/Chit. 

The capacitance terms are plotted as a function of applied potential in Figure 5.20. For 

PpyCl/Chit, the high frequency capacitance, CHF, shows a decrease as the potential is 

varied from 0.10 V vs SCE to −0.90 V vs SCE, Figure 5.20 A. This corresponds to the 

reduction of the film and the release of anions. The high frequency capacitance of 

PpyOx/Chit remains constant between 0.30 V and −0.30 V vs SCE. It is evident from 

these plots that the chitosan slows down the ion transport prolonging the charge storage 

capability70.  
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Figure 5.19: Plots of resistance, RT, as a function of applied potential for PpyCl/Chit (●) and 

PpyOx/Chit (○) in PBS solution. The films were prepared by potentiostatic electropolymerisation 

at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared from a solution of 

0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyMO was prepared from a solution of 0.2 mol 

dm-3 Py and 0.02 mol dm-3 Ox. Chitosan was added post-polymerisation. n=3 
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Figure 5.20: Plots of corrected double layer capacitance, CHF, (A), and low frequency capacitance, 

CLF, (B), as a function of applied potential for PpyCl/Chit (●) and PpyOx/Chit (○) in PBS solution. 

The films were prepared by potentiostatic electropolymerisation at 0.80 V vs SCE to a charge 

density of 0.25 C cm-2. The PpyCl was prepared from a solution of 0.1 mol dm-3 Py and 0.1 mol 

dm-3 NaCl and the PpyOx was prepared from a solution of 0.2 mol dm-3 Py and 0.01 mol dm-3 Ox. 

Chitosan was added post-polymerisation. n=3 
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5.3.5.3 A comparison between the PpyCl and PpyOx films 

A direct comparison of the impedance responses for PpyOx, PpyOx/Chit, PpyCl and 

PpyCl/Chit are shown in Figure 5.21, while corresponding data are presented in Table 

5.9. These spectra were recorded at 0.10 V vs SCE. The significant role of the different 

anionics can be clearly seen. The PpyCl films have higher resistance (RT) values and a 

higher capacitance than the PpyOx films and the low frequency capacitance (CLF) is lower 

for the PpyCl films. It is also evident that the chitosan layer exerts little effect on the 

PpyA systems at this applied potential. Although the conductivity of the PpyA/Chit could 

not be determined the presence of chitosan appears to increase the resistance slightly 

which would reduce the conductivity. This is somewhat different to the data recorded for 

PpyA in NaCl, Chapter 4, indicating that the electrolyte (PBS or NaCl) has an effect on 

these systems71.  

A B 

 

 

 

Figure 5.21: Complex-plane impedance plot (A) and Bode plot (B), for PpyA and PpyA/Chit coated 

0.13 cm2 Pt electrodes at 0.1 V vs SCE in PBS solution. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyCl was prepared 

from a solution of 0.1 mol dm-3 Py and 0.1 mol dm-3 NaCl and the PpyOx was prepared from a 

solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. Chitosan was added post-polymerisation. 
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Table 5.9: Summary of the parameters extracted from fitting the impedance data recorded at 0.1 V 

vs SCE for the PpyA and PpyA/Chit composites in PBS solution. All PpyA films were grown to a 

charge density of 0.25 C cm-2. 

Sample  

(0.10 V)  

CHF  

(μF cm-2) 

RT  

(Ω cm2) 

CLF  

(mF cm-2) 

σT 

(μS cm-1) 

PpyOx 2.33 ± 0.10 9.4 ± 1.76 13.72 ± 0.50 84.5 ± 3.38 

PpyCl  5.87± 0.16 97.6 ± 2.54 7.70 ± 0.17 6.0 ± 0.14 

PpyOx/Chit 0.03 ± 0.01 24.3 ± 0.68 4.61 ± 0.31 - 

PpyCl/Chit  4.57 ± 0.15 107.6 ± 6.73 1.58 ± 0.08 - 

 

5.3.6 Adhesion test 

The adhesion tests were classified using the methodology summarised in Table 3.8, 

Chapter 3. A summary of the adhesion test results obtained for PpyCl, PpyCl/Chit, PpyOx 

and PpyOx/Chit is provided in Table 5.10. In this table, the films indicated with E (+V) 

refer to the films grown at a fixed potential of 0.80 V vs SCE, while the films indicated 

with E (−V) refer to the reduced films. The reduced films were held at –0.90 V vs SCE 

for 10 min in 0.1 mol dm-3 PBS solution after polymerisation. The films were then dried 

in a stream of air. The overall adhesion properties of PpyOx were satisfactory. There was 

somewhat of a decline in the adhesion performance of PpyCl in the presence of PBS 

solution when a positive potential was applied, possibly due to some nucleophilic attack 

of the OH   ions in PBS41, 71. The addition of chitosan to the PpyOx film to give the 

PpyOx/Chit composite improved the adhesion properties of the polymer film.  
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Table 5.10: Summary of results from adhesion tests.  

Sample Classification Result 

PpyCl E (+ V) 1 Good 

PpyCl/Chit E (+ V) 0 Excellent 

PpyOx E (+ V) 1 Good 

PpyOx/Chit E (+ V) 1 Good 

PpyCl E (− V) 2 Poor 

PpyCl/Chit E (− V) 1 Good 

PpyOx E (− V) 3 Very Poor 

PpyOx/Chit E (− V) 2 Poor 

 

 

5.3.7 Release of oxacillin  

The release of oxacillin from the PpyOx and PpyOx/Chit films was studied and compared. 

Prior to the release studies, the films were washed in ethanol followed by washing in 

distilled water. A typical three electrode cell set-up was used, the cell was wrapped in 

aluminum foil and a gentle stirring motion with a magnetic stirrer and bead was used to 

aid the homogenising of the solution. Three protocols were chosen to study the release of 

oxacillin from the PpyOx and PpyOx/Chit films into 10 cm3 of 0.1 mol dm-3 PBS solution 

(pH 7.4), release at 0.30 V, −0.60 V vs SCE and at the open-circuit potential (OCP). 

These constant potentials were chosen based on the methyl orange release performance, 

Chapter 4. At 0.30 V vs SCE, the polymer film is maintained in the oxidised state, while 

at −0.60 V vs SCE the film is reduced. The final protocol used in this study was the 

release from an unstimulated film at its OCP value.  
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5.3.8 Detection of oxacillin  

The amount of oxacillin released from the polymer film was quantitatively determined 

using UV spectroscopy by measuring the maximum absorbance at 205 nm. The detection 

of oxacillin is usually performed using gas chromatography and a UV detector at 225 nm, 

using the pharmacopeia method. The pharmacopeia drug, dissolved in an organic solvent, 

detects the oxacillin. The difference in wavelength between the pharmacopeia method 

and the method employed here is possibly due to the different nature of the solvent. Prior 

to carrying out the 24 hour release study, the UV spectrum of oxacillin in PBS solution 

(8.5 μg mL-1) was recorded at 0, 6, 12 and 24 hours to validate the quality of detection. A 

broad wave between 230 and 250 nm became slightly more pronounced but the peak at 

205 nm remained constant. Typical UV spectra recorded of oxacillin in PBS are shown 

in Figure 5.22, while the corresponding calibration curve is presented in the inset. A linear 

calibration curve was obtained and this was used to give the concentration of oxacillin 

released from the PpyOx and PpyOx/Chit films. The slope of the linear plot was 56.7 x 

103 μg-1 dm3 giving the extinction coefficient, ε, a value of 56.7 x 103 μg-1 dm3 cm-1.  

 

Figure 5.22: UV spectra of Ox- in PBS solution. Calibration curve is shown in inset. 
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The amount of oxacillin released was measured as a function of time. Intervals of 10 min 

were used during the first hour, then one hour intervals were used until 6 hours followed 

by a measurement taken at 12 hours and 24 hours. To measure the amount of oxacillin 

released at each time interval, a 3 cm3 sample was taken from the release medium. The 

Ox concentration for each aliquot was compared against the calibration curve shown in 

Figure 5.22. Each data point represents an average of three measurements, n = 3.  

The release of oxacillin over a 24 hour period from PpyOx film (A) and PpyOx/Chit (B) 

films is shown in Figure 5.23, while the oxacillin release at shorter times is shown in 

Figure 5.24. These data are also presented as a bar chart in Figure 5.25. At open-circuit 

potential conditions, or unstimulated release, the average oxacillin released in the first 

hour was 26.72 μg cm-3 and 27.44 μg cm-3 from PpyOx and PpyOx/Chit, respectively. At 

12 hours, the amount of oxacillin released from PpyOx was 43.72 μg cm-3 and from 

PpyOx/Chit was 38.03 μg cm-3. This indicates that the presence of chitosan may slow the 

release of oxacillin. Another important finding is that no electrical stimuli were required 

to release the oxacillin and the release occurred probably through solvation effects. There 

are several applications where this would be beneficial11, 72. At an applied potential of 

0.30 V vs SCE, the average amount of oxacillin released in the first hour was 25.05 μg 

cm-3 for PpyOx and 25.13 μg cm-3 for PpyOx/Chit. At 12 hours, the amount of oxacillin 

released was 43.28 μg cm-3 for PpyOx and 36.91 μg cm-3 for PpyOx/Chit. At −0.60 V vs 

SCE, the average amount of oxacillin released in the first hour was 26.01 μg cm-3 for 

PpyOx and 31.25 μg cm-3 for PpyOx/Chit and after 12 hours the amount of oxacillin 

released was 34.29 μg cm-3 and 31.81 μg cm-3 for the PpyOx and PpyOx/Chit films, 

respectively. Statistically these values are similar and this is clearly evident from the data 

presented in Figures 5.23, 5.24 and 5.25.  This may suggest that oxacillin is trapped inside 

the film and the applied potential has little influence on the release. When the polypyrrole 

is reduced it becomes neutral and in order to remain neutral either the Ox   that was 

incorporated has to be expelled or if the Ox  is immobile, a cation (Na+) from the 

surrounding electrolyte will be incorporated to satisfy charge neutrality, Equation 5.9. 

When the polypyrrole is reoxidised the positive charge is returned to the polypyrrole 

backbone. The cation (Na+) previously incorporated must be expelled or alternatively 

anions present in the electrolyte may be incorporated. 
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Figure 5.23: The amount of oxacillin released from PpyOx (A) and PpyOx/Chit (B) as a function 

of time over 1440 min, or 24 h, at 0.30 V vs SCE (■), OCP (●) and −0.60 V vs SCE (□). n =3  
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Figure 5.24: The amount of oxacillin released from PpyOx (A) and PpyOx/Chit (B) as a function 

of time over 120 min, or 2 h, at 0.30 V vs SCE (■), OCP (●) and −0.60 V vs SCE (□).The data were 

averaged over 4 determinations, n = 4. The films were prepared by potentiostatic 

electropolymerisation at 0.80 V vs SCE to a charge density of 0.25 C cm-2. The PpyMO was 

prepared from a solution of 0.2 mol dm-3 Py and 0.02 mol dm-3 Ox. Chitosan was added post-

polymerisation. n=3 

A number of investigations into antibiotic eluting polymers have reported less than 10 % 

accumulated yields11, 73, 74. A qualitative observation was that after the 24 h period of 

immersion in the dilute oxacillin-PBS solution the chitosan film became white and 

opaque. The colour change was not observed on completion of the 6 or 8 h studies, e.g., 

electrochemical impedance spectroscopy. Nunthanid et al.75 observed a similar change 

from a colourless to white in their chitosan films following swelling release studies in 

PBS. They proposed cross-linking between the cationic amino group and phosphate 

anions. However, in this case, the white colour is possibly due to the adsorption of 

oxacillin this may explain the decrease in oxacillin concentration at −0.6 V vs SCE.  
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Figure 5.25: Bar chart indicating the amount of oxacillin released as a function of time for (A) 

PpyOx and (B) PpyOx/Chit at OCP, 0.30 V and −0.60 V, vs SCE in PBS solution. n=3 
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a dominant cation exchange. The doping level of the PpyOx film was estimated at 1:13 

using EQCM measurements. 

Electrochemical impedance data were recorded for the polymer films and the composites 

and a range of electrochemical behaviour was observed at different applied potentials. 

The charge-transfer resistance increased as the PpyCl film was reduced from an oxidised 

state to a neutral state. The charge-transfer resistance of PpyOx was lower and this is 

consistent with the ingress of Na+ ions as the PpyOx film is reduced.  

The concentration of oxacillin released from PpyOx and PpyOx/Chit by electrical 

stimulation into the cell was detected using UV spectroscopy. In both cases, for PpyOx 

and PpyOx/Chit, the concentration of oxacillin increased as a function of time but there 

was statistically no difference between the applied potentials, with the exception of 

PpyOx at −0.6 V vs SCE.  
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6. Conclusions 
 

The main objective of this research was to prepare polypyrrole in the presence of chitosan 

with the aim of improving the mechanical and the adhesion properties of polypyrrole, 

while retaining the low resistance or high conductivity, which is characteristic of 

polypyrrole1.       

 

Initially, a novel approach was taken to prepare the polypyrrole-chitosan composite films 

by electrochemically polymerising pyrrole in a chitosan hydrogel network directly on an 

electrode surface. The advantage of this procedure is that a comprehensive 

electrochemical characterisation can be obtained. The electrochemical properties of 

polypyrrole-chloride, PpyCl, and the Chit/PpyCl composites were studied using cyclic 

voltammetry and the dominant redox process was found to be anion transport (Cl  ), 

which is in good agreement with the literature2-5. Electrochemical impedance 

spectroscopy (EIS) was used to further characterise the electrochemical properties of the 

composites. The impedance response of the chitosan was significantly different from the 

PpyCl film. A semi-circular transmission line was obtained for the chitosan, indicating 

restricted diffusion conditions6. The Chit/PpyCl showed similar properties to PpyCl, 

indicating that chitosan has no adverse influence on the ion-transport properties, while 

the adhesion performance of Chit/PpyCl was superior to PpyCl. These results suggest that 

chitosan provides a suitable matrix for ion transport in polypyrrole films and offers some 

mechanical reinforcement7.  

 

In the subsequent chapters an alternative method was used to prepare PpyA-chitosan 

composites as difficulties were encountered when trying to prepare Chit/PpyA directly at 

the surface. The sequential steps are illustrated in Figure 3.1 where chitosan was cast on 

to the doped polypyrrole post electropolymerisation and cured under an infrared lamp. 

This method was found to be more suitable for incorporating larger anionic species. The 



                                                                                                                         Chapter 6 

 

 

 
266 

 

  

adhesion properties performed better in the presence of chitosan but were not as superior 

as the initial Chit/PpyCl composite.  

In Chapter 4, methyl orange is introduced as the first anion or dopant for incorporation 

and release from polypyrrole and the polypyrrole/chitosan composites. Methyl orange 

served as a suitable alternative to dexamethasone due to its size, charge, solubility, and 

cost. Although doping polypyrrole with methyl orange is not an entirely novel concept8-

10, here it was incorporated in the absence of additional electrolytes, contrary to the 

literature. The methyl orange doped polymer films, PpyMO, were deposited to a charge 

density of 0.25 C cm-2. The charge-time (Q-t) plots for PpyCl produced steeper slopes 

than PpyMO demonstrating a slower growth rate for PpyMO. This slower growth rate 

may be explained by the slow diffusion of the relatively large MO   anion to the electrode 

surface11. Although similar film thickness values were obtained for PpyCl and PpyMO 

when deposited to the same charge density12, the surface morphology of the films were 

very different. The typical globular morphology was observed for PpyCl13,14 however the 

PpyMO gave tubular-like structures10.  

Cyclic voltammetry measurements were used to identify the redox processes at the PpyCl, 

PpyMO, Chit/PpyCl and Chit/PpyMO composite films. The electrochemical properties 

of the PpyCl film were dominated by anion transport and cation transport was observed 

for the PpyMO film. Although the redox peaks were observed in the presence of chitosan 

they did appear slightly obscured. The conductivity values of PpyMO and PpyCl in 0.10 

mol dm-3 NaCl were found to be 91.28 μS cm-1 at −0.10 V vs SCE and 100.81 μS cm-1 at 

0.30 V vs SCE, respectively, using electrochemical impedance spectroscopy. This 

corresponds with the anion incorporation in PpyCl and the cation release in PpyMO. The 

release of MO   from the PpyMO films was studied using UV-visible spectroscopy. The 

concentration of MO   increased as the applied potential was decreased from 0.30 V to 

−0.60 V vs SCE, and the release time was increased. An increase in the concentration of 

MO   was also observed at open-circuit potentials, indicating a mixed release mechanism. 

However, the release of MO  from PpyMO at −0.90 V vs SCE was influenced by the loss 

of the adhesion properties of the PpyMO film. This was not observed with the 

Chit/PpyMO composite. 
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Finally, polypyrrole doped with oxacillin, PpyOx, was prepared by applying a constant 

potential at 0.80 V vs SCE for approximately 8 min until a charge density of 0.25 C cm-2 

was achieved. To the authors knowledge there are no publications of polypyrrole doped 

with this class of β-lactam penicillin. The growth rate was slower for PpyOx than the rates 

observed with the PpyMO and PpyCl polymer films. The slower growth rate may be 

explained by the slow diffusion of the large Ox   anion to the electrode surface11. 

Interestingly, the same amount of charge passed per area yielded different film thickness 

and morphology for the PpyCl and PpyOx films. The thickness of the PpyOx film was 

estimated to be 1.5 μm compared 0.5 μm for the PpyCl film. In addition, the PpyCl film 

showed the typical globular morphology13, 14 while the PpyOx appeared smooth, and 

lacking in contrasting features. The redox properties of PpyOx were dominated by cation 

transport. The conductivity of PpyOx in PBS at −0.10 V vs SCE was found to be 809.7 

μS cm-1, while the conductivity of PpyCl at 0.30 V vs SCE was considerably lower at 

12.37 μS cm-1. This difference in the magnitude of the conductivity is possibly due to the 

significant variation in the film thickness. 

UV-visible spectroscopy was used to determine the release of oxacillin. Three protocols 

were chosen to study the release of oxacillin from the PpyOx and PpyOx/Chit films into 

10 cm3 of PBS solution (pH 7.4), released at 0.30 V, −0.60 V vs SCE and at the open-

circuit potential (OCP). These constant potentials were chosen based on the methyl 

orange release performance in Chapter 4. The release was measured over a 24 h period 

an even though the release of Ox did not vary significantly as a function of the applied 

potential it did vary over time. The chitosan layer did not significantly influence the 

release of oxacillin at 0.30 V vs SCE or at open-circuit potentials, but it did have a 

negative influence at −0.60 V vs SCE. It is possible that the adsorption properties of 

chitosan interact with oxacillin, this may explain the observed colour change from 

colourless to white, and the decrease in the oxacillin concentrations observed at −0.60 V 

vs SCE (Figure 5.25) as the release time was increased from 6 h to 24 h.  

Overall, the main goals of this thesis were achieved. It has been shown that cyclic 

voltammetry and electrochemical impedance measurements are suitable techniques for 

the characterisation of these drug-doped conducting composites.   
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6.1 Future work 
 

As future work, it would be interesting to continue the systematic approach of testing 

different drugs in the doping and drug release processes. New drugs arrive on the market 

annually and drug/device combinations do not necessarily have to be developed 

simultaneously. As an example, coronary stents were on the market well in advance of 

drug-eluting stents15. An investigation on the growth of PpyOx on titanium would be 

beneficial for applications for orthopaedic implants, particularly for the prevention of 

implant associated infection16.  

 

To further develop these systems for suitable implantation, biocompatibility studies 

followed by in vivo studies would have to be performed. On reviewing the literature it is 

clear that there is significant interest in inherently conducting polymers, particularly 

polypyrrole, for biomedical applications.17-19 Of the drugs studied, dexamethasone is 

receiving increased attention as a suitable dopant20-23, because PpyDex is a true 

electrically controlled drug system21, and it has a broad therapeutic index24. Accordingly, 

it would be interesting to further study the properties and release profiles of PpyDex. It 

would also be necessary to monitor the shelf‐life of the materials over an extended period 

of time and to study the drug release properties and electroactivity over extended 

periods25.  
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