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Abstract

This thesis focuses on EM (electromagnetic) modelling methods for simulating the

behaviour of receivers and detectors for far-IR (far-infrared) astronomy and CMB

(cosmic microwave background) applications, toward an optimum design for SA-

FARI (the Spica Far-Infrared Instrument) on the proposed space based telescope

SPICA (Space Infrared Telescope for Cosmology and Astrophysics). The compu-

tational methods required for modelling SAFARI-like receivers are described, and

sophisticated conical waveguide mode matching theory is derived. Generic far-IR

systems are investigated, including analysis of SAFARI-like multi-mode feed horns,

and the absorber coupled superconducting TES (transition edge sensor) bolometers

that are typically used in far-IR receivers. Special attention is given to the inte-

grating cavity backshorts that serve to increase pixel efficiency, and new designs

for improved cavity geometries, which provide high coupling between the detector

and the incoming signal while reducing cavity losses and crosstalk, are presented.

Where more than one simulation approach is employed for a particular problem, the

agreement between the results served to mutually validate the approaches. Where

necessary, experimental measurements were carried out for verification of the simu-

lations, and the corresponding results are presented. The results of a measurement

campaign carried out at SRON (Netherlands Institute for Space Research) during

an extended visit during the summer of 2013 are presented, where a SAFARI-like

horn antenna was characterised in terms of its frequency dependent throughput at

THz (terahertz) frequencies. A series of cavity mounted absorber measurements are

also described, where the detector components are appropriately scaled up in size to

suit the frequency range of the in-house VNA (vector network analyser) system at

NUIM (National University of Ireland, Maynooth). The main drivers for the work

presented in this thesis were two Technology Research Programmes, both commis-

sioned by ESA (European Space Agency).

List of acronyms used throughout the text:

Far-IR (far-infrared), CMB (cosmic microwave background), TES (transition edge

sensor), Ta (tantalum), THz (terahertz: 1012Hz), NEP (noise equivalent power),

EM (electromagnetic), VNA (vector network analyser), SRON (Netherlands Insti-
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tute for Space Research), RAL (Rutherford Appleton Laboratory), NUIM (National

University of Ireland, Maynooth), SPICA (Space Infrared Telescope for Cosmology

and Astrophysics), SAFARI (Spica Far-Infrared Instrument), FEM (finite element

method), FIT (finite integration technique), GBM (Gaussian beam mode), ESA

(European Space Agency), JAXA (Japane Aerospace Exploration Agency), ISAS

(Institute of Space and Astronautical Science), TE (transverse electric), TM (trans-

verse magnetic), AGN (active galactic nuclei), FTS (Fourier transform spectrome-

ter), FOV (field of view), SFR (star formation rate).

6



Acknowledgements

The work presented in this thesis would not have been possible without the support

of many people. I would like to thank my research supervisor Prof. Anthony Murphy,

for all his support and assistance, who went above and beyond what is expected of

a supervisor in terms of his time and effort in helping me in this pursuit.

I would also like to thank Dr. Neil Trappe, who always made time to help me

with research issues, and with my teaching. Many thanks to Dr. Créidhe O’Sullivan
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Introduction

“Imagination is more important than knowledge. For knowledge is limited to all

we now know and understand, while imagination embraces the entire world, and all

there ever will be to know and understand.”

- Albert Einstein
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The ability to be able to predict accurately the full optical and EM performance

of typical receiver systems has involved a significant research effort over the last

two decades. Many previously released theses from the THz Optics Group of the

Experimental Physics Department of NUIM focussed on modelling the optics that

comprise the free-space path described above. Much has also been carried out on the

beam patterns of corrugated feed horns, leading to the development of the highly

efficient SCATTER mode matching program [Murphy et al., 2010]. However, what

is now required for a more complete understanding of such systems is a thorough

analysis of the horn/cavity/absorber structures using EM simulation techniques.

The main reason for the lack of progress in this area to date is that, without resorting

to super computers, the computational power for modelling these electrically large

structures was simply not available in the past. Only now is it possible to carry

out a complete vector EM analysis of the integrated receiver and detector structures

with a moderately powerful PC. And by employing optimisation techniques, and

combining results from EM mode matching, FEM (finite element method) and FIT

(finite integration technique) we can design systems with the highest coupling to

the incoming signal possible, limited only by manufacturing constraints.

Due to the extremely small dimensions of the feed horns and cavities required

for detection of signals in the THz frequency range, manufacturing tolerances are

the main limiting factor in the design and construction of these types of detector

systems. It is worth noting that, in as early as 1999, corrugated feeds had been built

by RAL (Rutherford Appleton Laboratory) in the U.K. for operation at frequencies

up to 2.5 THz [Wilsher et al., 1999]. However, producing large numbers of such

horns in array format would undoubtedly prove extremely difficult and expensive.

For this reason particular attention was given to smooth walled structures in this

thesis. Chapter 3 focusses on the analysis of smooth walled rectangular feed horns

for the SAFARI instrument, where the far-field beam patterns are calculated using

an efficient mode matching simulation method, and horn-to-horn crosstalk effects

are predicted using finite element analysis.

It has been shown that, with very careful optimisation of the geometry of

smooth walled feeds, similar performance to corrugated feeds can be achieved over

reasonable bandwidths [McCarthy et al., 2013], [Tan et al., 2012]. In fact a rela-

tively simple profile consisting of just a few straight smooth walled conic sections
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can be enough to achieve the required levels of beam symmetry, low-level side lobes

and low cross-polar levels, although with some restrictions of the horn profile dimen-

sions. A complete chapter of this thesis was devoted to creating a new conical mode

matching code, with the aim of producing a more exact model of smooth-walled

conical feed horns. It was also hoped that the code would be more efficient than

the alternative cylindrical mode matching approach. The work is also interesting

from an academic point of view as there is little literature available on the subject

of conical modes and conical mode matching. This work is described in detail in

chapter 4.

Another main focus of the thesis is the investigation and development of new

and efficient methods for modelling the interaction between the cavity and absorber

of the bolometers. More efficient techniques were required for the modelling of this

component, in particular due to the electrically large size of the cavity which is

typically at least a few wavelengths in diameter as one moves into the THz regime.

Waveguide mode matching techniques proved very efficient, and the results were

checked against FEM and FIT results for verification of the approach. However the

waveguide mode matching code was also limited since many real systems employ a

vacuum gap between the horn array block and the detector array (see Figure 5.1

in chapter 5), which cannot be accurately modelled with waveguide modes. For

this reason a discussion on the possibility of extending the NUIM in-house mode

matching code “SCATTER” to account for this vacuum gap is presented in chapter

5.

Although the systems that are investigated in this thesis are for generic instru-

ments for far infrared astronomy and CMB detection, it is mostly toward SAFARI

instrument that the research is primarily aimed. The SAFARI instrument will be

part of the SPICA spacecraft that is due to be launched by ESA and JAXA (Japane

Aerospace Exploration Agency) in 2022/2024. The primary mission objectives of

SPICA are to understand the origin and evolution of galaxies, stars and planets

and for this reason some background information is given on each of these topics in

sections 1.1.1 and 1.1.2. An overview of the SPICA mission as well as the SAFARI

instrument are given in sections 1.2 and 1.2.2 respectively.

10



Chapter 1

Far-IR Astronomy and

Instrumentation

“We are just an advanced breed of monkeys on a minor planet of a very average

star. But we can understand the Universe. That makes us something very special.”

- Stephen Hawking
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1.1 Science Case for Far Infra-Red Astronomy

It has now been accepted that in order to have a more complete understanding

of our Universe and the workings within it a full panchromatic (multi-waveband)

astronomical view is going to be required. Many different physical processes relat-

ing to star formation, galaxy evolution, chemical abundance variations etc. can be

observed in vastly different wavelength ranges and therefore detecting radiation at

all these wavelengths and performing science with the corresponding data will be

essential for building a complete picture of nature on both the small and extremely

large astronomical and cosmological scales. As is illustrated in Figure 1.1, a sig-

nificant portion of all the photons in the universe fall within the far-IR band, thus

this waveband of the EM spectrum will undoubtedly reveal many secrets of how the

universe works.

Figure 1.1: Schematic spectral energy distributions of the extragalactic background. The blue area is the cosmic

optical background, the red area is the cosmic infrared background, and the grey area is the cosmic microwave

background. The units of the specific brightness are Watts per metre squared per steradians [Dole et al., 2006].

In October 2005 ESA announced its plans for the decade spanning 2015 to 2025

in what it called ESA’s Cosmic Vision program. This “vision” posed four questions

that were to be the drivers for the objectives of future space science missions over

the time period of 2015 to 2025. These questions are as follows:

1) What are the conditions for planet formation and the emergence of life?

2) How does the Solar System work?
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3) How did the Universe originate and what is it made of?

4) What are the fundamental physical laws of the Universe?

The first three questions set out by ESA can be addressed with observations

in the mid-IR and far-IR. As such, a next generation space based mid-to-far in-

frared observatory will be key in helping to fulfil this ambitious Cosmic Vision.

SPICA would address the first question with its state of the art Mid-IR coronagraph

[Enya et al., 2008] that would provide the first direct imaging and spectroscopy of

young massive planets. SPICA’s far-IR spectrometer SAFARI, which will be more

than ten more sensitive times than any previous far-IR spectrometer, will be able

to probe deeper into a wider range of star forming regions. SPICA will thus re-

veal previously hidden protostars and protoplanetary discs and allow astronomers

to determine what types of stars, and which regions of the Galaxy, are the most

favourable for planetary system formation.

SPICA can address the second question (how our Solar System works) by study-

ing asteroids and comets in our Solar System. The chemical make-up of these prim-

itive remains of the Solar nebula can provide information on the chemical mixture

and initial conditions of the early nebula from which the planets formed. SPICA’s

unprecedented high sensitivity spectroscopy will reveal the chemistry of these objects

and will allow astronomers to compare these spectra to those of protoplanetary discs

around nearby stars. By studying the formation of neighbouring stellar systems we

can constrain various models of how our own Solar system formed.

The third question set out in ESA’s Cosmic Vision will also be best answered

by SPICA. Understanding how the Universe originated and what is it made of will

be unveiled through further resolving the far-IR background into discrete sources

beyond the level achieved with Herschel [Oliver et al., 2010], and by revealing the

star-formation activity hidden at optical wavelengths by dust clouds. The combi-

nation of mid-IR and far-IR spectroscopy on SPICA will be essential to “Trace the

formation and evolution of the super-massive black holes at galactic centres – in

relation to galaxy and star formation – and trace the life cycles of chemical elements

through cosmic history” [Ferlet et al., 2010].

The following subsections will outline the strong science case for far-IR observa-

tions and science with a SAFARI-like instrument. The science case will be explained

in terms of specific astronomical processes such as star and planetary system for-
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mation, and birth and evolution of galaxies and AGN (active galactic nuclei).

1.1.1 Star and Planetary System Formation

Star formation is the process by which large clouds of gas (usually molecular clouds)

collapse under gravity and coalesce, increasing in density and temperature. It is

thought that the initial collapse of the previously stable gas clouds is due to two

possible mechanisms. It is possible for two molecular clouds to collide with each

other and this collision would cause instability leading to collapse. Another possi-

ble mechanism involves the pressure wave of a nearby supernova event causing the

instability. One way or another, once the instability is generated and there is suffi-

cient mass according to the Jeans criterion [Jeans, 1928] there is a runaway effect.

As the material is compressed at the centre of collapse the density and temperature

continue to rise. Eventually the density and pressure become sufficiently large that

fusion of hydrogen to helium can take place. The object present just as nuclear

fusion begins, and the time leading up to this, is called a protostar. A diagram

depicting how the star formation process is somewhat cyclic is shown in Figure 1.2.

Figure 1.2: The life cycle of stars and nebulae [Kulesa, 2011].

Observing newly formed protostars and the clouds they are embedded in is cru-

cial for understanding both how are own Solar system was formed, and the general
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processes involved with star and planet formation. Although some disk shaped ob-

jects had been observed with the Very Large Array (VLA) radio telescope and some

optical telescopes, the first confirmed images of protoplanetary disks that showed

structure were recorded with the Hubble Space Telescope (HST) in 1992, described

in a paper released on June 20th 1993 [O’Dell et al., 1992]. Further ground-breaking

work was done in 2003 when it was shown that dust grains within these protoplan-

etary disks were significantly larger than what would be expected in the interstellar

medium, implying that grain growth had occurred [McCabe et al., 1992]. This was

achieved by analysing scattered light from the protoplanetary disk around the star

HK Tau B using the 10 metre W. M. Keck telescope in Mauna Kea, Hawaii.

The far-IR and submm bands of the EM spectrum can reveal these protostars

and protoplanetary disks due to the relatively long wavelength of radiation compared

to the size of typical dust grains. Also the circumstellar dust and gas, that makes

up the disks, emit strongly at these wavelengths. The ALMA facility will be able to

image these protostellar environments in the mm and submm continuum and line

emissions with unmatched angular resolution (sub-arc second) [Zapata et al., 2013].

This is possible due to ALMA’s large array of 12 metre antennas that can be for-

matted with baselines up to 16 km. However, the far-IR, which is out of reach for

ALMA due to atmospheric attenuation of signal as already indicated, can inform on

younger disks that are richer in gas and less-rich in dust. This is due to transitions

in H2, H2O and hydrides that correspond to emissions in the far-IR, and thus in

order to study the youngest protostellar disks a space based far-IR observatory will

be essential.

Although ALMA has the highest angular resolution of any submm facility it

is not designed to map distributions of gas and dust in giant molecular clouds

(GMCs) on large scales. SPICA-SAFARI would be capable of mapping these large

faint regions from both the dust continuum and transition lines in the gas. The

2’×2’ large FOV (field of view) of SAFARI would allow astronomers to trace the

molecular outflows in GMCs on parsec-scales as they impact the so-called “inter-

clump medium” [Ferlet et al., 2010]. Ground based mm and sub-mm observatories

such as JCMT can map low energy emissions from molecules such as CO, CN, and

C2H, and the dust continuum emission over large spatial scales in GMCs at sub-

mm wavelengths [Plume et al., 2007]. However, the brightest gas cooling lines [Si
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II], [OI], and [C II], at 34, 63, and 158µm, respectively, are beyond the minimum

wavelength range of ground based instruments such as JCMT-SCUBA 2.

Our understanding of the chemical conditions and the physical processes in-

volved in the evolution of protostellar disks is relatively limited, in particular the

transition for a stage I protostar, embedded in a substantial envelope, to a stage

II configuration, with only a star and protoplanetary disk. The PACS instrument

aboard the Herschel Space Observatory has recently been used to make a leap in

progress by investigating the physical and chemical structure of the planet-forming

regions of such disks, unveiling the major carbon and oxygen chemical species

(CO, C+, H2O, OH, O) and the mineralogy of the dust grains in these regions

[Van Kempen et al., 2010]. Figure 1.3 shows a spectrum that was obtained of the

protostar DK Chamaeleontis with Herschel/PACS.

Figure 1.3: The spectrum from 55–190µm of the gas line emission spectrum of protostar DK Chamaeleontis. The

inserts show expanded views of parts of the spectrum [Van Kempen et al., 2010].

Although this type of spectral analysis is a significant step in our understanding

of protoplanetray disks, the PACS instrument on Herschel has only been able to

survey about twenty of the brightest, relatively close disks around intermediate

mass stars, and due to the limited sensitivity of Herschel performing surveys of

large numbers of protoplanetary disks was not possible. Furthermore disks around

Sun-like stars proved to be insufficiently bright for PACS to measure. With the huge

increase in sensitivity that would be provided by SPICA/SAFARI large surveys of

hundreds of protoplanetary disks around T-Tauri stars could be performed. The

chemistries of T-Tauri stars have been shown to be much richer than the Herbig
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Ae/Be disks, with higher abundances of Polycyclic Aromatic Hydrocarbon (PAH)

for example [Geers et al., 2006]. Thus far-IR spectral surveys of protoplanetary

disks around Sun-like stars would undoubtedly reveal many surprises in terms of

the chemistry of these planet forming regions.

The importance and spectral richness of the mid to far-IR region is illustrated in

Figure 1.4 where the detailed spectrum from the Infrared Space Observatory (ISO)

is shown [Rosenthal et al., 2007]. A simulated spectrum of a typical Milky Way-like

galaxy undergoing modest SFR is then shown in Figure 1.5 where the region of the

spectrum that would be covered by SPICA/SAFARI is shown together with the

spectral coverage of similar facilities.

Figure 1.4: Measured spectrum from the Infrared Space Observatory (ISO) [Rosenthal et al., 2007].

As can be seen in Figure 1.5 the majority of emitted radiation falls within either

in the optical or in the mid to far-IR. The multitude of atomic, ionic, molecular, and

fine-structure lines corresponding to carbon and oxygen, and ionic lines of neon and

sulphur together with with rotational transitions of molecules such as molecular

hydrogen, water, carbon monoxide, and hydroxyl demonstrate the importance of

the mid and far-IR ranges for astronomy. These powerful diagnostic features can

be used to study both star and planetary formation very locally, and star formation

and the influence of AGN in the very distant Universe [Ferlet et al., 2010]. SAFARI

will be capable of measuring radiation from the proto-planetary disks of new stars
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Figure 1.5: Left: A synthetic spectrum of a typical spiral galaxy undergoing modest rates of star formation showing

the parts of the spectrum that will be covered by SPICA and other similar facilities [Ferlet et al., 2010]. The symbol

L� in the y-axis units represents one solar luminosity. Right: Measured spectra from the Infrared Space Observatory

(ISO) [Rosenthal et al., 2007].

at almost all galactic distances [Goicoechea et al., 2009]. Due to its unique spectral

range SAFARI will perform spectral observations that include fine structure lines

of atomic Oxygen (63µm and 145µm), water vapour rotational lines (50µm and

above), and features of water ice (44µm and 62µm). The water ice spectral data

that will be acquired by SAFARI is essential to constrain current models of planet

formation[Mayer et al., 2005].

1.1.2 Birth and Evolution of Galaxies and AGN

The huge variety of galaxy morphologies has puzzled astronomers ever since the dis-

covery that the Milky Way is but one of the hundreds of billions of galaxies populat-

ing the universe. In 1926 astronomer Edwin Hubble created a classification scheme

for this morphology that separated galaxies into three basic classes [Hubble, 1926].

The diagram that demonstrates this has come to be known as Hubble’s tuning fork

diagram and can be seen in Figure 1.6.

The cosmological study of galaxies has undergone important changes over recent

years as observational evidence is increasingly showing that galaxy formation and
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Figure 1.6: Hubble’s ”tuning fork” diagram illustrating the three broad classes of galaxies.

evolution is more complex than first assumed. In 1962 Eggen et al. put forward

a theory that spiral galaxies form in a “top-down” process through a monolithic

collapse of a huge gas cloud [Eggen et al., 1962] in a manner similar to the collapse

of a GMC in the formation of a protostar. However, more recent theories of how

the first galaxies formed is based on a cold dark matter (CDM) dominated universe

in which ordinary matter collected around areas of dark matter and through the

process of accretion began to clump together and flatten out into a spiral shape

in a “bottom-up” formation scenario. Computer simulations of galaxy formation

further support the CDM, bottom-up based theories. They seem to indicate that

disk galaxies such as spiral and barred spiral galaxies form as a result of accretion

of intergalactic material whereas spherical and elliptical galaxies are a result of

mergers between two or more separate galaxies [Steinmetz and Navarro, 2003]. The

SFR (star formation rates) within galaxies across a range of cosmological distances

z (where z = (λobserved − λrest)/λrest) can inform on how galaxies evolve. Thus,

studying SFR across all values of z is clearly crucial for understanding the evolution

of the Universe as a whole.

Far-IR emission is now an established tool that can be used to determine SFR

within galaxies. The idea of using far-IR wavelengths to study the evolution of

galaxies and to try to constrain current formation theories can be traced back to

the IRAS mission that was launched on January 25th 1983. A paper released in

May 1987 described how source counts with IRAS at 60µm were used to show

modest levels of evolution within starburst galaxies [Hacking et al., 1987]. Then in

1990 Carol J. Lonsdale confirmed the steep slope of the faint 60µm source counts

discovered by Hacking et al. with the IRAS data, thereby re-enforcing the idea of
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cosmological evolution at a rate higher than that predicted by conventional passively

evolving models [Lonsdale, 1990]. The Spitzer Space Telescope then provided a big

leap by allowing mid-IR surveys and spectroscopy of faint distant galaxies at high-z

and revealing the star formation history of the universe to z ≈ 3 [Soifer et al., 2008].

However, the Herschel Space Observatory was again at the forefront in terms of the

cutting-edge of the science being performed in the area of galaxy formation and

evolution, and the breakthroughs provided by Herschel are discussed in the following

paragraphs.

The infrared, and particularly the far-IR, is one of the most powerful tracers of

star formation as IR luminosity directly scales with SFR [Seymour et al., 2010]. The

total IR output (luminosity) of a galaxy can provide an straightforward observational

measure that can be used to estimate the total SFR provided care is taken when con-

sidering obscuration by dust, and AGN and recently quenched galaxies are excluded

from the data [Hayward et al., 2014]. The Herschel Space Observatory made it pos-

sible to directly measure the total IR luminosity of distant galaxies using rest-frame

far-IR measurements of individual galaxies at wavelengths at which the IR spectral

energy distribution (SED) peaks [Elbaz et al., 2011]. Previous studies had relied

on extrapolations from mid-IR or sub-mm photometry ([Melbourne et al., 2005] for

example), or indirect analysis such as stacking of far-IR data from individually un-

detected sources ([Zheng et al., 2006] for example). The direct far-IR measurements

by Elbaz et al. helped to clear up misconceptions of drastic evolution of IR SED due

to previous incorrect extrapolations of the total IR luminosity from mid-IR (24µm)

observations at z ≥ 1.5, and the associated claim for a mid-IR excess. They demon-

strated that the past incorrect extrapolations were a result of confusion between

two separate star forming regimes which exhibit quite different IR SEDs; that of

galaxies with extended star formation and that of galaxies with compact starbursts

[Elbaz et al., 2011]. Again, this was only possible through direct measurement of

radiation within the far-IR band.

As already indicated in the previous section 1.1.1, the sensitivity of the Herschel

Space Observatory was ultimately limited due its relatively warm 80K primary mir-

ror. Thus Herschel was limited in the number of galaxies it could characterise using

the ground-breaking far-IR measurement techniques described above. Furthermore

due to the limited frequency ranges of the instruments on Herschel galaxies at very
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large z were simply out of reach. The spectral coverage SPICA/SAFARI over the

full THz regime will allow the above described techniques to be applied to galaxies

at medium and high redshifts, thus allowing the characterisation of even the most

distant galaxies. The background limited sensitivity of SPICA, and thus the much

shorter integration times, coupled with the wide FOV of SAFARI (2’×2’) will make

it possible to perform the first all-sky spectroscopic surveys of galaxies. These maps

will be wide and deep enough to unveil the underlying physical processes that drive

galaxy evolution for all sources out to z ≤ 4, and at even higher z for the most

luminous objects [Ferlet et al., 2010].

Another way the SAFARI instrument can extend on the work of Herschel in

determining the evolutionary mechanisms in galaxies and AGN for example is based

on measurements of massive molecular outflows and negative feedback in ultra-

luminous infrared galaxies (ULIRGs) performed with the Herschel/PACS instru-

ment [Sturm et al., 2011]. The authors describe how mass outflows driven by stars

and AGN may produce the observed black hole-galaxy mass relation, and regulate

and quench both star formation and black hole accretion in the host galaxies or

AGN. Sturm et al. also describe how such observational evidence of these feedback

processes are still scarce. Again, SAFARI could be used measure these mass outflow

and feedback processes out to much higher redshifts, thus providing more extensive

data spanning all cosmological epochs.

1.2 SPICA Space Observatory

1.2.1 SPICA Satellite

The SPICA space observatory is a proposed mission that had been scheduled for

launch sometime in 2022, and is a joint project between JAXA and ISAS (Institute

of Space and Astronautical Science) of Japan, and ESA. It will have a primary mirror

of 3.5 metre diameter cooled to less than 6K which will allow background limited ob-

servation over a wavelength range of 34-210µm (mid to far-IR). The large aperture,

monolithic mirror will provide diffraction limited performance at 34µm, and will en-

able high spatial resolution with a reasonably well controlled point spread function.

SPICA, as proposed, will carry a mid infrared camera, mid-IR spectrometers and
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a mid-IR coronagraph (built by JAXA institutes), a far-IR imaging spectrometer

(SAFARI, provided by ESA), and a far-IR/sub-millimetre spectrometer (proposed

by the U.S.A.). SPICA is planned to have a lifetime of 5 years with a 3 year min-

imum, and will orbit the second Lagrange point (L2) of the Earth-Sun system. It

is proposed that SPICA will be launched on the H-IIA 204 in 2022 from the JAXA

Tanegashima Space Centre in Tanegashima, Japan.

European involvement in SPICA was first proposed in 2007 in response to a

call for missions that fit the ESA Cosmic Vision 2015-2025 programme. SPICA

was selected for assessment as a candidate M-class mission, and was termed a ”Mis-

sion of Opportunity”. The assessment phase ran for two years from 2007 to 2009

[Ferlet et al., 2010], and it included an internal ESA study of the mission concept,

and 1-year industrial study programme of the SPICA cryogenic telescope assembly

by both Thales Alenia Space in France and at Astrium, also in France. A study

of one of the proposed main instruments for SPICA, a far-IR imaging spectrometer

(SAFARI), was also carried out over the same period by a European consortium.

This SAFARI study included contributions from the author of this thesis as de-

scribed in chapter 5.

An updated proposal for European involvement in the SPICA project, based

on the outcome of the ESA assessment study, was put forward in late 2009/early

2010. This proposal called for ESA to assume a partner agency role in SPICA, with

JAXA to lead the mission ([Swinyard et al., 2009] or [Nakagawa, 2010] for example),

and ESA would provide the SAFARI instrument to be developed under a European

Consortium led by the SRON. Then in 2013 ISAS/JAXA and ESA agreed that the

scheme for SPICA was not compatible with a timely and robust implementation

of the mission. Both JAXA and ESA decided that an increased ESA contribution

to the mission would lead to a lower risk and more robust mission implementa-

tion [IRAP, 2014]. However, any significant extension of ESA’s contribution to the

SPICA mission would bring the mission into the M-Class (medium mission) range,

meaning that the mission would need to be proposed to an ESA call for M-Class

missions where it would need to be peer-reviewed against other proposals for the

same opportunity. It was therefore decided to stop all ESA support activities on

SPICA in early Autumn 2013. In spite of this, research continues on the detector

technology required for a SAFARI-like instrument but under a more general far-IR
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detector research effort. Strong collaboration exists between SRON in the Nether-

lands and the NUIM in terms of pushing the development of SAFARI-like receivers

and detectors as described in chapter 5 of this thesis, and as can be seen by recent

publications such as [Audley et al., 2013] or [Bracken et al., 2014] for example.

Figure 1.7: An artist’s impression of SPICA (left) and a graph showing the superior sensitivity of SPICA due to

its < 6K primary mirror operating temperature (right).The blue lines on the graph represent the diffuse infrared

radiation emitted by some astronomical sources while the red lines show infrared radiation emitted by the telescopes

themselves due to their temperature (image credit: ESA)

As already indicated the SPICA mission as proposed will build on previous

work carried out using the Herschel Space Observatory (mission now finished), and

will complement future work of the Atacama Large Millimetre Array (ALMA) and

the James Webb Space Telescope (JWST) which is due to be launched in 2018. It

will “fill in the gaps” between the lower frequency limit of JWST’s near-IR bands

and the upper frequency limit of ALMA’s sub-millimetre bands. It will achieve

this by extending the frequency range of Herschel to cover the full far-IR band

while providing a huge improvement in sensitivity that will be at least an order of

magnitude greater than Herschel.

SPICA is an ambitious project as it promises to help us understand the origin

and evolution of galaxies, stars, planets, our Earth and perhaps even of life itself.

To answer these questions good spatial resolution together with high sensitivity is

required, but achieving both of these requirements has been a major problem in the

past when observing at the mid and far-IR wavelengths. For good spatial resolution

a large primary mirror is necessary, but a larger mirror means a larger observa-

tory which would be much more difficult to cool to very low temperatures to reach
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(a) (b)

Figure 1.8: (a): H-IIA 204 launcher vehicle that will take SPICA into Earth orbit, from where SPICA will eventually

transit to L2. (b): The Tanegashima Space Center (TNSC) located on Tanegashima, an island located 115km south

of Kyushu, from where the H-IIA 204 rocket will launch, carrying SPICA into orbit (image credit: ESA)

.

the high sensitivities also required. The ESA Infrared Space Observatory (ISO),

launched in November 1995, had excellent sensitivity for a facility of its time due to

the relatively small 0.6m primary mirror being cooled to 1.7K by means of super-

fluid helium. For example the Long Wave Spectrometer (LWS) aboard ISO had a

sensitivity of ≈ 10−16W
√

Hz [Leeks et al., 2003]. The ESA Herschel Space Observa-

tory (retired as of August 2013) had a primary mirror with a diameter of 3.5m and

therefore had very good spatial resolution, but the sensitivity across the 55-210µm

range was limited as the primary mirror could only be cooled to 80 Kelvin (passive

cooling to ambient temperature of space). The significant improvement of SPICA

compared to previous infrared observatories like Herschel comes from the combina-

tion of a large diameter mirror combined with active cooling using new technology

mechanical cryocoolers [Sugitaa et al., 2008] to a very low operating temperature.

Thus, the primary mirror of 3.5m combined with cooling to temperatures below 6K

promises to allow 10 to 100 times the sensitivity of Herschel in the far-IR band. This

huge increase in sensitivity will allow integration times orders of magnitude shorter

than could be achieved with Herschel thus enabling quick mapping capabilities right

across the far-IR band.

24



1.2.2 The SAFARI Instrument

SAFARI is being developed by an international consortium led by SRON in Gronin-

gen, the Netherlands, including Cambridge University (UK), Cardiff University

(Wales), and NUIM (Ireland) [Mauskopf et al., 2010] or [TRP AO/1-5922/08/NL/EM, 2011].

The SAFARI detectors are split into three distinct bands corresponding to the high-

est frequencies that SAFARI will measure, the intermediate frequencies, and the

the lowest frequencies, and the three bands have been given the names S-Band,

M-Band, and L-Band, respectively. Table 1.1 presents a breakdown of the spectral

coverage of each of the three SAFARI focal plane arrays, together with the number

of pixels required to fully sample SAFARI’s 2’×2’ FOV. SAFARI will have various

spectral resolution modes with R ranging from 10 to 10,000, for example R ≈ 2, 000

at 100µm [Goicoechea and Nakagawa, 2011], where R is defined as λ/∆λ. NUIM is

involved in both the L-Band which is being investigated by Cardiff University and

Cavendish Laboratory, Cambridge, [Mauskopf, 2011] and the S-Band which is under

development at SRON Groningen [Audley et al., 2013].

Band Range Fλ/2 Pixel Size Number of Pixels

[µm] [µm]

S 34 - 60 480 64×64

M 60 - 110 840 38×38

L 110 - 210 1600 20×20

Table 1.1: Specifications of the three SAFARI spectral bands. Adapted from [Mauskopf et al., 2010]

The baseline optical configuration of SAFARI is a Mach-Zehnder imaging FTS

(Fourier transform spectrometer) [Zetie et al., 2000], [Naylor et al., 2006], which will

provide high mapping speeds due to spatial multiplexing. It will have the ability

to incorporate a photometric imaging mode and will have operational flexibility to

tailor the spectral resolution to the desired science. The parts of SAFARI that were

examined and modelled by the author, as described throughout this thesis, are the

L-Band and S-Band detection boxes that are visible in the top-right of Figure 1.9,

where each detection box consists of an array of superconducting TES bolometers

mounted above an array of integrating backshorts, and fed by an array of feed horns.

This part of the optical beam path is referred to as the “Waveguide Path”, and it
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was discussed above in the introduction section at the beginning of this thesis. The

remainder of the optics that are visible in Figure 1.9 are referred to as the “Free-

Space Path”, also described above. Expanded views of the “Waveguide Path” are

shown in Figure 1.10 where each sub-figure shows further zooming toward the TES

bolometer.

Figure 1.9: A schematic diagram of the SAFARI instrument. The detection boxes in the upper right area are the

primary concern of this report (image credit: SRON).

(a)

(b) (c) (d)

Figure 1.10: Expanded view of the “Waveguide Path” section of the SAFARI optical system. Further zooming going

from (a) to (d) (image credit: SRON).
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The SAFARI instrument on SPICA will exploit the power of MIR/FIR imaging

spectroscopy and photometry. It will analyse radiation from processes involving

galaxy evolution that are usually hidden from view due to dust. A selection of the

important atomic, ionic, and fine-structure lines that will be accessible by SAFARI

(and other SPICA instruments) are shown in Figure 1.11(b). SAFARI will be able

to cover the full 34-210µm band in a few thousandths of the time that the photo

detector array camera and spectrometer (PACS) on Herschel took to obtain a deep

spectrum of comparable resolution. This is due to its broad instantaneous spectral

coverage and high sensitivity. It also has a particularly wide FOV of 2′ × 2′ making

it possible to carry out spectroscopic surveys that are both wide and deep enough

to analyse the underlying processes that drive galaxy evolution [Ferlet et al., 2010].

(a) (b)

Figure 1.11: (a): Spectroscopic mapping speeds of the SAFARI Instrument compared to Herschel PACS. The

mappings are shown superimposed on an output from the Millennium simulation at z ≈ 1.4 [Springel et al., 2006],

[Ferlet et al., 2010]. The small blue box in the centre of the image represents the footprint of the instantaneous

spectroscopic FOV of Herschel-PACS, the yellow box surrounding the blue box represents the footprint of the

instantaneous spectroscopic FOV of SAFARI (2′ × 2′), and the large green box shows the area that could be

mapped by SAFARI in a 900 hour full wavelength spectral survey (≈ (1o)2). (b): A selection of the atomic,

ionic, and fine-structure lines detectable with the propsed instruments on SPICA (including SAFARI), plotted as a

function of critical density and ionisation potential [Ferlet et al., 2010].

Figure 1.11(a) illustrates the mapping capabilities of SPICA-SAFARI. The

large green box that marks out roughly ≈ (1o)2 represents the area that could be

mapped by SAFARI in a 900 hour full wavelength spectral survey simultaneously

covering the full 34-210µm band. The large scale cosmological structure shown in
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the image was taken from the Millennium project output [Springel et al., 2006]. The

Millennium project, or “Millennium Run”, was an N-body simulation performed at

the Max Planck Society’s Supercomputing Centre in Garching, Germany, with the

facility’s principal supercomputer over a one month period. It used more than 10

billion particles to trace the evolution of the matter distribution in a 2 billion light-

years cubed volume of the Universe. By applying sophisticated modelling techniques

to the 25 Tbytes of stored output, the team of scientists (VIRGO Consortium) were

able to model the evolutionary histories of the roughly 20 million galaxies which

populate the huge cube of the simulated universe. The simulations also involved the

evolution of supermassive black holes which lie at the heart of most galaxies and

quasars [Springel et al., 2006], [Springel et al., 2005].

As described in sections 1.1.1 and 1.1.2 above, SAFARI will be able to detect the

key mid-IR and far-IR lines from distant galaxies by using mid-IR/far-IR diagnostics

that have been revealed and calibrated by Spitzer and Herschel. At a redshift

of z = 1 the rest-frame bandwidth of 11-35µm, which is very rich in ionic fine

structure as well as H2 rotational lines, moves to 22-70µm which is partially in the

spectral range of SAFARI. For more distant galaxies corresponding to z = 2 this

same bandwidth moves to 33-105µm which can be completely covered by SAFARI.

In fact galaxies out to a redshift of z = 6 will still be in the SAFARI spectral

range. SAFARI will detect the brightest mid-IR and far-IR lines out to z = 2 in

intermediate luminosity objects in a 1 hour integration which is a great improvement

on Herschel-PACS, which only has the sensitivity to detect the very brightest mid-

IR and far-IR lines in several hours of integration per line on the most luminous

objects at z ≈ 1 [Ferlet et al., 2010].

SAFARI will have enough photometric sensitivity to undertake very deep large-

area surveys. At 70µm, for example, it will detect all galaxies with LIR (infrared

luminosity) of LIR ≥ 1011L� at a redshift of z = 2 (where L� is the luminosity

of the sun), all those with LIR ≥ 5 × 1011L� at a redshift of z = 3 and the most

luminous IR galaxies (≥ 1012L�) out to z = 4.
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1.3 Far-Infrared Imaging Fourier Transform Spec-

troscopy

Clearly photometric techniques can reveal the spatial and morphological details of

planets, stars, and galaxies. However, spectral imaging techniques must be employed

if the chemical composition and physical conditions of the same astronomical sources

are to be determined. There are a number of measurement approaches that can be

used for obtaining astronomical spectral information such as the familiar diffraction

gratings commonly found in optical telescope systems. However, such diffractive

techniques are usually quite limited in terms of the spectral coverage that can be

achieved with them.

Fourier transform spectroscopy involves splitting the incoming signal beam into

two, and by varying the optical path length of one of the beams before the two are

recombined, an interferogram can be constructed that contains the spectral infor-

mation of the signal beam. By subsequently applying sophisticated data analysis

techniques the Fourier transform of the spatial intensity data can be extracted,

thus revealing the signal intensity as a function of spatial frequency (wavenumber).

With the high throughput, broad spectral coverage, and variable resolution possible,

Fourier transform spectroscopy has been the most commonly employed spectroscopic

method when dealing with the far-IR band [Naylor et al., 2013].

There are in fact multiple techniques that have been demonstrated for perform-

ing Fourier transform spectroscopy. One such approach is described in chapter 3

of this thesis, where a Michelson interferometer was used to characterise a multi-

moded SAFARI-like feed horn. The choice of a Michelson interferometer in that

case was based on the relatively short path length that can be employed with such

a technique, since the entire optical system had to be mounted in a vacuum system

due to the far-IR wavelengths that were under study. The drawback of the Michel-

son interferometer is that 50% of the signal beam will inevitably be reflected back

toward the source and thus be lost (see Figure 1.18 in section 1.5 for illustration). A

significant improvement on the Michelson design, in terms of efficiency, is the Mach-

Zehnder (MZ) interferometer [Zetie et al., 2000], [Naylor et al., 2006], as illustrated

in Figure 1.12. Due to its two separate output ports the full signal beam is avail-

able for analysis at the output. Figure 1.13 shows three Fourier transform spectra
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across a frequency range of 1.25 to 1.56 THz measured with the SPIRE Mach-Zender

interferometer on Herschel [Wesson et al., 2010]. Due to the high throughput and

unprecedented sensitivity required of the SAFARI instrument, the MZ design is the

best suited interferometer.

Figure 1.12: Schematic of a Mach-Zender FTS. BS1: beamsplitter1, BS2: beamsplitter 2, MM: moveable plane

mirror, CML: left collimating mirror, CMR: right collimating mirror, FML: left focussing mirror, FMR: right

focussing mirror. It is also possible to have a second input that would be positioned symmetrically to the left of

BS1 with respect to Input 1. Input 2 would then trace out two similar beam paths to those shown for Input 1.

Figure 1.13: Continuum-subtracted Fourier transform spectra of three sources measured with the SPIRE instrument

on the Herschel Space Observatory. The black line is from NGC 7027, the red line is from AFGL 618, and the blue

line is from AFGL 2688 [Wesson et al., 2010].

Previous sub-mm and far-IR instruments that have employed the MZ intefer-

ometer format include the spectrometer of the SPIRE instrument on-board Herschel

30



[Swinyard et al., 2003] and the spectrometer that is used with the SCUBA-2 instru-

ment on JCMT [Naylor et al., 2006]. The Astronomical Instrumentation Group at

the University of Lethbridge, Canada has a long heritage in producing FTS’s for

astronomical applications at far-IR wavelengths [Naylor et al., 2013] and had large

involvement in the two instruments just mentioned.

1.4 VNA Measurement Techniques

The modelling approaches presented throughout this thesis often required verifica-

tion, and where multiple simulation techniques are applied to the same problem the

results can act to verify mutually one approach against another, assuming there is

reasonable agreement between the results. Experimental verification is of course also

important, and thus a number of experimental measurements were carried out as

part of the work of this thesis as further verification of the modelling approaches de-

scribed throughout the thesis. Section 1.5 describes the direct detection techniques

that were involved in the characterisation of multi-moded SAFARI-like feed horns.

In this section a description is given of the VNA and frequency extension heads that

were employed for both measurement of the far-field beam pattern of a rectangular

feed horn, which was used as a verification of the modelling approaches presented in

chapter 3, and for cavity mounted absorber measurements, as a verification of the

modelling work presented in chapter 5.

The VNA measurement approach made use of the in-house network analyser

system in the department of experimental physics at NUIM. A VNA is an instru-

ment that can perform coherent measurements of the network parameters of elec-

trical networks, and can be used to analyse a device under test (DUT) by mea-

suring its affect on the amplitude and phase of the coherent signal, across a swept-

frequency range. In the application for the work of this thesis it was the s–parameters

[Patel et al., 2009] that were analysed since these parameters can provide informa-

tion about the reflection and transmission of a DUT at high frequencies. Network

analysers can be used to characterize networks with an arbitrary number of ports.

The work presented in chapter 3 employed a two-port network, whereas the work

presented in chapter 5 made use of just a one-port network.

The particular VNA used was a Rohde and Schwarz ZVA-24 system which
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can generate a swept frequency range from 10-24 GHz. The VNA is operated in

combination with two ZVA-Z110 W-band frequency extension heads that increase

the frequency range to 75-110 GHz by using a series of frequency multipliers. This

higher frequency range then allows coherent millimetre wave measurements of feed

horns, cavities, and absorbers to be carried out.

In order to obtain the most accurate measurement results possible, a careful

calibration must be carried out using a calibration kit that was provided by the

manufacturer. The kit consists of three parts, the first of which, the short (see

Figure 1.14(a)), allows for almost perfect reflection of the signal, and hence for the

S11 and S22 reflection parameters to be correctly calibrated to unity (or 0 dB).

The shim (Figure 1.14(b)), used in combination with the short, then contains a

short transmission line causing a λ/4 phase shift around the center frequency of

the converters operating range and a 180 deg phase shift of the reflection coefficient.

Finally the match component (Figure 1.14(c)) allows for almost perfect absorption of

the signal. The standard calibration used for a one-port network is the “off-set short,

short, match” (OSM), which requires each of the above described components to be

attached separately to the converter head being used. The analyzer’s “Calibration

Wizard” then provides a straightforward procedure for calibration of the head. For

a two-port network the same procedure is applied to both heads, one at a time, and

then a “through” calibration step is performed, where the two converter heads are

directly connected by a waveguide section.

(a) Short (b) Shim (c) Match

Figure 1.14: The VNA calibration kit showing the three components.

The far-field beam pattern measurements used for verification of the modelling

approaches described in chapter 3 also required the use of an x − y plane raster

scanner. The DUT was mounted on head 1, and placed on a translation stage that

32



could move in the direction of propagation z, while kept stationary in x − y. A

WR-10 waveguide probe was then mounted on head 2, which itself was mounted on

the raster scan assembly. The VNA scan system is shown in Figures 1.15 and 1.16.

Figure 1.15: Photograph of the VNA scan system for measuring far-field beam patterns.

(a) Horn Antenna (b) Waveguide Probe

Figure 1.16: VNA scan system showing converter heads and raster scanner.

1.5 Direct Detection Techniques

During an extended visit by the author to the SRON, Groningen, from June to

September 2013, an analysis of the frequency dependent throughput of SAFARI-like
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horns was carried out. The particular horn assembly that was analysed consisted

of a back-to-back horn structure with a rectangular waveguide connecting the two

horns. This particular format provided good beam control while also ensuring well

defined cut-off frequencies for the propagating waveguide modes. The measurements

and results are discussed in section 3.3 of this thesis. In this section a description

of the FTS system that was used for the measurements is presented.

Fourier transform spectroscopy is the best method to analyse the frequency re-

sponse of a device under test (DUT) at THz frequencies, when a broadband source

is being used. An FTS based on a Michelson interferometer was set up in combi-

nation with a data acquisition device (DAQ) and a PC, and a bolometer cooled to

4K using a cryostat with liquid helium in the inner stage and liquid nitrogen in the

outer stage. The FTS and cryostat are shown in Figure 1.17. A program called the

Integrated Receiver Test & Control System (IRTECON) [Shitov et al., 1998] was

used for the control of the stepper motor in the FTS, and for compilation and initial

analysis of the data corresponding to the detected power by the bolometer. The

Michelson interferometer employed replaceable Mylar beam-splitters. Two different

beam splitters were used separately; one with a thickness of 56µm, and one with a

thickness of 12µm.

(a) FTS (b) Detector Cryostat

Figure 1.17: The FTS and cryostat that were used for the horn throughput experiments.

Figure 1.18 shows a schematic of an FTS and how it functions by moving one

of the mirrors through a series of steps in order to vary the path length travelled by

one part of the split beam, thus varying the phase of the signal beam at the end of

that path. If the two parts of the beam are then combined at the detector they will
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interfere in a manner that depends on the path length difference between the beam

paths, and the frequency distribution within the original beam. If the path length

difference is incrementally changed in uniform steps of ∆x a number N times across

a total scan path of X = N∆x, and the intensity of the recombined beam f(n) is

measured at each point, an interferogram like the one shown in Figure 1.19(a) can

be created.

Figure 1.18: Schematic of a FTS and how it functions. The position of the moveable mirror is incrementally varied

by a stepper motor which is controlled by the IRTECON software. The different colours of the separate beams is

just for clarity, and should not be mistaken as different wavelengths. As is indicated, half of both beam 1 and beam

2 are lost from the system as they encounter the beam splitter for the second time.

(a) Spatial Data (b) Spectral Data

Figure 1.19: (a): Interferogram for a back-to-back horn illuminated by a glow bar in a Michelson FTS. (b): Spectral

data for a back-to-back horn derived by applying a discrete Fourier transform (DFT) to the interferogram data.

The spatial data that is shown plotted in the interferogram (Figure 1.19(a)) can
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then be used to obtain the frequency spectrum F (k) (Figure 1.19(b)) by applying a

discrete Fourier transform operation to the data as follows:

F (k) =
N−1∑
n=0

f(n) exp (−2πink/N) (1.1)

where n is the nth position of the moveable mirror when it is at n∆x from zero, and

f(n) is the intensity at position n.

The highest frequency that can be computed from the spatial data depends on

the size of steps ∆x. The smaller the steps the higher the frequencies that can be

extracted, and the maximum frequency is determined by fmax = fNQ = 1
2∆x

.

fNQ is known as the Nyquist frequency.

The bolometer that was housed in the cryostat could be coupled to one of three

low pass filters. The 312cm−1 and 100cm−1 filters were used for the measurements.

For further details of the measurements and results see section 3.3.

1.6 Transition Edge Sensors

A TES, or transition edge sensor, is essentially an extremely sensitive thermometer

which is made from a material that can exhibit superconducting behaviour. Its

principle of operation exploits the strong temperature dependent resistance of a

superconducting material when it is at its phase transition from a superconductor

to a normal metal. The material is held at its transition temperature Tc by a bias,

where a very small increase in temperature causes a large increase in resistance. As

can be seen by the steep curve in Figure 1.20, an increase in temperature of less

than 10mK gives rise to an increase in resistance of 20mΩ.

The fundamental phonon noise in a TES is directly related to temperature, as

described by the equation governing NEP (5.27) (see section 5.4.3). Since sensitivity

is inversely related to phonon noise and thus, temperature, TES’s for the far-IR

are typically operated at sub-Kelvin temperatures [Khosropanah et al., 2011]. The

TES is usually coupled to a thin piece of metal such as Ta which is deposited on

a substrate that is transparent to the radiation being detected. The thin sheet of

absorbing material is ideally impedance matched to free-space in order to absorb

as much radiation as possible. The TES/absorber pair is then usually thermally
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Figure 1.20: Temperature dependent resistance profile for a Mo/Au bilayer TES [Figueroa-Feliciano, 2001].

isolated from the bath by mounting it on thin silicon nitride (SiN) legs, as shown in

Figure 1.21.

Figure 1.21: A micrograph of a TES coupled to a Ta absorber, and thermally isolated from its surroundings by SiN

legs [Khosropanah et al., 2011].

Over many years TES’s have been shown to be powerful detectors of single pho-

tons at wavebands ranging from infrared to gamma rays [Irwin and Hilton, 2005].

More recently they have been demonstrated to operate well in close-packed ar-

ray format [Iyomoto et al., 2008] which will be required for the SAFARI instru-
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ment. Research into the characterisation of TES’s specifically for far-IR wave-

lengths is ongoing with projects such as the SAFARI test-bed at SRON, for example

[Audley et al., 2013].

1.7 Conclusions

In this chapter a strong science case for far-IR astronomy was made, where it was

explained that three out of the four questions set out by ESA’s Cosmic Vision could

be answered by performing ultra-sensitive observations in the mid-IR and far-IR. It

was shown that a next generation space based mid-to-far infrared observatory will

be key in fulfilling this ambitious Cosmic Vision. The proposed JAXA/ESA space

observatory SPICA was described, with particular attention given to SPICA’s main

instrument SAFARI, a far-IR imaging FTS. It was explained that SPICA’s cooled

main mirror would be key in achieving background limited sensitivity for SPICA’s

suite of instruments, including SAFARI, and how SAFARI’s large format focal plane

arrays would provide the high mapping speeds necessary for carrying out the first

all sky spectroscopic surveys in the far-IR.

The principles of far-IR Fourier transform spectroscopy were outlined, including

a description of the Mach-Zender interferometer format that SAFARI will be based

upon. A description of the Michelson interferometer that was used for measurements

presented in this thesis was given, as well as a brief overview of the VNA system

that was employed for further measurements as a verification of simulation methods

presented throughout this thesis.
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Chapter 2

Computational Methods for

Electromagnetic and Quasioptical

Design and Analysis

“Somewhere, something incredible is waiting to be known.”

- Carl Sagan
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2.1 Overview of Computational Methods

In this chapter the various computational modelling approaches and techniques used

in the analysis of SAFARI-like receivers and detectors will be explained. Due to

the electrically large multi-moded structures that make up such systems, compu-

tationally efficient methods such as EM mode matching [Wexler, 1967] and GBM

(Gaussian beam mode) analysis [Wylde and Martin, 1993] are required. However

due to the relatively restrictive nature of such efficient modelling techniques more

flexible and exact simulation methods are also required, such as FEM employed by

the COMSOL Multiphysics software [COMSOL, 2011]. The drawback of the FEM

approach is that it is relatively inefficient compared to mode matching, for example.

Section 2.2 describes the GBM method which is very efficient at modelling

propagation through free-space and beam transformation by optical elements such

as lenses, mirrors, etc., and it was used in the analysis of the lens system that

was employed for the throughput experiments carried out at SRON, as described in

chapter 3. It provided a method to model the beam width of the THz radiation as

it propagated from the source to the feed horn, where the model was then compared

to the measured spot size. However GBM analysis is not suited to modelling fields

inside conducting structures such as waveguides, horns and cavities. Thus, other

techniques are required in order to characterise fully the SAFARI detectors.

Section 2.3 of this chapter summarises the theory for modelling the behaviour

of EM fields inside conducting structures such as waveguides and cavities. The

separated TE (transverse electric) and TM (transverse magnetic) field components

are tabulated for reference in later chapters. Derivations of the modal fields can be

found in [Olver et al., 1994] or [Clarricoats et al., 1984], for example.

The TE and TM waveguide mode field descriptions were required in many cir-

cumstances during the work presented in this thesis. For example the COMSOL

software package that was used for modelling horns, cavities and absorbers (chap-

ters 3, 4 and 5) required the mathematical descriptions of modes as inputs for port

boundary conditions as a means of exciting EM fields through the structures. Al-

though COMSOL does have some predefined mode options, if symmetry conditions

in the E or H-planes are exploited in order to reduce the problem size, then the user

must provide analytical field descriptions at the input ports.
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The waveguide mode descriptions were also used in combination with a spher-

ical phase cap [Clarricoats et al., 1984] as a means of describing approximate solu-

tions for aperture fields of smooth walled conical and rectangular horns for com-

parison with exact solutions. Examples of these approximate methods are given in

chapters 3 and 4.

Throughout this thesis the waveguide mode solutions introduced above are used

in EM mode matching simulation methods, so a brief description of the approach is

given in section 2.4 of this chapter. The theory is described in much greater detail

in chapter 4 for the specific case of conical mode matching. In general EM mode

matching is a technique used to model EM fields inside conducting structures. It is

similar to GBM analysis in the sense that the electric and magnetic fields are again

defined as being a superposition of a set of modes, but the primary difference is the

boundary conditions due to the walls of the conducting structure.

The final section 2.5 of this chapter describes the COMSOL Multiphysics pack-

age and the FEM technique upon which it is based. COMSOL Multiphysics is used

throughout the work of this thesis to model a wide variety of problems relating to

SAFARI-like THz receiver systems. The COMSOL software provides an interactive

environment based on the proven FEM technique that can be used for modelling

and solving many kinds of scientific and engineering problems. The finite element

analysis is computed in combination with adaptive meshing and error control and

provides multiple direct and indirect numerical solvers. The software also offers a

wide range of post-processing tools for plotting data, making animations and carry-

ing out other post-processing operations.

2.2 Gaussian Beam Mode Analysis

2.2.1 Background

Recent years have seen a fast growing interest in the application of millimetre and

sub-millimetre waves (THz waves). Some examples of these applications were given

in the introduction of this thesis. There are several different techniques for guiding

these waves from one point or plane to another, such as EM waveguides and stripline

systems. However, due to the difficulty in fabricating ever smaller components as
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the desired operational frequency increases, and mass limitations for space based

applications, alternative wave guiding techniques are needed. To date fibre optics

techniques for the control of beams have not been possible due to no known suitable

materials being available. One such alternative is quasioptics [Goldsmith, 1992], and

it involves the free space propagation of narrow, quasi-collimated beams, sometimes

called pencil beams when the beam opening angle is very small. This quasiopti-

cal approach relies on using EM components such as waveguides and feed horns in

combination with optical elements such as lenses and mirrors. These narrow pen-

cil beams can be mathematically described as a set of independently propagating

Gaussian beam modes which are solutions to the wave equation.

GBM analysis is an alternative way of mathematically analysing the evolution

of beams of EM radiation as they propagate through space. The classical approach

uses Fresnel diffraction integrals to examine the radiation pattern of light at a par-

ticular location in space. This process can be computationally inefficient and is very

abstract in terms of giving a physical feeling for how the beam evolves. GBMA pro-

vides a more efficient and more intuitive means of modelling such beams in terms

of both their near and far field diffraction patterns. The same limitations of the

paraxial approximation [Hyde, 2000] that are assumed for Fresnel diffraction apply

to GBM analysis also [Murphy and Egan, 1993]. The basic approach is based on

decomposing the electric or magnetic field into a set of independently propagating

modes by performing an overlap integral with the field and each mode to determine

the component mode amplitudes at a plane where the field is well defined. The

component modes can then be independently propagated through the system or

through free space, and then simply summed in a linear fashion to reproduce the

evolved field at any other point or plane. The technique can be used for propaga-

tion through free-space, propagation through lenses, mirrors, polarizing grids, etc.,

and can be applied to more complex diffraction phenomena as described in many

publications by the THz Optics group at NUIM, such as classical phase aberra-

tions [Trappe et al., 2003], GBM beam shaping [Lavelle and O’Sullivan, 2010], the

quasi-optical analysis of Bessel beams in the far infrared [Trappe et al., 2005].

In the following sections some examples of free-space propagation using GBM

analysis are presented to demonstrate the power of the technique and to validate

the GBM code written by the author. The derivation of the GBM theory can be
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found in many publications, including [Goldsmith, 1998].

For a normalised field (i.e.
∫ ~|E|2dA = 1), for example the ~E field, the mathe-

matical description can be written as [Wylde and Martin, 1993]:

E(x, y, z, t) =

√
2

πW (z)
exp

[
−(x2 + y2)

W (z)2

]
exp

[
−jk (x2 + y2)

2R(z)

]
exp [jφ(z)] exp [−jkz] exp [jωt]

(2.1)

where E represents one of the components of ~E, ω = 2πν, where ν is the frequency

of radiation, k = 2π/λ, where λ is the wavelength of radiation, and R(z), W (z),

and φ(z) have the following definitions:

R(z) = z

[
1 +

[
πW 2

0

λz

]2
]

(Phase Radius of Curvature) (2.2)

W (z)2 = W 2
0

[
1 +

[
λz

πW 2
0

]2
]

(Beam Width) (2.3)

φ(z) = arctan

[
λz

πW 2
0

]
(Phase Slippage) (2.4)

where W0 is called the beam waist, whose radius will depend on the wavelength of

radiation, and corresponds to the minimum value that W (z) will take. In (2.1) to

(2.4) above, it is assumed that propagation is in the z direction. Figure 2.1 illustrates

some of the terms in the mathematical description of a quas-optical Gaussian beam.

Figure 2.1: Illustration of a Gaussian beam showing the beam width and phase radius of curvature as a function

of propagation distance. The propagation distance is normalised to the Rayleigh range Zc, which is defined as

Zc = πW 2
0 /λ. The Rayleigh range is also the distance from the position of the waist z0, in the direction of

propagation, to the place where the value of the beam width is
√

2W0. A related parameter is called the confocal

distance (sometimes called the depth of focus), and is defined as 2Zc. Image credit: Dr. Ronan Mahon
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Equation (2.1) describes the propagation of an ideal, purely Gaussian beam.

This is called the fundamental Gaussian, or fundamental mode as higher order modes

are usually also present to some degree in a propagating beam. To model accurately

quasioptical systems it is usually necessary to include some of these higher order

modes. This is achieved by combining (2.1) with a set of appropriate polynomials,

the form of which depends on the geometry of the problem (i.e. Cartesian or cylin-

drical polar). Each higher order polynomial governs the structure of one particular

mode while multiplication by the Gaussian term (Gaussian envelope common to

all modes) “kills off” the amplitude in the transverse direction (i.e. the field has

finite extent). The form of these modes in the different coordinate systems will be

introduced in the simple examples considered in the following sections. It should be

noted that the phase slippage term φ(z) is mode dependent as there is a different

amount of phase slippage for each mode (the higher order modes fall out of phase

faster than the lower order modes, relative to an infinite plane wave travelling in

the same direction).

2.2.2 Gaussian Beam Mode Analysis of Uniformly Illumi-

nated Apertures

The field that describes a uniformly illuminated circular aperture can be defined

as being unity across the aperture and zero everywhere else. This is the form of

the field, produced by a distant point source, at the aperture of a telescope such as

SPICA for example. The image that is formed on the detector array plane then is

called the point spread function [Cox and Hodge, 2006].

The current SAFARI test-bed being used at the SRON to characterise a single

SAFARI pixel employs a small circular aperture between the thermal source and

the conical horn that feeds the cavity coupled TES detector. A basic schematic

of the source, aperture and horn layout is shown in Figure 3.35, and a detailed

description of the SAFARI test-bed is given in chapter 3, section 3.3. The source,

which illuminates the circular aperture, is actually a conical blackbody radiator

but for simplicity in the model it will be assumed that the aperture is uniformly

illuminated with monochromatic light.

It is most convenient and efficient to decompose the aperture field into modes

44



with similar symmetry to that of the field, i.e. cylindrical polar or Cartesian. Thus,

for the example of a small circular aperture, the best suited basis set is the Laguerre-

Gauss mode set. The rotationally symmetric (about the axis of propagation) higher

order Laguerre-Gauss modes, travelling in the z direction, have the following form

(in the appropriate cylindrical polar coordinate system) [Murphy et al., 1997]:

En(r, z) =

√
2

πW (z)2
Ln(r, z) exp[− (r2)

W (z)2
] exp[−jk(z +

(r2)

2R(z)
) + jφ(z)] (2.5)

where Ln(r) is a Laguerre polynomial that is a function of the propagating mode

number (n), and the off-axis distance (r) perpendicular to the direction of travel of

the wave. The Laguerre polynomials have the form [Pampaloni and Enderlein, 2004]:

Ln(r) = er

n!
dn

drn
(e−rrn).

In order to calculate the mode coefficients An, an overlap integral with the

aperture field and each mode was calculated [Murphy and Egan, 1993]. Since the

waist position of the modes was unknown it was assumed that the aperture plane is

the waist position for each mode, therefore z = 0, φ(z) = 0 and R(z) = R(0) =∞.

Mathematically, this is expressed as:

An(W0) =

√
2

πW 2
0

∫ a

0

(Ln(
2r2

W 2
0

) exp[− r2

W 2
0

]2πr)dr (2.6)

where n is the mode number and is an integer that goes from 1 up to the required

number of modes. Note that W0 was left as a variable so that it could be varied

in order to minimise the number of modes required [Murphy and Egan, 1993]. The

integration is over 0 to a where a is the radius of the circular aperture. The choice

of waist radius and position is somewhat arbitrary, and non-ideal values will not

necessarily result in an incorrect field description. Rather, unrealistic or non-ideal

values will simply result in a larger mode set being required for a given level of

accuracy.

By incrementally varying the beam width of the modes from 0 to a in steps of

0.01a, and examining the reconstructed aperture field at each iteration, it was found

that a value of W0 = 0.2a provides a reasonably accurate description of the field with

relatively few modes. Figure 2.2 shows slices through the aperture “top-hat”-like

truncated field for three cases, each calculated with a different number of modes. It

can be seen that as more modes are used the field becomes more accurately defined

with the ringing being reduced and the edges of the beam becoming sharper. The

on-axis magnitude is normalised to unity in each case.
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(a) 8 modes (b) 16 modes (c) 32 modes

Figure 2.2: Slices through the aperture “top-hat” electric field intensity for increasing number of modes.

32 modes (n = 32) were then propagated to, and combined at, various locations

in order to investigate how the diffraction pattern varied as propagation distance

z was increased. 3D plots of the electric field are shown on Figure 2.3 for four

propagation distances. As can be seen the electric filed experiences a lot of change

in the near field (Fresnel region) as would be expected. The far-field is reached by

z = 2a2

λ
, as can be seen by the roughly sinc profile in Figure 2.3(d). Contour plots

of off-axis intensity as a function of increasing propagation distance are then shown

in Figure 2.4.

Similar in a way to the example of a uniformly illuminated circular aper-

ture, the field that describes a uniformly illuminated rectangular aperture can be

defined as being unity across the aperture and zero elsewhere. Such an illumi-

nated rectangular aperture was used in the SAFARI-like horn throughput experi-

ments that are described in chapter 3. The equation for a Gaussian beam mode

that has rectangular symmetry travelling in the z direction has the following form

[Pampaloni and Enderlein, 2004]:

E(x, y, z) =

√
1

πW (z)22m+n−1n!m!
Hn(y, z)Hm(x, z)

exp[−(x2 + y2)

W (z)2
] exp[−jk(z +

(x2 + y2)

2R(z)
) + j(m+ n+ 1) + jφ(z)]

(2.7)

where Hm(x, z) and Hn(y, z) are Hermite polynomials that are functions of the

propagating mode number (m,n), and the off-axis distance (x,y) perpendicular

to the direction of travel of the wave. The Hermite polynomials have the form

[Pampaloni and Enderlein, 2004]: H(m,x) = (−1)nex
2 dn

dxn
e−x

2
.

Following similar steps as before, the field at a small square aperture was de-

composed in terms of such Hermite-Gauss modes, thus allowing the aperture field
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Intensity vs. Off -Axis Distance
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Figure 2.3: Diffraction patterns for various propagation distances from a circular aperture. 32 Laguerre-Gauss

modes were used in the analysis.

(a) (b)

Figure 2.4: Diffraction pattern for increasing propagation distance from a circular aperture. An expanded view of

the Fresnel region bounded by the red box in (a) is shown in (b). In both plots the colour legend represents electric

field intensity. 32 Laguerre-Gauss modes were used.

to be reconstructed as shown in Figure 2.5(a), and the diffraction pattern to be

computed at any distance from the aperture. 100 modes (m = 10, n = 10) were

used for the analysis and the diffraction patterns for three propagation distances are
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shown in Figures 2.5(b) to 2.5(d). It is clear that the far-field (Fraunhofer region)

has been reached by z = 2a2

λ
as the sinc profile is clearly visible through the x and y

centres in Figure 2.5(d). Figure 2.6 shows contour plots, illustrating how the electric

field varies rapidly in the near-field before settling down in the far-field.

(a) z=0 (b) z = a2

6λ

(c) z = a2

3λ (d) z = 2a2

λ

Figure 2.5: Diffraction patterns for various propagation distances from a rectangular aperture. 100 modes were used

in the analysis.

(a) (b)

Figure 2.6: Diffraction pattern of electric field intensity for increasing propagation distance from a square aperture.

An expanded view of the Fresnel region bounded by the red box in (a) is shown in (b). 100 modes were used.
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2.2.3 Gaussian Beam Mode Analysis of EM Horns and Waveg-

uides

The field at the aperture of a corrugated conical horn antenna can be approximated

by a circularly symmetric zero order Bessel function [Wylde and Martin, 1993] as

|E(r)| ∝ J0 (kr) for r ≤ a, where k = 2.405
a

, a is the radius of the horn aperture,

and J0 is a zero order Bessel function of the first kind. The first root of such a

Bessel function is 2.405; hence the field goes smoothly to zero at the aperture edge

(r = a). The exact aperture fields of both rectangular and conical horns are dis-

cussed in chapters 3 and 4 and are generally calculated with rigorous mode matching

calculations. For the current purposes however the Bessel function approximation

is sufficient.

Again due to the circular symmetry of the aperture field, the most convenient

free space modes to use are Laguerre-Gauss modes, and as always we aim to minimise

the number of modes required for the analysis. In this case, because the field is quasi-

Gaussian, we maximise the amplitude of the fundamental mode and thus only a few

higher order modes are required to make up most the remaining field. This gives

W0 = 0.6435a at the aperture of the horn, leading to a fraction of 0.9792 of the

total power in the fundamental mode. For the higher order modes we again carry

out overlap integrals to compute the mode coefficients, similar to the integrals used

for the uniformly illuminated aperture examples.

An(W ) =

√
2

πW 2
0

∫ a

0

(E0J0(2.405r)Ln(2
r2

W 2
) exp[− r2

W 2
]2πr)dr for n = 1, 2, 3, ..N

(2.8)

where E0 is the amplitude of the aperture field, and N is the desired number of

modes.

Table 2.1 shows the coefficients for the first seven modes and the corresponding

fraction of power carried by each mode for an example corrugated conical horn with

dimensions of a = 1mm, L = 5mm, and λ = 0.5mm. A schematic of the horn is

shown in Figure 2.7(a).

Figure 2.8 shows the aperture field of the example horn reconstructed using

various numbers of Laguerre-Gauss modes. It was determined that using 15 such
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Ln n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

An 1.1297 -0.0001 -0.1375 -0.0491 0.0224 0.0389 0.0228 0.0002

Pn 0.9792 6.9× 10−9 0.0145 0.0019 0.0004 0.0012 0.0004 3.3× 10−8

Table 2.1: Electric field and power coefficients of a reconstructed beam from a corrugated conical horn.

modes gave rise to a reconstructed field with 99.9% accuracy.

(a) (b)

Figure 2.7: (a): Diagram of example corrugated conical horn showing dimensions. (b): Illustration of the equiphase

surface of the electric field inside the horn.

(a) (b) (c)

Figure 2.8: Bessel function aperture field and reconstructed aperture field for (a): 5 modes, (b): 10 modes, and (c):

15 modes.

In this example it was assumed that the beam waist and phase centre were

positioned at the aperture/mouth of the horn (z=0), whereas in reality, the phase

centre typically exists inside the horn [Goldsmith, 1998]. According to Goldsmith,

for a given conical corrugated horn, both the position of the beam waist z0 and its

radius W0 can be calculated by two relatively simple equations ((2.9) and (2.10),

respectively). Thus, for a corrugated horn with the values of a = 1mm, L = 5mm,

and operating at a wavelength of λ = 0.5mm, the corresponding values for the

position and radius of the waist are: z0 = 1.0654mm and W0 = 0.5708mm. In fact,

50



as demonstrated by Lucci et al., the position of the phase centre of the horn can be

optimised to suit the particular optical system being used [Lucci et al., 2004].

z0 =
L

1 +
(

λL
π(0.6435a)2

)2 (2.9)

W0 =
0.6435a√

1 + (π(0.6435a)2

λL
)2

(2.10)

The near, mid and far-field radiation patterns (in dB) are shown in Figure 2.9

with the normalised patterns also displayed. By comparing Figure 2.9(c) to 2.9(d)

it can be seen that the structure of the field does not significantly change over a

distance from z = 10mm to z = 100mm, with only the side-lobes appearing more

defined. This indicates that the beam reaches the far-field within 10mm of the

aperture. In fact the confocal distance (the distance from the waist at which the

edge of the Fresnel region is being approached) is given by πW 2
0 /λ ≈ 2mm.

(a) (b)

(c) (d)

Figure 2.9: Power patterns (in dB) of a corrugated conical horn for various propagation distances. (a): Aperture

field, (b): intermediate field, (c): beyond Fresnel region, and (d): far-field.

For other data that is also suited for analysis in polar cylindrical coordinates

like the small circular aperture or corrugated conical horn examples above, but

without the rotational symmetry that was present in those examples, a higher order
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Laguerre-Gauss basis set can be used. The associated Laguerre-Gauss mode basis

set Lαn, appropriate for decomposition of fields that are not rotationally symmetric

are similar to the Laguerre-Gauss modes Ln described above, but they also have

azimuthal dependence governed by the order α in the superscript of Lαn. In fact the

case of the rotationally symmetric Laguerre-Gauss mode set can be considered as

a special case of the more general associated Laguerre-Gauss mode set, where it is

the associated Laguerre polynomial of order 0 that is used (L0
n). The description of

these free-space associated Laguerre-Gauss modes is as follows [Trappe et al., 2005]:

~Ψα
m (W,R, r, φ, z) = ψαm (W,R, r, φ) exp (−ikz + iφm,α(z))

[{
cosαφ

− sinαφ

}
î±
{

sinαφ

cosαφ

}
ĵ

]
(2.11)

where

ψαm (W,R, r, φ) =
√

2m!
πW 2(m+α)!

exp
(
−r2

W 2

)(
2r2

W 2

)α
2
Lαm (2r2/W 2) exp (−ik (r2/2R)).

Such a basis set, 2.11, is well suited for the decomposition, reconstruction, and

propagation of smooth walled conical horn aperture fields such as those presented

in chapter 4 of this thesis. Even though smooth walled conical horn structures have

rotationally symmetric apertures (generally), the fields at the horn apertures (TE11

mode for example) are typically asymmetric due to the different boundary conditions

in the E-plane and H-plane. Of course this can be overcome by introducing carefully

designed step discontinuities or change in flare angles in order to excite higher order

modes (typically the TM11) so that mode-mixing can build symmetry in the aper-

ture field. Of course profiled corrugated horns can also produce symmetric fields,

as demonstrated by Ade et al., for example, when designing the ultra-Gaussian feed

horns for the CLOVER experiment [Ade et al., 2009]. Examples of EM field anal-

ysis with associated Laguerre-Gauss modes applied to multi-moded structures are

presented in section 5.4.1 of chapter 5. As is shown in that section, this type of

analysis is required for modelling part of the SAFARI pixel with mode matching

techniques.

As an example here, the TE11 mode that is present at the aperture of a cylin-

drical waveguide feed, such as the guide that feeds the SAFARI L-Band detectors

is now decomposed using the free-space associated Laguerre-Gauss mode sets ~Ψ0
n

to ~Ψ6
n for n = 0 to n = 40. The waveguide that was modelled was given a radius

of 1mm, the wavelength of radiation was set to 2mm (f = 150GHz), and the opti-
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mum beam waist radius was found to be 1.65mm. The technique for calculating the

mode coefficients is the same as in the previous examples, where overlap integrals

are calculated for the waveguide aperture field with each of the free-space modes.

Of course in this case the coefficients must be worked out for each mode of radial

degree n and azimuthal order α. The first ten values for each azimuthal order are

shown in Table 2.2.

Aαn α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 α = 6

n = 0 1.0908 0 0.3592 0 0 0 0

n = 1 0.3530 0 0.3821 0 0 0 0

n = 2 0.0096 0 0.3177 0 0 0 0

n = 3 0.1109 0 0.2279 0 0 0 0

n = 4 0.1178 0 0.1439 0 0 0 0

n = 5 0.0771 0 0.0794 0 0 0 0

n = 6 0.0261 0 0.0378 0 0 0 0

n = 7 0.0163 0 0.0170 0 0 0 0

n = 8 0.0431 0 0.0123 0 0 0 0

n = 9 0.0539 0 0.0184 0 0 0 0

Table 2.2: Coefficients of for the first 10 radial modes of various azimuthal order for decomposed cylindrical waveguide

aperture field.

What is clear from Table 2.2 is that the TE11 waveguide mode only couples to

the ~Ψ0
n and ~Ψ2

n free-space associated Laguerre-Gauss modes. This is simply due to

the orthogonality of the modes in azimuthal dependence α, [Trappe et al., 2005].

This property of the associated Laguerre-Gauss modes is very useful as it sig-

nificantly reduces the number of calculations that are required for analysing the

free-space propagation of the fields from multi-moded systems (see section 5.4.1 of

chapter 5).

Figure 2.10(a) shows the reconstructed waveguide aperture field for 5 ~Ψ0
n and 5

~Ψ2
n modes with visible differences in the data compared to the original field, which

is shown for comparison. Figure 2.10(b) then shows the reconstructed waveguide

aperture field for 20 ~Ψ0
n and 20 ~Ψ2

n modes with much better agreement now clearly

displayed. Accepting this as verification that the correct mode descriptions were de-

fined in the code, the modes were then propagated to the far-field by simply entering
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a large value for the propagation distance z. The modes were then linearly summed

in the usual manner and the resulting far-field patterns are shown in Figure 2.11.

A FEM analysis of a similar model was carried out using COMSOL for comparison,

and the FEM results are also shown in Figure 2.11. Although there is reasonable

agreement in the general trend of the curves, there are some differences that require

explanation.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
10 Modes

WG E

WG H

Recon E

Recon H

(a) 5 ~Ψ0
n and 5 ~Ψ2

n

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
40 Modes

WG E

WG H

Recon E

Recon H

(b) 20 ~Ψ0
n and 20 ~Ψ2

n

Figure 2.10: Reconstructed aperture field of a cylindrical waveguide for (a): 10 modes, (b): 40 modes.

Figure 2.11: Far-field radiation patterns of a cylindrical waveguide using 40 free-space associated Laguerre-Gauss

modes. Cuts are shown through φ = 0o (E-Plane), φ = 90o (H-Plane), and the cross-polar computed across the

φ = 45o plane.

The main reason for the differences in Figure 2.11 is based on the fact that

the COMSOL model includes the effects of the domain around the aperture of
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the waveguide, whereas the modal analysis neglects the behaviour of the fields in

that domain. The COMSOL results will vary depending on whether the waveguide

aperture is surrounded by a conducting ground plane or simply free-space, and in

this case a conducting ground plane was used in the simulations. The effects of

including such a ground plane in the FEM models is explained in detail in section

3.1.6 with more examples presented, and, as will be shown, the effect of including a

conducting ground plane at the aperture of a radiating structure is only significant

for a uniform waveguide. For this reason a smooth walled conical horn antenna was

also modelled with the free-space associated Laguerre-Gauss modes for verification

of the code. Since a ground plane has no significant effect on the radiation patterns

of such a feed, better agreement between the FEM approach and modal approach

was expected.

The conical horn was given a length of 3mm, an exit aperture of diameter 1mm,

and an entry aperture of diameter 0.25mm, leading to a half angle of 7.2o. Due to the

small entrance aperture the frequency was set to 600GHz to allow the fundamental

mode to propagate through the horn. Figure 2.12 shows the far-field calculation

that was achieved using 40 free-space modes with a beam waist of 1.8mm. The

results of a similar simulation performed using the FEM approach with COMSOL

(FEM approach to be introduced in section 2.5) are shown for comparison. As can

be seen there is reasonably good agreement for the two approaches in both co-polar

planes and the cross-polar distribution, thus further verifying the modal code.

The above examples of expanding asymmetric waveguide and horn fields in

terms of associated Laguerre-Gauss modes are important because in order to model

the full SAFARI-pixels (both S-Band and L-Band) with modal techniques the cur-

rent version of NUIM’s mode matching code SCATTER will need to be extended

to include such free-space modes. The reason for this is due to a vacuum gap that

must be included in the pixel design to allow sufficient space between the horn array

block and the delicate TES detector array chip. This is explained in more detail in

chapter 5, and Figure 5.1 can be referred to for an illustration.
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(a) Far-field comparisons (b) E-Plane comparisons

(c) H-Plane comparisons (d) X-Polar comparisons

Figure 2.12: Far-field radiation patterns of a smooth walled conical horn antenna computed with 40 associated

Laguerre-Gauss free-space modes, and FEM results shown for comparison. (a): All three cuts, (b): E-Plane cut

(φ = 0o), (c): H-Plane cut (φ = 90o), and (d): X-Polar cut (φ = 45o).

2.2.4 Propagation Through Quasioptical Systems: Mirrors

and Lenses

In the experimental system set up at SRON to probe the multi-mode nature of

SAFARI-like horns (see chapter 3) a beam guide system was used to control the

free-space propagation of THz beams through a vacuum system. This required the

design of a quasi-optical lens based system. We now explain how to model such

quasi-optical lens systems using the so-called ABCD matrices from ray optics.

The radius of curvature of a geometrical optics beam R is analogous to the

complex beam parameter q of a Gaussian beam, so it is reasonable to assume that

the effects of optical components on a Gaussian beam can be analysed in terms of the

effects of the corresponding ABCD matrices on the parameter q [Goldsmith, 1998].

qout =
A · qin +B

C · qin +D
(2.12)
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Furthermore, a single ABCD matrix representing a complete quasioptical sys-

tem can be constructed by cascading the ABCD matrices representative of each

element of the system. The final matrix can then be applied to the complex beam

parameter at the input plane, qin, with the result being the complex beam param-

eter at the output plane, qout. This output complex parameter can then be used

to calculate the beam width W , the phase radius of curvature R, and the phase

slippage φ for each mode at the output plane. From these values the complete field

can be reconstructed.

Since the complex beam parameter q is related to the propagation distance z

and the confocal distance z0 through the following relationships:

1

q0

=
1

jz0

= −j λ

πW 2
0

= − 2

jkW 2
0

(2.13)

and
1

z + q0

=
1

z + jz0

=
1

R(z)
− j λ

πW (z)2
=

1

q(z)
(2.14)

where the definition of the confocal distance was used: z0 =
πW 2

0

λ
, then the phase ra-

dius of curvature, beam width, and the phase slippage can be expressed as functions

of q by the following relationships [Goldsmith, 1998]:

R(q) =

(
Re

(
1

q

))−1

(2.15)

W (q) =

(
λ

πIm(−1
q
)

)1/2

(2.16)

φout − φin = ∆φ(q) = −
(
Arg

(
A+B

(
1

qin

)))
(2.17)

Based on the above definitions the GBM analysis code that was written by the

author, and used to model the examples of radiating apertures and feed horns pre-

sented earlier in this section, was extended to include analysis of lenses, mirrors, and

any other optical components that can be defined by an ABCD matrix. The code

requires an initial complex beam parameter as an input, together with the A, B, C,

and D values for each optical element that is to be modelled. A piecewise function is

then defined to take account of the changing overall matrix as the propagation dis-

tance increases, and as more optical elements are encountered by the beam. Each

time a new section of free-space or an optical element is encountered, the corre-

sponding matrix is cascaded with the overall matrix up to that point. A graphical
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user interface (GUI) was built into the code to allow the user to vary the parameters

of the optical elements, for example the positioning or focal lengths of lenses in a

system. An example of a system that was modelled with the code is presented in

section 3.3, where a three lens focussing system was used in the experimental set-up

for measurements of the throughput of a SAFARI-like horn antenna.

2.3 Waveguides

2.3.1 Background

The TE and TM field descriptions of EM waves in waveguide structures were re-

quired for multiple simulations as part of the work carried out for this thesis (see

chapters 3 and 4). For example the FEM based software COMSOL requires the user

to define the field structure of the particular mode to be excited at the input port

boundary if symmetry conditions are used to reduce the problem size computation-

ally. Also the sections of mode matching code written by the author required the

normalised mode definitions to be defined so that analysis of mode-to-mode scat-

tering could be correctly calculated (see for example chapter 4). The description of

how EM fields propagate through conducting waveguide structures can be found in

many sources, for example [Olver et al., 1994] and [Clarricoats et al., 1984]. Since

the theory is well known, only a basic summary of the modal field descriptions will

be outlined in this section, and some example plots of the fields will be shown to

demonstrate the validity of the code written by the author. The step-by-step mode

derivations are not included since they can be found in most electrical engineering

textbooks [Anwane, 2007], for example.

The solutions to Maxwell’s equations with PEC boundary conditions can be

classified into different groups, depending on whether the electric and magnetic fields

have zero or non-zero longitudinal components. The possible mode types are listed

in the table below.
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Electric Field Magnetic Field Mode Notation

Ez = 0 Hz 6= 0 TE (Transverse Electric)

Ez 6= 0 Hz = 0 TM (Transverse Magnetic)

Ez = 0 Hz = 0 TEM (Transverse Electromagnetic)

Ez 6= 0 Hz 6= 0 HE or EH (Hybrid Modes)

Table 2.3: Definitions and notation of waveguide fields.

2.3.2 Rectangular Waveguide

Excluding the case of TEM modes as they do not exist as harmonic modes of a waveg-

uide, and excluding HE and EH modes as they can be considered as combinations of

TE and TM modes, the Cartesian components of the possible transverse modes in a

rectangular waveguide are listed in Table 2.4. The rectangular waveguide has width

a in the x direction, and height b in the y direction. The m and n values describe

the order of the TEmn modes. β is the propagation constant and it is related to the

free-space wavenumber k, and the waveguide wavenumber γ by k2 = kc
2−γ2, where

γ = jβ and kc is the cut-off wavenumber [Clarricoats et al., 1984] (although slightly

different notation is used in the referenced text). ZTE = Z ω
βc

and ZTM = Z βc
ω

, where

Z is the impedance of free space (≈ 377Ω). Finally, ω is the angular frequency of

radiation (ω = 2πf).

TE Modes TM Modes

Ex = ZTE
jβ
kc

2
nπ
b

(
cos mπx

a
sin nπy

b

)
ejα Ex = − jβ

kc
2
mπ
a

(
cos mπx

a
sin nπy

b

)
ejα

Ey = −ZTE
jβ
kc

2
mπ
a

(
sin mπx

a
cos nπy

b

)
ejα Ey = − jβ

kc
2
nπ
b

(
sin mπx

a
cos nπy

b

)
ejα

Ez = 0 Ez =
(
sin mπx

a
sin nπy

b

)
ejα

Hx = jβ
kc

2
mπ
a

(
sin mπx

a
cos nπy

b

)
ejα Hx = 1

ZTM

jβ
kc

2
nπ
b

(
sin mπx

a
cos nπy

b

)
ejα

Hy = jβ
kc

2
nπ
b

(
cos mπx

a
sin nπy

b

)
ejα Hy = − 1

ZTM

jβ
kc

2
mπ
a

(
cos mπx

a
sin nπy

b

)
ejα

Hz =
(
cos mπx

a
cos nπy

b

)
ejα Hz = 0

Table 2.4: Mode expressions in a rectangular waveguide where α = (ωt− βz).

Figure 2.13(a) shows the lowest order TE mode for a rectangular waveguide of

width a = 30µm and height b = 15µm, operating at a frequency of 5THz. Some

higher order propagating modes are also shown in Figure 2.13(b) - 2.13(f), where the
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frequency was increased for each simulation to ensure it was above cut-off frequency

for each mode (ν = 29THz for TE42 for example). Figure 2.14(a) shows the lowest

order TM mode for the same rectangular waveguide of width a = 30µm and height

a = 15µm. Some higher order propagating TM modes are also shown in Figure

2.14(b) - 2.14(f).

(a) TE01 E − Field (b) TE10 E − Field (c) TE31 E − Field

(d) TE33 E − Field (e) TE40 E − Field (f) TE42 E − Field

Figure 2.13: Plots of electric field intensity for TE modes of a rectangular waveguide of width a = 30µm and height

a = 15µm. (a): TE10, (b): TE01 (c): TE31 (d): TE33 (e): TE40 (f): TE42

.

(a) TM11 E − Field (b) TM21 E − Field (c) TM31 E − Field

(d) TM33 E − Field (e) TM41 E − Field (f) TM42 E − Field

Figure 2.14: Plots of electric field intensity for TM modes of a rectangular waveguide of width a = 30µm and height

a = 15µm. (a): TM11, (b): TM21 (c): TM31 (d): TM33 (e): TM41 (f): TM42

.
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2.3.3 Cylindrical Waveguide

The components of the transverse modes that can exist in a cylindrical waveguide

are listed in Table 2.5. The p′νl values in the TE mode descriptions correspond to the

νth roots of the derivative of the lth order Bessel functions. The pνl values in the TM

mode descriptions correspond to the νth roots of the lth order Bessel functions. For

the lowest order mode which is the TE11 mode, (ν = 1 and l = 1), p′11 = 1.8412, and

for the lowest order TM mode (TM11) p11 = 2.405. The roots of Bessel functions and

their derivatives corresponding to higher modes can be found widely in the literature,

for example [Beattie, 1958]. All other symbols (β, kc, etc.) have the same definitions

as for the rectangular modes described above. The sin(νφ), cos(νφ), etc. terms in

the mode descriptions in Table 2.5 represent two separate polarizations of the fields.

TE Modes TM Modes

Er = ZTE
jβν
kc

2r
Jν

(
p′νlr

a

)
ejα
{− sin(νφ)

cos(νφ)

}
Er = −jβ

kc
2
pνl
a
Jν
′ (pνlr

a

)
ejα
{

cos(νφ)
sin(νφ)

}
Eφ = ZTE

jβ
kc

2

p′νl
a
Jν
′
(
p′νlr

a

)
ejα
{

cos(νφ)
sin(νφ)

}
Eφ = −jβν

kc
2r
Jν
(
pνlr
a

)
ejα
{− sin(νφ)

cos(νφ)

}
Ez = 0 Ez = Jν

(
pνlr
a

)
ejα
{
cos(νφ)
sin(νφ)

}
Hr = −jβ

kc
2

p′νl
a
Jν
′
(
p′νlr

a

)
ejα
{

cos(νφ)
sin(νφ)

}
Hr = 1

ZTM

jβν
kc

2r
Jν
(
pνlr
a

)
ejα
{− sin(νφ)

cos(νφ)

}
Hφ = jβν

kc
2r
Jν

(
p′νlr

a

)
ejα
{− sin(νφ)

cos(νφ)

}
Hφ = − 1

ZTM

jβ
kc

2
pνl
a
Jν
′ (pνlr

a

)
ejα
{

cos(νφ)
sin(νφ)

}
Hz = Jν

(
p′νlr

a

)
ejα
{

cos(νφ)
sin(νφ)

}
Hz = 0

Table 2.5: Mode expressions in a cylindrical waveguide where again α = (ωt− βz).

Figure 2.15(a) shows a cross-sectional cut through the lowest order mode (TE11)

for a cylindrical waveguide of radius a = 50µm, operating at a frequency of 1.8THz

which is just above the cut-off frequency of 1.76THz. Figure 2.15(b) shows E-plane

and H-plane cuts through the same TE11 mode. The electric field intensity for

some higher order propagating TE modes is shown plotted in Figure 2.16, where

the frequency was increased in each simulation to ensure propagation of the mode

(18.4THz for the TE54 mode, for example). The electric field intensity for some

higher order propagating TM modes is shown plotted in Figure 2.17. Again, the

frequency was increased for each simulation to ensure propagation of the mode being

analysed (19.9THz for the TM54 mode, for example).
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(a) (b)

Figure 2.15: Plots of TE11 electric field intensity for a cylindrical waveguide of radius a = 60µm. (a): 2D planar

slice plot, and (b): 1D cuts through E and H-planes.

(a) TE21 E − Field (b) TE22 E − Field (c) TE31 E − Field

(d) TE33 E − Field (e) TE52 E − Field (f) TE54 E − Field

Figure 2.16: Plots of electric field intensity for higher order TE modes of a cylindrical waveguide of radius a = 6µm.

(a): TE21, (b): TE22 (c): TE31 (d): TE33 (e): TE52 (f): TE54.

As was already indicated, the theory presented in this section is widely acces-

sible in the literature [Olver et al., 1994], [Clarricoats et al., 1984]. The simulation

work presented throughout this thesis (chapters 3, 4 and 5) required code to be

written that was capable of modelling the modal fields, thus the mode descriptions

were required to be defined computationally. In contrast to the readily available
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(a) TM11 E − Field (b) TM22 E − Field (c) TM31 E − Field

(d) TM33 E − Field (e) TM52 E − Field (f) TM54 E − Field

Figure 2.17: Plots of electric field intensity for higher order TM modes of a cylindrical waveguide of radius a = 6µm.

(a): TM11, (b): TM22 (c): TM31 (d): TM33 (e): TM52 (f): TM54.

rectangular and cylindrical coordinate solutions, conical mode solutions were much

harder to find in the literature. Thus, conical EM modes are derived in chapter 4.

2.4 Electromagnetic Mode Matching

2.4.1 Background

In the mode matching technique a corrugated or profiled waveguide structure is

regarded as a sequence of short uniform waveguide segments which step in radius

(cylindrical) or width and height (rectangular) at the junctions between the seg-

ments. For each segment the natural modes of propagation are the usual TE and

TM modes of a uniform waveguide, and the mathematical description of such fields

for both polar cylindrical and Cartesian geometries were presented in section 2.3

of this chapter. The theory of EM mode matching is already well established and

it is described in detail in many texts [Olver et al., 1994], [Clarricoats et al., 1984].

NUIM has a strong heritage in the subject of mode matching, where previous grad-

uate students have developed code that is suited for modelling conical feed horn
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structures, both smooth walled and corrugated [Gleeson, 2004], [Colgen, 2001]. The

result was a highly efficient simulation tool called Cylindrical SCATTER, and it

has been used to model complex horn structures such as the HIFI (High Frequency

Instrument) horns on the Planck observatory [Murphy et al., 2010]. More recently

a Cartesian based mode matching code was written [Doherty, 2012] that is suited

to modelling the behaviour of smooth walled or corrugated rectangular horns, and

is flexible enough to account for both straight or profiled geometries.

The topic of EM mode matching is introduced here as it is used throughout

this thesis as a means of comparing results with other simulation methods such as

the FEM approach. Also, the author was involved in verifying a new section of

cylindrical mode matching code that was developed with the aim of including cavity

mounted absorbers in the models. This work is discussed in chapter 5. The mode

matching theory was then extended further by the author through the development

of a new mode matching program. The new Spherical SCATTER code was aimed

at modelling smooth walled conic section horns in a more exact way compared to

Cylindrical SCATTER. It was also aimed at increasing the computational speed at

which conical horn can be modelled. Work pertaining to conical modes and Spherical

SCATTER is presented in chapter 4.

Figure 2.18 shows an example of a typical EM feed horn structure that is

ideally suited for analysis with the mode matching technique. It is a profiled “super-

Gaussian” corrugated feed horn from the CLOVER instrument [Ade et al., 2009],

and due to the many small corrugations throughout its geometry, modelling such

a structure with the FEM, for example, proves very computationally demanding.

The tiny mesh that is required for a FEM simulation, in order to correctly map the

sub-wavelength corrugations, results in a huge number of degrees of freedom, and

thus a large problem size. The mode matching approach is a much more efficient

simulation tool for such problems due to the well behaved fields in each uniform

section, and the cylindrical symmetry of the overall structure. Figure 2.19 shows

the far-field radiation patterns for the CLOVER horn, calculated with the mode

matching code SCATTER, and with FEM software COMSOL.

The FEM approach required just over four hours to calculate the radiation

patterns, compared to just 10.5 minutes for the mode matching method. Clearly,

mode matching is hugely advantageous over FEM techniques when dealing with
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(a) (b)

Figure 2.18: FEM screen-shot of CLOVER profiled corrugated horn. (a): Full Horn, (b): Zoomed view of section

highlighted in (a) by black box.

(a) E-Plane cut through far-field (b) E-Plane cut through far-field

Figure 2.19: Far-field radiation patterns of a corrugated feed horn at an operational frequency of 100GHz.

structures with high symmetry such as the CLOVER horn. However, when the

structure to be modelled is lacking such symmetry then other techniques (such as

FEM) will clearly be required. The following section (2.5) presents a brief description

of the FEM method, with an example model described to illustrate the approach.

2.5 Finite Element Method: COMSOL

Multiphysics

2.5.1 Background

The FEM technique is a numerical analysis approach used by many commercially

available software packages for modelling a range of science and engineering prob-

lems. COMSOL Multiphysics uses the FEM approach and any FEM analysis that

is presented in this thesis was carried out with the COMSOL Multiphysics package.

The main benefit of using the FEM approach is its versatility in terms of the types
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of problems that can be modelled with it.

While some progress is being made in terms of combining waveguide and free-

space techniques, as presented in chapter 5 of this thesis, the FEM approach allows

more complex models with multiple sub-domains, each with different boundary con-

ditions, to be solved. There is also virtually no restriction on the shape of the

problem domain. There is of course the disadvantage that the FEM approach is

relatively inefficient, and compared to waveguide and free-space modal techniques,

FEM typically has computation times that are orders of magnitude larger.

The FEM approach is based on finding approximate solutions to boundary

value problems for differential equations, for example Maxwell’s equations for EM

field calculations. FEM employs variational methods to produce a stable solution

by minimizing an error function. Similar to the way a circle can be approximated

by a series of small straight connected lines, a problem domain Ω can be broken into

many smaller elements Ωe and then reconnected through nodes as shown in Figure

2.20. There are a number of different mesh types available with COMSOL but the

most commonly used is a tetrahedral mesh in the 3D modelling environment, and a

triangular mesh in the 2D environment (shown in Figure 2.20).

Figure 2.20: Triangular mesh that is used to approximate a problem domain.

The PDEs (partial differential equations) that describe the nature of the prob-

lem must then be discretised over the meshed problem domain. The manner in

which Maxwell’s equations are handled by COMSOL is now described as an exam-

ple of the general COMSOL FEM approach. Assuming harmonic time dependence
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(ejωt) Maxwell’s equations can be written as:

~D = ε
′

rε0
~E

~B = µrµ0
~H

~∇× ~E = −jω ~B

~∇× ~H = ~JS + σ ~E + jω ~D

(2.18)

The vector wave equations for ~E and ~H can then be written as:

~∇×
(

1

µr
~∇× ~E

)
− k2

0εr
~E = −jk0η0

~JS

~∇×
(

1

εr
~∇× ~H

)
− k2

0µr
~H = ~∇×

(
1

εr
~JS

) (2.19)

where ~JS is the source current density and εr = ε
′
r − j σ

ωε0
.

From (2.19) above the weak form [Tio et al., 2004] of the vector wave equations

can be formulated, which for ~E is:∫
V

1

µr

(
~∇× ~E

)
·
(
~∇× ~W

)
dV − k0

∫
V

εr ~E· ~W dV = −jk0η0

∫
V

~JS· ~W dV for all ~W

(2.20)

It is these weak form vector equations that are formulated for each element in the

problem domain, resulting in a set of simultaneous equations that must then be

solved.

Using COMSOL’s built-in meshing functions, the problem domain is broken up

into the finite mesh elements, where the number of elements depends on the physics

of the problem. For example an EM problem will typically require a minimum of 5

mesh elements per wavelength to reach a solution, however at least 6 mesh elements

per wavelength are recommended in the COMSOL literature [COMSOL, 2011] for

a reasonably high level of accuracy. An advantage of the FEM approach over other

finite analysis techniques, such as the finite difference method for example, is that

there is very little restrictions on the type of geometry that the problem domain

represents. The finite difference method is limited to rectangular geometries due to

the fact that the mesh must be uniform. The mesh of the FEM problem domain

can be irregular and take almost any closed form. Care should be taken however of

very small sections of a problem domain, ensuring that the mesh size is sufficiently

small to map these sections. This is particularly important for EM devices such as

corrugated horn structures as the corrugations are typically on scales corresponding

to a fraction of a wavelength.
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The COMSOL user must specify material properties and boundary conditions

for each sub-domain of the overall problem domain, and any scalar variables such as

the frequency of radiation to be modelled, etc. must also be defined. The software

has multiple built-in solvers, both direct solvers such as PARADISO, SPOOLES, and

MUMPS, and iterative solvers such as Conjugate Gradient, GMRES, and FGMRES

for example, and COMSOL will usually select the optimum solver based on the

chosen space dimension, the physics of the problem and the type of study being

carried out, however the user can alternatively select any of the other solvers that

are available.

An example FEM model is illustrated in Figure 2.21, where the model was built

using the COMSOL Multiphysics computer aided design (CAD) package (Figure

2.21(a)). The TE11 mode was excited at the entry port, and a perfectly matched

layer was defined at the output port to simulate propagation into free-space. Both

ports were given the same dimensions as the WR-10 waveguides that were used

in combination with the VNA for measurements described in chapters 3 and 5:

a = 1.27mm and b = 2.54mm. The walls of the structure were defined as being

perfect electric conductors (PEC) and a tetrahedral mesh was then defined for the

entire geometry, as shown in Figures 2.21(b) and 2.21(c), with an element size of

0.45mm corresponding to λmin/6, where λmin is the minimum wavelength of the

frequency range to be analysed. The time harmonic wave equation (E ∝ eiωt)

was then solved for the electric field over the frequency range of the VNA system

(75-110GHz) in steps of 1GHz.

COMSOL allows a frequency sweep to be easily performed due to its ability

to automatically increment the frequency in user defined steps while saving the so-

lutions for each step. COMSOL also allows similar parametric sweeps for other

variables such as changing spatial distances, etc. to be carried out. Figure 2.21(d)

shows a screen shot of the COMSOL post-processing environment, where the z com-

ponent of the electric field is depicted as a raised colour plot. The post-processing

module can also be used for evaluating parameters such as the transmitted signal

(S21), the return signal (S11), integrated Ohmic losses across a particular surface,

etc.
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(a) CAD Model (b) Meshed Model (c) Mesh (Close-Up) (d) Electric Field

Figure 2.21: Steps in solving a FEM problem.

2.6 Conclusions

In this chapter the computational approaches that were employed for the work

presented throughout this thesis were described. The first section 2.2 of the chapter

presented methods for modelling free-space propagation of radiation, with examples

provided for both Cartesian and polar cylindrical reference frames. GBM analysis

provides an efficient means of modelling free-space propagation when dealing with a

signal with relatively low divergence, such as that from a horn antenna with shallow

flare angle. This limitation is based on the paraxial approximation from which the

theory is derived. Relatively good agreement was found for a conical horn antenna

with a half angle of 7.2o when compared to a similar FEM model. An alternative

approach for modelling fields with significant divergence, and which is not based

upon the paraxial approximation, is spherical wave expansion [Olver et al., 1994].

This vector based approach is similar to the scalar GBM analysis in the manner

in which the field is decomposed into a basis set of modes. When dealing with

radiation with significant beam divergence or horns with large flare angles (low F-

number optics) spherical wave expansion would likely be required in place of GBM

methods [Clarricoats et al., 1984],[Olver et al., 1994].

In sections 2.3 and 2.4, simulation methods specific to fields in conducting

structures (PEC boundaries) were described. The mode matching code SCATTER

was shown to be a very efficient tool for modelling corrugated feed horn structures

in terms of analysing far-field radiation patterns, throughput, and return power, etc.

However, it was explained that SCATTER is relatively limited in terms of the types

of problems it can be used to model.
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In section 2.5 a description of the FEM approach was given, which is the basis

of the commercially available COMSOL Multiphysics package and which was used

extensively in the work presented throughout this thesis. FEM was shown to be

a versatile simulation tool that is capable of modelling problems relating to both

free-space propagation and waveguide propagation, as well as a host of other multi-

physics problems. This versatility comes at a cost however, and the approach is

relatively inefficient computationally. It was shown that solving a problem with

the FEM approach can take orders of magnitude longer that the mode matching

approach.

It will be shown throughout this thesis that in order to accurately model the re-

ceivers and detectors of far-IR instruments, such as the SAFARI S-Band for example,

a combination of the computational approaches presented in this chapter is required.

The efficiency of mode matching techniques is essential for SAFARI receivers due to

the large electrical size of the structures, and the flexibility of the FEM method is

necessary when dealing with asymmetric structures or problems involving multiple

sub-domains, where free-space propagation may be required in one sub-domain and

PEC boundary conditions may be present in an adjacent sub-domain.
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Chapter 3

The Analysis of the SAFARI

Multimode Horns

“I hear and I forget.

I see and I remember.

I do and I understand.”

- Confucius
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3.1 Rectangular Horns

3.1.1 Background

Smooth walled horns, both conical and rectangular, are becoming increasingly utilised

in sub-millimetre and far-IR systems. As we continue to design instruments with

feed horn coupling structures for higher operational frequencies the size of the horns

and waveguides become increasingly smaller. Manufacturing these feed structures

with dimensions on the order of a few microns is proving difficult for the manufac-

turers, particularly when arrays of such feeds are required. In the true THz regime

(approximately 3 to 10 THz) the components typically have dimensions on the or-

der of tens of microns, and building corrugated structures on these scales is simply

not possible with current manufacturing techniques. For this reason smooth walled

feeds are proving to be the only feasible option.

The current design of the SAFARI horns are two sectioned smooth walled

rectangular horns consisting of a short 0.54mm length section with a flare angle of

20o, and a longer 4.84mm section with a softer flare angle of 4.5o (see Figure 3.1 (a)).

The horns are sufficiently wide to allow higher order modes to propagate through

them and therefore the overall throughput will be increased compared to a single

mode horn. However due to both the smooth walled nature of the horns and the

fact that they are multi-moded, the quality of the beam patterns will not compare

to corrugated conical feeds such as those typically used in CMB experiments. This

will not be an issue however since qualities such as high beam symmetry will not

be required as the SPICA telescope will not be aimed at performing ultra-sensitive

polarisation experiments like those of, say, the Planck CMB telescope.

Extremely low side-lobes are not required either as the focal plane arrays will

be contained in an extremely low temperature (dark) area, illuminated only by a

pinhole as shown in Figure 3.1 (b) during testing. This means that the side-lobes

in the beam patterns of the horns will only “see” a cold baffle. Therefore the side-

lobes of the SAFARI horns will essentially only see a cold baffle and will not pick

up artefacts that more exposed horns arrays may detect in other telescope systems.

The priority of the SAFARI horn design is for maximum throughput which led

to the multi-moded design. Each propagating mode is capable of carrying power

through the horn and onto the TES detectors, so a multi-moded system allows for
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(a) (b)

Figure 3.1: (a): Layout of the Safari horn array block showing dimensions and angles. Only five horns from one

row are shown (b): Part of the SRON SAFARI testbed for characterising single pixels for the future detector array.

A conical horn and hemispherical backshort are shown in the expanded window (image credit: SRON).

a significant increase of total throughput and therefore an increase in sensitivity.

Careful design of the smooth walled horn structures can still produce relatively

good quality beams in terms of beam symmetry and low side-lobe levels.

In the first section of this chapter various techniques for modelling smooth

walled pyramidal horns will be described. The results from the different approaches

will be compared to each other and to measurements performed with the VNA

facility. Three methods for calculating far-field beam patterns of pyramidal horns

will be discussed, and it will be shown that there is excellent agreement between

the three approaches. The driving force behind these experiments was to examine

how far the simulations could be taken, taking into account aspects of the radiating

horns that have thus far not been included in the models. Such progressions in the

models include analysis of the fields at the mouth of the horn in order to determine if

significant power propagates behind the horn, including a conducting ground plane

between horn apertures to examine if induced surface currents can influence the far-

field patterns of the horns, and quantifying the levels of optical cross-talk between

horns in a SAFARI-like horn array.

As will be demonstrated the best modelling approach for these SAFARI-type

horns depends on the particular problem being considered. For example analysis of

the far-field radiation patterns at the high operating frequencies of the SAFARI in-
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strument requires the rectangular mode matching technique, as EM FEM approaches

are simply too inefficient for such electrically large, multi-moded structures. On the

other hand if optical cross-talk between horns, or induced surface currents on the

horn array block are being investigated, then the FEM approach is required as the

current mode matching software is relatively restricted in terms of these broader

questions. By employing multiple simulation methods, antenna feed horns such as

the current SAFARI design can be accurately modelled in terms of their far-field

radiation patterns, and more subtle effects such as optical cross-talk.

3.1.2 Approximate Method

In this section the fields inside, and at the aperture, of smooth walled pyramidal

horns are described. The derivation is almost identical to the case of a rectangu-

lar waveguide with the inclusion of a phase slippage term to account for the extra

distance covered by the field at the horn’s sides. The equiphase surface of the

field forms a spherical cap (quadratic phase cap) that extends beyond the mouth

of the horn. This quadratic approximation works well for horns of small flare an-

gle [Milligan, 2005]. To analytically derive the fields at the mouth of such horns,

Maxwell’s equations can be solved in spherical coordinates with the appropriate

PEC boundary conditions. This method is discussed in section 4.1.2, where the

fields inside conical horn structures are derived.

The coordinates and parameters of a typical pyramidal horn are shown in Figure

3.2(a), and Figure 3.2(b) shows the extra distance ∆L travelled by the fields which

results in the quadratic phase error at the aperture. The equiphase surface at the

mouth of the horn is shown as a dotted line.

The structure of the field amplitude at the mouth of a rectangular/pyramidal

feed horn is defined by the input waveguide mode. The phase distribution is ap-

proximately quadratic across the aperture, with each aperture coordinate having

a separate quadratic phase distribution constant (RX and RY in this case for the

H-plane and E-plane respectively). The constant RX for the H-plane is formulated

as follows:

By applying Pythagoras’ theorem to the sides L, a
2

and LX of figure 3.2(b), the

length LX can be defined as LX =
√

(L)2 + (ra)2, or L =
√

(LX)2 −
(
a
2

)2
. It is
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(a) (b)

Figure 3.2: Pyramidal horn diagrams showing typical parameters used to describe such horns. (a): Primary horn

and waveguide parameters. (b): Illustration of the equiphase surface in the H-plane of the horn.

clear from figure 3.2 that ∆L = LX − L, therefore: ∆L = LX −
√

(LX)2 −
(
a
2

)2

⇒ ∆L = LX

(
1−

√
1− (a/2)2

(LX)2

)
≈ LX

(
1−

(
1− (a/2)2

2(LX)2

))
=

a2

8LX
(3.1)

⇒ ∆L =
a2

8LX
(3.2)

where ∆L is the extra distance travelled by a field near the walls of the horn in

the H-plane (with respect to the on-axis field). Multiplying both sides of (3.2) by

the free-space wavenumber k gives the dimensionless constant RX of the quadratic

phase distribution:

∆Lk =
ka2

8LX
= RX (3.3)

By applying the same reasoning to the E-plane the dimensionless constant of the

quadratic phase distribution for the E-plane was calculated as:

kb2

8LY
= RY (3.4)

Using the two constants RX and RY in combination with the definitions for the

transverse fields of rectangular waveguides given in section 2.3.2, the aperture fields

for pyramidal/rectangular horns can be completely defined. Each field component

for both TE and TM modes is defined as the rectangular waveguide field component

multiplied by exp
(
−j
[
RX

(
2x
a

)2
+RY

(
2y
b

)2
])

, for example:

Ex = ZTE
jβ
kc

2
nπ
b

(
cos mπx

a
sin nπy

b

)
exp (j(ωt− βz)) exp

(
−j
[
RX

(
2x
a

)2
+RY

(
2y
b

)2
]
])

.
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3.1.3 Example Horn (Approximate Method)

The aperture field and far-field distributions are calculated for an example horn with

a rectangular waveguide section acting as a mode filter (as for example if a waveguide

feeds an integrating cavity) with dimensions such that only the fundamental mode

(TE10) can propagate. The waveguide has transverse dimensions of a standard WR-

10 guide section, a′ = 2.54mm, b′ = 1.27mm, and its length is defined as l = 5mm.

The horn section has aperture dimensions of a = 15.08mm, and b = 10.80mm, with

an axial length of 20.69mm, giving rise to slant lengths of Lx = 24.88mm, and

Ly = 23.06mm.

This particular small horn was chosen because its beam pattern can be exper-

imentally measured with the VNA and it is small enough to be modelled through

FEM analysis on a reasonably powerful PC. In fact the size of the example horn

with respect to the operational wavelength is just within the limits of what can be

solved with the FEM technique on a PC with 16 gigabytes of RAM if symmetry

conditions are exploited to minimise the problem size. Symmetry conditions are put

in place for the E-plane and H-plane of the model resulting in a 75% reduction in

the geometry size and therefore a 75% reduction in the number of mesh elements

and the number of degrees of freedom.

While there are no limitations on the size of the horn that can be modelled

with the approximate method, the FEM approach is limited by the power of the

PC being used and the amount of RAM available. The mode matching approach

is only limited by the amount of computation time available since it calculates in a

stepwise fashion and each section can be calculated independently.

The central operating frequency of the VNA system (ν = 100GHz) is below

the cut-off of any higher order modes. So considering the expressions in Table 2.4

for the x and y components of the fundamental TE mode, where the subscripts

1 and 0 denote that m = 1 and n = 0, then Ex and Ey can be calculated over

a cut through the aperture of the horn by keeping y constant, say at y = b/2.

Similarly to calculate Ex and Ey through a cut perpendicular to the previous one

then the x coordinate should be kept constant, say at x = a/2. The magnitude of

the total electric field can of course be calculated across either of the aperture cuts

by calculating | ~E| =
√
E2
x + E2

y and keeping either x or y constant.
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Now using the two expressions for RX and RY defined in 3.3 and 3.4, and com-

bining all constants such as ZTE, β, etc. that appear in the TE10 mode description

into one arbitrary amplitude E0 (since only the general structure of the field is of

interest at this point), then the aperture field for the TE10 mode of a rectangular

horn can be written as:

Ey(x, y) = sin
(πx
a

)
exp

(
−j k

2

[
x2

Lx
+
y2

Ly

])
(3.5)

Equation 3.5 above corresponds to a reference frame where the aperture is

defined as going from 0 to a which is the usual convention in textbooks. A similar

expression is defined for the aperture field going from −a
2

to a
2

as:

Ey(x, y) = cos
(πx
a

)
exp

(
−j k

2

[
x2

Lx
+
y2

Ly

])
(3.6)

The far-field radiation pattern can then be calculated from the aperture field by

deriving the Fourier transform of either of the two equations 3.5 and 3.6 above. For

the case of evaluating the field from −a
2

to a
2

the result is:

EFF (θ, φ) =
k

4πr
(1+cos θ)

∫ b
2

− b
2

∫ a
2

−a
2

ENF (x, y) exp [jk(x sin θ cosφ+ y sin θ sinφ)]dxdy

(3.7)

Using the expressions just outlined for the aperture field and far-field distributions

the following graphs were plotted.

(a) (b)

Figure 3.3: Small rectangular VNA horn modelled with approximate theory, where the aperture field phase is

approximated as quadratic. (a): The magnitude of the normal electric field across the aperture. (b): The phase of

the electric field across the aperture.
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Figure 3.4: Far-field of small rectangular VNA horn modelled with approximate theory, where the aperture field

phase is approximated as quadratic. Cuts are shown for 0 and 90 degrees about the azimuthal angle φ corresponding

to the E and H-planes, respectively. The magnitude was normalised to the on-axis value.

3.1.4 Example Horn (Mode Matching Approach)

The general mode matching theory will not be discussed in great detail in this

section, as it is explained in depth for spherical geometries in chapter 4 and an

overview of the general theory is given in chapter 2. The theory specific to rectan-

gular/Cartesian geometries is detailed in Stephen Doherty’s PhD thesis mentioned

above [Doherty, 2012] and the approach is based on approximating the smooth

walled pyramidal geometry as a series of rectangular sections with increasing size

in a stepwise fashion, as is shown in Figure 3.5. The fields in each uniform section

are defined as the Cartesian modal solutions set out in chapter 2 of this thesis and

mentioned again in the discussion on the approximate method above.

Using the basis set of modes appropriate for Cartesian geometries, scatter ma-

trices are formulated for analysing how much power scatters between modes on

either side of each junction so that complex power is conserved, and then the scat-

ter matrices are cascaded for the total number of sections. The term complex power

is used since the scattering is calculated by integrating the product of the complex

electric and magnetic fields over the cross-section of the waveguide junction. A de-

tailed description of complex power is given in [Morgenthaler, 2011]. The scatter

matrices are constructed from three power coupling integrals (or overlap integrals)

P,Q, and R which are derived from taking cross products between either the ~E or
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(a) (b)

Figure 3.5: Simplified illustration of a smooth walled rectangular horn showing stepwise approximation. (a): A

smooth walled horn with regular flat walls. (b): A cut through the horn when it is representad in a stepwise fashion.

The steps are shown exaggerated for clarity.

~H field on one side of the junction with the complex conjugate of either the ~H or

~E field on the opposite side of the junction for cross-coupled power scattering, or

else cross products between fields on the same side of the junction for self-coupled

power scattering. The exact formulation of the P,Q, and R integrals are described

in chapter 2.

By running the Rectangular SCATTER program with an input geometry file

corresponding to a horn and waveguide with the same dimensions described in the

approximate method, the following graphs were generated for the aperture field and

far-field patterns. The horn’s geometry was split into 400 steps each with a length

of 0.05173mm, or λ/58. 58 steps per wavelength was most likely over-kill but the

program is very fast so calculation time was not an issue. A study into the minimum

requirement for step number was not investigated in this study.

Examining the figures corresponding to both the approximate solutions of the

fields and the mode matching results it is clear that there is relatively good agree-

ment in the E-plane for the aperture fields, particularly for the magnitude. The

SCATTER results for the H-plane are very different than the constant unity magni-

tude shown across the aperture in the approximate method. The phase also exhibits

large differences in the H-Plane, however the far-field patterns of both techniques

agree very well in both planes. A more detailed comparison will be shown after the

next section and it will include results from yet another approach, namely the FEM

technique.
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(a) (b)

Figure 3.6: Small rectangular VNA horn modelled with mode matching algorithms. The X-plane (blue) corresponds

to the H-plane, and the Y-plane (green) corresponds to the E-plane, in both graphs. (a): The magnitude of the

electric field | ~E| across the aperture. (b): The phase of the electric field across the aperture.

Figure 3.7: Far-field of small rectangular VNA horn modelled with mode matching algorithms. Two cuts through

the far-field pattern are shown for 0 and 90 degrees about the azimuthal angle φ corresponding to the E and H-planes

respectively. The gain (dBi) is relative to an isotropic radiator.

3.1.5 Example Horn (FEM Approach)

Figure 3.8 shows the model that was created in COMSOL to simulate the behaviour

of the same feed horn that was analysed with both the approximate and the mode

matching methods. The quarter section of the horn is shown in (a) and the model

after meshing is shown in (b). The symmetry boundary in the E-plane was defined

as a perfect magnetic conductor (PMC), while the symmetry boundary in the H-

plane was defined as a perfect electric conductor (PEC). The input waveguide was
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excited with the lowest order rectangular waveguide mode (TE10), and the quarter-

hemispherical cap that extends beyond the mouth of the horn and the quarter-

cylindrical section that runs adjacent to the horn were defined as the far-field domain.

(a) (b)

Figure 3.8: Small VNA horn modelled with COMSOL. (a): A quarter of the full horn was sufficient to model due

to the symmetry of the geometry and the field in the E and H-planes. (b): The model completely meshed.

Figure 3.9 shows the default model solution. It is a surface plot for the log of

the electric field for the full model at two separate viewing angles. 2D slice plots and

1D line plots can also be generated for the elecric and magnetic fields, for example,

using post-processing. The post-processing environment in COMSOL also allows

analysis of many other parameters such as current densities, resistive heating, S

parameters, etc. and the latest version of COMSOL (version 4.3) also provides a

polar plot option for graphing data such as far-field patterns.

(a) (b)

Figure 3.9: Electric field of a small VNA horn modelled with COMSOL.

Following calculation of the aperture fields ~EA and ~HA across the surface that

makes up the aperture of horn, and the plane surrounding the aperture, S, the
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Stratton-Chu formula [Volakis and Sertel, 2012] is applied to the near field data in

order to calculate the far electric field ~EFF at each point on a sphere infinitely far

from the aperture of the horn. The Stratton-Chu formula for calculating the far-field

at each point P on the sphere has the following form:

~EFF
P =

ik

4π
~r0 ×

∫ [
~n× ~EA − η~r0 ×

(
~n× ~HA

)]
exp (ik~r · ~r0) dS (3.8)

where ~EA and ~HA are the tangential fields on the surface S across the aperture of

the horn, ~n is the unit normal to the surface S, η is the impedance, and k is the

wavenumber (k = 2π
λ

). Finally, ~r0 is the vector pointing from the centre of the horn

aperture to the field point P . The geometry of the problem is illustrated in Figure

3.10.

Figure 3.10: Illustration of COMSOL far-field calculation [Orfanidis, 2002].

According to Volakis and Serte, the Stratton-Chu integral formulae for field rep-

resentations are in fact among the most popular in scattering and antenna related

problems [Volakis and Sertel, 2012]. And the COMSOL support literature states

that the COMSOL far-field calculation is identical to what is known as the “scat-

tering amplitude” in an EM scattering problem [COMSOL, 2011]. In deriving the

waveguide modes in chapter 3 the starting point was the homogeneous Helmholtz

equation, usually just called the Helmholtz equation (∇2 + k2) ~ψ(~r) = 0, since we

were dealing with the source free case. However since the aperture of the horn acts

as a source for the far-field the inhomogeneous Helmholtz equation is required as a

starting point for deriving the relationship between the aperture field and far-field:(
∇2 + k2

)
~ψ(~r) = −f(x) in Rn (3.9)
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where n = 1, 2, 3, and f is some function yet to be defined.

The way to solve the above equation uniquely is to specify a boundary condition

at infinity. The boundary condition typically used is the Sommerfeld radiation con-

dition [Schot, 1992]. The solution then to the inhomogeneous Helmholtz equation

is: (
∇2 + k2

)
G
(
~r, ~r′

)
= −δ

(
~r − ~r′

)
in Rn (3.10)

where δ
(
~r − ~r′

)
is the Dirac delta function, and G

(
~r, ~r′

)
is the Green’s function,

the form of which depends on the dimension of the space n. For n = 3 the Green’s

function has the following form:

G
(
~r, ~r′

)
=
eik~r

4π~r
(3.11)

where the boundary condition that the Green’s function is an outgoing spherical

wave for |~r| ⇒ ∞ was chosen.

Finally, using this particular Green’s function, and applying Green’s theorem

to the spherical surface that bounds the far-field domain in the model, we obtain an

important expression relating the values of the fields in the interior of the surface

to those at the closed surface, that of equation 3.8.

There are two reasons for allowing a small amount of propagation beyond the

mouth of the horn. The first is to allow the field to freely propagate away from the

aperture of the horn. This serves to avoid unwanted reflections that could occur if

the model geometry was truncated right at the aperture of the horn. If the surface of

the quarter sphere that bounds the propagation region is given appropriate boundary

conditions (Scattering Boundary or Perfectly Matched Layer) then no reflections will

occur. The second reason is to create a surface that has points with well-defined

angular position (θ, φ) with respect to the horn aperture for the far electric field to

be analysed across.

This transformation process using the Stratton-Chu formula generates a new

variable (Efar) with three components (Efarr̂, Efarθ̂ and Efarφ̂) that represent the

collection of far-field data points ~EFF
P across the spherical surface.

The results of the COMSOL model are shown together with the results from

the other two methods discussed previously.

As can be seen in Figure 3.11, there is excellent agreement between the three dif-

ferent simulation techniques particularly out to about 40 degrees which corresponds

83



(a) (b)

Figure 3.11: Comparisons of the far-field beam patterns for three simulation methods, the approximate phase-cap

method, the rectangular mode matching method, and the FEM approach.(a): The beam pattern in the plane with

the azimuthal angle set equal to zero (φ = 0, or E− plane), (b): The beam pattern in the plane with the azimuthal

angle set equal to 90 degrees (φ = 90, or H − plane)

.

to approximately−20dB in the E-plane and−32dB in the H-plane. However beyond

40 degrees there is still reasonably good agreement considering the FEM technique

is a very different computational approach than the mode matching technique.

3.1.6 Inclusion of a Conducting Ground Plane

The COMSOL results displayed so far have assumed free-space surroundings at

the aperture of the horn. The mode matching technique does not consider the

surroundings of the horn at all, and the same is true for the phase-cap approximate

method. However the horns on the SAFARI instrument will be combined in an array

with conducting material (gold coated) between them (see Figure 3.1(a) at the start

of this chapter). Any induced surface currents across this adjoining plane could

possibly act as sources for the far-field radiation leading to increased side-lobes for

example. For this reason COMSOL simulations were run again with the boundary

adjacent to the horn aperture defined as a perfect electric conductor (PEC) boundary

condition. These results were again compared to the mode matching results and they

are displayed in Figure 3.12.

As can be seen there are small differences between the COMSOL results when

the conducting ground plane is included, however the effect is so small it would be

considered negligible. What is interesting though is that the small deviation is in the
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(a) (b)

Figure 3.12: Comparisons of the far-field beam patterns for the effect of inclusion of a conducting ground plane.

(a): The beam pattern in the plane with the azimuthal angle set equal to zero (φ = 0o, or E-plane), (b): The beam

pattern in the plane with the azimuthal angle set equal to 90 degrees (φ = 90o, or H-plane)

.

direction of bringing the results into better agreement with the SCATTER results,

in both planes. Because there was a small visible change in the beam patterns an

analysis of the induced surface currents across the ground plane was carried out.

(a) X direction (H-Plane) (b) Y direction (E-Plane)

Figure 3.13: 1D cuts of the surface current density across the conducting ground plane adjacent to the horn aperture.

The off-axis distance is from the edge of the horn aperture to the edge of the propagation zone

.

3.1.7 Comparing Horn to Waveguide

In order to investigate the most extreme case of the possible effect of the conducting

ground plane on the far-field, a simple waveguide was modelled. The far-fields were
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calculated for both the case of a free standing waveguide and one embedded in a

ground plane. A straight waveguide was chosen because it has poor directionality

and would therefore likely lead to significant induced currents across the ground

plane. The waveguide was given the same transverse dimensions as the waveguide

section of the horn model (WR-10), and the same length as that of the horn.

Figure 3.15 shows the far-field radiation patterns for both a waveguide in free-

space and a waveguide connected to a ground plane. As can be seen there are

significant differences in both far-field planes when the ground plane is included. The

effect is much more obvious in the case of a waveguide than it was for a rectangular

horn, as would be expected. The data corresponding to the surface current density

is also shown plotted in Figure 3.14. When compared to the surface current density

generated across the ground plane from the horn it is clear that it is much greater

for a waveguide. These induced currents act as sources for the far-field.

(a) X direction (H-Plane) (b) Y direction (E-Plane)

Figure 3.14: 1D cuts of the surface current density across the conducting ground plane adjacent to waveguide

aperture. Off-axis distance is from the edge of the waveguide aperture to the outer edge of the propagation zone.

3.1.8 Directional Gain of Example Horn

In the far-field patterns shown for the COMSOL FEM simulations and those of the

mode matching approach, the data on the vertical axis was directional gain. While

the aim of plotting the far-field data was to compare the structure of the far-field

patterns for the different computational approaches, the calculation of gain can also

be a very useful parameter for describing the performance of a horn antenna. The
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Figure 3.15: Far-field patterns of a waveguide in free-space and connected to a conducting ground plane.

measure of directional gain provides important information about the directivity of

the beam compared to an isotropic radiator. However there is no built-in option

in the COMSOL software to calculate the gain so the author derived an expression

that would allow it to be calculated.

The directivity of the horn can be defined as 10Log10 (I (θ, φ) /Iiso), where

I (θ, φ) is the power flux or power density at a point P , and Iiso is the power flux of

an ideal isotropic radiator at the same point P on a sphere with radius r, which is of

course is defined as Iiso = P0/4π|r|2, where P0 is the total input power at the horn

aperture. Now I (θ, φ) can also be defined as | ~E|2/2Z, where Z is the impedance of

free space and is equal to 377Ω, so the directivity can be defined as:

G = 10Log10

(
4π|r|2| ~E|2

2ZP0

)
(3.12)

Now the default value for the input power P0 in the RF module of COMSOL

is 1 Watt. Also, strictly speaking the value of |r| in the far-field is infinity, however

if this was allowed to be the case then the fields would all go to zero in the far-field.

For this reason COMSOL defined r to be unity in the definition of the far-field. So

setting P0 = 1 and |r| = 1 the above expression for the directive gain reduces to:

G = 10Log10

(
2π| ~E|2

Z

)
dBi (3.13)

where the i in dBi denotes that the gain is with respect to an ideal isotropic radiator.
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To be more precise the directive gain should really be computed with respect

the an ideal isotropic radiator with power equal to that at the mouth of the horn

rather than the power input at the entry port. If there is no significant back scatter

then the result will be almost identical, but if there is significant losses due to back

scatter (S11) then the correct definition should be:

G = 10Log10

(
2π| ~E|2

Z

(
1− |S11|2

))
dBi (3.14)

It was Equation 3.14 that was used for calculating the gain in the previous far-

field plots. Then using the same definition an analysis was carried out to investigate

the gain of the example horn across the frequency range of the VNA system, namely

65 to 110GHz, in steps of 6GHz. The same analysis was also performed for the

waveguide described above so that the benefit of using a horn instead of a waveguide

would be highlighted. Figure 3.16 shows the gain plotted as a function of frequency

for both the horn and waveguide.

(a) (b)

Figure 3.16: Gain plotted as a function of increasing frequency for (a): a small pyramidal horn, and (b): a waveguide

with similar dimensions.

The gain is significantly higher for the horn, as can be seen in Figure 3.16. The

trend of the gain graphs is similar for both cases, with the gain increasing steadily

as frequency increases. However the value at each frequency point is much higher

for the horn. It can be concluded that using a horn in place of a simple waveguide

provides greater directionality with less back scatter. This would clearly be expected

based on λ/d considerations, where d is the size of the aperture which is significantly

larger for the horn, and λ is the wavelength of radiation.
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3.1.9 External Back Scatter

The ability to include a propagation analysis domain with COMSOL made it possible

to model external back scatter around the back of the horn. It has always been

assumed that the power levels in this direction would be insignificant, but it is

a question of interest all the same. In fact the Planck CMB satellite had some

problems when an artefact in the detector data could not be explained. The source

of the problem was eventually traced to some of the horns being able to see a warm

part of the satellite behind the horns. Being able to model the beam patterns of

horns right through the full 360o field will allow more careful design of systems that

can avoid such problems.

By extending the propagation region through 180o it was possible to perform a

far-field transformation on the field data behind the horn using the same Stratton-

Chu method described above. Figures 3.17(a) and 3.17(b) show the co-polar and

cross-polar far-field beam patterns for both a WR-10 waveguide and the example

pyramidal horn from before. As can be seen for the case of the horn, the gain does

begin to increase for angles greater than 90o, but not to significant levels. However,

for very sensitive receiver horns such as those required for CMB polarisation experi-

ments, these levels could become significant. A very strong source behind the horns,

such as the Sun for example, could become noticeable if sufficient shielding is not

employed.

The 180o plot for the waveguide is also interesting, particularly the cross-polar

field. It shows a very smooth distribution that is almost symmetric about the 90o

angle. Careful analysis of the behaviour of the fields in the vicinity of a waveguide

aperture may be important for modelling the VNA set-up in the future as short

waveguide sections are being increasingly used as probes for examining the far-field

patterns of radiating feed horns. Tests to date seem to show that while a waveguide

probe is well suited for measuring the co-polar fields of radiating components, they

are not ideal for analysing cross-polar distributions.

3.1.10 Experimental Verification

In order to verify the computational approaches presented in this section, a series

of beam pattern measurements were carried using the VNA system at NUIM. Neil
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(a) Horn (b) Waveguide

Figure 3.17: Cuts through the far-field beam patterns of a small pyramidal horn and a WR-10 wavguide in free

space. The far-field data is plotted over the full 180o, thus including the space behind the radiating component.

Tynan of the Department of Experimental Physics at NUIM provided assistance

with the experimental set-up and the alignment procedures. The experimental set-

up is illustrated in Figures 1.15 and 1.16 in section 1.4 of chapter 1. The particular

pyramidal horn that was analysed had the same dimensions as the example horn

described in this section, and the details can be found in subsection 3.1.3 above.

A two-port network was used for the analysis, where port one was used in

combination with a frequency converter head (head one) as the transmitter. Port

two, also used in combination with a frequency converter head (head two), was

employed as the receiver. The waveguide probe was mounted head one of the VNA

system, which was fixed to the x− y raster scanner. The pyramidal horn was then

mounted head two, which was fixed and a z translation stage. The distance (∆z)

between the horn aperture and the waveguide probe aperture was set to 450mm

using the translation stage. The maximum off-axis angle at which the beam pattern

could be measured was limited by the range of the raster scanner in the x − y

plane. The limits of the scan in x and y were both -140mm to +140mm, leading

to a maximum off-axis angle range of −17.28o to +17.28o in both the E-plane and

H-plane.

Figure 3.18 shows the E-plane (x = 0) and H-plane (y = 0) cuts through

the measured far-field beam pattern. The COMSOL FEM and SCATTER mode

matching simulation results are shown again for comparison, and as can be seen

there is very good agreement between measurement and model.
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(a) E-Plane (b) H-Plane

Figure 3.18: Far-field beam pattern measurements of a pyramidal horn using a VNA.

3.2 SAFARI Horns

The current feed horn being used in the SAFARI test bed at SRON is a smooth

walled conical design. However the current design for the SAFARI feed horns in

array format is a two angled pyramidal horn as shown in Figure 3.21. The reason

for the choice of a pyramidal geometry over a conical one is down to limitations in

the manufacturing process. For horns on these micrometer scale the most accurate

method of manufacture is to start with a block of material (usually aluminium)

and to first fashion rows of horns through one dimension as shown in Figure 3.20

(b). The same process is then carried out in the perpendicular direction to reveal an

array of pyramidal mandrels as shown in Figure 3.20 (c). RAL in the U.K. have built

monolithic arrays of 388 pyramidal horns as shown in Figure 3.19 (b) and (c). The

horns are electroformed in copper on wire-eroded aluminium mandrels (see Figure

3.19 (a)). During the wire erosion process it becomes difficult to transfer heat away

from the tip of the mandrels due to the extremely small dimensions of the horn

apertures. The sudden change from the softer angle (4.5o) to a much steeper angle

(20o) solves this problem and this is what leads to the design shown in Figure 3.21.

3.2.1 Far-field Radiation Patterns of SAFARI Horns

The frequency range the SAFARI S-Band instrument is designed for is 4.3THz to

10THz (λ = 30 − 70µm) meaning that the dimensions of the horns correspond

to many wavelengths. Standard computers will not be able to fully model these
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(a) (b) (c)

Figure 3.19: SAFARI horn array and mandrel. (a): A mandrel for construction of an 8 × 8 pyramidal horn array,

(b): An array of 388 pyramidal horns with a hand to demonstrate the small scale of the structures, and (c): The

same array of 388 pyramidal horns shown enlarged an face-on.

(a) (b) (c)

Figure 3.20: Illustration of the wire-erosion process for micro horn array manufacture. (a): A solid block of

material. (b): The block following wire-erosion in one dimension, and (c): The block following wire-erosion in two

perpendicular directions revealing pyramidal horn mandrels.

Figure 3.21: left : 3D model of curent SAFARI horn design. right : Curent SAFARI horn design showing the

dimensions of the horns in a slice through the array, where all dimensions are in mm.

large horn structures using FEM or FIT techniques, particularly at the highest

frequencies. The pyramidal mode matching approach will be essential in order to

characterise these feed horns across the desired frequency range.

Using a particularly powerful computer with 64 gigabytes of RAM, and taking

advantage of symmetry conditions in both the E-plane and H-plane, it was possible
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to use COMSOL to perform a FEM simulation of a SAFARI S-Band horn at the

lowest operational frequency of 4.3THz. The beam patterns at azimuthal cuts of

φ = 0o and φ = 90o are shown in Figure 3.22. The same horn was simulated using the

Pyramidal SCATTER program for comparison. As can be seen in the comparison

plot there are large differences in the far-field patterns calculated by COMSOL and

SCATTER.

Figure 3.22: Far-field pattern of a SAFARI horn at 4.3THz (70µm) modelled with COMSOL and SCATTER.

The main beam in the SCATTER data is clearly much wider than the COMSOL

data. Upon comparing the approaches of COMSOL and SCATTER in terms of

mode excitation at the input waveguide feed, the large differences are expected.

COMSOL only allows a single mode to be defined for each simulation (the TE01

mode in this case with the electric field polarised in the y direction, or φ = 90o,

leading to the higher side-lobes in the φ = 90o far-field cut), thus the higher order

propagating modes were not included. In contrast, SCATTER is including the

power contribution from all possible propagating modes. The symmetry in the E-

plane and H-plane for the SCATTER results is due to the horn being square rather

than rectangular, and since all propagating modes are included in the calculation,

then both polarisations of each mode will also be included, for example the TE10

and TE01 modes, leading to the observed symmetry.

COMSOL does account for power scattering from the input mode to higher

order modes when a step discontinuity or change in flare angle is encountered, for

example the change in angle in the SAFARI horn in this case. This scattering
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behaviour is clear in the example of the spline fit conic section horn modelled with

COMSOL in chapter 4 of this thesis. In that case the horn is fed by a rectangular

WR-10 waveguide excited with only the fundamental TE01 mode with the resulting

horn aperture field exhibiting a combination of modes that is evident from the

symmetric Gaussian field observed at the output. As can be seen in the analysis

presented in section 4.3.2 both COMSOL and SCATTER in cylindrical coordinates

agree very well for that particular example, and this is due to the fact that the

first section of the spline fit conic horn supports only a single mode. However,

the difference in the present case of the SAFARI horn is that the first waveguide

section is itself over-moded, meaning that the large number of modes generated by

the SCATTER code will each carry power through the horn and contribute to the

far-field pattern.

An attempt to encourage the FEM and mode matching results to agree was

made by independently simulating higher order modes with COMSOL and then

summing them during post-processing analysis. Only modes with cut-off frequencies

below 4.3 THz were considered since any modes with higher cut-off frequencies would

be highly attenuated through the horn. Table 3.1 shows the cut-off frequencies for

some of the higher order rectangular modes, and thus the modes that were considered

in the FEM analysis. The far-field data corresponding to each propagating mode

was summed in a linear fashion and the resulting far-field pattern is shown in Figure

3.23 with the SCATTER result shown again for comparison.

Mode Cut-Off (THz) Behaviour Mode Cut-Off (THz) Behaviour

TE10 1.875 Propagating TE21 4.193 Propagating

TE01 1.875 Propagating TE12 4.193 Propagating

TE11 2.652 Propagating TM21 4.193 Propagating

TM11 2.652 Propagating TM12 4.193 Propagating

TE20 3.750 Propagating TE22 5.303 Evanescent

TE02 3.750 Propagating TM22 5.303 Evanescent

Table 3.1: Cut-off frequencies of some of the higher order modes at the input aperture of a SAFARI horn.

As can be seen there is now much better agreement between the two results,

but there are still some differences in far-field distributions for the SCATTER and

COMSOL models. In the COMSOL analysis each propagating mode was excited
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Figure 3.23: Far-field pattern of a SAFARI horn at 4.3THz (70µm) modelled with COMSOL and Pyramidal SCAT-

TER. In this example the TE10, TE01, and TM11 modes were analysed separately with COMSOL and then

summed.

with equal power at the input port while no consideration was given to evanescent

modes. The SCATTER mode matching code excites all modes (up to the number

defined by the user) including evanescent modes, some of which may eventually be-

come significant since the SAFARI horn widens relatively quickly and therefore these

modes may actually contribute to the far-field, thus leading to differences between

the two results. It may also be possible that simulating each mode independently

with COMSOL is missing more subtle modal cross-coupling effects that SCATTER

is so good at capturing.

Following the analysis at the lowest frequency of 4.3THz, and having pushed

the limits of the COMSOL FEM approach with the highest powered PC available,

the SAFARI horns were then modelled at both an intermediate frequency (7.15 THz)

and the highest operational frequency (10 THz) with the SCATTER mode matching

code in order to examine the aperture fields and far-field patterns of the current horn

design. The calculation time at 7.15 THz and 10 THz was 21.49 hours and 92.70

hours respectively. The near field and far-field patterns are shown in Figures 3.25

and 3.24 below for the three frequencies that were examined, corresponding to the

start, middle, and end of the operational frequency range of the SAFARI S-Band

horn array.

The aperture field plots shown in Figure 3.25 show interesting field distribution
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(a) (b)

Figure 3.24: Far-field patterns of a SAFARI horn at three spot frequencies. (a): The E-plane (φ = 0o) cut at 4.3,

7.15, and 10.0THz, and (b): The H-plane (φ = 90o) cut at 4.3, 7.15, and 10.0THz. It is clear that the E and H-plane

cuts are identical, as would be expected.

(a) (b)

Figure 3.25: Aperture fields of a SAFARI horn at three spot frequencies. (a): The E-plane (φ = 0o) cut at 4.3, 7.15,

and 10.0THz, and (b): The H-plane (φ = 90o) cut at 4.3, 7.15, and 10.0THz. It is clear that the E and H-plane

cuts are identical, as would be expected. The off-axis distance is is plotted for the extent of the aperture of the horn

(-0.325 to 0.325 mm).

across the aperture of the horn compared to a typical single mode rectangular horn.

The aperture field distributions vary significantly for the various frequencies. The

far-field patterns however show much more similarity for different frequencies but

are again very different from what would be seen by a single mode horn. The main

beam has a large width which indicates the higher levels of throughput that are

possible with such multi-moded horns.

As efficient as the mode matching approach is compared to the FEM approach

for example, the computation times for modelling the SAFARI horns are still very
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long for the higher frequencies. A brief discussion is now given on a possible method

for significantly increasing the efficiency of the mode matching technique used.

A huge reduction in computation time would be possible if conical modes could

be employed in the mode matching code in place of the rectangular modes. The

difficulty that arises of course is that the SAFARI horns are rectangular in nature

meaning that conical modes do not fit naturally with the horn geometry. However

it would still be possible to describe the fields by conical waveguide modes by means

of coordinate transformations since a rectangular horn with a spherical phase cap

at the aperture is just as much a section of a sphere as a conical horn.

The reason this would be useful is because the only place where scattering of

power occurs is at the plane where there is a change in flare angle, meaning that

power scattering overlap integrals would only be required to be calculated at one

junction rather than a few hundred. In fact the only modes that can actually carry

significant power through the horn are the modes that can propagate through the

cross sectional area at the plane of angle change. The current rectangular mode

matching code continues performing overlap integrals for the sections making up

the entire length of the horn, and since the cross section of the horn becomes very

large toward the aperture a huge number of modes are included in the calculation

that in reality will carry little to no power.

The highest mode index at the intermediate frequency of 7.15 THz is m =

31. This gives rise to 1, 984 modes that must be accounted for in the scattering

calculations, and is determined by 4 ×
N∑
i=1

i since each index i can correspond to

TEmi, TEin, TMmi, or TMin. The highest mode index at the high end of the

frequency band (10 THz) is m = 45, giving rise to 4, 140 modes.

A detailed description of conical and spherical modes, and the theory of conical

mode matching is given in chapter 4. It is the same techniques that could be applied

to modelling the SAFARI rectangular horns but with some alterations to account for

the rectangular pyramidal PEC boundaries in place of the conical PEC boundaries.

3.2.2 Optical Cross-talk in SAFARI Horn Array

In this section the term ‘optical cross-talk’ will define the amount of power detected

at the entry aperture of a horn (smaller aperture of the SAFARI horns) that is
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adjacent to a transmitting horn. More specifically it is defined as a ratio of the total

detected power at Port 2 to the total input power at Port 1 (see Figure 3.26). The

SAFARI instrument that is being investigated in this thesis is purely a receiving

system. However, it is still desirable to quantify the crosstalk effects between feed

horns in the SAFARI horn array in a manner that assumes one feed horn to be

transmitting and the rest of the neighbouring feed horns to be in the receiving

mode, as this represents an extreme case that can be taken as an upper limit on

cross-talk levels. This is because any receiving system will always reflect a small

amount of the incident power, effectively making it a weak transmitter.

Figure 3.26: Screen shot of COMSOL model of optical cross-talk in the SAFARI horn array.

Figure 3.26 shows a screen shot of a 2D model of the transmit/receive problem

just described that was built with COMSOL multiphysics modelling software. As

can be seen from the image the COMSOL software is ideal for this analysis due

to the ability to include a propagation domain that serves to link neighbouring

feed horns together through free-space. However, as mentioned already the FEM

approach that COMSOL employs is very computationally demanding, so modelling

multiple horns even at the lowest frequencies would be impossible without some sort

of super computer. In fact, as was shown in the previous section, modelling even

one SAFARI horn at the lowest frequency of 4.3 THz was just about manageable if

the PEC and PMC symmetry boundaries were used to reduce the problem size to

one quarter of the original full horn model.

The most computationally efficient way to model this optical cross-talk problem
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for the SAFARI horns using FEM analysis, and without resorting to the use of a

super computer, was to take advantage of the 2D modelling environment available

with COMSOL. This 2D simulation format is very computationally efficient but it

was unclear how accurate it would be. In order to investigate the accuracy of the

2D approach two smaller horns were modelled in both the 3D and 2D COMSOL

environments and the results were compared. Figure 3.27 shows a cut through the

E-plane of the 3D COMSOL model. The same VNA example horn from the previous

section was used again for this analysis in which the distance between the radiating

and receiving horns was incrementally increased.

It was considered important to examine how the cross-talk levels changed with

separation distance in both the E-plane and the H-plane as the fields behave very

differently in each plane unless some sort of mode mixing is carried out by us-

ing corrugations or some sort of smart profile. In a straight, non-profiled, smooth

walled horn the electric field will smoothly approach zero toward the boundary of

the horn in the H-plane, whereas the field will be significantly greater than zero at

the horn boundary in the E-plane; usually approximately 65% of the on axis inten-

sity. Therefore it would be expected that the levels of cross-talk will be greater in

the E-plane both through radiative processes and possibly through induced surface

currents across the boundary joining the apertures of the two horns.

Figure 3.27: Screen shot of the example horn cross-talk model showing a cut through the E-plane.

The level of cross-talk can be calculated in the post-processing mode of COM-

SOL following the completion of the solver. It is calculated by integrating the power
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across the surface of the detector port 2 and then dividing the result by the total in-

put power; usually 1 Watt in the form of a particular TE or TM mode. This method

will give an upper limit on the cross-talk level for the particular arrangement since

not all this power will couple into the waveguide that will typically join the horn to

the detector cavity. A more accurate method for calculating the cross-talk is to ex-

amine how much of the power detected at port 2 actually couples to the eigenmodes

of the waveguide. This is the S21 parameter and is defined as follows:

S21 =

∫
Port2

(Ec · E2
∗)dA2∫

Port2
(E2 · E2

∗)dA2

(3.15)

where Ec is the total electric field across port 2, and E2 is the electric field eigenmode

of the rectangular waveguide that has the same transverse dimensions as the exit

aperture of the receiving horn. The overlap integral is then normalised with respect

to E2. The subscript 21 represents power that will couple to port 2 from the input

field at port 1.

The value of the return power S11 can also be calculated in a similar manner

by:

S11 =

∫
Port1

((Ec − E1) · E1
∗)dA1∫

Port1
(E1 · E1

∗)dA1

(3.16)

The subscript 11 represents power detected at port 1 from port 1.

Figure 3.28 shows the predicted results of incrementally increasing the separa-

tion distance between the two example feed horns. As was expected the levels of

cross-talk are indeed significantly higher in the E-plane data. What is also clear

is that there is relatively good agreement between the 2D and 3D data, at least in

terms of the general trend. There are some differences between the two but the gen-

eral trends are in agreement, and they are of the same order of magnitude. Based

on these results it can be assumed that a 2D analysis of optical cross-talk for the

SAFARI horns can be relied upon to give an approximate result that is of the correct

order of magnitude.

As was done with the analysis of the effect of induced surface currents on far-

field patterns, the most extreme possible case was examined so that an upper limit

on cross-talk could be calculated. As before a uniform waveguide was considered to

have to the lowest directionality of any waveguide component (ignoring instruments

such as isotropic radiators). A similar cross-talk analysis to that performed for the

small horn was carried out for two uniform waveguides in an array. As was expected
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Figure 3.28: Predicted optical cross-talk levels between two small pyramidal VNA horns at 100GHz. It is clear that

the levels are significantly greater in the E-plane.

the levels of detected power by the neighbouring waveguide were significantly greater

than the case of a horn, and a neighbouring waveguide in the E-plane again gave rise

to much higher levels than one in the H-plane. Figure 3.29 shows how the cross-talk

between two rectangular waveguides varied over a range of separation distances in

both the E-plane and H-plane.

(a) (b)

Figure 3.29: Predicted optical cross-talk levels between two WR-10 waveguides at three test frequencies in (a): the

H-plane, and (b): the E-plane. The 70GHz frequency was first modelled with a conducting plane separating the

horns, and then a free-space plane.

An interesting feature of the waveguide cross-talk plots is how much smoother

the fall-off of detected power is in the E-plane compared to the H-plane as the

waveguides are separated. The maximum levels were found at the lowest frequency
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of 70GHz, so this frequency was chosen for an investigation into the difference be-

tween including a conducting boundary between horns or a free-space boundary.

Employing a PEC boundary is representative of waveguides in an array, whereas a

free-space boundary represents the waveguides in free-space and therefore not con-

nected through currents. The aim of this analysis was to try to determine if the

cross-talk effects were the result of radiative processes through coupling of EM fields,

or induced surface currents across the boundary that separates the guides.

The plot shown in Figure 3.29(a) for a neighbouring waveguide in the H-plane

seems to indicate that a conducting boundary can affect the levels of cross-talk

by as much as 5dB when the horns are very close together. As the separation

distance is increased the effects of the conducting boundary decrease. This would

be expected as the electric field goes to zero at the aperture of the guide in the H-

plane meaning that few surface currents would be expected to be induced across the

adjoining boundary. Figure 3.29(b) shows that as the separation distance between

two waveguides in the E-plane is increased the conducting boundary has a greater

effect. Again this would be expected due to the relatively large magnitude of the

electric field at the aperture of the waveguide in the E-plane. The electric field can

excite surface currents across the adjoining boundary meaning that removing the

PEC condition reduces the levels of cross-talk detected.

With a good understanding of the processes governing cross-talk between neigh-

bouring waveguide structures, two SAFARI horns were then modelled in a similar

manner to that described above but only in the 2D COMSOL environment due to

electrical size of the horns. Three spot frequencies corresponding to the lowest, in-

termediate, and highest end of the S-Band were examined for various TE and TM

modes. The structure of the field in the third (unaccounted for) dimension, which

would be in and out of the screen in the z direction since the model plane on-screen

represents the x− y plane, is assumed to be constant. The transverse fields can be

thought of as having subscript m = 0 in a TE0n mode or m = 1 in a TM1n mode

that would exist in a three dimensional model. However it is again an approximation

since with the real 3D horn the presence of conducting walls bounding the fields in

the z direction will have an effect on the field structure in the other two directions,

particularly if the mode is close to cut-off.

Another issue with the 2D environment is that for any TE0n mode analysed

102



in the on-screen (x − y) plane, the analysis is always carried out in the H-plane.

In other words the 2D model of TE modes represents two horns side-by-side in the

H-plane. However the 3D cross-talk study performed on the example horn in the

previous section demonstrated that the cross-talk levels are significantly higher in

the E-plane. In order to analyse cross-talk in the E-plane using the 2D environment

TM modes were considered as this allowed post-processing analysis of power flow

in the E-plane. Before the analysis was carried out a separate investigation was

performed in order to determine if different mode orders gave rise to varying levels

of cross-talk. If the cross-talk proved to be independent of mode order then 2D

analysis of the TM11 mode would provide a means for determining an approximate

value of the SAFARI horn cross-talk in the E-plane, accurate to within an order

of magnitude. Likewise, 2D analysis of the TE01 mode would provide a means of

evaluating the cross-talk in the H-plane to within an order of magnitude.

The first simulations involved examining cross-talk levels for multiple propa-

gating modes in the SAFARI horn array. Three frequencies were simulated at two

values of separation distance corresponding to the most extreme case of d = 0mm,

and the value of the current SAFARI horn array design of d = 0.19mm. Figure 3.30

shows that the TE01, TE02 and TE03 modes gives rise to almost identical levels of

cross-talk at each of the test frequencies. The TM modes are also in very good

agreement with the largest difference of about 2dB at the intermediate frequency.

What is clear is that analysis of the TM modes results in much larger levels of

cross-talk as was expected since the TM mode analysis represents two horns in the

E-plane. The post-processing analysis of the TE modes carried out in the H-plane

shows significantly lower levels of spill over as expected.

With confidence that there is relatively low dependence on mode number for

cross-talk levels, the next analysis that was performed was a parametric sweep for

separation distance between two SAFARI horns for the lowest frequency of 4.3 THz

and the highest frequency of 10 THz. Figure 3.31(a) shows the results. Again it

can be seen that there are significantly higher levels in the E-plane data compared

to the H-plane data as would be expected, however even when the horn apertures

are allowed to touch the levels do not exceed -30dB. The cross-talk levels are then

lower for the higher frequency data which again would be expected since bore-sight

gain generally increases with frequency, and since gain is related to directivity then
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(a) (b)

Figure 3.30: Levels of cross-talk in SAFARI horn array for various propagating modes. Three test frequencies were

examined in each instance. (a): Cross-talk levels for zero spacing between horn apertures. (b): Cross-talk levels for

0.19mm spacing between horn apertures.

the higher frequency beams would be expected to have less power off-axis.

Figure 3.31(b) shows the results of a frequency sweep that was analysed across

the full operational range of the SAFARI S-Band array. The sweep was across 4.3

to 10THz for 50 spot frequencies at 0.114THz intervals. Again there are signifi-

cantly higher cross-talk levels in the E-plane, but it is below -30dB right across the

band. It should be again pointed at that these results only provide an approxima-

tion. This is due to the analysis being carried out in the 2D COMSOL modelling

environment which was shown to sometimes yield inaccurate results, some of which

can be significant as can be seen at certain frequency values in Figure 3.28. A final

verification using the 3D COMSOL package on a super computer would be required

for complete confidence that cross-talk levels would not be an issue in terms of the

required sensitivity of SAFARI.

The levels of cross-talk that were calculated from the simulations described in

this section are not considered to be of concern for a SAFARI-like instrument. Even

though -30dB is a significant level for some aspects of the instrument such as the

magnitude of the far-field beam at large angles, the optical cross-talk will only be

due to reflections of power from a horn rather than a radiating horn. Therefore the

initial emitted power at the ’radiating’ horn will already be very small, so -30dB of

an already low-level source will have little to no effect compared to the incoming

source signal.
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(a) (b)

Figure 3.31: Predicted cross-talk levels in SAFARI horn array. (a): Predicted levels for various separation distances.

(b):Predicted levels for a frequency sweep from 4.3 to 10THz.

3.2.3 Experimental Verification

In order to verify the optical cross-talk simulations presented in this section a series

of measurements were carried out using the VNA at NUIM. Two WR-10 waveguides

were chosen rather than two horns since the poor directionality of uniform waveg-

uides allows for a stronger detectable signal, as was shown in the simulations in this

section. A single separation distance was chosen with its value constrained by the

dimensions of the waveguide flange sizes, as shown in Figure 3.32.

A frequency sweep from 75 to 100 GHz was carried out in both the E-plane

and H-plane. The results of the measurements are shown in Figure 3.33, where the

results of a corresponding FEM model are also shown for comparison. It is clear that

there is excellent agreement in the E-plane, and relatively good agreement in the

H-plane considering the very low levels measured. What should be noticed though

is that the H-plane data in the FEM simulation appears to indicate an upper limit

on the level of crosstalk since the levels in the measured data are consistently lower

than the model across the band. This indicates that the models can be trusted as

they appear to represent a worst case scenario.

The optical crosstalk tests presented here are clearly trivial measurements to

perform. However, they were important nevertheless since they served to verify

the simulations presented throughout section 3.2.2. It would also have been possi-

ble to cut the waveguides, and sacrifice the flanges. However, because this would

have rendered the waveguides useless afterwards, and because of the previous good
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(a) (b)

(c) (d)

Figure 3.32: Photographs of WR-10 waveguides (a) to (c), and CAD model of WR-10 waveguide face. The holes

and connecting dowels were included in the COMSOL simulations so as to match the experimental set-up (d).

Figure 3.33: Optical crosstalk between two WR-10 waveguides measured with the VNA at NUIM. The simulation

results shown were performed using COMSOL.

agreement reported, it was chosen not to take the destructive route.
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3.3 Characterising Throughput of SAFARI-Like

Multi-Moded Feed Horns

3.3.1 Background

The SAFARI research team at the SRON is currently performing a detailed anal-

ysis of a single SAFARI-like pixel in what they are calling the SAFARI testbed

[Audley et al., 2013]. Figure 3.34 shows a schematic that highlights the main com-

ponents of the sysem. The testbed is an ultra-low background test facility that

consists of a multi-stage refrigerator that is pre-cooled by a Cryomech PT-415 pulse-

tube cooler which is attached to the 50-K and 3-K stages. The SRON team report

base temperatures below 8 mK on the mixing chamber, and describe operating de-

tectors in the dark with bath temperatures as low as 15 mK. The primary aim of the

SAFARI testbed is to characterize and qualify the SAFARI focal plane arrays and

readout before they are integrated into the SAFARI instrument, and the testbed is

now being used routinely for measurements of prototype SAFARI detectors.

(a) (b)

Figure 3.34: (a): A schematic of the SRON SAFARI S-Band testbed that is currently being used to characterise a

single SAFARI-like pixel. (b): A micrograph of the TES coupled to the Ta absorber in front of the hemipsherical

backshort. The white circle in the lower left of the image represents the footprint of the 46µm exit aperture of the

conical horn (image credit: SRON).

The measurements involve characterising the optical response of the TES de-

tectors designed for SAFARI’s short-wave band (S-Band) focal plane array (FPA)

that is designed for operation across a frequency range of 30—70 µm. However if

the optical response of the TES is to be precisely characterised, then the effects of
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Figure 3.35: Shematic showing the positioning of the horn, aperture, source, etc. of the SRON SAFARI S-Band

testbed (image credit: SRON).

all other components in the optical system must be taken into account. For example

the spectrum of the blackbody source must be known and the throughput of the

horn as a function of frequency should be well understood.

In this section an experiment to try to characterise the frequency dependent

throughput of a SAFARI-like horn is described. The aim of the experiment was

to prove the concept that such a method, as will be discussed, could be used to

measure the increase in throughput as a function of increasing frequency as more

modes begin to propagate as the ’cut-on’ frequencies of the higher order modes are

reached. The detectors of the SAFARI imaging FTS will require such multi-moded

feed horns (i.e. feed horns fed by oversized waveguides) to direct the signal toward

the TES’s that will be housed inside integrating cavities.

These feed horns will have their own frequency profile along with the profile of

the imaging FTS and the detector itself. This is because the number of modes that

can propagate through a waveguide structure depends on the transverse dimensions

of the structure relative to the wavelength of the radiation. The larger the cross

sectional area of the guide compared to the wavelength, the more modes it will

allow to propagate through it. And since each propagating mode can carry power

through the structure then we would expect the throughput of the horn to increase

as a function of increasing frequency. It will therefore be important to take account

of the effect of all the components of the instrument as a function of frequency to

fully understand the detected power by the TES’s. In this regard it is the frequency
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response of SAFARI-like feed horns that is discussed in this section.

What can be expected for a multi-moded horn with a straight smooth walled

waveguide section is that as the frequency is increased the amount of power passing

through the horn should also increase. In fact due to the waveguide section the

increase should occur in steps as each higher order mode ’cuts on’. This is because

each propagating mode has a particular cut-off frequency, below which the mode

will not propagate. The cut-off frequency fco for a given mode depends on the

dimensions of the waveguide and is described by 3.17

fco =
c

2π

√(nπ
a

)2

+
(mπ
b

)2

(3.17)

where c is the speed of light, a and b are the width and height of the waveguide in

the transverse direction, n is an integer corresponding to the variation of the electric

field in the x direction, and m is an integer corresponding to the variation of the

electric field in the y direction.

The SAFARI testbed described above is currently using a smooth walled coni-

cal feed horn with no waveguide section for coupling the radiation to the detectors

at frequencies ranging from 4.3THz to 9THz. The throughput characterisation ex-

periment described in this section is concerned with the analysis of a smooth walled

back-to-back rectangular horn configuration with a rectangular waveguide section

of width 250µm and height 125µm between the two horns, but in principle the

same technique could be applied to any type of feed horn. Figure 3.36(a) shows

the dimensions of the horn that was chosen for characterisation. Figure 3.37 is a

micrograph taken of the waveguide section of the back-to-back horn structure. As

the right side of the image shows there is an excellent finish on the structure even

at these extremely small scales. Figure 3.36(b) displays a human hair that is ap-

proximately 100µm in width which is just slightly smaller than the width of the

waveguide section of the back-to-back structure.

Figure 3.38 shows a simple geometrical analysis of propagating mode number

as a function of frequency for a waveguide with the dimensions described above. The

expected number of modes based on a 1/λ2 approximation is shown for comparison.

In fact if there was no uniform waveguide section to act as a mode filter the expected

throughput as a function of frequency would be expected to look more like the

smoothly increasing 1/λ2 profile. The reasons for this are explained in detail in
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(a) Horn dimensions (b) Human hair

Figure 3.36: (a): Dimensions of back-to-back horn that was characterised at SRON. (b): Micrograph of a human

hair for a reference of micron scales.

Figure 3.37: Dimensions of waveguide section of horn that was characterised at SRON. The expanded image on the

right shows how good the etching process is at achieving a smooth finish on the structure. Two separate precision

measurements were made of the height of the waveguide section showing 125.84µm ±10nm and 126.51µm ±10nm.

chapter 4 and it arises due to the partially evanescent behaviour of conical modes

when they are close to cut-off. The presence of the waveguide section between the

two horn sections is expected to yield a much more quantized or stepped profile,

similar to the geometric solution in the plot.

It can be seen that the waveguide has a ’switch-on’ frequency of 600GHz, and

if it is assumed that each propagating mode carries equal power then the graph can

be interpreted as throughput vs. frequency. The frequency of the sources ranged

from 200GHz to 4THz, and the cut-on frequencies of the first 20 modes within this

range are shown in Table 3.2.

Some of the issues that inevitably arise during an analysis of such tiny feed

horns at THz frequencies are the high absorption due to water vapour in the air, the

noise generated by the detector itself at temperatures above liquid Helium levels,

and the tiny size of the actual horns leading to difficulties in alignment and reduced

throughput levels. The solutions to all of these issues are discussed in the next
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Cut-Off Freq. Mode Total No. Cut-Off Freq. Mode Total No.

(THz) of Modes (THz) of Modes

0.6 TE10 1 (’Switch-On’) 2.4 TE02 11

1.2 TE20 2 2.4 TE40 12

1.2 TE01 3 2.474 TE12 13

1.342 TE11 4 2.474 TM12 14

1.342 TM11 5 2.683 TE22 15

1.697 TE21 6 2.683 TM22 16

1.697 TM21 7 2.683 TE41 17

1.8 TE30 8 2.683 TM41 18

2.163 TE31 9 3.0 TE32 19

2.163 TM31 10 3.0 TM32 20

Table 3.2: Cut-on frequencies of the first 20 modes in the waveguide linking the back-to-back horn. The ’switch-on’

frequency, based on the transverse dimensions of the rectangular waveguide section, is 600GHz.

Figure 3.38: Increasing number of propagating modes as a function of frequency. If each mode is considered to

carry equal power then the graph can be thought as throughput as a function of frequency also. A scaling factor of

2× 10−7m2 was used to plot the 1/λ2 fit.

subsection.
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3.3.2 Experimental Set-Up

An FTS based on a Michelson interferometer was used for the analysis of the horn.

A detailed description of the FTS system is presented in section 1.5 of this thesis.

Two different sources were employed; a high voltage mercury (Hg) arc lamp and

a glow bar [Shumyatsky and Alfano, 2011]. Hg arc lamps are commonly used in

a wide range of scientific experiments ([Yuana et al., 2014], for example), so no

description was deemed necessary. A glow bar (or globar) is a resistively heated

rod, typically made of silicon carbide. It is somewhat similar to a tungsten filament

in an incandescent light bulb. Of course any object will emit radiation with a peak

intensity at a wavelength that depends on its temperature. Wien’s displacement

law can be used to show that for a light bulb aimed at producing visible light

(λ ≈ 500nm) the blackbody temperature required for the tungsten filament is TBB ≈

5, 800K. Based on Wien’s displacement law then, it would appear that for the desired

THz frequencies, say for example, 3THz (λ ≈ 0.1mm), the temperature of the glow

bar should be set to TBB = 28.98K for the emission spectrum to peak at 3THz and

exhibit an overall intensity distribution that follows a blackbody spectrum as that

shown by the green line in Figure 3.39. However, this assumes that the surroundings

are cooler than the globar, which is not typically the case. Rather, the globar is

usually operated at a high temperature, and then emits over a very wide spectrum,

some of which covers the THz regime, but with a relatively weak output power at the

THz frequencies [Shumyatsky and Alfano, 2011]. This is the scenario under which

the globar was operated for the experiment described in this section. Research into

the spectra of globars can be found in [Pozela et al., 2013], for example.

The spectrum of the Hg lamp was not accurately known, but it was assumed to

have more discrete features and also having high emission in the ultra violet (UV)

requiring protective glasses to be worn. Both sources produced a large amount of

low frequency noise so a beam chopper and lock-in amplifier were used to cut out

these low frequencies. The beam chopper was set to 16.67Hz and the lock-in amp

was set to match the frequency of the chopper.

To overcome the absorption due to water vapour in the air a vacuum system

was used that completely housed the source, the FTS, the horn, the detector, and

the lenses (which will be discusses shortly) as illustrated in the schematic in Figure

3.40. The vacuum tube system, FTS, and pump are shown in Figure 3.41.
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Figure 3.39: Predicted blackbody emission for radiating sources of various temperatures.

Figure 3.40: Schematic of the vacuum system used to house the horn, lenses, and FTS for throughput experiment.

Each section of steel tubing was connected together with air-tight seals before pumping commenced.

To deal with the thermal emission of the bolometer [Hulbert and Jones, 1955]

(which would lead to noise in the signal detected) it was housed in a two-stage

cryostat and cooled to near absolute zero. Liquid nitrogen was first used to cool the

central stage of the cryostat to 77 K. The liquid nitrogen was then pumped out of the

central stage and liquid helium was pumped in, thereby reducing the temperature

to 4.3 K. Liquid nitrogen was then pumped into the second (outer) stage of the

cryostat to maintain the low temperature of the detector by reducing the boil-off

rate of the liquid He. The signal detected by the bolometer was fed to an amplifier

which amplified it by a factor of either 200 or 1,000 (depending on the setting). The

cryostat also had three low pass filters built into it which cut off frequencies above
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either 3THz, 9.4THz, or 18THz, depending on the setting chosen.

(a) FTS and vacuum tubes (b) FTS close-up (c) Vacuum pump

Figure 3.41: FTS and vacuum system.

In order to focus the source onto the aperture of the horn a three lens telescope

design was decided upon, where high-density polyethylene (HDPE) lenses were cho-

sen as the HDPE material is well suited for control of radiation at THz frequencies

due to its excellent clarity, chemical stability, and the fact that it is easily machinable

[Lee, 1979]. HDPE is also particularly suited for THz radiation due to t The design

was comprised of three lenses with three different focal lengths, two of which were

positioned between the source and the horn, and one positioned between the horn

and the FTS (see Figure 3.42). The optical modelling package ZEMAX was used for

the design of the lens system. The optimisation tool was used to find the optimal

foci of the lenses and their positioning. The result was an 80mm focal length lens

positioned 80mm (d1) from the source, a 180mm lens at 40mm (d2) from the first

lens, the horn positioned 180mm from the 180mm lens (d3), and finally a 60mm

lens located 60mm from the exit aperture of the horn (d4). It should be noted that

the 180mm lens is focussed on the entry aperture of the horn as the phase centre

was unknown. All the lenses had diameters of 40mm.

The first lens (L1) was a relatively fast lens (f/2) that served to parallelise

quickly the source. The 180mm lens (f/4.5) labelled as L2 was designed to slowly

focus the beam to match the slow angle of the feed horn. The fast 60mm (f/1.5) lens

labelled as L3 was aimed to capture the light emerging from the horn and parallelise

the beam before it entered the FTS; (if a good interferogram is to be observed it is

important to have a parallel beam entering the FTS as this is assumed by optical

design). The entry port of the FTS was positioned at 70mm from the third lens.

The cryostat housing the detector was connected to the output port of the FTS.
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Figure 3.42: Diagram showing the placement of the horn and lenses.

3.3.3 Manual Optimisation of Set-Up

Before the system was put under vacuum it was decided to experiment with the

positioning of the lenses and horn to verify that the prescribed separation distances

based on the lens focal lengths were indeed optimised. This was to ensure that

there were no minor errors in the curvature of the lenses, etc. due to manufacture

tolerances. If the curvature of any lens deviated from the prescription then the focal

length would also deviate from the expected value. Also the refractive index of the

lens material was not accurately known so again the focal lengths of the lenses came

into question to some degree.

An optical bench was set up with the horn and lenses positioned at the distances

calculated by ZEMAX. The set-up was the same as described above but without

the vacuum system. Also the FTS was not used as at this point the aim was just

to optimise the positions of the components for maximum throughput of the horn.

The glow bar that was described above was used as a source and placed 80mm from

the first lens L1. 5 V was supplied to the glow bar with a current of 3.92 A. The

cooled detector was placed at 60mm from the third lens L3. The initial positions of

the back-to-back horn and lens L2 were as shown in Figure 3.42.

The lenses were attached to metal screens with apertures that had the same

dimensions as the lenses, and the horn was attached to a similar screen with an

aperture the same size as the horn opening. The optical bench was set up such

that the transverse positions (x) of the horn and lenses were aligned and fixed by

keeping the edges of the lens/horn holders tight against a metal straight edge that
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was itself aligned perpendicular to the direction of axial propagation. The optical

components were free to move in the direction of axial propagation (z). The heights

(y) of the components were set equal to each other and kept fixed by manufacturing

the lens/horn holders appropriately. Part of the set-up can be seen in Figure 3.43,

although the transverse alignment bar (straight edge) and the detector are not in

the image at that point. In retrospect some absorber material should have been

used to coat the metal parts of the screens as standing waves could possibly arise in

such a set up.

As the lenses and horn were incrementally moved, one at a time, the value of

the detector voltage was monitored. An audio device was connected to the output

of the lock-in amplifier so that as the detector power increased an audio signal could

be heard to increase in pitch. This allowed the positions to be varied with real time

audible feedback indicating increase or decrease of received signal.

Through the method described above it was discovered that indeed there were

errors on the assumed focii of the lenses. The 60mm lens was found to have a focal

length of 64mm, the 80cm lens had a focal length of 82mm, and the largest deviation

was on the 180mm lens which actually had a focal length of 167mm. However it

should be noted that a small amount of the apparent error on the 180mm lens (L2)

is likely due to the phase centre of the horn being located inside the horn. It would

therefore make sense that the lens would be better positioned closer to the horn

since the focal point/plane should ideally be situated at the phase centre of the

horn. The same might be true for the error on the 60mm lens L3 since this was

directly coupled with the horn also.

Another test that was carried out at this point was an analysis of the spot

size of the beam at the position of the entry aperture of the horn. Obviously the

aim was to have as small a spot size as possible in order to focus the maximum

amount of power into the horn. Although the method used did not give a direct

measure of the spot size, it did give a good indication of the order of the size of the

beam width. The method involved replacing the horn with a pinhole (small circular

aperture (r ≈ 0.5mm) in a metal screen) located at the previous position of the

entry aperture of the horn. This was also the position of the beam waist which was

verified in the procedure just described above. The pinhole was at the same height

as the horn aperture and this height was kept fixed.
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Figure 3.43: Set-up of lenses and horn for verification of optimal positioning.

Starting at the central location the position of the pinhole was varied in the

horizontal transverse direction in increments of 0.5mm, out to a distance of 20mm.

The pinhole was then returned to the central location and then incrementally varied

in the opposite direction. At each position the detector voltage was measured and

recorded and the results can be seen in the graph in Figure 3.44. The power fell

to 1
e2

of the on-axis power at a distance of approximately 6mm on each side of the

maximum, indicating a beam width of approximately 12mm at the beam waist. This

was not ideal since the aperture of the horn was only 3.45mm×3.45mm, but it was

the best that could be achieved.

Figure 3.44: Beam width of a focussed broadband beam at the focal point of the 180mm lens.
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The lens system with the pinhole in place of the horn was modelled with the

GBM analysis code described in chapter 2. It was found that by including a source

field corresponding to a horn with a wide flare angle a spot size of approximately

10mm in diameter was formed at the location of the pinhole. The model assumes

monochromatic light as a source, and the input beam width and phase radius of

curvature (input q) are somewhat arbitrary. Thus, as it stands the model is only an

approximation. Further work will be required to account more accurately for the

spacial and spectral distribution of the source. Figure 3.45 shows two screen shots

from the Gaussian beam program that was developed by the author for modelling

free-space propagation.

(a) Beam width vs. propagation distance (b) G.U.I. for varying lens focal lengths

Figure 3.45: (a): Screen shot of beam width calculation from GBM analysis code. (b): Graphical user interface

(G.U.I.) for varying the focal lengths of two of the lenses. The separation distances are automatically recalculated

when the focal lengths are changed.

3.3.4 Alignment of the System Inside the Vacuum Tubes

An issue that arose when packing the horn and lenses into the vacuum tubes was

how to rigidly fix each component in the correct position such that it would remain

there and stay completely perpendicular to the direction of propagation. An earlier

attempt had been made that used three thin threaded guide wires that were inserted

through each component, with small nuts tightened at each surface to hold the

components in place. This set-up had too much movement in it and it was very

difficult to ensure that the lenses and horn were completely perpendicular to the

beam once the vacuum system was sealed. An exaggerated example diagram is

shown in Figure 3.46.

An improvement on this system was achieved using PVC plumbing pipes. A

length of pipe was found that had almost exactly the same outer diameter as the
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inner diameter of the vacuum tubing system. The diameter of the PVC pipe was

just slightly too large so it was trimmed down in the workshop using a lathe. The

result was a pipe that fit snugly inside the vacuum tubes. The pipe was then cut

into various lengths relating to the various spacings that were required between the

lenses and horn. The lenses and horn mount had diameters just slightly less than

the inner vacuum tube diameter so they could be held in position by being pressed

between sections of the PVC piping and then inserted into the vacuum system (see

Figure 3.47).

Figure 3.46: An exaggerated diagram of how the guide wires might bend as the conponents are pushed through the

vacuum tubing.

(a) PVC piping cut to sizes (b) Vacuum tube and PVC

pipe

(c) Tube with ring insert

(d) Pipe section in tube (e) Optical components shown

separated

(f) Optical components shown

snugly clamped

Figure 3.47: Some components of the set-up showing how the system was aligned and kept fixed.
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3.3.5 Efficiency of FTS Beam Splitters

As will be shown in the results of the throughput experiments described in the next

section, a particularly strong spectral effect in any FTS data can arise from the beam

splitter if the material is too thick compared to the wavelength of the signal. A beam

splitter of any thickness will give rise to reduced efficiency at certain frequencies due

to destructive interference between different parts of the beam travelling different

path lengths within the beam splitter material. Any signal radiation that reflects off

the inner boundary of the beam splitter twice will interfere with signal propagating

straight through the material. Since the phase of the doubly reflected part will be

shifted with respect to the direct part of the beam some sort of interference will

occur either constructive, destructive, etc.

The type of interference described above is known as the Fabry-Perot effect.

Figure 3.48 shows the transmission profile of a 12µm and a 56µm Mylar beam

splitter based on this Fabry-Perot effect. The data for the graphs were calculated

from equations given in a paper by James and Ring [James and Ring, 1967] (see

also page 256 of Goldsmith [Goldsmith, 1998]). The analysis by James and Ring

was for a thin film of Melinex but the same principles can be applied to the Mylar

thin film used for this experiment by simply using the correct refractive index.

The efficiency of a beam splitter in a Michelson interferometer is given by the

depth of modulation of the interference fringes:

η(σ) = 4RT (3.18)

where R and T are the reflection and transmission intensity coefficients respectively.

If absorption of the Mylar material is neglected then T = 1−R, leading to:

η(σ) = 4R(1−R) (3.19)

James and Ring (see also page 62 of [Born and Wolf, 1999]) showed that the

intensity reflection coefficients could be described by [James and Ring, 1967]:

Rs =
2r2

1s(1− cos2δ)
1 + r4

1s − 2r2
1scos2δ

Rp =
2r2

1p(1− cos2δ)
1 + r4

1p − 2r2
1pcos2δ

(3.20)

where the subscripts s and p refer to the two planes of polarisation of the electric field

relative to the plane of incidence. δ is the relative phase difference between adjacent
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emerging beams and is defined as δ = 2π
λ
ndcosφ1, where d is the film thickness, n is

the refractive index and φ1 is the angle of the beam inside the film relative to the

surface normal. Finally r1s and r1p are the well known Fresnel amplitude reflection

coefficients, and are defined as [James and Ring, 1967]:

r1s =
n0cosφ0 − n1cosφ1

n0cosφ0 + n1cosφ1

r1p =
n0cosφ1 − n1cosφ0

n0cosφ1 + n1cosφ0

(3.21)

where φ0 is the angle of incidence, φ1 is the angle of refraction, and n0 and n1 are the

refractive indices of the initial medium and the final medium, respectively. Figure

3.48 shows the transmission T of a Mylar beam splitter (n ≈ 1.76 at 1THz) for a

thickness of 12µm and 56µm. It is clear that the 12µm film has significantly less of

an effect on the throughput of the signal over the frequency range of interest.

Figure 3.48: Power transmission for Mylar beam splitters of different thicknesses.

For the experimentalist interested in performing Fourier transform spectroscopy

across the entire IR range using such Mylar (PET) beam splitters, a variety of beam

splitter films would be required, each with a different thickness in order to access a

series of discrete frequency regions, which could then be merged to form a continuous

spectrum. In a paper by Homes et al. they explain how thick silicon beam splitters

can offer numerous advantages over Mylar films [Homes et al., 2007].
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3.3.6 Experimental

With the lenses and horn sandwiched snugly between the pipe sections and inserted

into the vacuum tubes the pump was switched on to evacuate the system. The

power supply for the glow bar was switched on and ten minutes was allowed for

the bar to heat up. The chopper and lock-in amplifier were switched on and the

phase of the lock-in amp was locked such that it and the chopper were completely

in phase (as described above). A series of scans were performed with the FTS with

varying resolution and varying frequency range. Performing a scan over a longer

distance range results in higher resolution in the Fourier transformed data, whereas

performing a scan with smaller step size ensures higher frequencies are reached in

the Fourier transformed data (see Nyquist frequency [Oppenheim et al., 1999]). A

number of different beam splitters were used also with the best results being obtained

with the 12µm Mylar beam splitter.

Each scan that was performed for the back-to-back horn was repeated keeping

all the parameters the same except with a metal screen with a small aperture in

place of the horn. The aperture was given the same dimensions as the horn, and an

extra length of PVC pipe was cut and placed in the vacuum system to account for

the length of the horn.

The aim of doing the scans with an aperture in place of the horn was to obtain a

calibration data set for each horn scan. Then by dividing the data from the aperture

scans into the data from the horn scans, any spectral features not specific to the

horn would be cancelled out. Such effects include the frequency response of the

detector itself, the spectrum of the source, the efficiency of the FTS beam splitter,

and any frequency dependent absorption profile of the PVC lenses. For example the

spectra of both the glow bar and the Hg arc lamp were not accurately known, and if

they were to be characterised then a well understood measurement system would be

required with a detector whose spectral response was accurately characterised. The

response of the bolometer that we were using was not well understood so it could

not be used to properly investigate the spectra of the sources.

Figure 3.49(a) shows a plot of the back-to-back horn throughput data, and

the corresponding aperture throughput data that would be used for calibration is

shown in Figure 3.49(b). Figure 3.50 then shows the result of dividing the back-to-
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back horn data by the aperture data in an attempt to remove all undesired spectral

artefacts. The recorded noise levels in the bolometer were approximately 0.1mV,

where the source was removed but everything else remained the same, including the

level of vacuum.

(a) Uncorrected Data (b) Calibration Data

Figure 3.49: (a): Uncorrected throughput for a back-to-back horn antenna illuminated by a glow bar in a Michelson

FTS. (b): Throughput of a small rectangular aperture illuminated by a glow bar in a Michelson FTS. This data

was used to correct the back-to-back horn throughput data.

Figure 3.50: Corrected throughput for a back-to-back horn antenna illuminated by a glow bar in a Michelson FTS.

The rectangular aperture data was used to correct the data plotted in Figure 3.49(a).

What should be noticed when comparing Figures 3.49(a) and 3.49(b) is that

the aperture data in 3.49(b) displays a continuous increase in throughput as the

frequency is increased whereas the same is not rue for the back-to-back horn data
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in 3.49(a). This results in the corrected throughput profile shown in Figure 3.50

exhibiting a general fall-off of power as frequency increases. As will be shown in the

following results this was an ongoing phenomenon that was observed throughout the

measurement campaign. The reason for this is still unclear, however some discussion

on the matter is provided at the end of this section.

Performing identical scans with the rectangular aperture is analogous to using

a flat field in astronomy imaging with a CCD. The flat field is aimed at correcting

the image for differences in pixel efficiency from pixel to pixel. Of course we were

attempting to account for a lot more variables with the aperture scans used in this

experiment, however it was deemed the most accurate method with this particular

set up for removing the unwanted spectral features described above.

Scan 1:

The first scan performed was with the horn in the centre of the evacuated tubing

system without any lenses (see Figure 3.42). The glow bar was used as a source and

the beam chopper was set to 16.67Hz with the sensitivity on the lock-in amplifier

at 20mV and the time constant set to 1 second. The 56µm Mylar beam splitter

was used in the FTS and a scan of 10mm was carried out with a step size of 7.5µm.

The 100cm−1 filter was selected on the detectors filter wheel, with the gain set to

200×. The Fourier transformed data are shown in Figure 3.51. As can be seen

there is very little transmission, resulting in mostly noise in the plot. As before, the

recorded noise levels (source removed) were approximately 0.1mV.

Scan 2:

The second scan carried out included the three lenses, with two of them serving to

focus the source radiation onto the horn aperture and the third one positioned after

the horn with the aim of forming a parallel beam for entry into the FTS (see again

Figure 3.42). All the scan parameters were the same as the previous scan (Scan 1).

The Fourier transformed data are shown in Figure 3.52. It is clear that there is much

higher throughput when the lenses are used, and there is a sudden jump at 600GHz

which is exactly the position of the ’switch-on’ frequency of the waveguide section

between the two horn sections. The data shown have not yet been corrected for the
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Figure 3.51: Throughput of the back to back horn with no lenses.

efficiency of the Mylar beam splitter, or any of the other undesirable effects outlined

above (i.e. the data has not yet been divided by the corresponding aperture scan

data). Nonetheless the ’switch-on’ frequency is quite obvious and even some of the

higher order propagating modes can be seen to ’switch on’, for example the TE20 &

TE01 at 1.2THz, and some indication of the TE11 & TM11 at 1.4THz. The positions

(in terms of frequency) of the cut-on frequencies of some of the higher order modes

are shown superimposed on the same graph.

Figure 3.52: Throughput of the back to back horn with three lens optical system included.
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The next graph shown in Figure 3.53 has the efficiency function of a 56µm Mylar

beam splitter shown superimposed on the previous plot data. This demonstrates

the strong modulating effect that such a beam splitter will have on the result. As

can be seen the null in the throughput data at 1.8THz coincides exactly with the

position of complete destructive interference in the beam splitter.

Figure 3.53: Throughput of back to back horn with three lens system, and 56 mum beam splitter efficiency.

Scan 3:

The 56µm beam splitter film was replaced with the 12µm film and another scan

with the same parameters as before was carried out. A second identical scan was

then performed but with the rectangular aperture replacing the horn. The back-to-

back horn throughput data was then divided by the aperture throughput data for

calibration. The corrected Fourier transformed data is shown in Figure 3.54 and

this represents the highest quality result that was achieved using the 100cm−1 filter

and the glow bar source during the measurement campaign at SRON.

Again the switch-on of the fundamental mode can be seen at 600GHz and

some of the higher order propagating modes can be seen to ’switch on’. The TE20

& TE01 are again recognisable at 1.2THz, and the TE11 & TM11 are assumed to be

the source of the increase in detected signal at 1.4THz. In fact there is also some

indication of the cut-on of the TE21 & TM21 modes at about 1.7THz (both should
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Figure 3.54: Normalised throughput of the back to back horn with a 12µm beam splitter replacing the 56µm one.

cut-on at 1.697THz), and the TE31 & TM31 modes at about 2.2THz (these two

should cut-on at 2.163THz).

While it can be seen that the reduced beam splitter film thickness has improved

the result, there are still some details in the data that do not agree with what is

expected for the throughput as a function of increasing frequency for a horn with

a smooth walled waveguide section acting as a mode filter. Figure 3.54 shows that

there is a steady fall-off of detected signal beyond approximately 1.5THz. This is

possibly a result of the aperture having better coupling to the FTS than the back-

to-back horn does. A sophisticated modelling software that could simulate the full

optical system would likely be very informative on the observed spectral profiles.

Such a computational tool, capable of modelling the FTS, the quasioptical lens

beam path, the broadband source, and the horn and aperture would make for an

interesting and very useful thesis.

Scan 4:

A final set of measurements was performed with the aim of achieving higher de-

tectable frequencies. The 9.4THz filter was selected on the filter wheel (in front of

the bolometer), the step size of the scan was set to 4µm allowing frequencies up to

almost 6THz to be resolved, and the source was changed to a Hg arc lamp as it

was thought that it would have stronger emission at the higher frequencies than the
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glow bar. The thinner 12µm beam splitter was again used.

The uncorrected Fourier transformed data of the final scan for the back-to-back

horn can be seen in Figure 3.55, where the calibration data corresponding to the

scan for the rectangular aperture is also shown in the plot. What is clear straight

away is that there appears to be better agreement between the horn and the aperture

in terms of throughput at the higher frequencies. The previously observed higher

throughput for the aperture is not present in this scan.

Figure 3.56 shows the corrected throughput plotted as a function of frequency.

As can be seen the switch on at 600GHz is not clear and in fact there is a high level

of noise at frequencies lower than 600GHz that was not observed in the previous

scans. It is interesting however that the high levels of noise seem to dissipate once

the switch on frequency is reached.

Even though the there is not a clear rise in throughput at the expected 600GHz,

there is an evident rise in detected signal between 1.2 and 1.3THz which can be

attributed to the TE20 & TE01 modes which have a switch on frequency at 1.2THz,

and the TE11 & TM11 which are expected to switch on at 1.342THz. The next jump

that is observed at approximately 1.7THz is attributed to the TE21 & TM21 modes

(fcut−on = 1.697THz) and some contribution from the single TE30 mode (fcut−on =

1.8THz). There is then another significant step in signal just before 2.2THz which

again fits with two more modes with switch on frequencies at 2.163THz, namely

the TE31 & TM31. The next modes are expected to cut-on at 2.4THz but again

there is a fall off of signal at these higher frequencies so these modes are not visible

switching on.

The final plot shown in Figure 3.57 is the same data as that in 3.56 but the

theoretical throughput profiles are also shown for comparison. The geometrical

analysis based on the transverse dimensions of the waveguide assumes that each

mode carries equal power and contributes 0.25mV to the corrected signal. This

appeared to provide a good fit with the measured data. The continuous red line is

again the expected profile based on a 1/λ2 approximation.
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Figure 3.55: Throughput of the back to back horn and aperture for the Hg arc lamp using the 312cm−1 filter.

Figure 3.56: Corrected throughput of the back to back horn for the Hg arc lamp using the 312cm−1 filter.

3.3.7 Discussion of Results

The results presented in this section show clear evidence that the multi-mode be-

haviour of tiny feed horns can be measured at THz frequencies. There are still some

effects in the system that have not been taken care of as can be seen in each of

the graphs, particularly the general fall off of power as higher frequencies are ap-

proached especially when using the glow bar and 100cm−1 filter. Future work will

aim to characterise accurately the spectrum of the glow bar source, the Hg arc lamp
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Figure 3.57: Corrected throughput of the back to back horn with theoretical plots shown also. It was assumed that

each mode carrys equal power and contributes 0.25mV to the corrected signal. This scaling provides a good fit to

the measured data.

source, the bolometer, and the frequency dependence of the absorption of the lens

material. Once these factors are known the data can be more accurately reduced

and corrected.

Another option for future work would be to redesign the optical system with

mirrors replacing the lenses. The benefits of this type of set-up would be easier

alignment and focus of the system, and there would be a large reduction in the

losses that occur due to absorption by the lens material. A mirror system would

be more difficult to manufacture due to the limited space within the vacuum tubes,

but the benefits would be worth it.

Although the back to back horn structure analysed in this report was larger

than the horn currently being used in the SAFARI testbed, the principle of the

technique has been successfully demonstrated. With sufficient care and precision

the same method could be applied to characterising the smaller horns presently

being employed by the testbed.
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3.4 Conclusions

In the first section of this chapter three simulation methods were compared for

modelling smooth walled rectangular horns and calculating the corresponding far-

field beam patterns. The COMSOL model included a propagation region beyond the

mouth of the horn that allowed for analysis of a conducting ground plane adjacent

to the mouth of the horn. It was shown that the effects of such a ground plane are

negligible unless the extreme case of a poor directional antenna is considered, such

as a uniform waveguide for example.

Through the comparison study the results of the Pyramidal SCATTER pro-

gram were verified which is significant as the SCATTER program will be necessary

for modelling large SAFARI horn designs in the future. This necessity for SCATTER

is because the mode matching technique allows for the analysis of electrically large,

multi-moded structures in a very computationally efficient manner. High frequency,

multi-mode analysis of SAFARI-like horns was shown not to be possible with the

FEM approach on a computer with moderate processing power.

The optical cross-talk between neighbouring SAFARI horns in an array was

shown to be negligible. This is an important result due to the unprecedented sensi-

tivity requirements of SAFARI. It was shown that the cross-talk levels are consid-

erable only for instruments with poor directivity, such as two uniform waveguides

which are quite close together, for example.

The final section of this chapter detailed the measurement work that was carried

out by the author at SRON during a three month visit there from June 2013 to

September 2013. The work was aimed at measuring the throughput of SAFARI-like

rectangular feed horns as a function of frequency. The measurement technique was

shown to be successful, and results were presented which displayed clear evidence

of modes ‘switching on’ at the correct frequencies leading to increasing throughput

as frequency was increased. The experimental difficulties with such measurements

were discussed, and solutions to some of these issues were described. However, the

data presented was still quite noisy, and the falloff of signal at the higher frequencies

was difficult to explain. For these reasons some ideas on how to improve the system

in the future were given at the end of the section.

The techniques discussed in this chapter for characterising multi-moded feed
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horns, both the experimental measurements and the modelling techniques, will be

essential for understanding and predicting the behaviour of future SAFARI horn de-

signs and similar multi-moded structures, and will help in maximising the sensitivity

of these far-IR receivers.
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Chapter 4

Conical Mode Matching for

Shaped Smooth-Walled CMB

Horns

“An investment in knowledge pays the best interest.”

- Benjamin Franklin
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4.1 Smooth Walled Conical Horns

4.1.1 Background

Smooth walled sectional horns are becoming increasingly popular due to the sim-

plicity of their geometry which leads to easier manufacture and therefore lower cost

compared to corrugated structures, for example. In fact at the operational wave-

lengths of the SAFARI short wave (SW) band (λ = 30µm to 70µm) manufacturing

arrays of corrugated structures is not possible with current technologies. Therefore

high performance smooth walled horns, that can have similar performance to corru-

gated horns, are currently in high demand for far-IR and sub-millimetre systems.

Of course smooth walled geometries will never completely match the excellent

performance of corrugated feeds, particularly for wide-band systems, but with opti-

misation of the profile similar performance can be achieved for most of the important

parameters across smaller bandwidths. An excellent example of this is described in

a paper by the THz Optics Group at NUIM [McCarthy et al., 2013]. The genetic

algorithms that can be used for optimisation of the profile of a smooth walled feed

horn are outlined and the authors then go on to describe a final design that was opti-

mised, modelled, and then built for testing. The optimisation routines were based on

an adapted version of the in-house mode matching code SCATTER. The details of

the EM theory for mode matching in waveguides that SCATTER is based upon are

given in a number of publications ([Murphy et al., 2010] and [Murphy et al., 2001]

for example) and the theory was discussed in chapter 2 of this thesis.

The cylindrical mode matching theory is well established and the SCATTER

code for modelling systems in cylindrical coordinates that is based on this theory

has proved accurate and efficient for modelling a wide range of horn antennas. Due

to its high efficiency and short computational time for modelling even electrically

large structures, SCATTER was a good choice for the optimisation of the profile of

smooth walled horns due to the requirement that the calculations must be performed

a very large number of times. Although SCATTER is primarily aimed at simulating

the behaviour of corrugated horns it can be adapted for modelling smooth walled

horns quite easily by simply approximating the smooth-wall geometry by a large

number of very small steps. A screen shot of an example horn is shown in Figure

4.1.
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Figure 4.1: Diagram showing how a smooth wall of a feed horn can be approximated by a series of small steps. The

green boxed-off section on the left is shown magnified on the right hand side so that the small steps are visible.

As efficient as this approach is, as demonstrated in chapter 2 where it was com-

pared to the FEM approach, it was thought that there is still room for improvement

in the speed of computation. The solution is quite obvious and it involves ignoring

the steps that approximate the smooth walls. This can be achieved by deriving a

basis set of conical modes through solving Maxwell’s equations in spherical coor-

dinates and by applying appropriate boundary conditions. Theoretically the only

scattering of power occurs when there is a change of flare angle, and there should be

no scattering of power occurring throughout a section of constant flare angle. This

assumption is based on the spherical Helmholtz equation having analytical solutions

for conic sections with PEC walls, where it will be shown in the following section

4.1.2 that the modal solutions, and the corresponding eigenvalues, depend directly

on the flare angle of the conic section. This implies that power coupling integrals

need only be performed at the relatively few junctions corresponding to change of

angle rather than the few hundred steps required for approximating even a small

horn.

It is this approach that is described in this chapter, starting with a derivation

of the conical modes. A description is then given of the new software entitled

Spherical SCATTER that was coded by the author using Mathematica. Finally,

the results for comparisons between the already existing Cylindrical SCATTER

code and the Spherical SCATTER will be shown, and then both methods will be

compared to experimental data corresponding to far-field beam measurements of a

smooth walled sectional horn performed using a VNA system. Excellent agreement

will be demonstrated between both theoretical approaches and measured data.
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There were many drivers for this work with the primary motivation being the

requirement to design and produce a smooth walled Gaussian horn that compared

well with similar corrugated horns, as part of an ESA Announcement of Opportunity

(AO) programme [RFQ 3-6418/11/NL/CBi]. Another driver was based on the fact

that when the author began to investigate the theory for conical waveguide modes

it became clear that the existing literature on the subject is sparse and incomplete.

A number of publications discuss the ideas of conical mode matching to some de-

gree, most notably those of [Olver et al., 1994] and [Clarricoats et al., 1984], but the

mathematical description of the spherical modes are only stated, with no derivation

of the theory in these texts. Furthermore the book by Clarricoats for example limits

the discussion to conical waveguide modes of degree 1 (m = 1) and gives no de-

scription on how to deal with modes of higher azimuthal dependence (m > 1). The

theory required to account for the higher order modes is essential for the design and

analysis of multi-moded feeds and it was therefore necessary to develop the theory

further.

4.1.2 Derivation of Spherical Harmonic Fields

The electric field of a particular mode of degree m = 1 and order l at the mouth of a

smooth walled conical horn antenna for the TE1l mode is described by [Gleeson, 2004]

as having the following structure:

~E(x, y) =
((
J0

(
p′1,l

r

a

)
+ J2

(
p′1,l

r

a

)
cos(2φ)

)
ı̂+
(
J2

(
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r

a

)
sin(2φ)

)
̂
)

exp
−jkr2

2L
(4.1)

where p′1,l is the lth root of ∂
∂z
J1(z) = 0. For the TE11 mode p′1,1 = 1.841.

Equation 4.1 is an approximation that has proven to be very accurate for horns

of moderate flare angle, however it is not completely analytically derived. It is

calculated by taking the analytically derived solution of the field inside a cylindrical

waveguide (see chapter 2.3) and adjusting the phase based on the flare angle of the

horn. It is assumed that the amplitude profile is unaffected when the waveguide

develops a uniform flare angle, meaning that the only effect is on the phase front

which becomes spherical, with its apex coinciding with the apex of the cone of the

horn. An extra term is thus included in the field definition to account for this effect

(exp −jkr
2

2L
). A similar quadratic approximation can be exploited for smooth walled
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rectangular horns, as shown in chapter 3.

Figure 4.2: Smooth walled conical horn showing the extension back to its virtual apex where there will typically be

a cylindrical waveuide section adjoining the horn. The spherical phase cap is also shown at the aperture.

To derive an analytical solution without approximations that includes the phase

automatically, the fields must be expanded in terms of conical modes which have

the natural symmetry of a cone. These modes can be derived by looking for sepa-

rable solutions to Maxwell’s equations in spherical coordinates, and considering the

boundary condition at the walls of the horn, i.e. that the tangential component of

the electric field must be zero (perfect electric conductor (PEC) boundary). The

resulting solutions can be partitioned into the usual TE modes and TM modes.

The starting point is to solve the electric Helmholtz equation (∇2E + k2E = 0) in

spherical coordinates. One such solution is:

E(r, θ, φ) =
∞∑
ν

ν∑
m=−ν

γνm [jν(kcr) + yν(kcr)]P
m
ν (θ, φ) (4.2)

where γνm is just some constant, Pm
ν (θ, φ) are Legendre functions of order ν and

degree m, and jν(kcr) and yν(kcr) are spherical Bessel functions of the first and

second kind respectively, and they are related to the radial Bessel functions Jν(kcr)

and Yν(kcr) by:

jν(kcr) =

√
π

2kcr
Jν+ 1

2
(kcr) and yν(kcr) =

√
π

2kcr
Yν+ 1

2
(kcr) (4.3)

There are in fact a number of other solutions to the spherical Helmholtz equa-

tion, but the most general solutions that are convenient here are:

E(r, θ, φ) =
∞∑
ν

ν∑
m=−ν

γνm [jν(kcr) + iyν(kcr)]P
m
ν (θ, φ)

E(r, θ, φ) =
∞∑
ν

ν∑
m=−ν

γνm [jν(kcr)− iyν(kcr)]Pm
ν (θ, φ)

(4.4)
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where i is just the imaginary unit.

jν(kcr)+iyν(kcr) is sometimes called a Bessel function of the third kind, or more

commonly a Hankel function of the first kind denoted by h
(1)
ν (kcr), and jν(kcr) −

iyν(kcr) is sometimes called a Bessel function of the fourth kind, or more commonly

a Hankel function of the second kind denoted by h
(2)
ν (kcr) (see figure 4.3). Using

this notation for Hankel functions together with the relations in (4.3) gives:

E(r, θ, φ) =
∞∑
ν

ν∑
m=−ν

γνm

[√
π

2kcr
Jν+ 1

2
(kcr) + i

√
π

2kcr
Yν+ 1

2
(kcr)

]
Pm
ν (θ, φ) (4.5)

⇒ E(r, θ, φ) =
∞∑
ν

ν∑
m=−ν

γνmh
(1)
ν (kcr)P

m
ν (θ, φ) (4.6)

where h
(1)
ν (kcr) = jν(kcr) + iyν(kcr).
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Figure 4.3: Real and imaginary parts of the Hankel function of the first kind. Notice that as r goes to zero the

amplitude of the imaginary part of the Hankel function goes to minus infinity, i.e. a singularity.

Equation 4.6 represents a random component of the electric field that is neither

specifically TE or TM. However, it is more convenient to begin with the radial

component of either the TE or TM modal field. Nagelberg gives a definition for the

radial component of the electric field for the TM modes, assuming harmonic time

dependence (e−iωt), as [Nagelberg, 1967]:

Er = A
µ(µ+ 1)

ikr2
h(1)
µ (kr)Pm

µ (cos θ)eimφ and Hr = 0 (4.7)

and for the TE modes the radial component of the magnetic field [Nagelberg, 1967]:

Hr = B
ν(ν + 1)

ikr2
y0h

(1)
ν (kr)Pm

ν (cos θ)eimφ and Er = 0 (4.8)

The above expressions are valid for waves travelling away from the apex and

toward the aperture of the horn (forward going waves). For waves moving in the
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opposite direction back toward the apex of the cone (backward going waves) the

mathematical descriptions are very similar but with the radial component being

governed by a Hankel function of the second kind:

Er = A
µ(µ+ 1)

ikr2
h(2)
µ (kr)Pm

µ (cos θ)eimφ and Hr = 0 (4.9)

and for the TE modes:

Hr = B
ν(ν + 1)

ikr2
y0h

(2)
ν (kr)Pm

ν (cos θ)eimφ and Er = 0 (4.10)

In fact the above field components can be further separated into two polariza-

tions. For the forward going TM modes:

Er = A
µ(µ+ 1)

ikr2
h(1)
µ (kr)Pm

µ (cos θ)

{
cos(mφ)

sin(mφ)

}
and Hr = 0 (4.11)

And for the forward going TE modes:

Hr = B
ν(ν + 1)

ikr2
y0h

(1)
ν (kr)Pm

ν (cos θ)

{
sin(mφ)

− cos(mφ)

}
and Er = 0 (4.12)

A similar separation of polarisations holds for the backward going waves also.

Knowing the radial components of the electric and magnetic fields should allow the

remaining components of the fields to be calculated. This is straightforward in the

case of constant radius cylindrical waveguides, where the equivalent component is

the longitudinal ’z’ component, due to the e−γz dependence, but it becomes much

more difficult for the case of a conical horn due to the spherical geometry. Since

the radius continually changes with length the e−γz dependence has been replaced

with Hankel functions of either the first or second kind that account for the diffusion

or concentration of the field as it fills ever increasing or decreasing cross sections,

respectively, as r increases.

The transverse components (θ and φ) of the TE and TM modes can be derived

from Maxwell’s curl equations:

~∇× ~E =
−∂ ~B
∂t

= −µ∂
~H

∂t
= −iωµ ~H (4.13)

~∇× ~H = ε
∂ ~E

∂t
= iωε ~E (4.14)

And the curl of ~H, for example, in spherical coordinates is:

~∇× ~H =
1

r2 sin θ
det

∣∣∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂
∂r

∂
∂θ

∂
∂φ

Hr rHθ r sin θHφ

∣∣∣∣∣∣∣∣∣ (4.15)
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Thus 4.14 yields:

iωε ~E =

[
1

r sin θ

∂(sin θHφ)

∂θ
− 1

r sin θ

∂(Hθ)

∂φ

]
r̂ +

[
1

r sin θ

∂Hr

∂φ
− 1

r

∂(rHφ)

∂r

]
θ̂

+

[
1

r

∂(rHθ)

∂r
− 1

r

∂(Hr)

∂θ

]
φ̂

(4.16)

And rearranging the above equation, the components for ~E are then given by:

Er =
1

iωε

[
1

r sin θ

∂(sin θHφ)

∂θ
− 1

r sin θ

∂(Hθ)

∂φ

]
(4.17)

Eθ =
1

iωε

[
1

r sin θ

∂Hr

∂φ
− 1

r

∂(rHφ)

∂r

]
(4.18)

Eφ =
1

iωε

[
1

r

∂(rHθ)

∂r
− 1

r

∂(Hr)

∂θ

]
(4.19)

Applying similar analysis to equation 4.13, which relates the magnetic field to

the curl of the electric field, yields for the components of ~H:

Hr = − 1

iωµ

[
1

r sin θ

∂(sin θEφ)

∂θ
− 1

r sin θ

∂(Eθ)

∂φ

]
(4.20)

Hθ = − 1

iωµ

[
1

r sin θ

∂Er
∂φ
− 1

r

∂(rEφ)

∂r

]
(4.21)

Hφ = − 1

iωµ

[
1

r

∂(rEθ)

∂r
− 1

r

∂(Er)

∂θ

]
(4.22)

Substituting the expression 4.22 for Hφ into the expression 4.18 for Eθ yields:

rEθ = − iωµ

k2 sin θ

∂Hr

∂φ
− 1

k2

∂2(rEθ)

∂r2
+

1

k2

∂

∂r

∂(Er)

∂θ
(using k2 = ω2µε) (4.23)

which can be rewritten as:

rEθ −
∂2(rEθ)

∂(kr)2
= − iωµ

k2 sin θ

∂Hr

∂φ
+

1

k

∂

∂θ

[
∂(Er)

∂kr

]
(4.24)

Similar analysis applied to substituting the expression 4.21 for Hθ into the expression

4.19 for Eφ yields the result:

rEφ +
∂2(rEφ)

∂(kr)2
=
iωµ

k2

∂Hr

∂θ
+

1

k sin θ

∂

∂φ

[
∂(Er)

∂kr

]
(4.25)

TE Mode Solutions

If at this point only the TE modes are considered then Er = 0. Assuming equation

4.24 for Hr of the form Hr = B ν(ν+1)
ikr2 y0h

(1)
ν (kr)Pm

ν (cos θ)
{

sin(mφ)
− cos(mφ)

}
(see (4.12))

implies:

⇒ rEθ +
∂2(rEθ)

∂(kr)2
= − ωµy0B

k2r sin θ

[
ν(ν + 1)

kr
h(1)
ν (kr)Pm

ν (cos θ)m

{
cos(mφ)

sin(mφ)

}]
(4.26)
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Using the relationship on page 445 of Abramowitz and Stegun, the spherical Hankel

functions satisfy the following differential equation [Abramowitz and Stegun, 1972]:

∂2(z.h
(1)
ν (z))

∂z2
+

[
1− ν(ν + 1)

z2

]
(z.h(1)

ν (z)) = 0 where z.h(1)
ν (z) =

√
πz

2
H

(1)
ν+0.5(z)

(4.27)

Then with some rearranging and substitution it can be shown that:

ν(ν + 1)

r
h(1)
ν (kr) = rh(1)

ν (kr) +
1

k2

∂2

∂r2

[
rh(1)

ν (kr)
]

(4.28)

Substituting the right side of the above expression into equation 4.26:

rEθ +
∂2(rEθ)

∂(kr)2
= −mωµy0B

k sin θ

[(
rh(1)

ν (kr) +
∂2rh

(1)
ν (kr)

∂(kr)2

)
Pm
ν (cos θ)

{
cos(mφ)

sin(mφ)

}]
(4.29)

and therefore we obtain

⇒ rEθ = −mωµy0B

k sin θ

[
h(1)
ν (kr)Pm

ν (cos θ)

{
cos(mφ)

sin(mφ)

}]
(4.30)

Finally by using the fact that ωµ
k

=
√

µ
ε

= 1
y0

, this simplifies to:

Eθ = − mB

r sin θ
h(1)
ν (kr)Pm

ν (cos θ)

{
cos(mφ)

sin(mφ)

}
(4.31)

Applying the same TE conditions to equation 4.25 for Eφ, and with similar

analysis and substitutions, an expression for Eφ can be derived that is independent

of any other field components.

rEφ +
1

k2

∂2

∂r2
(rEφ) =

iωµ

k2

∂Hr

∂θ
(4.32)

giving

rEφ +
∂2(rEφ)

∂(kr)2
=
iωµ

k2

[
B
ν(ν + 1)

ikr2
y0h

(1)
ν (kr)

∂Pm
ν (cos θ)

∂θ

{
sin(mφ)

− cos(mφ)

}]
(4.33)

which yields in a similar manner that:

⇒ Eφ =
B

r
h(1)
ν (kr)

∂Pm
ν (cos θ)

∂θ

{
sin(mφ)

− cos(mφ)

}
(4.34)

In order to derive the transverse components of the magnetic field (Hθ and Hφ)

for the TE solutions the expressions above derived for Eθ and Eφ (4.31 and 4.34) can

be substituted into equations 4.22 and 4.21 respectively, setting Er = 0 to satisfy

the TE conditions. Starting with 4.22:
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Hφ = − 1

iωµ

[
1

r

∂(rEθ)

∂r

]
=

mkB

iωµr sin θ

∂h
(1)
ν (kr)

∂kr
Pm
ν (cos θ)

{
cos(mφ)

sin(mφ)

}
(4.35)

⇒ Hφ = −imBy0

r sin θ

∂h
(1)
ν (kr)

∂kr
Pm
ν (cos θ)

{
cos(mφ)

sin(mφ)

}
(4.36)

Similarly, for Hθ:

Hθ =
1

iωµ

[
1

r

∂(rEφ)

∂r

]
= −iBy0

r

∂h
(1)
ν (kr)

∂kr

∂Pm
ν (cos θ)

∂θ

{
sin(mφ)

− cos(mφ)

}
(4.37)

TM Mode Solutions

The transverse components of both the electric and magnetic fields for the case of

TE modes have been derived above. If the same starting point of equations 4.24

and 4.25 are taken, but this time allowing the radial component of the magnetic

field to be zero (Hr = 0) thereby satisfying the conditions of TM modes, then a

similar analysis can be applied to derive the transverse field components of the TM

solutions. The resulting expressions are:

Eθ = −iA
r

∂h
(1)
ν (kr)

∂kr

∂Pm
ν (cos θ)

∂θ

{
cos(mφ)

sin(mφ)

}
(4.38)

Eφ =
imA

r sin θ

∂h
(1)
ν (kr)

∂kr
Pm
ν (cos θ)

{
sin(mφ)

− cos(mφ)

}
(4.39)

Hθ = −mAy0

r sin θ

[
h(1)
ν (kr)Pm

ν (cos θ)

{
sin(mφ)

− cos(mφ)

}]
(4.40)

Hφ = −Ay0

r

[
h(1)
ν (kr)

∂Pm
ν (cos θ)

∂θ

{
cos(mφ)

sin(mφ)

}]
(4.41)

Expressions for the complete set of electric and magnetic field components have

now been derived for both the TE and TM mode solutions and they are summarised

in Table 4.1 below. Note that the eigenvalues for the TM modes are now denoted

by subscript µ rather than ν as before. This is to differentiate them from the TE

mode eigenvalues. This notation will be used from this point onwards.

4.1.3 Calculation of Eigenvalues

One of the complications that arises when trying to calculate the fields of a smooth

walled conical horn in spherical coordinates is that the eigenvalues of the Legendre
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TE Modes

Er = 0

Eθ = − mB
r sin θ

h
(1)
ν (kr)Pm

ν (cos θ)
{

cos(mφ)
sin(mφ)

}
Eφ = B

r
h

(1)
ν (kr)∂P

m
ν (cos θ)
∂θ

{
sin(mφ)
− cos(mφ)

}
Hr = B ν(ν+1)

ikr2 y0h
(1)
ν (kr)Pm

ν (cos θ)
{

sin(mφ)
− cos(mφ)

}
Hθ = − iBy0

r
∂h

(1)
ν (kr)
∂kr

∂Pmν (cos θ)
∂θ

{
sin(mφ)
− cos(mφ)

}
Hφ = − imBy0

r sin θ
∂h

(1)
ν (kr)
∂kr

Pm
ν (cos θ)

{
cos(mφ)
sin(mφ)

}
TM Modes

Er = Aµ(µ+1)
ikr2 h

(1)
µ (kr)Pm

µ (cos θ)
{

cos(mφ)
sin(mφ)

}
Eθ = − iA

r

∂h
(1)
µ (kr)

∂kr

∂Pmµ (cos θ)

∂θ

{
cos(mφ)
sin(mφ)

}
Eφ = imA

r sin θ

∂h
(1)
µ (kr)

∂kr
Pm
µ (cos θ)

{
sin(mφ)
− cos(mφ)

}
Hr = 0

Hθ = −mAy0

r sin θ

[
h

(1)
µ (kr)Pm

µ (cos θ)
{

sin(mφ)
− cos(mφ)

}]
Hφ = −Ay0

r

[
h

(1)
µ (kr)

∂Pmµ (cos θ)

∂θ

{
cos(mφ)
sin(mφ)

}]
Table 4.1: Mode expressions in spherical coordinates for a conical feed horn.

functions are not integers as is the case for spherically symmetric systems such as

the electron in the spherically symmetric potential of the proton (Hydrogen). This

is because the conical horn is only a conic section of a sphere, rather than a complete

sphere, so the boundary condition on the polar coordinate θ is determined by the

flare angle of a cone instead of the requirement that the solution be finite everywhere

from θ = 0 to θ = π. Therefore the values for ν and µ must be calculated by

considering the boundary conditions at the walls of the horn where (θ = θh). Thus,

for TM modes, Er = 0 and Eφ = 0 when θ = θh, leading to Pm
µ (cos θh) = 0, while

for TE modes, Eφ = 0 when θ = θh, leading to
[
d
dθ

[Pm
ν (cos θ)]

]
θ=θh

= 0.

Values for ν and µ were calculated for the case of m=1 by finding the roots

of the two equations above for particular values of horn half angle θh. The values

are listed in tables 4.2 and 4.3, and the values for a horn of half angle of θh = 5◦

are highlighted as this is appropriate for the example horn that is most commonly

discussed in this section. It is clear from the tables that as the half angle of the horn

gets larger the eigenvalues get smaller. In fact the eigenvalues approach integers for

very large values of half angle as would be expected as one goes smoothly over to

143



the free space case.

Horn Half µ1 µ2 µ3 µ4 µ5

Angle (θh)

1◦ 219.041 401.464 582.397 762.891 943.198

2◦ 109.271 200.482 290.949 381.196 471.349

3◦ 72.6819 133.489 193.800 253.964 314.066

4◦ 54.3874 99.9921 145.225 190.348 235.425

5◦ 43.411 79.8943 116.081 152.179 188.240

6◦ 36.0935 66.4958 96.6508 126.733 156.784

7◦ 30.8669 56.9255 82.7725 108.557 134.315

8◦ 26.9471 49.7479 72.3638 94.9252 117.463

9◦ 23.8985 44.1654 64.2682 84.3227 104.356

10◦ 21.4598 39.6995 57.7918 75.8408 93.8711

Table 4.2: Tabulated results for the first five eigenvalues for TM modes for horns of various opening half angles.

Horn Half ν1 ν2 ν3 ν4 ν5

Angle (θh)

1◦ 104.995 304.970 488.596 670.205 851.121

2◦ 52.253 152.237 244.049 334.853 425.311

3◦ 34.674 101.326 162.533 223.070 283.375

4◦ 25.887 75.871 121.776 167.178 212.407

5◦ 20.616 60.599 97.322 133.643 169.826

6◦ 17.103 50.417 81.019 111.287 141.439

7◦ 14.594 43.145 69.375 95.318 121.163

8◦ 12.714 37.692 60.642 83.342 105.955

9◦ 11.252 33.450 53.849 74.027 94.128

10◦ 10.084 30.057 48.416 66.575 84.666

Table 4.3: Tabulated results for the first five eigenvalues for TE modes for horns of various opening half angles.

If a mode matching simulation tool based on these field definitions was to be

developed it would obviously require a technique for automatically calculating the

eigenvalues of horn sections with arbitrary flare angles. Various approximations can
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be applied for the Legendre functions and their derivatives, including one described

on page 62 in [Clarricoats et al., 1984]. That particular approximation states that

for small angles (and therefore large µ and ν) the Legendre function for m=0, and

its derivative, can be written as:

Pµ(cos θ) ≈ J0

((
µ+

1

2

)
θ

)
(4.42)

[
d

dθ
[Pν(cos θ)]

]
θ=θh

≈ −
(
ν +

1

2

)
J1

((
ν +

1

2

)
θ

)
(4.43)

But P 1
µ(cos θh) =

[
d
dθ

[Pν(cos θh)]
]

therefore the Legendre function for m=1, and its

derivative, can be written as:

P 1
µ(cos θ) ≈ −

(
µ+

1

2

)
J1

((
µ+

1

2

)
θ

)
(4.44)

[
d

dθ
[P 1
ν (cos θ)]

]
θ=θh

≈ −1

2

(
ν +

1

2

)2 [
J0

((
ν +

1

2

)
θ

)
− J2

((
ν +

1

2

)
θ

)]
(4.45)

where J0, J1 and J2 are the zero order, first order and second order Bessel functions,

respectively, and the relationship J
′
n(x) = 1

2
(Jn−1(x)− Jn+1(x)) was used.

The above approximations are very convenient since the roots of the Bessel

functions are well known and they can be automatically generated in some mathe-

matical programming environment such as Mathematica. The required eigenvalues

of the Legendre functions (and their derivatives) can then be calculated by a “find

root” function with the approximation just described as a starting point for the

search.

Comparisons for the Legendre functions and the Bessel function approxima-

tions are shown below for a range of angles. It is clear from figure 4.4 that the

approximation (4.44) only begins to deviate for angles approaching 50◦. There is

greater deviation at smaller angles for the approximation (4.45) (≈ 30◦), but since

these approximate solutions will only be used as an initial search point for the

Legendre function eigenvalues then the agreement is considered sufficiently good.

Furthermore, feed horns for the purposes of SAFARI-like multimode systems will

generally consist of relatively shallow flare angles that would certainly not exceed

30◦. In fact for horns that lie within these limits the approximations could actually

be used for describing the fields and could therefore be employed in the mode match-

ing algorithms. Analytical solutions for power coupling integrals involving Bessel
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functions are what are used in the Cylindrical SCATTER program so they are well

understood. Of course this close relationship between the Legendre functions and

Bessel functions is related to the good approximation of representing the fields of

a conical horn by a wavegide mode. The P 1
ν (cos θ) function for the conical horn

determines the amplitude as it varies with θ, but with a spherical wavefront that is

represented by the Hankel function h
(1)
µ (kr), which is constant as θ varies. This is

taken care of by the exp
(
−ikr2

2L

)
term in the waveguide mode approximation.

(a) (b)

(c) (d)

Figure 4.4: Comparison of Legendre function (P 1
µ(cos θ)) and first order Bessel function (−

(
µ+ 1

2

)
J1

((
µ+ 1

2

)
θh
)
)

for increasing angle. (a): θh = 10◦, (b): θh = 30◦, (c): θh = 50◦, and (d): θh = 60◦.

Equations 4.42 to 4.45 show that if the zeros of the corresponding Bessel func-

tions can be calculated then the dependence of the Legendre function eigenvalues

on the horn opening angle can be calculated analytically and plotted. For the case

m = 0 for example, the dependence of ν for the TE1l modes, on the horn half angle

can be written as:

ν1
l ≈

(
p
′

1l

θh

)
− 1

2
(4.46)
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(a) (b)

(c) (d)

Figure 4.5: Comparison of derivative of the Legendre function

([
d
dθ

[P 1
ν (cos θh)]

]
θ=θh

)
and Bessel approximation(

− 1
2

(
ν + 1

2

)2 [
J0

((
ν + 1

2

)
θh
)
− J2

((
ν + 1

2

)
θh
)])

. (a): θh = 10◦, (b): θh = 20◦, (c): θh = 30◦, and (d): θh = 60◦.

where p
′

1l is the lth root of the derivative of the first order Bessel function (J
′
1), and

θh is the horn half flare angle in radians. The ν values can then be plotted as a

function of horn flare angle as shown in Figure 4.6.

For the case of higher order modes, i.e. those with azimuthal dependence

m > 1, a recursive relationship can be applied to equations 4.44 and 4.45 to yield:

Pm
µ (cos θ) ≈ (−1)m

(
µ+

1

2

)m
Jm

((
µ+

1

2

)
θ

)
(4.47)

and [
d

dθ
[Pm
ν (cos θh)]

]
θ=θh

≈ (−1)m

2

(
ν +

1

2

)(m+1) [
Jm−1

((
ν +

1

2

)
θ

)
− Jm+1

((
ν +

1

2

)
θ

)] (4.48)

A more useful approximation however is found on page 362 of Abramowitz and
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Figure 4.6: Graph of eigenvalue (ν) as a function of horn half angle (θ) for the first ten modes assuming the

approximation ν1
l =

(
p
′
1l
θh

)
− 1

2
. The azimuthal order is fixed at m = 1.

Stegun [Abramowitz and Stegun, 1972] of the form:

µmP−mµ

(
cos

θh
µ

)
∼= Jm (θh) (4.49)

which leads to the relationship:

Pm
µ (cos θh) ∼= (−1)m µmJm (θhµ) (4.50)

where the (−1)m is brought in to account for the fact that P−mµ = −Pm
µ .

Equation 4.50 then leads to

Pm
µ (cos θh) ∼= 0 when µ =

pml
θh

⇒ µml =
pml
θh

(4.51)

where pml correspond to the lth root of the mth order Bessel function, which are

always the same and therefore are easily tabulated for functions to call upon. Tab-

ulated roots of Bessel functions and their derivatives can be found widely in the

literature, for example [Beattie, 1958], and Figure 4.7 illustrates the trends of some

of the calculated roots. It is these values that can be used to estimate initial search

points for the eigenvalues of the Legendre functions.

4.1.4 Evanescence of Modes

A very interesting feature of the conical mode approach is how the evanescence

of modes is governed. When analysing modal power flow and power coupling in
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(a) (b)

Figure 4.7: Point plot of Zeros of (a) Bessel functions (pnl), and (b) derivatives of Bessel functions (p
′
nl). Each dot

corresponds to the lth root of the nth order Bessel function (as in (a)) or its derivative (as in (b)). The value of the

root is represented on the y axis and roots are approximately separated by π for each order and its derivative.

cylindrical waveguide sections we first determine whether each mode is purely prop-

agating or purely evanescent for a particular cylindrical section radius and operating

frequency. If the frequency is above a certain critical value (cut-off frequency) or

equivalently, if the radius of the section is above a certain critical value that is pro-

portional to the frequency, then the mode will propagate (propagating mode). If on

the other hand the radius is below the critical value or the frequency is below the

cut-off value for the particular section radius then the mode will decay exponentially

as it propagates through the section (evanescent mode). The length of the section in

the direction of propagation will determine how much power, if any, will be present

in that mode at the end of the section.

The cylindrical mode matching program SCATTER works in a way that anal-

yses power coupling between modes at a junction where there is a change in section

radius, then the behaviour of each mode is considered over the length of the sec-

tion, i.e. whether it is propagating or evanescent. Following propagation through

the length of the section the power coupling integrals are then performed again at

the next junction. This process is repeated for all sections that make up the horn

structure.

The approach taken with conical modes is quite different. No mode is purely

propagating or purely evanescent since in a conic section the radius of the cone
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is continuously changing, either smoothly increasing or decreasing, depending on

whether the wave is propagating toward or away from the apex of the cone. So if a

wave is moving away from the apex, and it starts out in a part of the cone where the

radius is sufficiently small such that the evanescent behaviour dominates, then the

amplitude of the wave will begin to decay exponentially as it travels. But as it does

so the radius of the cone is steadily increasing and the rate of decay continuously

decreases. If the section is long enough, and if there was enough initial power in the

mode, then there will be a certain point where the decay in amplitude will cease and

the evanescent behaviour will no longer dominate. As the evanescence continues to

decline with increasing radius the mode will begin to resemble a true propagating

mode.

This inclusion of evanescence in the propagation of conical modes is a result of

the behaviour of the Hankel functions. Figure 4.3 at the beginning of this section

shows how the real and imaginary parts of the Hankel function of the second kind

behave as the length (r) of the conic section increases. As r goes to very small values

(close to the apex) the imaginary part of the Hankel function goes toward minus

infinity. This is what leads to the evanescent behaviour of the EM modes when the

radius of the conic section is small compared to the wavelength of radiation.

The relationship between wavelength and conic section radius is governed by

the fact that the Hankel function operates on kr rather than just r, where k is

the free-space wavenumber k = 2π
λ

. As the length of the section increases, and

therefore the radius continuously increases, the Hankel function smoothly changes to

a sinusoidally varying waveform that exhibits overall exponential decay (exponential

envelope) and then it eventually settles down to a sinusoid of constant amplitude

that represents a true propagating mode. In this way the Hankel functions are

capable of analytically describing the true nature of an EM field as it propagates

through a smooth walled conic section.

4.1.5 Cartesian Field Components

In order to compare the analytical modal fields with the approximate field expres-

sions set out at the beginning of this chapter it was required that the spherical modes

be defined in Cartesian coordinates so a comparison could be carried out across a
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plane. To find the x, y and z components of the electric field the dot product of

the field with the corresponding unit vectors is taken (see Figure 4.2 for coordinate

system), which gives:

Ex = Er sin θ cosφ+ Eθ cos θ cosφ− Eφ sinφ (4.52)

Ey = Er sin θ sinφ+ Eθ cos θ sinφ− Eφ cosφ (4.53)

Ez = Er cos θ + Eθ sin θ (4.54)

The above relationships hold true for both the TE modes and the TM modes

described earlier. Each of the Cartesian field components are made up of a combina-

tion of the spherical components. The electric fields for the TE modes expressed in

Cartesian form are shown below. The electric fields for the TM modes and the mag-

netic fields for both the TE and TM (Hr = 0) mode sets can easily be transformed

into Cartesian form in the same way.

Ex =

[(
m

sin θ
(Pm

ν (cos θ)) cos θ cosφ−
(
∂Pm

ν (cos θ)

∂θ

)
sinφ

)
B

kr
H

(1)
ν+0.5(kr)eimφ

]
ı̂

(4.55)

Ey =

[(
m

sin θ
(Pm

ν (cos θ)) cos θ sinφ−
(
∂Pm

ν (cos θ)

∂θ

)
cosφ

)
B

kr
H

(1)
ν+0.5(kr)eimφ

]
̂

(4.56)

Ez =

[
mB

kr sin θ
(Pm

ν (cos θ)) sin θH
(1)
ν+0.5(kr)eimφ

]
k̂ (4.57)

4.1.6 Example Horn for Comparison

Figure 4.8 below shows the E-plane and H-plane cuts of the electric field intensity

for a horn of half angle equal to 5 degrees or 0.087 radians. The length of the horn

(r) was set to 2 mm, making the radius at the mouth of the horn a = 0.175mm.

To compare the new results with the approximate method, the same example

of a smooth walled horn with θh = 5◦ and r = 2 mm was analysed using equation

4.1. The comparisons of the E-plane and H-plane cuts of the electric field intensity

for the conical modes vs. the approximate description are shown in Figure 4.9,

and it is clear that there is complete agreement between the two descriptions of
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Figure 4.8: (a): E-Plane, H-plane and cross-polar cuts of the electric field at the aperture of a smooth walled conical

horn of half angle (θh = 5◦ = 0.087 radians), and (b): The E-Plane and H-plane cuts with the on-axis intensity

normalised to unity.

the electric field intensity. This is expected since the horn analysed contained a

relatively small half angle of 5 deg. Horns with larger half angles are considered in

the next subsection.

(a) (b)

Figure 4.9: Comparison of magnitude of electric field at the aperture of a smooth walled conical horn antenna for

analytically derived and semi-analytically derived solutions. (a): E-plane comparison and (b): H-plane comparison.

4.1.7 Limitations of Approximate Method

Spline profiled conical horns have multiple sections with varying flare angles; some

of which angles are quite large as can be seen in Figure 4.10, where an example

of a multiple conic section spline horn is illustrated. Therefore the limitations of

the approximate description for the electric fields must be considered if this method

is to be used to model these horns. Multiple examples were analysed and the re-
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sults compared for horns with increasing half angle. The example of a horn with

a half angle of 5◦ was already shown to have good agreement for both the approx-

imate and spherical mode approaches. in Figure 4.11 below three cases are shown

corresponding to horns with half angles of 10◦, 20◦ and 30◦.

Figure 4.10: Example of a multiple conic section horn. As can be seen some of the section flare angles can be quite

large, particularly the final section.

Although only two modes were considered when comparing the approximate

and spherical mode approaches, in principle many more higher order modes could

propagate in the forward direction through the larger sections of a typical spline

horn as the radii of the biggest sections are significantly larger than the wavelength

of radiation that the horns are designed for. However the higher order modes will

only be present if they are generated through scattering processes since the input

waveguide will typically only support the fundamental mode (assuming a single

mode system). All higher order modes near the throat of the horn are effectively

evanescent and therefore will be attenuated significantly, if not severely, before they

reach a radius where they can propagate. As can be seen in 4.11 (a) and (b) there

is still excellent agreement for a horn with half angle of 10◦. However for 20◦ there

is a small difference in the field structure and for 30◦ the difference is significant.

Therefore to accurately model spline horns with sections of flare angle greater than

20◦ (half angle = 10◦) the full spherical harmonic description will be required. Also,

it cannot be guaranteed that even for the case where all flare angles θh < 20◦ that

there won’t be some level of scattering into higher order modes at such an interface

of changing flare angle. However it should again be pointed out that the angle θh is

the half angle so θh = 20◦ actually represents a full horn flare angle of 40◦ which is

a relatively large angle in terms of typical horns of this type.

153



0.00 0.05 0.10 0.15
10 °

0.2

0.4

0.6

0.8

1.0
Intensity

half angle = 10°

Approximate

Analytical

(a)

0.00 0.05 0.10 0.15
10 °

0.2

0.4

0.6

0.8

1.0
Intensity

half angle = 10°

Approximate

Analytical

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
10 °

0.2

0.4

0.6

0.8

1.0

Intensity

half angle = 20°

Approximate

Analytical

(c)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
10 °

0.2

0.4

0.6

0.8

1.0
Intensity

half angle = 20°

Approximate

Analytical

(d)

0.0 0.1 0.2 0.3 0.4 0.5
10 °

0.2

0.4

0.6

0.8

1.0
Intensity

half angle = 30°

Approximate

Analytical

(e)

0.0 0.1 0.2 0.3 0.4 0.5
10 °

0.2

0.4

0.6

0.8

1.0
Intensity

half angle = 30°

Approximate

Analytical

(f)

Figure 4.11: Comparison of TE11 electric field patterns inside a smooth walled conical horn antenna for analytically

derived and semi-analytically derived solutions. (a) H-plane comparison for θh = 10◦, (b) E-plane comparison for

θh = 10◦, (c) H-plane comparison for θh = 20◦, (d) E-plane comparison for θh = 20◦, (e) H-plane comparison for

θh = 30◦, and (f) E-plane comparison for θh = 30◦.
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Figure 4.12: Comparison of TE12 electric field patterns inside a smooth walled conical horn antenna for analytically

derived and semi-analytically derived solutions. (a) H-plane comparison for θh = 10◦, (b) E-plane comparison for

θh = 10◦, (c) H-plane comparison for θh = 20◦, (d) E-plane comparison for θh = 20◦, (e) H-plane comparison for

θh = 30◦, and (f) E-plane comparison for θh = 30◦.
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4.2 Scattering at Conical Horn Junctions

(Spherical SCATTER)

With analytical forms now derived for the various components of the TE and TM

modes in a conical shaped waveguide or horn, analysis on scattering processes at

the interface between horn sections with different flare angles such as in a spline fit

horn is now considered in this section.

For constructing the scattering matrices between two conic horn sections the

same logic is followed as that for the cylindrical polar and rectangular Cartesian

approaches used in the cylindrical and rectangular SCATTER code. The main

difference, as will be discussed, is that the power coupling overlap integrals are

calculated over a spherical cap, rather than a transverse plane, as was done with

the other two cases. The difficulty that arises however is if two conic sections have

different flare angles then they both also have different equiphase caps, leading to

the question of which phase cap to integrate over. And regardless of which cap is

employed for the calculation, the natural mode set on the other section will need

to be defined in the coordinate system of the selected one (the two sections have

different centres of curvature - or apices in our case). As will be shown this requires

a coordinate transformation so that the modes on both sides of the junction can be

defined across the same surface.

Another difficulty that arose during this investigation was finding analytical

forms for the type of integrals that arise in the power coupling calculations. The in-

tegrals involve products of Legendre functions which in free space do have analytical

solutions that are defined in much of the literature [Abramowitz and Stegun, 1972],

[Lebedev, 1972]. However products of Legendre functions with non-integer eigen-

values (due to the boundary conditions) are not described in any of the literature

studied by the author. For this reason all of the integrals over the angle θ were

calculated numerically. This process is very computationally demanding, leading to

long calculation times for problems involving even a moderate number of modes.
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4.2.1 Derivation of S Parameters

The scattering or “S” parameters for the scattering processes involved in EM struc-

tures like the conic section spline fit horns discussed above have been explored in

some of the texts already mentioned. The texts by both Olver ([Olver et al., 1994])

and Clarricoats ([Clarricoats et al., 1984]) provide some results and definitions for

the power coupling integrals and S parameters but the derivations are either not

given or are unclear. For the development of the Spherical mode matching code

(Spherical SCATTER) it was necessary to revisit their derivations to ensure com-

plete mathematical integrity. Furthermore only the case of single mode systems was

considered in any literature that was found on the subject, including the two texts

just referenced.

To make the Spherical SCATTER code as flexible as possible the theory was

extended to include multi-moded systems. As already mentioned in the introduc-

tion to this thesis, multi-moded horn structures are increasingly in demand due to

higher throughput requirements for faint signal detection and due to manufacturing

limitations on how small components can be made. Therefore multi-moded capabil-

ity was considered an essential part of the new Spherical SCATTER code requiring

that the existing mode matching theory be extended.

It should be made clear that the term multi-moded refers to calculations in-

volving EM modes with higher φ dependence. This is represented in the theory by

the azimuthal dependence of the associated Legendre functions. When single mode

horns are discussed in terms of mode matching only modes of order 1 (m = 1 in

the associated Legendre functions Pm
ν (cos θ)) are considered. Even though there

may be multiple modes with higher degree (governed by the ν in the Pm
ν (cos θ))

involved in the calculations of power coupling, it is still referred to as a single mode

system since the modes are coherent. The main reason for this is due to the fact

that modes of a particular order (m = 1 for example) do not couple to modes of any

other order (m 6= 1). This is simply down to the symmetry of the field structure of

the modes, and if power coupling overlap integrals are performed between modes of

different order the result will always be zero. Due to this orthogonality condition

we say that a horn that can only support modes with m = 1 (but multiple modes

with varying ν) is a single mode system, and a horn that can support modes with

m > 1 is a truly multi-moded system. Each azimuthal order (m) can be treated
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completely separately and then summed in quadrature for calculation of the total

field. The sum of squares is used since the azimuthal modes are incoherent, i.e.

excited independently of one another.

Considering a particular azimuthal mode order, say m = 1, the total electric

and magnetic fields within a particular section of a smooth walled conical horn, or

conic section of a spline horn, can be defined as being a sum of the spherical modal

fields as:

~E =
∞∑
n=1

An~en +Bn
~e′n and ~H =

∞∑
n=1

An~hn −Bn
~h′n (4.58)

where en and e′n represent forward going and backward going waves, respectively,

and An and Bn are the corresponding amplitude coefficients. The same is true for

the magnetic fields hn and h′n. Then at the interface (yet to be precisely defined)

between two conical sections, the two sets of fields for the two sections are:

~EL =
∞∑
n=1

An~enL +Bn
~e′nL and ~HL =

∞∑
n=1

An~hnL −Bn
~h′nL

~ER =
∞∑
n=1

Cn~e′nR +Dn~enR and ~HR =
∞∑
n=1

Cn~h′nR −Dn
~hnR

(4.59)

where An and Bn are the forward and reflected amplitude coefficients, respectively,

of mode n on the left side of the junction. Cn and Dn are the backward and reflected

amplitude coefficients, respectively, of mode n on the right side of the junction. enL

and enR represent forward going waves on the left and right sides respectively, while

e′nL and e′nR represent backward going waves. The same is true for hnL, hnR, h′nL

and h′nR (see Figure 4.13).

Figure 4.13: Fields on either side of a conical horn flare angle discontinuity.
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The SCATTER code calculates the aperture fields of a horn by cascading the

S parameters for each section of the horn. The derivation of these parameters

begins by considering the modal fields on each side of a spherical surface (yet to be

precisely defined) that interfaces two horn sections. The electric field on the left side

of the interface must equal the electric field on the right side since the field must

be continuous unless there is electric charge present on the interface, which clearly

there is not. The same is true for the magnetic field since it too must be continuous

across the boundary unless there are electric currents present on the interface, which

clearly there is not.

Allowing ~EL = ~ER and ~HL = ~HR, the expressions in 4.59 yields:

∞∑
n=1

An~enL +Bn
~e′nL =

∞∑
n=1

Cn~e′nR +Dn~enR (a)

∞∑
n=1

An~hnL −Bn
~h′nL =

∞∑
n=1

−Cn~h′nR +Dn
~hnR (b)

(4.60)

The next step in this process involves performing an overlap integral for both

sides of equation 4.60(a) with the complex conjugate of the magnetic field on the

right side of the junction. The requirement is to relate the coefficients Bn and Dn of

the transmitted and reflected fields at the two sides of the interface to the incident

coefficients An and Cn.

∞∑
n=1

An

(∫
~enL × ~h∗mR

)
· ~dA+

∞∑
n=1

Bn

(∫
~e′nL × ~h∗mR

)
· ~dA

=
∞∑
n=1

Cn

(∫
~e′nR × ~h∗mR

)
· ~dA+

∞∑
n=1

Dn

(∫
~enR × ~h∗mR

)
· ~dA

(4.61)

Using the Dirak bra-ket notation this can be re-written as:

∞∑
n=1

An〈~enL,~hmR〉∗ +
∞∑
n=1

Bn〈~e′nL,~hmR〉∗ =
∞∑
n=1

Cn〈~e′nR,~hmR〉∗ +
∞∑
n=1

Dn〈~enR,~hmR〉∗

(4.62)

Similarly for 4.60(b), but with the complex conjugate of the electric field on the

right side of the junction gives:

∞∑
n=1

An〈~emR,~hnL〉+
∞∑
n=1

−Bn〈~emR, ~h′nL〉 =
∞∑
n=1

−Cn〈~emR, ~h′nR〉+
∞∑
n=1

Dn〈~emR,~hnR〉

(4.63)

For concise presentation we use some notation for the various overlap integrals just
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defined above. It should be noted that the notation used from this point on is

the same as that in section 4.7 of Olver [Olver et al., 1994], however there are no

derivations of how these authors arrived at the final scatter matrices. Furthermore,

the work in that publication deals with hybrid spherical modes (i.e. a corrugated

conical section) as opposed to the separated TE and TM modes discussed in this

work. The following notation will now be used for the various cross products:

P1mn = 〈~enL,~hmR〉∗ P2mn = 〈~emR,~hnL〉

Q1mn = 〈~e′nL,~hmR〉∗ Q2mn = 〈~emR, ~h′nL〉

R1mn = 〈~e′nR,~hmR〉∗ R2mn = 〈~emR, ~h′nR〉

T1mn = 〈~enR,~hmR〉∗ T2mn = 〈~emR,~hnR〉

⇒ T2mn = T ∗1mn

(4.64)

Using these definitions equations 4.62 and 4.63 can be rewritten as:

P1mnAn +Q1mnBn = R1mnCn + T1mnDn (4.65)

P2mnAn −Q2mnBn = −R2mnCn + T2mnDn (4.66)

Or, to account for all modes m and n the above can be written in matrix form as:

[P1] [A] + [Q1] [B] = [R1] [C] + [T1] [D] (4.67)

[P2] [A]− [Q2] [B] = − [R2] [C] + [T2] [D] (4.68)

We now wish to relate [P1], [P2], [Q1], [Q2], etc. to the usual scattering matri-

ces associated with interface junctions. The equation at the start of the previous

section describing a two port scattering system is shown again below. Equation

4.69 is equivalent to this and it describes the possible scattering processes that can

occur across the spherical boundaries depicted in Figures 4.15 and 4.16 in the next

subsection. The transmitted and reflected fields are related to the incident fields at

the two boundaries by:

 ~B

~D

 = ~S

 ~A

~C

 =

 ~S11
~S12

~S21
~S22

 ~A

~C


~B = ~S11

~A+ ~S12
~C (a)

~D = ~S21
~A+ ~S22

~C (b)
(4.69)
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where ~A and ~B are now column matrices representing the forward and reflected

amplitude coefficients, respectively, for all the modes on the left side of the junction.

Similarly ~C and ~D are column matrices representing the backward and reflected

amplitude coefficients, respectively, for all the modes on the right side of the junc-

tion. ~S11, ~S12 etc. are sub-matrices that contain the information regarding power

coupling between all modes on the input side with all modes on the output side of

the interface.

Taking equations 4.67 and 4.68 as a system of simultaneous equations, the

coefficient D can be eliminated from the system.

[P1] [A] + [Q1] [B] = [R1] [C] + [T1] [D] (a)

[P2] [A]− [Q2] [B] = − [R2] [C] + [T2] [D] (b)
(4.70)

Some rearranging gives:

[B] = −
[
[T1]−1 [Q1] + [T2]−1 [Q2]

]−1 [
[T1]−1 [P1]− [T2]−1 [P2]

]
[A]

+
[
[T1]−1 [Q1] + [T2]−1 [Q2]

]−1 [
[T1]−1 [R1] + [T2]−1 [R2]

]
[C]

(4.71)

Comparing equation 4.71 above with equation 4.69(a) it is clear that:

~S11 = −
[
[T1]−1 [Q1] + [T2]−1 [Q2]

]−1 [
[T1]−1 [P1]− [T2]−1 [P2]

]
~S12 =

[
[T1]−1 [Q1] + [T2]−1 [Q2]

]−1 [
[T1]−1 [R1] + [T2]−1 [R2]

] (4.72)

Starting again with equations 4.65 and 4.66 as a system of simultaneous equa-

tions, this time the coefficient B can be eliminated from the system. Again, some

simple rearranging gives:

[D] =
[
[Q1]−1 [T1] + [Q2]−1 [T2]

]−1 [
[Q1]−1 [P1] + [Q2]−1 [P2]

]
[A]

−
[
[Q1]−1 [T1] + [Q2]−1 [T2]

]−1 [
[Q1]−1 [R1]− [Q2]−1 [R2]

]
[C]

(4.73)

Comparing equation 4.73 above with equation 4.69(b) it is clear that:

~S21 =
[
[Q1]−1 [T1] + [Q2]−1 [T2]

]−1 [
[Q1]−1 [P1] + [Q2]−1 [P2]

]
~S22 = −

[
[Q1]−1 [T1] + [Q2]−1 [T2]

]−1 [
[Q1]−1 [R1]− [Q2]−1 [R2]

] (4.74)

So the four scattering parameters ~S11, ~S12, ~S21, and ~S22 have now been derived in

terms of combinations of integrals of vector triple products. The integrals represent,

in some sense, the flow of complex power across the spherical interface.
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Figure 4.14: Schematic showing the power scattering possibilities for a two port system containing a discontinuity.

4.2.2 Coupling Between Two Conic Sections

As was discussed at the outset of this section if modal power scattering between

conic sections of different flare angles is to be analysed then an interface needs to be

defined so that the integrals can be calculated over that surface. The appropriate

coordinate transformations that are required to enable the fields to be defined over

such an interface are discussed in this sub-section for the two possible situations

that can arise:

1) Going from a section with a smaller flare angle to a section with a larger

flare angle.

2) Going from a section with a larger flare angle to a section with a smaller

flare angle.

The expectation was that the two conditions would be equivalent, but this was

checked for verification. So starting with the example of going from a section with

a smaller flare angle to a section with a larger flare angle the spherical coordinate

systems of both cones were defined as (RL, θL, φL) for the cone on the left and

(RR, θR, φR) for the cone on the right. For this situation (θL < θR) it was decided to

perform the power coupling integrations over the equiphase surface of the cone on the

right (RR, θR, φR). This required expressing the coordinates of the left cone in terms

of the coordinates of the right cone, i.e. RL(RR, θR) and θL(RR, θR) so they could

be inserted into the expressions for the spherical mode fields of the left hand conic

section. The phi component should remain unchanged under the transformation.

As can be seen from Figure 4.15, many parameters require definition due to the

virtual extensions of the conic sections back toward the apex of such a full cone for

example. Considering the triangle ∠aR
′
RRL in Figure 4.15 and how it would change

as the point at the apex of the sides RL and R
′
R traced out the surface CR. The side
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R
′
R remains constant, the horizontal length a remains constant, and the angle θR

rotates through θR degrees. The parameter RL will also slowly vary as θR changes,

as will the angle θL vary from θL to zero. The relationship between θR and RL was

derived through use of the cosine rule applied to the triangle ∠aR
′
RRL, giving:

RL =
√
a2 +R

′2
R + 2aR

′
R cos θR (4.75)

where the relationship cos(180◦−A) = − cos(A) was used. The relationship between

θR and θL was then derived through use of the sine rule applied to the triangle, giving:

θL = sin−1

[
R
′
R sin(θR)√

a2 +R
′2
R + 2aR

′
R cos θR

]
(4.76)

The situation of going from a larger to a smaller flare angle was dealt with in a

very similar manner to that described above. Considering the triangle ∠aRLR
′
R in

Figure 4.16 and how it would change as the point at the apex of the sides R
′
R and

RL traced out the surface CR (this time CR is the inner surface). Again the side

R
′
R remains constant, and the horizontal length a remains constant but this time it

is negative since a = LL − ∆LR and LL < ∆LR for θL > θR. Again the angle θR

rotates through θR degrees. The parameter RL will again slowly vary (but this time

it will get shorter instead of longer) as θR changes, as will the angle θL vary from θL

to zero. The relationship between θR and RL was derived through use of the cosine

rule applied to the triangle ∠aRLR
′
R, giving:

⇒ RL =
√
a2 +R

′2
R − 2aR

′
R cos θR (4.77)

which is almost identical to the case of going from smaller to larger angles except

for the minus sign. The relationship between θR and θL was then derived through

use of the sine rule applied to the triangle, giving:

θL = sin−1

[
R
′
R sin θR√

a2 +R
′2
R − 2aR

′
R cos θR

]
(4.78)

which is also almost identical to the transformation derived for the case of smaller

to larger angles except for the minus sign.
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Figure 4.15: Cone-to-cone coordinate transformation for the case of going from a smaller to a larger cone flare angle.

The heavy blue and red lines represent the actual horn section boundaries while the dashed black lines trace the

virtual extensions of the sections back to their apices.
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Figure 4.16: Cone-to-cone coordinate transformation for the case of going from a larger to a smaller cone flare angle.

Again the heavy blue and red lines represent the actual horn section boundaries while the dashed black lines trace

the virtual extensions of the sections back to their apices.
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The coordinate transformations just derived allowed the mode sets on both

sides of the junction to be defined across a common surface. This made it possible

to perform the power coupling integrals described in section 4.2.1 that are required

for construction of the S matrices. In deriving the various ~S matrices account must

be taken of all possible left to right and right to left mode couplings including

between the TE and TM modes. Table 4.4 shows the possible coupling between the

various mode types.

Transverse Electric Transverse Magnetic

Transverse Electric TE → TE TM → TE

Transverse Magnetic TE → TM TM → TM

Table 4.4: Possible combinations of modal coupling.

The power coupling integrals listed in 4.64 were defined for each combina-

tion in Table 4.4. They each had a similar form, for example for a TE mode in

the left section coupling to a TE mode in the right section P1mn = 〈~eTEnL ,~h∗TEmR 〉 =∫ 2π

0

∫ θR
0

[
~eTEnL × ~h∗TEmR

]
· r̂ r2 sin θdθdφ, where the fields ~eTEnL in the left section were

defined as a function of the coordinates of the right section using the above trans-

formations:

P1mn =

∫ 2π

0

∫ θR

0

[
~eTEnL (RL (RR, θR) , θL (RR, θR))× ~h∗TEmR (RR, θR)

]
· r̂ r2 sin θdθdφ

(4.79)

Instructions were then defined that stated:

(a) If n ≤ N
2

and m ≤ N
2

then P1mn = PTE→TE

(b) If n ≤ N
2

and m > N
2

then P1mn = PTE→TM

(c) If n > N
2

and m ≤ N
2

then P1mn = PTM→TE

(d) If n > N
2

and m > N
2

then P1mn = PTM→TM

where n is the mode number on the left side of the junction, m is the mode number

on the right side of the junction, and N is the total number of modes to be calculated

and it is split into N
2

TE modes and N
2

TM modes.

Following this the full N × N power coupling matrix P1 was constructed in a

manner where it is essentially partitioned into four quadrants with each quadrant
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representing one of the four power coupling possibilities.

TE11 TE12 TE13 TM11 TM12 TM13

TE11

TE12

TE13

TM11

TM12

TM13



(P1)11 (P1)12 (P1)13 (P1)14 (P1)15 (P1)16

(P1)21 (P1)22 (P1)23 (P1)24 (P1)25 (P1)26

(P1)31 (P1)32 (P1)33 (P1)34 (P1)35 (P1)36

(P1)41 (P1)42 (P1)43 (P1)44 (P1)45 (P1)46

(P1)51 (P1)52 (P1)53 (P1)54 (P1)55 (P1)56

(P1)61 (P1)62 (P1)63 (P1)64 (P1)65 (P1)66


Similar matrices were constructed for P2, Q1, Q2 , etc. But each of the S matrices

(S11, S12, etc.) are are made up of products of various combinations of the P, Q, R,

and T matrices. However the S matrices still have the same partitioned form as

that shown above. For example the ~S21 matrix that governs how much power will

be present in each mode on the right side of the junction (output) for a given input

mode set on the left side will have the form:

TE11 TE12 TE13 TM11 TM12 TM13

TE11

TE12

TE13

TM11

TM12

TM13



(S21)11 (S21)12 (S21)13 (S21)14 (S21)15 (S21)16

(S21)21 (S21)22 (S21)23 (S21)24 (S21)25 (S21)26

(S21)31 (S21)32 (S21)33 (S21)34 (S21)35 (S21)36

(S21)41 (S21)42 (S21)43 (S21)44 (S21)45 (S21)46

(S21)51 (S21)52 (S21)53 (S21)54 (S21)55 (S21)56

(S21)61 (S21)62 (S21)63 (S21)64 (S21)65 (S21)66


where each element (S21)ij now represents the quantity of the input mode (along

the top of the matrix) that scattered to the output mode (along the vertical of the

matrix). For example the amplitude coefficient shown in bold (S21)52 represents

how strongly the input TE12 mode on the left side of the junction scattered into

the output TM12 mode on the other side of the junction. It should be pointed out

that the above scatter matrix represents only one azimuthal order and only one

junction. Modes of different azimuthal order are treated completely separately as

was mentioned previously. The three remaining S matrices ( ~S11, ~S12, and ~S22) were

constructed in the same format using the relations given in 4.72 and 4.74.
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4.2.3 Coupling Between Multiple Conic Sections

For sectional spline horns consisting of multiple conic sections, each with a different

flare angle, scatter matrices of the form above must be calculated for each junction

of the horn. These scatter matrices take care of mode-to-mode power scattering

at each of the section-to-section junctions, but so far there has been no mention of

power flow through the length of each conic section. The behaviour of the spherical

mode fields through a conic section of constant flare angle is relatively straight

forward compared to the scattering that occurs at a discontinuity. In fact as the

fields propagate through the section there is no scattering that occurs, so one only

needs to consider how each mode changes between the start of the section and the

end of the section.

The Legendre functions that govern how the fields behave in the θ and φ di-

rections remain unchanged since θh remains unchanged and φ is always analysed

over 2π rad. So the only parameter that changes is the Hankel function since it is

dependent on kr, where r is the radial distance along the conic section. Of course

the phase front of each mode will change as it propagates through a section, and it

would be expected that the amplitude would decrease for the forward going waves

as the power spreads out to fill the widening cone.

As was mentioned in the previous subsection, unlike the case for cylindrical

waveguides where modes are either purely propagating or purely evanescent, coni-

cal modes that begin with dominant evanescent behaviour can become dominantly

propagating modes as they move from the narrower to the wider end of a conic

section. The opposite is also true for the case of a backward moving wave, i.e.

the evanescent behaviour of a mode can begin to dominate as the horn narrows.

What is true, however, is that for both forward and backward moving waves the ~S11

and ~S22 matrices are zero for propagation through a section of constant flare angle,

meaning there is no back scatter in either direction, which is also true in the case of

cylindrical waveguide mode propagation. In fact the only transformations required

for propagation through the uniform sections is to change the value of r in the Han-

kel function terms contained in the mode descriptions. The r coordinate must be

changed from its value relating to the start of the conic section, which corresponds

to the length of the full cone including the virtual trace back to the apex, to the

value relating to the end of the conic section, also including extension to the apex,
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as illustrated in Figure 4.17.

Figure 4.17: Illustration of field transformation from one conic section to the next.

The final step in the scattering process was then to cascade the matrices corre-

sponding to each scattering junction. This is carried out by first cascading the scatter

matrices for the first and second sections [Sa] and
[
Sb
]

resulting in a third scatter

matrix [Sc] that represents the amplitude coefficients in the succeeding section. The

algorithm then defines that
[
Sb
]

= [Sa] and [Sc] =
[
Sb
]

and then calculates a new

[Sc] from the new [Sa] and
[
Sb
]

for the next succeeding section. The algorithm

continues this loop until the last section is reached. The final [Sc] that is calculated

from the last two sections is defined as [Stotal]. The method for calculating [Sc] from

[Sa] and
[
Sb
]

is as follows:

[Sc11] = [Sa12]
[
[I]−

[
Sb11

]
[Sa22]

]−1 [
Sb11

]
[Sa21] + [Sa11]

[Sc12] = [Sa12]
[
[I]−

[
Sb11

]
[Sa22]

]−1 [
Sb11

]
[Sc21] =

[
Sb21

] [
[I]− [Sa22]

[
Sb11

]]−1
[Sa21]

[Sc22] =
[
Sb21

] [
[I]− [Sa22]

[
Sb11

]]−1
[Sa22]

[
Sb12

]
+
[
Sb22

]
(4.80)

The above cascading processes are not derived as they have appeared in many

publications including for example [Olver et al., 1994] and [Doherty, 2012]. Again,

the above process applies to modes of only one azimuthal order, say m = 1. For

a single mode system this would be the end of the mode matching process and in

order to calculate the aperture field of the sectional spline horn the absolute values

of the elements of the [S21 total] matrix are used to weight the corresponding TE and

TM modes that are defined for the final horn section. The weighted modes are then
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simply summed linearly to produce the total aperture field as follows:

~EAp (r, θ, φ) =

{n=N/2
j=N/2}∑
{n=1
j=1}

[S21 total]1j
~ETE
1n (r, θ, φ) +

{n=N/2
j=N }∑
{ n=1

j=N
2 +1}

[S21 total]1j
~ETM
1n (r, θ, φ)

(4.81)

If a multi-moded system is being considered, where there is more than one

azimuthal order being accounted for, then all of the above described steps must

be carried out for each order m independently. The behaviour of the fields in the

azimuthal direction (φ) for the higher order modes is governed by both the order

of the Legendre function m for the particular mode and a trigonometric function

either of the form cosmφ or sinmφ. In fact it is a product of these two functions

that describes the behaviour of the fields, which is clear from Table 4.1. Once the

final S matrices have been calculated for each azimuthal order (including that of

m = 0 for multi-moded horns) then the aperture fields corresponding to each of

these independent power channels can be calculated from the [Sm21 total] matrix that

corresponds to that value of m.

In order to calculate the full aperture field for all modes of degree l and order

m that contribute significant power to the fields in the final section of the horn the

modes, now weighted by the coefficients encoded in the final [Sm21 total] matrices, can

be combined. Care must taken however in the manner in which they are combined.

Assuming the horn is illuminated by a blackbody source, and thus each set of az-

imuthal modes are excited independently, then the modes are clearly incoherent and

should be summed in quadrature [Gleeson, 2004]. If modes of common azimuthal

dependence are spatially coherent then they should be summed linearly. The full

description for the aperture field is then:

~EMM
Ap (r, θ, φ) =

 M∑
m=0

{
n=N/2
j=N/2}∑
{n=1
j=1}

[S21 total]1j
~ETE
mn (r, θ, φ) +

{n=N/2
j=N }∑
{ n=1

j=N
2 +1}

[S21 total]1j
~ETM
mn (r, θ, φ)


2

1
2

(4.82)

The total return power of the horn can also be calculated in a very similar

manner but using the [Sm11 total] matrices. In this case the actual field structure of
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the modes is not required as the field amplitude for each mode (and therefore the

power information) is contained in the [S11 total] matrices.

4.3 Spherical SCATTER Program

4.3.1 Description of Spherical SCATTER Code

With the full theory for multi-moded conical mode matching described, an account

is now given of the structure of the code that was developed by the author. The

code is based on heritage from the cylindrical geometry mode matching software

SCATTER [Gleeson, 2004], [Colgen, 2001]. The new Spherical SCATTER code was

written with the primary aim of calculating aperture field patterns and far-field

radiation patterns, specifically for smooth walled structures, in the most computa-

tionally efficient way possible. The section-to-section matrix cascading algorithms

were similar to those used in cylindrical SCATTER, but the actual power scatter-

ing integrals were of a very different form. Spherical SCATTER was written as an

alternative solution for modelling smooth walled conical horns with a more exact

description of the modal fields. It also has the potential to be much faster computa-

tionally due to the fact that the number of calculations is greatly reduced compared

to the step-wise smooth wall approximation that cylindrical SCATTER employs.

The first process that is performed in Spherical SCATTER is reading in a

geometry file of “*.i.text” format that contains information on operational frequency,

maximum azimuthal order, number of conic sections, the length of each section, and

the final radius of each section. Table 4.5 shows the layout of the geometry file that

is read-in by the code. Figure 4.18 then shows what the r and L values in Table 4.5

represent in terms of the geometry of the horn antenna to be modelled.

The next step involves calculating necessary parameters from the data in the

geometry file. These parameters include the flare angle θh of each conic section, the

slant length R of each section (including the virtual extensions back to the apex),

the difference in radial position ∆zLR of the apices of each pair of sections, etc. The

next section of code then uses these parameters to plot a 2D slice of the horn so the

user has a visual representation of the structure.

Using the flare angles θh for the various sections the eigenvalues νlm and µlm are
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Line 1 Frequency (GHz) Max. Azimuthal Number of Conic

Order (m) Sections (N)

From: Line 2 Conic Section

To: Line N+1 Lengths Ln (mm)

From: Line N+2 Conic Section Total Number of

To: Line 2N+1 End Radii rn (mm) Modes of Degree l

Table 4.5: Format of input text file for Spherical SCATTER.

Figure 4.18: Parameters of sectioned spline horn geometry file. The other required parameters for definition of the

EM mode fields are derived from rN and Ln using arithmetic and trigonometric relationships.

then calculated for both the TE and TM modes, respectively. The eigenvalues µlm

correspond to the zeros of the Legendre functions in the mathematical descriptions of

the TMlm modes while the eigenvalues νlm correspond to the zeros of the derivatives

of the Legendre functions in the descriptions of the TElm modes. The calculated

eigenvalues are tabulated allowing them to be called by the mode functions during

the mode matching calculations. The k parameter is then defined and its value is

calculated from the operational frequency that was included in the geometry file.

The mathematical description of the TE and TM modes is then defined for

both the forward and backward moving waves. The general definitions are the same

for all conic section profiles and therefore are constant for all models. The variables

in the TE mode descriptions are ν, m, r, θ, φ, and R, where ν is the eigenvalue of

mode of degree l, m is the azimuthal order, r is the radial distance along the conic

section, θ is the off-axis alt. angle, φ is the off-axis az. angle, and R is the full

length of the cone from the virtual apex to the spherical cap of the section. The

same variables are left free for the TM mode definitions where ν is of course replaced

with µ.
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The overlap integrals are then defined for each of the power scattering possibili-

ties P1, P2, Q1, etc. for TE to TE, TE to TM, etc. Using these definitions the scatter

matrices are then constructed for each cone-to-cone junction. The mode transfor-

mation matrices corresponding to propagation through the uniform conic sections

are also now calculated. The cascading process can then be performed comprising of

alternating scatter and transformation matrix cascading to account for propagation

through a section followed by scattering at a discontinuity, followed by propagation

through the succeeding section, etc. until the final section is reached. If a multi-

moded horn is being analysed then at this point the value of m is incremented and

the processes described in this paragraph are repeated. The processes are further

repeated for each value of m including m = 0.

This is where the mode matching section of the Spherical SCATTER code ends.

All further calculations performed by the code such as aperture field description,

return power, and horn efficiency involve using the elements of the final ~S matrices.

An overview of the structure of the Spherical SCATTER code is shown in Figure

4.19.

Figure 4.19: Overview of how the Spherical SCATTER code performs its algorithms.
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4.3.2 Test Horn

As a verification test of the Spherical SCATTER code an example horn was mod-

elled and the resulting aperture fields were compared to those calculated with the

well established mode matching code Cylindrical SCATTER which has shown ex-

cellent agreement with experiment over many tests and was used to design and

analyse the feed horns for the HFI instrument on the PLANCK CMB system

[Murphy et al., 2010]. The particular horn consisted of five conic segments, each

with a different flare angle, and one initial straight waveguide section (see Figure

4.20). The lengths of the conic sections were all the same at 8.781 mm, the maxi-

mum azimuthal order was set to one (single-mode horn), and the frequency was set

to 100 GHz.

Figure 4.20: Automatated plot from the Spherical SCATTER program. A plot of this type (excluding the table of

values on the right) is automatically generated after the geometry file is ’read in’ to the program.

The design of this horn was optimised through the work of the THz Optics

Group at NUIM, with the aim of developing a smooth walled horn that is capa-

ble of producing similar beam qualities to that of corrugated structures, as already

outlined at the beginning of this chapter [McCarthy et al., 2013]. The particular

beam qualities demanded by the design were high Gaussicity and good beam sym-

metry. High Gaussicity ensures low side-lobe levels in the far-field pattern, while

a good level of rotational symmetry in the beam allows for accurate polarisation

measurements.

What should be noticed in the table of values in Figure 4.20 is that there

are only six lengths and six radii. In contrast, the Cylindrical SCATTER code
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typically requires a few hundred lengths and radii for definition of the horn geometry

due to the manner in which the smooth walls are approximated by small uniform

waveguide sections in a “stairs-like” format. The six sections of the test horn and

waveguide indicate that power scattering integrals will need to be evaluated at just

five junctions for this example. Table 4.6 shows the eigenvalues for the first six TE

and the first six TM modes.

Section (n) W.G. 1 2 3 4 5

Angle (θh) 0o 11.67o 0.72o 13.86o 13.71o 30.29o

ν11 (TE11) ∞ 8.5828 146.487 7.15735 7.24223 3.08647

ν12 (TE12) ∞ 25.6963 425.117 21.549 21.7962 9.6135

ν13 (TE13) ∞ 41.4324 680.967 34.7899 35.1858 15.6634

ν14 (TE14) ∞ 56.9981 934.008 47.8883 48.4313 21.6532

ν15 (TE15) ∞ 72.5052 1186.08 60.9377 61.6271 27.6223

ν16 (TE16) ∞ 87.985 1437.71 73.9641 74.7998 33.5818

µ11 (TM11) ∞ 18.3257 305.391 15.3448 15.5224 6.76452

µ12 (TM12) ∞ 33.9601 559.565 28.5005 28.8259 12.7783

µ13 (TM13) ∞ 49.4686 811.663 41.5511 42.023 18.7479

µ14 (TM14) ∞ 64.94 1063.15 54.5706 55.1886 24.7044

µ15 (TM15) ∞ 80.3956 1314.37 67.5768 68.3408 30.6552

µ16 (TM16) ∞ 95.8428 1565.46 80.5761 81.486 36.6032

Table 4.6: Eigenvalues for the first six TE and TM modes in each of the five horn sections. If the table is analysed

closely it will be clear that the larger angles produce smaller eigenvalues while the smaller angles produce the larger

eigenvalues.

Figure 4.21 shows the final aperture field through the E-plane and H-plane cuts

calculated with the new Spherical SCATTER code. Figure 4.21(a) shows the fields

compared to the original input field that was excited through the uniform waveguide

section. It is clear that the output aperture field has changed significantly from the

input TE11 mode, which demonstrates the level of scattering that occurs due to the

multiple changes in flare angle throughout the horn. Both the E-plane and H-plane

cuts show a high level of Gaussicity, and there is good symmetry in the field, as

required. Figure 4.21(b) shows the same aperture field results, this time compared

to data that was calculated using the more established Cylindrical SCATTER to
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model the same horn. As can be seen there is good agreement between the two

approaches.

(a) (b)

Figure 4.21: Aperture field patterns for the E-plane and H-plane cuts of the electric field intensity through a smooth

walled conic section horn. (a): The aperture fields compared to the input TE11 waveguide field, which demonstrates

the level of scattering that occurs in the horn. (b): The new Spherical SCATTER results compared to Cylindrical

SCATTER results.

Since the conic section horn that was used for verification of the new Spherical

SCATTER code was a real design that was built for testing, further analysis of

the horn using the FEM approach was carried out. A simulation of the induced

currents across the adjoining boundary of an array of such horns, similar to the

analysis that was performed for the SAFARI horns as presented in chapter 3, was

analysed with COMSOL. The effects of any induced currents on the far-field beam

pattern were investigated for the conic section test horn. Figure 4.22 shows a screen-

shot of the FEM model, where the magnitude of the electric field is indicated by

the colour variation. Both the E-plane and H-plane symmetry conditions were used

to reduce the problem size by a factor of four. The spheric section connected to the

exit aperture of the horn, which represents the propagation region, is also visible

in screen-shot. Figure 4.23(a) shows E-plane and H-plane linear cuts through the

surface current density across the conducting ground plane (GP) that lies in the

plane of the exit aperture of the horn. Figures 4.23(b) to 4.23(d) show comparisons

of the far-field pattern with and without the conducting ground plane, i.e. the horn

in free-space compared to the horn in an array block. It is clear that any induced

currents across the ground plane have negligible effects on the far-field pattern.

The cross-polar distribution shows some differences for the two cases, although the
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maximum levels are roughly the same.

Figure 4.22: Screen-shot of FEM model of smooth walled conic section horn.

(a) (b)

(c) (d)

Figure 4.23: Results for a profiled smooth walled conic section horn. (a): The induced surface current density across

the conducting ground plane that would separate neighbouring horns, (b): E-plane cut through the far-field pattern,

(c): H-plane cut through the far-field pattern, and (d): cross-polar far-field pattern through the φ = 45o cut.
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4.3.3 Experimental Verification

A rigorous set of measurements was carried out by members of the THz Optics

Group at NUIM in terms of testing the performance of the test horn described

above. The work was primarily driven by Darragh McCarthy, and it involved mea-

suring both the co-polar and cross-polar radiation patterns at various propagation

distances, including the far-field. The experimental measurements agreed extremely

well with the Cylindrical SCATTER results, and thus Spherical SCATTER, and

the full analysis is due to be presented at the SPIE: Millimeter, Submillimeter, and

Far-Infrared Detectors and Instrumentation for Astronomy VII conference in Mon-

treal, Canada, in June 2014. A paper on the horn measurements and results will be

included in the corresponding conference proceedings [McCarthy et al., 2014].

4.4 Conclusions

In this chapter the theory for EM propagation through smooth walled conical horns

and conic sections was described in detail in its full analytical form. Comparisons

were made between the exact solutions for TE and TM modes and the approximate

solutions that employ cylindrical waveguide modes with a spherical cap correction

factor. Good agreement between the two approaches was demonstrated for horns

of modest flare angle, and it was shown that the approximations were sufficiently

accurate for use as a starting point for a search of roots of the Legendre functions

and their derivatives, which were required for determining the eigenvalues of the TE

and TM mode solutions.

The results of the new mode matching code, Spherical SCATTER, which was

developed by the author, was shown to be in good agreement with the already

established and verified Cylindrical SCATTER code, and the FEM software package

COMSOL. The verified results of the Spherical SCATTER code demonstrates that

it is possible to model the novel smooth walled conic section horns with two orders of

magnitude fewer power scattering integrals, compared to the Cylindrical SCATTER

approach.

It was explained that some of the theory in this chapter pertaining to spherical

mode matching has already been reported on in the literature, most notably by
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[Olver et al., 1994] and [Clarricoats et al., 1984]. However since there was little to

no derivation of the mathematics it was necessary to revisit the theory with a full and

detailed derivation of the most important aspects to ensure mathematical integrity

of the new Spherical SCATTER code. Furthermore, the theory in the literature

only describes examples of single-mode systems, thus requiring an extension of the

theory to account for multi-moded horns. This extended theory was presented in

section 4.2.3 of this chapter.

This novel approach to modelling smooth walled conic section spline horns with

conical mode matching is an exact solution that relies on approximations only for

initial ‘guess’ values for the eigenvalues of the modal fields. All of the fields were

derived analytically from Maxwell’s equations. The Spherical SCATTER code, in its

present state, ultimately proved to be computationally slower than the Cylindrical

SCATTER code. This is due to the numerical integrations used in the analysis

of the power scattering calculations. Although modelling a smooth walled horn

with Spherical SCATTER requires much fewer power scattering calculations than a

similar Cylindrical SCATTER model, the analytical forms employed by Cylindrical

SCATTER outweighs the large number of calculations.

Potential future work in this area is the optimisation of the code to increase

computational speed. This could be achieved by deriving analytical forms for the

integrals involving products of the Legendre functions and their derivatives, and

implementing them in place of the numerical integrals used presently. Alternatively

the Bessel function approximations that were shown to be accurate for horns of

moderate flare angle could be used in place of the Legendre functions. Efficient

analytical solutions to integrals involving Bessel functions are well understood and

are already used in the Cylindrical SCATTER code.
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Chapter 5

The Electromagnetic Design and

Analysis of Cavity Coupled

Absorbers for SAFARI

“We are at the very beginning of time for the human race. It is not unreasonable

that we grapple with problems. But there are tens of thousands of years in the future.

Our responsibility is to do what we can, learn what we can, improve the solutions,

and pass them on.”

- Richard P. Feynman
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5.1 Background

The detectors of the SAFARI instrument will employ a TES [Khosropanah et al., 2012]

in each pixel housed in an integrating cavity. Each TES is mounted on a square

piece of absorbing material that is relatively large compared to the TES. For ex-

ample the current design of the SAFARI Short-Wave Band (S-Band) pixel employs

a 200 × 200µm square of Ta (tantalum) film that is only a few nanometres thick

coupled to the TES. The TES/absorber combination is cooled to a few milliKelvin

and therefore the Ta operates in a superconducting state. A SAFARI test-bed be-

ing studied by the SRON currently uses a hemispherical backshort and the system

is fed by a smooth walled conical horn. Radiation from the blackbody source is

focussed onto the absorber by the feed horn, while the shaped backshort behind

the TES/absorber serves to reflect any radiation that is not initially absorbed back

toward the absorber (see Figure 5.1). The cavity thus set up between the absorber

and the backshort provides a matched impedance for the incoming radiation in or-

der to maximise the radiation that is absorbed. From an optical viewpoint standing

waves are set up in the cavity between the absorber and the backshort. A detailed

description of the SRON SAFARI S-Band test-bed is given in section 3.3.

(a) (b)

Figure 5.1: Illustration of a SAFARI TES mounted on the Ta absorber. (a): Aerial view showing how the TES

and absorber are monted over the cavity by using thin niobium (Nb) legs. (b): A cut through the SAFARI pixel

showing the current design of a hemispherical integrating cavity.

Clearly it is important to be able to predict the optical efficiency of such cav-

ity coupled detectors for the high sensitivities required of far infra-red astronomy

and CMB experiments. Efficient computational models are essential for the design
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and analysis of these detector systems and the results must be reliable. Modelling

such cavity mounted absorbers requires sophisticated EM modelling which tends

to be computationally intensive and in the past it was generally not possible to

model electrically large cavity structures (in terms of wavelength) without the use

of supercomputers.

By analogy with large integrating spheres in infrared systems (based on ray

tracing), the assumption was generally made that a hemispherical shaped backshort

would refocus in some sense the radiation not absorbed by the absorber in the first

pass through it back to the absorber. Now, with more powerful PCs available and

employing more efficient simulation techniques, it is possible to include these absorb-

ing cavities in the models (see for example simulations for the SPIRE instrument

on the Herschel Space Observatory [Glenn et al., 2003]).

Another assumption during the design of previous systems was often that such

cavities (integrating cavities) could be assumed to behave like blackbody cavities,

and if feeding multi-mode horn antennas they would excite all the waveguide modes

equally (Planck HFI for example [Maffei et al., 2010]). Clearly for achieving the

highest sensitivities possible, a more complete understanding of the absorbing cavity

is required. Again this is particularly important for multi-mode systems as then it

is possible to predict both the multi-mode beam pattern of the horn based on the

correct coupling of the individual waveguide modes to the absorbing cavity, and

predict an overall optical efficiency or throughput for the system as a whole for both

point like and extended source illumination, or indeed the predicted illumination by

the FTS output beam for the system on the telescope.

In this chapter we first consider the computational simulation tools available

and discuss the validity of various approximate approaches. The original SAFARI

Long-wave Band (L-Band) cavity design proposed (based on the hemispherical back-

short) is then discussed and simulations using the FEM with the commercially avail-

able COMSOL package are described. The redesign of the backshort configuration

for improved coupling of the absorber to the cavity is then considered with both

FEM simulations and a novel mode matching approach. Finally the SAFARI S-

Band is discussed and a redesign of the S-Band multi-moded cavity for improved

absorber efficiency is described. The theory of including the Ta absorber in the

models is explained, and potential methods for the future for including the vacuum
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gap in the mode matching models are discussed.

Modelling cavity structures is very similar to the way waveguides and feed

horns are handled as described in chapters 3 and 4, and the absorber material is

approximated as an infinitely thin, two dimensional resistive sheet with units of

Ohms per square (Ω/�). The TES itself in omitted from the models as it is the

Ta absorbing film that couples to the incoming radiation, and the TES essentially

acts as a thermometer to detect the rise in temperature of the Ta. A research team

at SRON are attempting to model the TES and the SiN legs on which the TES

and absorber are mounted in terms of the heat conductance and the heat capacity

in the SiN legs, and the impedance and noise in the TES itself (see for example

[Khosropanah et al., 2012]).

The validity of the resistive sheet approximation for the piece of Ta absorber

is supported by work carried out by a research group at Cambridge University U.K.

[Withington et al., 2013]. They showed that, for a THz beam within the frequency

range of approximately 1.4 - 8.8 THz incident on a thin sheet of Ta at moderate

angles of incidence, the reactive part of the complex impedance is almost three orders

of magnitude smaller than the resistive part, and frequency-independent absorption

is possible. They explain that this is true once the thickness of the Ta sheet is less

than 10 nanometres (d < 10nm)(See also [Thomas and Withington, 2013]).

5.2 Modelling Approaches

5.2.1 Mode Matching Approach

The theory for modelling waveguide and horn structures with mode matching tech-

niques was discussed in detail in the previous chapter 4. It is an extended version of

the mode matching program SCATTER (for cylindrical systems) that was employed

in this section to model closed cavities housing resistive sheet absorbers. A summary

of the theory that was required for the extension of the code is presented in this sec-

tion, however the author was not involved in developing the theory or implementing

it into the original SCATTER code. The author carried out verification analysis of

the code by using it to model a variety of systems, some of which are presented in

this chapter, and comparing the results to the same systems modelled with FEM
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techniques. The code was validated based upon the good agreement observed in the

comparison analysis.

In order to model a closed cavity little modification to the existing code is

required. If for example a hemispherical cavity is desired the input geometry text

file representing the geometry of the structure is constructed in a manner where the

spherical shape is approximated by a series of waveguide sections with increasingly

smaller raddi where the rate at which the radii reduce is just governed by the

equation for a circle. Figure 5.2 illustrates an example of a hemisphere. In the

illustration there are only five sections making up the structure for clarity, however

there would be a lot more sections in a real model in order to build a smoother,

less jagged profile; the minimum number of steps depends on the wavelength of the

radiation being simulated.

Figure 5.2: Diagram showing how a profiled waveguide structure can be approximated by a series of uniform

cylindrical sections. This particular example is for a hemisphere.

Building up cavity geometries in this stepwise manner is clearly a natural ex-

tension of how horn structures are modelled with the SCATTER code. The real

modification of the SCATTER code was required for including the resistive sheet

absorber, and it was the author’s role to validate the code by using it to model

some simple examples of cavity housed absorbers and then to compare the results

to those of FEM models of similar examples. Following validation through testing

the author then employed the extended SCATTER code to model various proposed

systems such as the SAFARI L-Band, and then to design improved systems as will be

shown throughout the chapter. The theory for including a resistive sheet absorber

in the SCATTER mode matching code is now summarized.

The TE and magnetic fields in a smooth walled cylindrical waveguide section
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were derived and tabulated in chapter 2. The first step in describing the mode

matching approach that also takes account of an absorbing resistive sheet begins,

as before, by regarding a propagating signal as a sum of such transverse waveguide

modes. And considering first the case where the cylindrical symmetry is not broken

the modes of the same azimuthal order do not mix. For the sections of the cavity

or horn structure where there is no absorber material present, the theory is the

same as that described in the mode matching description given in section 2.4. If an

absorber is then to be modelled at a particular position/junction between the horn

and cavity, or anywhere within the horn or cavity, it can be considered as a resistive

current sheet with the electric field constant across the boundary and a drop in the

magnetic field due to induced surface currents, leading to the following boundary

conditions:

~EL = ~ER

~HL = ~HR − ~K × k̂

with ~K =
~EL
η

=
~ER
η

(5.1)

where ~K is the induced current density, η is the sheet resistance defined in units of

Ω/� and k̂ is just a unit vector in the direction of propagation (z).

The sheet resistance described in (5.1) is valid for a two-dimensional system

when the thickness of the absorber material is negligible. The sheet resistance

implies that there is only induced currents in the plane of the sheet and no currents

in the perpendicular direction. In S.I. units the more familiar bulk resistivity ρ has

units of Ωm (Ohm metres) or alternatively Ωm2/m since the overall bulk resistance

R will depend on a product of the bulk resistivity ρ, the length L in m, and the

reciprocal of the area A in m−2 of the medium, i.e. R = ρL
A

. If we then consider

the area A being made up of a width W and a thickness δ as shown in Figure 5.3

then we can write the resistance as R = ρL
A

= ρL
Wδ

. Then combining ρ with 1/δ and

calling this RS = ρ/δ, then the resistance can be written as:

R = RS
L

W
(5.2)

where RS = 1
σδ

, since ρ = 1/σ.

Since both L and W have units of metre then the dimensions really cancel out,

however the term Ohms per square is used since if L = W (i.e. a square) then such
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Figure 5.3: Illustration comparing bulk resistance to sheet resistance.

a square with sheet resistance, say 50 Ohms/square, has an actual resistance of 50

Ohms, regardless of the size of the square.

If we want to consider the sheet resistance in terms of induced surface currents

due to the jump in the magnetic field as stated in the boundary conditions in 5.1

then we begin by stating Ohm’s law:

~J = σ ~E (5.3)

Then taking Maxwell’s fourth equation ~∇× ~H = ~J and integrating it over an area

corresponding to the width W and thickness δ from Figure 5.3:∫ ∫
~∇× ~H · ~dA =

∫ ∫
~J · ~dA (5.4)

Applying Stoke’s theorem to the left side of 5.4 and substituting σ ~E for ~J (Ohm’s

law) in the right side of 5.4, and then equating both sides yields:∫
~H · ~dl = σ

∫ ∫
~E · ~dA (5.5)

Integrating the magnetic field around the loop (Figure 5.4) dl, and again, as-

suming the thickness δ is negligible, then the left side of 5.5 just becomes HLW −

HRW . Then, assuming E is continuous across the boundary the right side of 5.5

becomes σEδW , thus:

HLW −HRW = σEδW

⇒ HL −HR = σδE =
E

RS

(5.6)

since it was shown above that RS = 1
σδ

.

Following analysis presented in chapter 2, if the incident and reflected fields on

the input side of a wageguide junction have mode coefficients An and Bn respectively,
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and the mode coefficients on the output side for the fields are Cn and Dn for the

nth mode, and if a symmetrically placed absorbing disc partially fills the waveguide

junction, and assuming z = 0 at the position of the absorber, then applying the

condition in 5.1 yields:

N∑
n=1

[An +Bn]~en =
N ′∑
n=1

[Dn + Cn]~en (a)

N∑
n=1

[An −Bn]~hn =
N ′∑
n=1

[Dn − Cn]~hn − [η(r)]−1
N∑
n=1

[An +Bn]~en × k̂ (b)

(5.7)

where η(r) =∞ outside the boundary of the absorber (r > R) and η(r) = η across

the absorber (r ≤ R), where R is the radius of the absorbing disk.

Taking the same approach as with scatter matrices at waveguide junctions as

presented in chapter 2 we can solve these equations using conservation of complex

power to yield the following scatter matrices:

S11 = −
[
I + [Q∗]−1

Γ

2η(r)

]−1

·
[
[Q∗]−1 Γ

2η(r)

]
S12 =

[
I + [Q∗]−1

Γ

2η(r)

]−1
(5.8)

where Qnm =
∫
S

(
~e∗n × ~hm

)
dS and the integration is over the full area of the guide

S, Γmn =
∫ ′
S

(~e∗m × ~en) dS ′, and Γnm =
∫ ′
S

(~e∗n × ~em) dS ′, where S ′ in the integrals is

now the area of the absorber.

Since [Q] is a diagonal orthogonal waveguide mode set with elements Qmm =∫
S

(
~em × ~h∗m

)
dS = 1

Zm
, where Zm is the impedance of mode m, then 5.8 can be

written as:

S11 = −
[
I +

Z · Γ
2η(r)

]−1

·
[

Z · Γ
2η(r)

]
S12 =

[
I +

Z · Γ
2η(r)

]−1
(5.9)

where Z is a diagonal matrix of mode impedances. The Γmn are real valued as

|
∫
Sabsorber

~e ∗m · ~endS| = |
∫
Sabsorber

em,ren,r + em,φen,φdS| = |
∫
Sabsorber

~em · ~endS|. It

should also be noticed that S11 = S22 and S12 = S21 by symmetry, which was not

the case for a junction between two waveguide sections, although the S11 and S12

were very similar to S22 and S21 respectively, in that case.

We now consider the case of a closed cavity such as the hemispherical example

shown in Figure 5.2. Assuming no other losses, the amount of power absorbed by
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the resistive sheet can be inferred by analysing the return power through the S11

parameter. For no absorber material present the return power will equal the input

power so this clearly represents no power absorbed. If the absorbing disk is then

included in the closed cavity structure the power absorbed can be calculated by:

PAbs = (1− PowerReturned) = 1−

(
N∑
i=1

M∑
j=1

S11[i, j]2δij

)
(5.10)

where N is the maximum radial mode degree that is considered, M is the maxi-

mum azimuthal mode order that is excited, and it is assumed unity power is evenly

distributed between all propagating modes i, j.

Care must be taken though when dealing with modes that are close to cut-off.

If the frequency is below the cut-off frequency of a particular mode then it will

decay rapidly through evanescent propagation, thus in that scenario there will be

no power reflected back and it will appear that all the power was absorbed. If the

return power for a propagating mode is close to zero, say 0.01, then the amount

of power absorbed would be (1 - 0.01) = 0.99 of the total power contained in that

mode. When analysing horns similar concerns with evanescent modes exist at the

horn aperture.

5.2.2 3D FEM Approach

The general theory involved in FEM simulation was described in detail in chapter

2 of this thesis, and the specific approaches required for modelling waveguide and

horn structures with the COMSOL FEM package was explained in chapters 4 and 3.

Thus the only discussion on theory required in this section is how the Ta absorber

was treated in the 3D COMSOL models that will be described in this chapter.

The method of instructing COMSOL 3.3 to treat the absorber as a resistive

sheet was by using the predefined ’Transition Boundary Condition’. This allows the

user to input a value for ’Surface Impedance’ and an optional externally applied

electric field ~Es (see equation 5.11). The magnetic field H is analysed on both sides

of the transition boundary, and the amount of power absorbed by the sheet can be

calculated from the jump in the magnetic field HL−HR due to the surface currents

this induces. The electric field is continuous across the boundary. The induced

current density across the resistive sheet can also be calculated in the post-processing
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environment and the ’Surface Resistive Heating’ parameter can then be calculated

from current density and integrated over the full disk to calculate the amount of

power absorbed directly. If we now consider such a resistive sheet situated in the

x−y plane and positioned at z = 0, and if the field is propagating in the z direction,

then the ’Transition Boundary Condition’ is defined by COMSOL as:

ηk̂ ×
(
~HL − ~HR

)
− k̂ ×

(
~E × k̂

)
= k̂ ×

(
~Es × k̂

)
(5.11)

where η is the surface impedance, ~HL and ~HR represent the magnetic field on the

output and input side of the boundary, respectively (for a wave travelling from right

to left), k̂ just denotes a unit vector normal to the surface of the resistive sheet, and

~Es is the optional externally applied electric field which was set equal to zero for

these simulations as no external field was applied.

Figure 5.4: Schematic showing the absorber situated in the x− y plane positioned at z = 0 with the magnetic field

on both sides of the boundary shown. The direction of the induced surface currents is indicated by the blue arrows.

Since ~Es = 0 then,

ηk̂ ×
(
~HL − ~HR

)
= k̂ ×

(
~E × k̂

)
(5.12)

Or,

k̂ ×
(
~HL − ~HR

)
=
k̂ ×

(
~E × k̂

)
η

⇒ ~H||L = ~H||R −

(
~E|| × k̂

)
η

(5.13)

where the subscript || denotes the component of the field parallel to the surface of

the absorber.
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If we now label
~E
η

as ~K, the boundary conditions for the resistive sheet can be

written as:

~HR = ~HL − ~K × ~k

and ~ER = ~EL

(5.14)

where ~K is the surface current density which is similar to bulk current density

~J = σ ~E =
~E
ρ

. The only difference is that the bulk resistivity ρ is replaced with sheet

resistance η.

Clearly the boundary conditions in 5.14 for a resistive sheet as defined in the

COMSOL 3D models are identical to those defined in the mode matching approach

5.1. The fraction of power that is absorbed by the resistive sheet in the COMSOL

models can be determined in a similar fashion to the method applied with SCATTER

where the S11 return power was analysed. The post processing environment can be

used to analyse the S11 parameter, and assuming no other losses the power absorbed

by the resistive sheet then is:

Pabsorb = 1− S2
11 (5.15)

where in this case S11 will be a single value in contrast to the S11 matrix in the

SCATTER mode matching analysis.

This S11 analysis is also the approach that was used by Glenn et al. through the

use of the Hewlett-Packard High-Frequency Structure Simulator (HFSS) to calculate

the fraction of power absorbed by the SPIRE absorbers on the Herschel Space Obser-

vatory [Glenn et al., 2003]. Similarly it is the approach taken by Stephen Doherty

with the use of the CST Microwave Studio package for similar absorber analysis

[Doherty, 2012].

An issue that arises with this indirect approach occurs when there are losses in

the system besides the power absorbed by the resistive sheet. This is appropriate in

an array system such as SAFARI in which several detectors are fabricated on a single

chip and there is an open gap between the detector backshort structure and the horn

antenna array block which feeds the detectors. This open gap or ’vacuum gap’ as

it has come to be called is clearly a source of loss from the cavity structure, and

therefore simply analysing the S11 parameter will not be sufficient for determining

precisely how much power is absorbed by the resistive sheet.
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Figure 5.5: left: Schematic of three SPIRE pixels for the Herschel Space Observatory. right: A single cavity backed

detector expanded for clarity. As can be seen a gap must be left between the horn array block and the delicate

detector wafer [Glenn et al., 2003].

The solution that both Doherty and Glenn et al. applied to this problem was to

run the simulation twice; first without the absorber present, and then again with the

absorber. The difference in the value of S11 for the two separate solutions will then

yield an approximate value for the fraction of power absorbed by the Ta. There are

of course two assumptions that must be made with this model; first, the presence of

the absorber does not affect the amount of power lost through the vacuum gap, and

second, any higher-order modes generated as the wave propagates into the cavity

are evanescent.

As an alternative approach a method for directly calculating the amount of

power absorbed by the Ta sheet was formulated by the author. Any induced surface

currents on the two dimensional resistive sheet will cause heating (surface resistive

heating) across the sheet. Integrating this resistive heating parameter across the

area of the absorber will yield the amount of power absorbed by the Ta as follows:

Pabsorb =

∫ ∫
Qsrh · dS =

∫ ∫
1

2
Re
(
~JS · ~E

)
· dS (5.16)

This direct technique allows a more precise calculation of the power absorbed

by the resistive sheet. A similar approach is applied for determining the precise

amount of power lost through the vacuum gap and this will be discussed in more

detail in section 5.4.1 of this chapter.
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5.2.3 2D FEM Approach

Such simulations, as described in the previous subsection, can be very time consum-

ing using a 3D solver for an electrically large system such as SAFARI. We therefore

also consider a 2D approach that is now described. The approach taken to mod-

elling an absorber in a waveguide with the 2D COMSOL modelling environments

is very similar to that outlined above for the 3D case. In the standard 2D option,

the 2D plane where the model is built is representative of a 2D planar cut of a

model that has translational symmetry in a direction perpendicular to the model

plane where the symmetry applies to the geometry and the physics. A depth of one

metre is assumed in the transverse direction which can be important if quantities

such as fluxes are to be calculated correctly, since the area over which the power will

be distributed will be 1 metre times the height that is defined in the model plane.

For example the one dimensional line shown in red in Figure 5.6 represents a two

dimensional sheet from the three dimensional model, and it has a length of 50µm in

the x-direction. If 1 Watt of power is defined to flow through the 1D line then the

real value for the flux will be 1W
(50.10−6m×1m)

= 2× 104Wm−2.

Once such corrections are applied to the results of any 2D simulations (at least

for electrically large systems) we expect very similar results will be true for a 3D

environment. This is not strictly speaking true for small systems since Maxwell’s

equations do mix up the x and y directions. A clear example of this is a narrow

waveguide operating at a frequency close to cut-off. The equations governing the

waveguide fields in x, y andz are not separate, and changing the size of the guide in

one dimension will affect how the field behaves in all three dimensions.

Things are a little bit different in the COMSOL 2D axial symmetry environ-

ment. In this option the model is again built in a 2D plane but the geometry is

truncated at the axis of rotational symmetry. Rather than assuming a depth of 1

metre in the transverse direction as in the standard 2D option, the post processing

mode allows the user to calculate the equivalent values for rotation about the axis

of rotational symmetry. Integrals of variables can also be calculated over 2π radians

so that the equivalent 3D quantities can be calculated. It is assumed that both the

geometry and the physics are symmetric with respect to rotation about the axis

of symmetry. The interpretation of the 2D axial symmetry model is illustrated in

Figure 5.7.
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Figure 5.6: Diagram showing what the COMSOL 2D planar symmetry environment represents. The 2D planar

model will always represent a 3D model with translational symmetry in the geometry and physics and with a length

of 1 metre in the direction perpendciular to the model plane.

Figure 5.7: Diagram showing what the COMSOL 2D axial symmetry environment represents. The 2D axial symme-

try model will always represent a 3D model with rotational symmetry in the geometry and physics rotated through

2π radians.

5.2.4 Comparison of Results

In order to verify the mode matching approach and to investigate the accuracy of the

2D calculation, some simple simulations were run with these two techniques, as well
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as with the standard 3D COMSOL mode. The 3D FEM approach is well established

and reliable so it served as a good benchmark for validating the other two methods

(SCATTER and 2D approach). Mode matching is inherently a different approach

to solving EM problems than FEM so agreement between results would be good

validation for both FEM and mode matching techniques.

Before considering an absorber in a cavity we began with an analysis of an

absorber in a waveguide terminated with a short circuit which could be considered

as the simplest kind of ”absorber cavity” to be analysed. For example this allowed

the multi-mode behaviour to be probed by increasing the waveguide size, and the

effect of the ”backshort” (i.e. the distance between the absorber and shorted end

of the guide) to be examined. Furthermore such a simple, well controlled example

provided a trusted set of results that allowed the inclusion of an absorber in the

SCATTER code to be verified.

A model was created of a simple circular waveguide structure that was sealed at

one end and with an absorber located at λ/4 from the shorted end of the waveguide.

The gap between the absorber and the closed end of the waveguide acted as a simple

cavity structure. The waveguide to be modelled was given dimensions of length L =

0.3mm, and radius r = 50µm as shown in Figure 5.8. The first modelling approach

applied was the 3D COMSOL RF module, with the waveguide being modelled as

a cylinder with perfect electric conducting boundaries, and the absorber material

was modelled as an infinitely thin resistive sheet. A similar model was then built

in the 2D COMSOL RF module, where the 2D waveguide was given a width equal

to the diameter of the 3D cylindrical waveguide (W = 100µm). An appropriate

geometry file was then written for an input for the mode matching model of the

same problem. The maximum absorption was expected to occur at λguide/4 which

can easily be calculated by the wave equation [Clarricoats et al., 1984]:

1

λ2
g

=
1

λ2
0

− 1

λ2
c

(5.17)

where λg is the waveguide wavelength, λ0 is the free-space wavelength, and λc is the

cut-off wavelength specific to the particular guide.

Figure 5.9 shows the guide wavelength (relative to the free-space wavelength)

plotted as a function of increasing frequency for the fundamental TE11 mode in a

cylindrical waveguide with the dimensions defined above.
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Figure 5.8: Screen shot of a cut through the 3D COMSOL model of a simple shorted waveguide cavity and absorber

operating at 5THz.

Figure 5.9: Plot of guide wavelength as a function of increasing frequency. As the frequency approaches a few times

the cut-off value, the wavelength approaches the free-space value.

The first comparison analysis that was carried out using the waveguide cavity

example just described involved varying the surface impedance over a range of 0 to

750Ω
� while keeping both the frequency and the absorber position constant. The

frequency was just set to a sufficiently high value that the guide wavelength was

almost exactly the free-space wavelength, namely 5THz (essentially an oversized

guide meaning λ0 � λc). This frequency value clearly gives rise to a free-space

wavelength of 60µm and a guide wavelength approximately the same, therefore the

absorber was positioned at λWG

4
= 15µm from the shorted end of the guide (Figure

5.8). The absorber was given the same radius as the waveguide thus completely

filling the guide. The results are shown in Figure 5.10 and as can be seen there is

excellent agreement between all three simulation methods.
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Figure 5.10: Efficiency of a resistive sheet absorber for varying surface resistance. The absorber was placed 15µm

(λWG
4

) from the closed end of a cylindrical waveguide 100µm in diameter. The values of surface resistamce are

given in multiples of 377 Ω
� . The free-space wavelength (λ0) of the radiation was 60µm.

The next step taken with each of the three computational techniques was to

simulate the same waveguide and absorber structure across a large frequency range.

The range studied was from 1.6THz (which is below the cut-off frequency of the

guide for the fundamental mode) to 10THz. What was expected was that maximum

absorption should occur when the wavelength was such that the distance between

the absorber and the closed end of the guide corresponded to λ
4
, 3λ

4
, 5λ

4
, etc, and that

a minimum amount of power be absorbed when the same distance was equivalent to

an integer number of half wavelengths (destructive interference). Any wavelengths

in between these should allow for some power to be absorbed following a Fabry-Perot

like curve. The results are shown in Figure 5.11.

It is clear that there is again good agreement for the various methods except for

the COMSOL 2D results based on axial symmetry, which are labelled as ’COMSOL

2D rot’ in the graph. This illustrates the issue with trying to approximate a three

dimensional model of this type with the axial symmetry mode in COMSOL. The

reason for the disagreement lies in the manner in which the EM modes are excited

across the input port boundary in the axial symmetry modelling environment. The

fundamental TE mode should have its peak power on axis and decay to zero at

the boundary of the waveguide as shown in Figure 5.12. The correct boundary

condition to be used for representing symmetry in the electric field is a perfect
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Figure 5.11: Efficiency of a resistive sheet absorber fully filling the guide for increasing frequency. The absorber was

again placed 15µm (λWG
4

) from the closed end of a cylindrical waveguide 100µm in diameter.

magnetic conductor (PMC) boundary which allows the electric field amplitude to

have a maximum at the boundary (whereas a conducting boundary forces the electric

field to zero at the boundary). However the COMSOL package only allows for one

definition per boundary and the axial symmetry boundary condition is required for

what should also be the PMC boundary. Therefore the field is forced to zero at

the axis of rotational symmetry which of course represents the central axis of a

3D circular waveguide, thus the field structure is actually representative of some

higher order mode like the TE21 or in fact a coaxial mode. The much higher cut-off

frequency of approximately 3.5THz is clearly evident in the graphed data showing

that at the lower frequencies the full mode structure cannot enter the waveguide,

except of course in an evanescent form which will decay rapidly within the guide.

For this reason the 2D axial symmetry option in the COMSOL package was not

used again for simulating these models as clearly it will lead to erroneous results.

Of course for the case when the resistive sheet completely fills the guide, the

power scattering integral Γ in the mode matching approach has a simple form.

So having found good agreement for this case, the next step taken was comparison

between the simulation techniques for the case of a resistive sheet only partially filling

the guide. Two examples were examined where the first case was for a sheet radius

(r) being 0.8 times that of the guide radius (R) and therefore almost completely

filling the guide, and the second example being the case of a sheet diameter only
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(a) (b)

Figure 5.12: Illustration describing the issue with simulating modal porblems with the rotational symmetry COM-

SOL mode. (a): Screen shot showing the axial symmetry boundary condition. (b): The structure of the electric

field across the input boundary of the model.

0.1 times that of the guide diameter and therefore allowing a large amount of space

for power to flow around the resistive sheet. This test probes how well the Γ term

takes this partially filled case into account.

The results for the case of r
R

= 0.8 are shown in Figure 5.13 and as would be

expected there is not much degradation in the amount of power absorbed for any

of the simulation methods when compared to the case of the absorber completely

filling the guide. However the initial results for the case of r
R

= 0.1 show a difference

of an order of magnitude between the 2D planar symmetry mode and the other two

methods. The 3D COMSOL and mode matching results are still in good agreement

with each other though, and for this reason it was assumed the error was in the

2D COMSOL planar symmetry method. The results showing the disagreement are

shown in Figure 5.14.

With some consideration of what the 2D model represents in the extruded 3D

model, the cause of the huge difference in results was obvious. If the 2D model

was to be extruded in the third dimension by a length of 1 metre as is assumed

by the software, then the ratio of the area of the absorber to the area of the full

waveguide cross-section ( a1

A1
) would be very different than the case of a circular

absorber in a circular waveguide ( a2

A2
). This scaling parameter is denoted by Λ and
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Figure 5.13: Efficiency of a resistive sheet absorber almost completely filling the waveguide for increasing frequency.

The absorber was again placed 15µm (λWG
4

) from the closed end of a cylindrical waveguide 100µm in diameter.

This time the absorber diameter was only 0.8 times that of the waveguide diameter, or Dabs = 80µm

Figure 5.14: Efficiency of a resistive sheet absorber for increasing frequency. The absorber was again placed 15µm

(λWG
4

) from the closed end of a cylindrical waveguide 100µm in diameter.

it was calculated as follows:

Λ =

(
a1

A1

)
(
a2

A2

) =

(
πr2

1

πR2
1

)
(

(1m)(r2)
(1m)(R2)

) =
r2

1.R2

r2.R2
1

=
(1× 10−4)2(10× 10−4)

(1× 10−4)(10× 10−4)2
= 0.1 (5.18)

Applying this scaling factor of 0.1 to the 2D COMSOL data shown in Figure 5.14 a

new data set was produced and it is shown in Figure 5.15 with the SCATTER results

and 3D COMSOL results shown again for comparison. It is clear from the graph
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that including the scaling factor brings the 2D results into much better agreement

with the 3D FEM and mode matching results, however the symmetry of the 2D and

3D cases is so different it is hard to draw conclusions from the 2D models.

Figure 5.15: Efficiency of a resistive sheet absorber for increasing frequency with the COMSOL 2D results corrected.

This graph is just zoomed in on the relatively low power.

It has been shown in this section that the extended mode matching code SCAT-

TER that now allows for a resistive current sheet to be included in the simulations

is performing as expected. There is reasonable agreement between SCATTER and

the 3D COMSOL results for the case of an absorber filling the waveguide section,

and for the case of it only partially filling the guide which is more comparable to a

real cavity structure such as a SAFARI detector. An important point to be made

here is that the extended SCATTER code was found to be up to three orders of

magnitude faster than the 3D FEM approach. For example, the model of a simple

cavity containing an absorber that was presented above required 10.81 hours calcu-

lation time for one hundred spot frequencies with a FEM analysis. By contrast, the

mode matching analysis for the same one hundred spot frequencies took only 15.32

seconds.

It was also shown that the 2D planar symmetry models are not really applicable

to these cylindrical waveguide and cavity geometries due to the large differences in

symmetry, however with some corrections to the results the 2D approach could be

used as a quick method for initial simulations in order to gain approximate results.
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The corresponding 3D models would then have to be investigated so that a more

reliable final result could be obtained. Of course the 2D axial symmetry approach

is a more accurate representation of the 3D cylindrical models in terms of geometry,

however the correct symmetry is not employed in the physics, and an example of

why it can not be trusted to yield reliable results was described above.

The final discussion in this section regards further verification of the SCATTER

absorber code that was carried out by Stephen Doherty as part of Technical Note

Three (TN3) for the Irish AO contract commissioned by ESA, and that the author

was also involved in [RFQ 3-6418/11/NL/CBi]. The approach taken by Doherty

involved simulating a range of different scenarios for an absorber inside a waveg-

uide cavity using the adapted SCATTER code, and then comparing the results to

those of similar simulations with the commercially available CST Microwave Studio

package. The computational method employed by CST Microwave Studio is FIT,

and it is similar to the FEM approach that COMSOL is based on, but it is the

integral form of Maxwell’s equations that are solved within the meshed problem

geometry whereas it is the differential equations that are solved with FEM. As with

the good agreement shown in this section for the results from the 3D COMSOL

and SCATTER simulations, similarly good agreement was demonstrated for the

CST Microwave Studio FIT. An example of the CST/SCATTER results is shown

in Figure 5.16.

(a) (b)

Figure 5.16: Results of CST verification of SCATTER code for modelling an absorber. (a): Absorbed power for

varying values of frequency in a single moded circular waveguide with the resistive sheet fully flling the guide and

at a fixed position of λg/4. (b): Absorbed power at 80 GHz for varying values of absorber/backshort distance ∆d

in a single moded circular waveguide with the resistive sheet fully flling the guide [Doherty, 2012].
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5.3 Optimisation of Absorber Position and Cav-

ity Geometry

Defining an optimum position for the resistive sheet absorber in a cavity is not

a trivial matter as there are a number of factors that one must consider, partic-

ularly for a large operational frequency range and an over-moded system such as

the case for SAFARI. Since maximum efficiency would be expected when the ab-

sorber/backshort distance ∆d is equal to a quarter of the guide wavelength as was

already demonstrated, then for a signal consisting of a wide band of wavelengths

there is no obvious optimum position. Furthermore, in an over-moded cavity struc-

ture where even a single frequency is considered, the ideal position of the absorber

again is not obvious since the guide wavelength of each mode can differ by signif-

icant amounts especially when they are close to cut-off. For these reasons a large

number of simulations were carried out in order to determine the absorber/backstop

distances that correspond to maximum coupling for both a broad frequency range

and for an over-moded system.

5.3.1 Optimising Absorber Position for TE11 Mode

With the mode matching code showing good agreement with the FEM results thus

far, it was chosen for the purposes of optimisation due to its high computational

speed. Both the SCATTER mode matching and COMSOL 2D approaches are highly

efficient, with COMSOL 2D being slightly computationally faster (same order of

magnitude). Also the mode matching code relies on fewer approximations, and the

2D FEM was shown to disagree with some previous results since strictly speaking

it really only applies to systems with Cartesian symmetry.

The aim was to optimise the position of the absorber relative to the backshort

for a broad frequency range. The optimum absorber/backshort position is of course

expected to vary for different frequencies, so the aim was to determine a position

that related to the overall average optimum value for the entire frequency range.

The same relatively simple example of a circular waveguide shorted at one end was

used for the initial analysis and the frequency range chosen was again 1.8 to 10THz

within which the full range of the SAFARI S-Band lies. The length and radius of the
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guide were set to L = 0.3mm and r = 50µm respectively, as shown in Figure 5.17,

and the sheet impedance was set to 377Ω/�. The optimisation routine consisted

of incrementally moving the absorber away from the backshort in increments of

∆d = 1µm out to a total of 40µm. At each absorber position the model was solved

for the entire frequency range in steps of 0.1THz.

Figure 5.17: Diagram showing the dimensions of a simple waveguide cavity model.

Figure 5.18 shows the contour plot that was generated from the optimisation

search procedure. As was expected the optimal position of the absorber clearly

depends on frequency. Figure 5.19 then shows the variation in efficiency of the

absorber across the band for each position, where the efficiency across the band

was calculated by 1
N

N∑
i=1

eff(νi), where νi is the ith spot frequency and N is the

total number of test frequencies. The result was that for a shorted cylindrical

waveguide fed by a single-mode waveguide over an operational frequency range of

1.8 to 10THz (30 to 167µm) the optimum position of the absorber is 11.5µm. The

central wavelength λcentral was 98.5µm, so the distance value of 11.5µm corresponds

to approximately ∆d = λcentral
8.57

. What is also evident in Figure 5.19 is that once

the absorber is placed at least 6µm from the backshort then the average efficiency

of the absorber never falls below about 64%. This is highlighted by the red cross

hairs placed on the graph and the distance corresponds to λmin
5

where λmin is the

minimum wavelength of the band, i.e. 30µm.

5.3.2 Optimisation of Absorber Position for an Over-Moded

System

In the previous example it was assumed that only the TE11 cylindrical mode prop-

agated, even though a large part of the frequency range was such that higher order
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Figure 5.18: Contour plot showing the efficiency of a resistive sheet absorber for varying frequency and backshort

distance. The fractional power absorbed is represented by variation in colour with deep blue being minimum and

deep red being maximum.

Figure 5.19: Line plot showing the average efficiency across the band (∆f = 1.8 − 10THz) of a resistive sheet

absorber for varying backshort distance.

modes would propagate if excited. In this subsection the optimum position of an

absorber in an over-moded waveguide is investigated by examining the efficiency of

the absorber with respect to the various propagating modes. The same waveguide

structure as was analysed in the previous example was again used for this study,
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i.e. L = 0.3mm and r = 50µm. It was assumed that each mode has equal weight

however, in a true blackbody cavity some modes may be more dominant than others.

Also, only the TE1,m modes were taken into account since the modes with zero phi

dependence are most often the dominant ones.

For this example a single frequency was chosen at the high end of the band

so that the higher order modes could also propagate. The frequency was kept at

10THz leading to a free-space wavelength of 30µm, and since the frequency was

so far above the cut-off frequency of 1.87THz then the approximation λWG = λ0

could be used. Therefore the expected optimum absorber position relative to the

backstop for the TE11 mode was λ0

4
= 7.5µm. However for higher order propagating

modes, particularly those close to cut-off, the optimum position would be expected

to increase. The absorber/backshort distance was varied from 2 to 35µm in steps of

∆d = 1µm with the efficiency being calculated for each propagating mode at each

distance.

Figure 5.20 shows the results of the analysis and it is clear that indeed there is a

varying optimum absorber position depending on which mode is being analysed. By

calculating the average power absorbed across all modes at each particular distance

the plot in Figure 5.21 was generated. As more modes are included in the calculation

of average absorbed power the peak average efficiency shifts from λ0

4
toward λ0

3
.

Clearly the distribution of modes will affect precisely where the maximum absorption

should occur and this will need to be analysed for individual systems.

5.3.3 Cavity and Absorber Size

Having investigated the simplest possible cavity structure where a short circuit was

set up by sealing one end of a circular waveguide, thus creating a resonant cavity

between the resistive sheet absorber and the shorted end of the guide, an expanded

cavity is now considered where ’expanded’ refers to the cavity having a larger radius

than the waveguide feed. The waveguide is now assumed to be single moded however

the step into the larger cavity will almost certainly cause power to scatter into the

higher order modes supported by the cavity. Again, building up the complexity of

the models in a gradual manner, the first expanded cavity considered was cylindrical

in shape, and the radius of the cavity was varied incrementally in order to investigate
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Figure 5.20: Block contour plot showing the efficiency of a resistive sheet absorber for higher order propagating

modes and varying backshort distance. The dotted line indicates the optimum absorber position.

Figure 5.21: Line plot showing the average efficiency of a resistive sheet absorber for varying backshort distance

when higher order propagating modes are includued. As more modes are considered the optimum distance shits to

slightly larger values.

the ideal size for such a cavity. Starting with a radius equal to that of the waveguide

feed (r = 50µm) the cavity radius was increased in steps of 5µm up to r = 250µm

while the absorber radius was kept fixed at r = 50µm. The distance between the

absorber and backshort was kept fixed at 18.2µm and the frequency range was from
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4 to 10 THz, approximately the SAFARI S-Band.

Figure 5.22 shows the results of the analysis and it can be seen that the cavity

does not affect the absorber efficiency for frequencies that were already coupling

well to the absorber in a shorted circular waveguide. However, the cavity does

provide improvement in the amount of power absorbed at the frequencies that were

experiencing destructive interference due to the standing waves that were set up

between the absorber and backshort. At least at some of these frequencies there

are particular values for the cavity radius that allow higher coupling of power to

the absorber, and what is clear is that a larger cavity is not necessarily better. In

fact based on the average power absorbed across the band for each cavity radius the

ideal size is 110µm, or 2.2 times the waveguide feed radius.

Figure 5.22: Block contour plot showing the efficiency of a resistive sheet absorber for cavities of varying radius.

The highest average efficiency is found for a cavity with a radius of 110µm, or 2.2 times the input waveguide radius

(rWG = 50µm)

By fixing the radius of the cylindrical cavity to the optimum value of 110µm, the

radius of the absorber was then varied from 5µm (0.1 times the waveguide radius) to

110µm (completely filling the cavity) in steps of 2.5µm. Again the distance between

the absorber and backshort was kept fixed at 18.2µm and the frequency range was

from 4 to 10 THz. The results of this analysis are presented in Figure 5.23 and

the average absorbed power across the frequency band for each absorber radius is

shown in Figure 5.24, where it is clear that while a larger absorber does increase
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the amount of power absorbed, there is a point where increasing the radius further

has no effect. This value occurs for an absorber radius of approximately 50µm, or

a radius equal to that of the waveguide feed. This is an important result as it is

preferred to have a smaller Ta absorber where possible because the level of noise in

the absorber is proportional to its volume, and the speed of response (time constant

τ) is also related to the absorber volume [Audley et al., 2013]. In fact a discussion is

given in section 5.4.3 on techniques for removing portions of the absorber material

while maintaining its optical cross section, therefore an understanding of the effects

of absorber size in terms of optical coupling is clearly important. It should again

be pointed out that these results are specific to the examples chosen for this study,

and while the same techniques developed here could be applied to other systems,

the results may differ based on the parameters of those systems.

Figure 5.23: Block contour plot showing the efficiency of a resistive sheet absorber in a cavity with a radius of

110µm (based on the previous optimisation). The radius of the absorber was varied from 5µm to 110µm in steps of

2.5µm.

5.3.4 Cavity Shape

So far in this section only cavities with cylindrical shapes have been considered

as they are the simplest geometries due to their similarity to uniform cylindrical

waveguides. In fact the standard type of cavity geometry that has been most com-
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Figure 5.24: Average efficiency across the frequency band for a resistive sheet absorber in a cavity with a radius of

110µm. The radius of the absorber was varied from 5µm to 110µm in steps of 2.5µm.

monly chosen for cavity coupled bolometer type detectors in previous instruments

has been the hemispherical cavity since it was assumed to be the best choice for

maximising coupling to the bolometer. This assumption is based on ray tracing and

the assumption that the cavity is large electrically (many wavelengths in radius).

Thus by placing the detector close to the centre of curvature of the hemisphere any

power that was transmitted through the absorber was refocussed back onto the ab-

sorber. Because of the complex calculations required, clearly the assumption that

ray tracing is a valid approach may not be true for such cavities since interference

effects need to be taken into account and the cavities are only a modest number of

wavelengths in scale size. Until recently modelling the entire pixel with more accu-

rate EM techniques simply was not possible without resorting to super computers.

For this reason an investigation was carried out in order to determine if there is a

more optimum design for the geometry of the integrating cavity in terms of optical

coupling.

A range of different cavity designs were examined and the amount of power

absorbed by the resistive sheet was calculated across a frequency range of 1.8THz

(just above cut-off for the waveguide) to 10THz. The results for three of these designs

are shown in Figure 5.26 and the average absorber efficiency predicted for each design

is presented in Table 5.1, together with the maximum and minimum efficiency for

each of the three designs. The results of the simple shorted waveguide are shown
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again for comparison and the input feed to the cavity was defined as having the

same dimensions as that of the cylindrical waveguide used in the comparison study,

namely a radius of 50µm and a length of 0.30mm. The cylindrical cavity was given

a radius twice that of the waveguide radius R = 2RWG and a depth d = 2RWG, the

hemisphere cavity was also designed with a radius of 2RWG which of course results

in the same depth of d = 2RWG, and the sine profiled cavity was designed with an

initial radius of Ri = 2RWG that varied as R(x) = sin
(
π
2

(
1− A x

Ri

))
where x is the

distance from the start of the cavity up to a depth of d = 2RWG (if A = 1) meaning

that each of the designs had the same depth. Of course the value of A could be

allowed to vary in an optimisation analysis for example, however the depth of the

cavity was kept the same as the hemisphere and cylinder in this case so that the

comparison was balanced. Clearly setting A = 0.5 for example will create a cavity

with a depth twice that (d = 4RWG) as for A = 1, with a slower curving profile as

shown in Figure 5.25(a). Figure 5.25(b) shows the approximate shapes of the other

cavity backshorts that were examined. The absorber was given a radius of 50µm

and sheet resistance of 377Ω/�, and was positioned at 20µm from the start of the

cavity for each case.

(a) (b)

Figure 5.25: Schematic of various cavity backshort geometries. (a): Geometries for sine function profiles with

different weighting factors (A), which determines the strength of the curve and the depth of the cavity relative to

its radius. (b): Three of the different cavity geometries that were investigated.

What should be clear from both Figure 5.26 and Table 5.1 is that the shape

of the cavity does indeed have a significant effect on the coupling of power to the

absorber. Both the hemisphere and sine profiled cavity shapes give rise to an average

absorber efficiency across the band of 87%, but the sine profiled shape exhibits
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Figure 5.26: Absorber efficiencies for various cavity geometries across the frequency band of 1.8− 10THz for TE11

mode only.

Cavity Design Maximum Minimum Average

Power Absorbed Power Absorbed Power Absorbed

Simple Waveguide 1.0 0.0 0.69

(R = 2RWG)

Cylindrical 1.0 0.2 0.76

(R = 2RWG)

Hemisphere 1.0 0.55 0.87

(R = 2RWG)

Sine Profile 1.0 0.78 0.87

(Ri = 2RWG)

Table 5.1: Absorber efficiency values across the frequency band of 1.8 − 10THz, for TE11 mode only, for cavities

with varying geometry.

much less variance giving rise to a much smoother frequency dependence compared

to the hemisphere example. The conclusion drawn therefore would be that for the

cavity examples examined in this case, fed by a single mode waveguide, the ideal

cavity geometry for maximising power coupling between the incoming signal and the

absorber is the sine profiled cavity. This is surprising considering the almost straight
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walls of the cavity in this configuration. There are of course many other geometries

that could be examined such as a paraboloid or sin2 profile for example, and some

of these designs could possibly yield further improved coupling of power to the

absorber, however the aim here is to demonstrate the techniques for modelling such

systems, and to show that these simulations are important for designing optimised

systems.

5.4 SAFARI L-Band Receivers

Having investigated generic systems to gain an understanding of the effects of band-

width, absorber size, and backshort configuration on the coupling efficiency of a

cavity mounted absorber, the next step taken was a model of a realistic system

with realistic dimensions and properties. The system chosen was the SAFARI L-

Band design that was under investigation by Dr Phil Mauskopf’s research team at

Cardiff University, Wales where they were carrying out a measurement campaign of

the system while also using the software package HFSS (High Frequency Structural

Simulator) to model the system [Mauskopf, 2011]. They report very good agreement

between the measurements and simulations.

Another member of the NUIM THz Optics research group, Stephen Doherty,

carried out a similar analysis using the CST Microwave Studio package [Doherty, 2012]

and the results published were in excellent agreement with those of the Cardiff group.

Therefore the Cardiff results served as a good comparison for the results of the cur-

rent study reported in this thesis. At the time of writing the current design for the

SAFARI L-Band pixel [Goldie et al., 2012] consisted of a square absorber contained

within a hemispherical cavity with a diameter of 500µm, fed by a single mode cylin-

drical waveguide with a radius of 60µm. The absorber was located at 50µm from

the exit aperture of the input waveguide and had dimensions of 320µm ×320µm

(see Figure 5.27). As before the absorber was modelled as an infinitely thin sheet

and given a surface resistance of 377Ω
� . The frequency range analysed was from 1.5

to 3.0THz.

The free-space matched sheet resistance of 377Ω
� used in the L-Band simulations

is an idealised value, however the actual sheet resistance in the Cardiff measurement

system was thought to be about 90Ω
� . The ideal 377Ω

� is not unachievable though,

212



and the SAFARI S-Band research group at SRON, Groningen describe such possible

sheet resistances up to about 367Ω
� [Audley et al., 2013]. If the Ta is below its

transition temperature and thus is operating in a superconducting state then the

surface resistance will of course be a lot lower. The SRON team report an apparent

transition temperature for the film of about 700 mK, which they claim is lower than

the expected value of 900 mK [Audley et al., 2013]. The nitride island on which the

Ta absorber sits is expected to operate at a higher temperature than this, therefore

achieving a 367Ω
� surface resistance should not be a problem.

Figure 5.27 illustrates the SAFARI L-Band pixel and its various components.

As can be seen there is a vacuum gap between the waveguide and cavity which

is highlighted in green. This corresponds to a distance of 100µm from the exit

aperture of the waveguide to the entrance of the cavity backshort. The absorber

was placed at the halfway point between the waveguide and cavity. The reason

for this vacuum gap arises from the fact that the cavities/backshorts of the pixel

array are manufactured on a single substrate (see bottom gold section in Figure

5.1(b) at the beginning of this chapetr) with the TES detector array chip then fixed

onto it (green section in Figure 5.1(b)). The waveguide/horn array (in the top gold

section of the image) that feeds the detector array is a separate block that must

be fitted to the detector and backshort array but with a certain amount of space

required to be left between the two so as not to damage the delicate electronics and

TES detectors. Progress is being made in terms of minimising this gap in order

to minimise the amount of power that can potentially leak out through it, but for

these simulations a relatively large gap was applied in order to match the Cardiff

L-Band set-up, and presumably to consider a worst case scenario. In fact the SRON

group have succeeded in reducing the original 230µm vacuum gap to 50µm in the

S-Band test-bed [Audley et al., 2013] so similar reductions should be possible for

the SAFARI L-Band also.

5.4.1 Vacuum Gap between Neighbouring Pixel Cavities

The vacuum gap just described brought new challenges in terms of modelling the

behaviour of power flow through the pixel with the three simulation techniques de-

scribed so far, in particular estimating the power lost through the gap. Including the

gap with COMSOL was possible with two different approaches. The first approach
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Figure 5.27: Diagram of waveguide fed cavity coupled detector with a vacuum gap of 100µm. The green coloured

section is the vacuum gap.

consisted of employing a boundary condition known as a ‘perfectly matched layer’

where the impedance is perfectly matched at the boundary and therefore simulating

propagation into free-space with no reflections.

The second method utilises a ‘scattering boundary condition’ where the scat-

tering coefficients are just set to zero so that no power is reflected and free-space

propagation is again simulated. The type of wave expected to be incident on the

scattering boundary, say a plane wave or spherical wave, must be defined in the

model before calculation of the propagating fields, and an instruction to then re-

flect zero intensity for any incident plane or spherical waves on the boundary is

defined. In both approaches the amount of power lost through the gap is calculated

by integrating the power outflow across the surface of the boundary. In the 2D envi-

ronment the same two techniques are applied but with the integral being of course a

line integration across the 1D free-space boundary. The issue again arises as to how

to interpret the 2D results. It is a bit more complicated now that there are three

surfaces over which power can flow, namely the input waveguide entrance (including

back scatter through it (S11)), the surface of the absorber (power absorbed due to

Joule heating), and the surface that bounds the vacuum gap. Previously the ratio

of power flow surface areas was used to correct the differences in the 2D results with

some success so a similar approach was applied again. However, this is not expected

to yield an accurate result, only an order of magnitude estimate. The results will

be discussed following a description of the mode matching approach.

Modelling the vacuum gap with the mode matching code SCATTER proved
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much more difficult. In his PhD thesis Stephen Doherty of NUIM attempts to model

a vacuum gap with the mode matching technique [Doherty, 2012]. The ‘annular trap’

method he attempted involved defining a waveguide section with a radius larger than

the cavity radius and with a length equal to that of the vacuum gap as illustrated

in Figure 5.28. Then, by considering what modes were possible to propagate in this

annular section based on the cut-off frequencies of the modes, an upper limit to the

amount of power that could radiate out through to free-space was calculated. This

was achieved by investigating what fraction of power in each mode was contained in

the annular section. The results from that study showed that the amount of power

that coupled into the annular section was strongly dependent on the radius of the

section. It was also shown that as the radius was increased to large values relative

to the cavity radius the results tended toward an asymptote. It was concluded that

this method would allow for an upper limit to be calculated for the power lost to

free-space, but the required large annular radius allowed for a large number of modes

and therefore long computation times, and of course this was just an approximation.

Figure 5.28: Illustration of the ‘annular trap’ method for modelling a vacuum gap in a SAFARI-like detector.

An aim of future work is to model propagation across the vacuum gap using

free-space Gaussian beam modes and waveguide modes for the backshort cavity and

waveguide entrance aperture. The following theory and discussion relied on heritage

from a similar approach taken by Emily Gleeson to model a similar problem in the

design of the feed horn array for the HFI instrument on the PLANCK satellite

[Gleeson, 2004]. In that case the vacuum gap related to the space between the back-

to-back horns and the detector horns and it was the location of the filter stack, as

shown in Figure 5.29. The aim here is to allow the free-space modes to propagate
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freely across the vacuum gap region until they encounter the cavity entrance. The

electric field of the free-space EM waves propagating across the vacuum gap can

be described mathematically as a sum of such free-space modes based on the GBM

theory that was presented in chapter 2. Of course if the frequency is such that

the waveguide feeding the vacuum gap is single-moded then the decomposition of

the waveguide field in terms of free-space modes will be straightforward and will be

similar to how the corrugated horn aperture fields were decomposed in the examples

in chapter 2. However, the waveguide feeds in the SAFARI detectors will be over-

moded, and the integrating backshort cavities will certainly be multi-moded, and

since each waveguide mode that is present at the waveguide aperture needs to be

decomposed in terms of free-space modes then the most convenient approach is to

define a transformation matrix [T] that can account for all possible mode-to-mode

coupling. We can represent the loss at the edge of the pixel then as absorbing walls

as illustrated in Figure 5.30.

Figure 5.29: Schematic of the optical chain for the HFI channels on the PLANCK satellite. The front horn determines

the light collected from the telescope. The back horn launches the CMB radiation through a set of filters into the

100 mK horn which concentrates it onto the bolometer in the detector cavity.

The TE and TM waveguide modes that were described in chapter 2 can be

rewritten in terms of combinations of î and ĵ components so that the terms containing

Bessel functions of order n− 1 and trigonometric functions of (n− 1)φ are grouped

together and similarly terms with Bessel functions of order n+ 1 and trigonometric

functions of (n+ 1)φ also grouped together. The normalised waveguide modes

are then written as [Trappe et al., 2005] ~e TEnl = ~e
TE(n−1)
nl + ~e

TE(n+1)
nl and ~e TMnl =
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Figure 5.30: Illustration of the waveguide-to-free space transformation method of modelling a vacuum gap.

~e
TM(n−1)
nl + ~e

TM(n+1)
nl where:

~e
TE(n−1)
nl =

√
(2− δn0)

πa2 (1− (n/qnl)2) J2
n(qnl)

Jn−1

(qnlr
a

)[{ cos(n− 1)φ

− sin(n− 1)φ

}
î−
{

sin(n− 1)φ

cos(n− 1)φ

}
ĵ

] (5.19)

~e
TE(n+1)
nl =

√
(2− δn0)

πa2 (1− (n/qnl)2) J2
n(qnl)

Jn+1

(qnlr
a

)[{ cos(n+ 1)φ

− sin(n+ 1)φ

}
î +

{
sin(n+ 1)φ

cos(n+ 1)φ

}
ĵ

] (5.20)

~e
TM(n−1)
nl =

√
(2− δn0)

πa2J2
n+1(pnl)

Jn−1

(pnlr
a

)[{ cos(n− 1)φ

− sin(n− 1)φ

}
î−
{

sin(n− 1)φ

cos(n− 1)φ

}
ĵ

] (5.21)

~e
TM(n+1)
nl =

√
(2− δn0)

πa2J2
n+1(pnl)

Jn+1

(pnlr
a

)[{ cos(n+ 1)φ

− sin(n+ 1)φ

}
î +

{
sin(n+ 1)φ

cos(n+ 1)φ

}
ĵ

] (5.22)

Clearly, because of the orthogonality of the φ dependent components of the

modes, the waveguide modes couple to normalised vector combinations of two free

space Laguerre modes of the form:

~Ψα
m (W,R, r, φ, z) = ψαm (W,R, r, φ) exp (−ikz + iφm,α(z))

[{
cosαφ

− sinαφ

}
î±
{

sinαφ

cosαφ

}
ĵ

]
(5.23)
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where ψαm (W,R, r, φ) =
√

2m!
πW 2(m+α)!

exp
(
−r2

W 2

)(
2r2

W 2

)α
2
Lαm (2r2/W 2) exp (−ik (r2/2R)),

which are the scalar Associated Laguerre-Gauss modes that were presented in chap-

ter 2, and α is an integer that represents the degree of the Laguerre polynomials. The

computation time involved in converting between waveguide modes and free space

modes with this method is greatly reduced because when the azimuthal order, n, of

the waveguide modes is non-zero both the ~e
TE(n−1)
nl and ~e

TM(n−1)
nl waveguide mode

components only couple to the ~Ψn−1
m (r, φ, z) free-space modes, and the ~e

TE(n+1)
nl and

~e
TM(n+1)
nl components only couple to the ~Ψn+1

m (r, φ, z). Thus, for each waveguide

mode of radial degree l and azimuthal order n we can write:

~e TEnl =
M∑
m

(
T

(n)
m,l
~Ψn−1
m + T

(n)
m+M,l

~Ψn+1
m

)
(a)

~e TMnl =
M∑
m

(
T

(n)
m,l+L

~Ψn−1
m + T

(n)
m+M,l+L

~Ψn+1
m

)
(b)

(5.24)

where the T
(n)
i,j can be regarded as the elements of a 2M ×2L transformation matrix

~T (n) for waveguide modes of azimuthal order n. 2M is the number of Laguerre

modes used in the analysis for a given waveguide mode, and 2L is the number of

modes of radial degree l that are used for each n (half TE and half TM).

The reason for the m + M in the subscripts in the right hand side terms of

5.24 is related to how the matrix ~T (n) is ordered, i.e. with the first half of the rows

corresponding to the ~Ψn−1
m coefficients and the second half of the rows corresponding

to the ~Ψn+1
m coefficients. The reason then for l+L subscripts in 5.24(b) for the TM

waveguide modes is again related to how the matrix ~T (n) is ordered, i.e. with the first

half of the columns corresponding to the ~e TEnl TE coefficients, and the second half of

the columns corresponding to the ~e TMnl TM coefficients. An example corresponding

to waveguide modes with azimuthal order n = 3 and radial degree l = 1 to l = 3

represented by 8 Laguerre-Gauss free-space modes (4 of azimuthal order 2 and 4 of

azimuthal order 4) is shown below in the ~T (3) matrix.
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TE31 TE32 TE33 TM31 TM32 TM33

~Ψ2
0

~Ψ2
1

~Ψ2
2

~Ψ2
3

~Ψ4
0

~Ψ4
1

~Ψ4
2

~Ψ4
3



T 3
11 T 3

12 T 3
13 T 3

14 T 3
15 T 3

16

T 3
21 T 3

22 T 3
23 T 3

24 T 3
25 T 3

26

T 3
31 T 3

32 T 3
33 T 3

34 T 3
35 T 3

36

T 3
41 T 3

42 T 3
43 T 3

44 T 3
45 T 3

46

T 3
51 T 3

52 T 3
53 T 3

54 T 3
55 T 3

56

T3
61 T 3

62 T3
63 T3

64 T3
65 T3

66

T 3
71 T 3

72 T 3
73 T 3

74 T 3
75 T 3

76

T 3
81 T 3

82 T 3
83 T 3

84 T 3
85 T 3

86


One of the elements in the ~T (3) matrix is highlighted in red (T 3

62) as an example,

and it corresponds to the amount of the TE32 waveguide mode that couples to the

~Ψ4
1 free-space mode. Clearly the ~Ψ4

1 free-space mode will also carry power from the

other waveguide modes if they are present, and the contributions of each mode to

the ~Ψ4
1 are represented in the sixth row of ~T (3) (shown in bold face). It is these

~Ψn
m fields that carry the power across the vacuum gap as far as the cavity entrance

plane, and due to their formalism they diffract as they propagate. This diffraction

causes the intensity of the free-space modes to spread out meaning that not all of

the power will be available for coupling to the waveguide modes of the cavity, which

are of course truncated at the edge of the cavity. Therefore performing the power

coupling integrals over the area corresponding to the cavity aperture will result in

a total power available for coupling to the absorber less than the power present

before propagation across the vacuum gap. Converting the EM field represented

by Laguerre-Gauss modes back into cylindrical waveguide modes appropriate for a

cylindrical backshort cavity would be the next step, and the theory is very similar

to that just described for the reverse case. Each transformation matrix for each

azimuthal order n of waveguide modes will have the form of the complex transpose

of the 2L× 2M ~T (n) matrices described above, i.e 2M × 2L ~T †(n).
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~Ψ2
0

~Ψ2
1

~Ψ2
2

~Ψ2
3

~Ψ4
0

~Ψ4
1

~Ψ4
2

~Ψ4
3

TE31

TE32

TE33

TM31

TM32

TM33



T 3
11 T 3

12 T 3
13 T 3

14 T 3
15 T 3

16 T 3
17 T 3

18

T 3
21 T 3

22 T 3
23 T 3

24 T 3
25 T 3

26 T 3
27 T 3

28

T 3
31 T 3

32 T 3
33 T 3

34 T 3
35 T 3

36 T 3
37 T 3

38

T 3
41 T 3

42 T 3
43 T 3

44 T 3
45 T 3

46 T 3
47 T 3

48

T 3
51 T 3

52 T 3
53 T 3

54 T 3
55 T 3

56 T 3
57 T 3

58

T3
61 T 3

62 T3
63 T3

64 T3
65 T3

66 T3
67 T3

68


The technique described above would be a first order approximation for ac-

counting for losses due to the gap between the horn array block and the detec-

tor array. A higher order approximation could include multiple reflections of the

free-space Laguerre-Gauss modes within the vacuum gap in a manner similar to

modelling a Fabry-Perot etalon environment, and even multiple transformations

from waveguide-to-Laguerre-Gauss modes and Laguerre-Gauss-to-waveguide modes

to account for the effects of the vacuum gap on return power from the cavity. This

could be implemented with a scattering matrix formalism.

Taking account of the resistive sheet absorber would be either straightforward or

require even more extra code, depending whether the absorber was to be positioned

within the cavity structure or in the vacuum gap between the horn and cavity (see

Figure 5.30). If the design consisted of the absorber being located at the aperture of,

or within the cavity backshort, then the code to model it already exists as presented

in section 5.2.1, where the absorber was treated as an infinitely thin resistive current

sheet with a two dimensional sheet resistance in units of Ω/�. If on the other

hand it was located within the vacuum gap (as is the case with past designs), then

the absorber could be modelled with the appropriate scattering matrix, where the

interaction of free-space Laguerre-Gauss modes with a resistive sheet would need to

be considered.

Assuming the absorber is located just after the cavity backshort and not in the

vacuum gap, then the overall scattering matrix for an entire pixel system could be

calculated by cascading the scatter matrices for each sub-domain of the system as

follows:
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[
~S
]
Total

=

 ~S11

(n) ~S12

(n)

~S21

(n) ~S22

(n)

z
 0 ~T (n)

~T †(n) 0


z

 0 ~V (n)

~V †(n) 0

z
 0 ~T †(n)

~T (n) 0

z
 ~S11

(n) ~S12

(n)

~S21

(n) ~S22

(n)


where the middle matrix represents propagation across the vacuum gap, and the z

symbol indicates that the scattering matrices are cascaded [Olver et al., 1994], as

opposed to multiplied. The ABCD matrix for propagation through free-space could

be used to transform each Laguerre-Gauss free-space mode: 1 L

0 1


where L is the length of the vacuum gap.

As a first order approximation the TE11 mode that can propagate in the waveg-

uide feed of the SAFARI L-Band (see Figure 5.27 above) was decomposed in terms

of associated Laguerre-Gauss free-space modes. This TE11 mode is the field that

is present at the waveguide exit, at the start of the vacuum gap. The higher or-

der TE12 mode will only propagate at the highest frequencies of the SAFARI L-

Band range, and since the blackbody source used in the measurements at Cardiff

[Mauskopf, 2011] produced only faint signal levels at the TE12 switch-on frequency,

it was ignored in the analysis. Twenty Laguerre-Gauss free-space modes were used

in the analysis (ten of ~Ψ0
n and ten of ~Ψ2

n).

The Laguerre-Gauss free-space modes were then propagated across the vacuum

gap by simply using a value for propagation distance equal to that of the gap depth.

The power coupling integrals for converting back from Laguerre-Gauss modes to

the TE11 waveguide mode were then calculated, where the TE11 mode is now that

corresponding to a cylindrical waveguide with a radius the same as the cavity back-

short.

By summing the normalised mode coefficients An corresponding to the trans-

formation from the waveguide TE11 mode to free-space modes (this of course was

equal to unity), and then comparing this to the sum of the normalised mode coeffi-

cients A∗n corresponding to the transformation from free-space modes to the cavity

TE11 mode, a first order approximation was deduced for the amount of power lost
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as a result of the vacuum gap:

Loss =
N∑
n

An −
N∑
n

A∗n = 1−
N∑
n

A∗n (5.25)

The analysis was carried for the SAFARI L-Band frequency range from 1.5 to

3.0THz in steps of 0.1THz, with the results shown in Figure 5.31. The results from

a FEM analysis of the SAFARI L-Band detector (to be discussed in the next section

5.4.2) are shown for comparison. As can be seen there is large differences between

the two results. In fact it appears that the modal analysis may provide a lower

limit on the power radiated through the gap. Since the free-space Laguerre-Gauss

mode simulation does not include multiple reflections, and the FEM model of the

SAFARI L-Band does, a second FEM model was created which attempted to match

the scenario modelled with the modal approach. In this case the vacuum gap was

terminated with a perfectly matched layer boundary condition, as shown in Figure

5.32, and as can be seen there is a significant improvement in terms of agreement

between the FEM and modal approaches.

Figure 5.31: Fractional power radiated through the vacuum gap between the horn array and the pixel array chip

for the SAFARI L-Band. The analysis involved 20 Laguerre-Gauss free-space modes (10 of ~Ψ0
n and 10 of ~Ψ2

n). The

results from a FEM analysis of the same problem are shown for comparison (see Figure 5.36 in section 5.4.2).

The method described above is a very approximate approach since there are

a number of factors not accounted for in the analysis. First, while only the TE11

mode was present at the single-mode waveguide feed aperture (at 1.5 THz), the
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(a) (b)

Figure 5.32: Illustration of the matched model for Laguerre-Gauss mode verification. (a): The SAFARI L-Band

FEM model illustrates how radiation can be lost due to the hemispherical PEC walls directing signal toward the

gap. (b): The matched FEM model depicts the perfectly matched layer that was used in order to try to match what

is being simulated in the Laguerre-Gauss mode model.

radius of the cavity aperture is over eight times that of the waveguide meaning

that higher order modes can propagate if excited. The Laguerre-Gauss free-space

modes with azimuthal dependence α = 0 and α = 2 can couple to waveguide

modes with higher order radial dependence (TE1m), thus an unknown fraction of

the observed loss may be coupling to these higher order modes. In fact the Laguerre-

Gauss modes with azimuthal dependence α = 2 can also couple to waveguide modes

with azimuthal dependence l = 3 (as discussed earlier in this section), including all

possible radial modes of this azimuthal symmetry TE3m. The second point to be

made is that multiple reflections will need to be considered for an accurate result,

as described above. The hemispherical backshort in the SAFARI L-Band design is

likely to direct a large amount of the signal toward the gap (based on ray tracing),

leading to the significantly greater levels of loss shown in Figure 5.31 for the FEM

model of the SAFARI L-Band detector. Correctly accounting for the vacuum gap

using the mode matching approach will clearly require a significant extension of the

existing SCATTER code. The FEM modelling approach was therefore employed for

the analysis of the SAFARI L-Band and S-Band pixels presented in the following

sections.

Ideally the SAFARI receivers would have no gap between the feed aperture

and the cavity, but the absorber is typically situated at the entrance of the cavity

structure, or even a small distance in front of the entrance, and a minimum distance

must be left between the feed horn array block and the sensitive TES detector array
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chip. The value for this minimal distance is quoted by the SRON team as 30µm

and therefore a vacuum gap of this length is required in the current designs. A new

design that would allow for the removal of the vacuum gap is discussed in section

5.5 of this chapter, where simulations of the SAFARI S-Band are presented.

5.4.2 COMSOL Model of SAFARI L-Band Detectors

Since including the vacuum gap in the SCATTER mode matching code is still a work

in progress in terms of modelling the SAFARI L-Band, the current work focussed

on modelling the detector in the most computationally efficient manner achievable

with COMSOL. It was possible to model the system with the standard 3D COMSOL

approach due to the single mode nature and relatively modest size of the detector, so

this is the first method that was used to model the L-Band. However knowing that

the SAFARI S-Band is both a multi-moded system, and that the high frequencies

involved give rise to the structure being very large in terms of wavelength, the more

efficient (but less accurate) 2D COMSOL approach was also used to model the L-

Band so that it could be determined if the results could still be used to extrapolate

the approximate corresponding 3D behaviour for more complex structures.

A model was created in the COMSOL 3D environment with dimensions corre-

sponding to the L-Band pixel, as illustrated in Figure 5.27 at the beginning of this

section. The TE11 mode was excited across the entry aperture of the waveguide

with a total power of 1 Watt. The surface impedance of the absorber sheet was

again set to the idealised value of 377Ω
� and a frequency sweep was simulated from

1.5 to 3.0THz for 200 spot frequencies. A similar model was then created in the

2D planar symmetry COMSOL environment that represented a 2D cut through the

centre of the 3D model in terms of geometry, however in terms of the physics the 2D

model actually represented a cut through the model illustrated in 5.33(b). The same

frequency sweep was analysed for the 2D model and the results are shown in graphs

below. Figure 5.34 shows the fractional power that is absorbed by the resistive sheet

for both models and the HFSS data that was produced by Dr. Phil Mauskopf from

Cardiff is also shown for comparison [Mauskopf, 2011]. The scaling factor calculated

for the 2D data, based on comparing the ratios of areas for the power flow surfaces

for both the 2D model and the extruded 3D Cartesian coordinate model, was 0.72

(ratio of absorber areas).
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As can be seen there is excellent agreement between the COMSOL 3D and

HFSS data. There appears to be a higher level of structure in the COMSOL 3D

data compared to HFSS and this may be due to the time-domain approach (tran-

sient solver) used for the HFSS analysis in contrast to the frequency domain solver

used with COMSOL. If a sufficiently long time period was not allowed for the HFSS

calculations then this would transform into lower resolution in the Fourier trans-

formed frequency spectrum and thus less structure. The Cardiff University report

good agreement between measurements and their HFSS models [Mauskopf, 2011]

and there is clearly very good agreement with the COMSOL results discussed here.

The corrected COMSOL 2D data is in agreement with the general trends seen

in the HFSS and COMSOL 3D data sets, with the largest differences occurring at

the higher frequencies and certainly less structure observed in the data. Again,

since the symmetry in the 3D models is cylindrical, then the 2D model is a gross

approximation and we would expect differences between the two models.

(a) 2D Model (b) Symmetry Represented (c) 3D model

Figure 5.33: Illustration of the 2D COMSOL model of the SAFARI L-Band and what it relates to in terms of its

3D analogue. (a): Illustration of the 2D model, (b): The one dimensional translational symmetry represented in

the 2D COMSOL model, and (c): The cylindrical 3D model of the SAFARI L-Band pixel.

It is clear from Figure 5.34 that with a vacuum gap included in the model the

efficiency of the absorber is significantly reduced when compared to a closed system,

such as those examined in the previous section. For this reason the two sources

of loss were separately examined in order to quantify how much power loss is due

leakage via the vacuum gap and how much is due to returned power back through

the input waveguide. Following the calculations across the frequency range, the

post-processing mode in COMSOL was used to first analyse the losses through the
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Figure 5.34: Effiency of the SAFARI L-Band detector with the absorber surface impedance set to 400 Ω
� in order to

match the Cardiff models. There is very good agreement between the COMSOL and HFSS results. The corrected

2D data displays some differences with lower efficiency at the higher frequencies, but the peaks and troughs still

allign to a good degree of accuracy.

vacuum gap. The time averaged power outflow parameter was integrated over the

area that contained the vacuum gap section. This was done for each frequency value

and the results are shown in Figure 5.36. Again there is clearly very good agreement

between the two 3D models in COMSOL and HFSS, although there is again more

structure in the COMSOL data, and there is surprisingly reasonable agreement with

the corrected 2D data also. The correction factor used for the vacuum gap loss data

was π which again arises due to the 2D model being representative of a slice through

a Cartesian geometry model with a length of 1 metre. The result is the vacuum gap

power loss being spread over the area of a rectangle of dimensions 2rh where r is the

distance from the centre to the edge of the cavity and h is the length of the vacuum

gap between the horn and cavity (the rectangle highlighted in green in Figure 5.27

shown earlier. The power loss should really be integrated over the area of a cylinder

(ignoring the top and bottom circular faces) with dimensions 2πr × h where again

r is the initial radius of the cavity and h is the vacuum gap length. The ratio of

the areas of the power flow surfaces for the two geometries is 2πr×h
2rh

= π as shown in

Figure 5.35.

The scaling factor for the amount of power returned back through the waveg-

ide for the 2D model was determined to be 0.4 and it was calculated in a similar
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(a) 2D Free-Space Boundary (b) 3D Free-Space Boundary

Figure 5.35: Comparison of areas of the free-space boundaries in the 2D and 3D models.

manner to that described earlier for the closed waveguide cavity. The return power

is calculated from the S11 parameter that analyses the fraction of the electric field

that is reflected back onto the input waveguide port where the TE11 mode was

excited. Again Figure 5.37 shows good agreement between the 3D COMSOL and

HFSS results, and some level of agreement with the corrected 2D data. The next

step taken was to try to optimise the absorber/cavity configuration of the SAFARI

L-Band detector in order to maximise the coupling of power to the absorber.

Figure 5.36: Vacuum gap loss of the SAFARI L-Band detector. Again there is very good agreement for all three

approaches. The corrected 2D data again shows some differences with slightly higher levels of radiated power at a

few of the test frequencies. The general trend is again well aligned with the other two sets of results.
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Figure 5.37: Return loss (S11) of the SAFARI L-Band detector. Once again there is very good agreement between

all three approaches.

5.4.3 Improving the SAFARI L-Band Design

In the simulations for generic systems presented in section 5.3.4 the cavity backshort

geometry that performed best in terms of maximising the amount of power absorbed

by the resistive sheet absorber was the sine profiled shape. Based on this result the

sine profiled backshort design was substituted for the hemisphere in the SAFARI L-

Band model, and using the full 3D COMSOL environment the system was simulated

for the same frequency range of 1.5 to 3.0 THz. All other parameters of the model

and dimensions of the structure were the same as for the model presented above, and

a screen shot of the E-plane cut of the electric field for the sine profiled backshort

at 2.2THz is shown in Figure 5.38.

Figure 5.38: Screen shot of the electric field through the E-plane of a SAFARI L-Band pixel at 2.2THz.

By employing the sine profiled cavity backshort the average amount of power
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absorbed by the resistive sheet was increased from 0.54 to 0.59. Although this is

only an increase in efficiency of 10%, perhaps what is more important is that the

standard deviation in the range of efficiency values across the frequency band was

reduced from 0.22 to 0.15. This indicates a good improvement in consistency across

the band which is also highly beneficial for these detectors. The results are shown in

Figure 5.39 with the hemisphere cavity absorber data shown again for comparison.

Figure 5.39: Absorber efficiencies for two different SAFARI L-Band cavity designs. It is clear that the sine profiled

cavity has overall better performance with less variance across the band. Both systems were modelled with the full

3D EM COMSOL environment.

Figure 5.40 shows the losses through the vacuum gap that connects neighbour-

ing pixels. Again there is clear improvement with the sine profile cavity design over

the hemisphere. The peak fractional loss is reduced by half from 0.7 to 0.35, and

there is again a significant reduction in how the loss varies across the band with

the standard deviation on the data being reduced by more than half from 0.185 to

0.077.

The change in design for the shape of the cavity backshort for the L-Band pixel

clearly has an impact on the efficiency of the Ta absorber sheet in terms of coupling

to the incoming signal. It should be pointed out that the redesign of the backshort

was limited in this case as the depth of the cavity was constrained to 250µm for

the purposes of maintaining a relative comparison to the hemispherical design of

the same depth. If the depth was permitted to vary, or alternatively the particular

sine function used was allowed to vary, then the improvements could possibly be
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Figure 5.40: Losses through vacuum gap for two different SAFARI L-Band cavity designs. Both systems were

modelled with the full 3D EM COMSOL environment.

increased further.

Another improvement to the design of the L-Band receiver is brought about by

removing some of the absorber material in a manner that serves to reduce its volume

while not significantly impacting on the amount of power it can absorb across the

desired frequency range. The reason for wanting to reduce the volume of the ab-

sorber has to do with the speed of response of the detector and this was discusses by

Stafford Withington in a presentation given to the Virtual Institute of Astroparticle

Physics, Paris, at the Workshop on Microwave Spectral Polarimetry in December

2012 [Withington, 2012]. In his presentation he discusses two volume reducing de-

signs they have been working with at his research institute at the Cavendish Labora-

tory, Cambridge University. One design consists of a mesh of absorber strips in the

two perpendicular directions while the other consists of strips in just one direction

(see Figure 5.41). The aim is to reduce the overall volume of the absorber whilst

maintaining the optical cross section. As the volume is decreased the maximum

speed of response of the detector is increased (time constant decreased) and this

can be understood by considering how the effective time constant τeff changes with

heat capacity, as can be seen from equation 5.26 [Mauskopf et al., 2010].

τeff =
C

G (1 + R)
(5.26)
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(a) Solid (b) Mesh (c) Stripped

Figure 5.41: Photographs of TES’s coupled to the Ta absorbers. (a): A solid sheet of Ta, (b): A mesh design, and

(c): A striped design.

where C is the heat capacity of the TES and the absorber, G is the heat conductance

to the bath, and R is the electro-thermal feedback loop gain.

The heat conductance G also appears in 5.26 and the paper just cited by

Mauskopf et al. shows that in order to achieve the required detector NEP of 2 −

3 (×10−19W/
√
Hz), with a detector operating at 100mK, then the heat conductance

must be G ≤ 2× 10−13W/K. This small value calculated for G means that the heat

capacity must be kept to a minimal value. The formula used to calculate this value

for G is shown in 5.27.

NEP =
√

4γkBT 2G (5.27)

where T is the operating temperature of the TES, kB is Boltzmann’s constant, and

γ is quoted as ≈ 0.5 [Jackson et al., 2012].

The new design for the Ta absorber sheet was basically a two dimensional

version of the fractal geometry Menger sponge [El Naschie, 2013]. This 2D format

is also known as a Sierpinski carpet [Crownover, 1995] and can be thought of as a

slice through the centre of the Menger sponge. Examples of both the Menger sponge

and Sierpinski carpet are shown in Figure 5.42. The rules for constructing the 2D

Sierpinski carpet are as follows:

(i) Divide any square into nine equal congruent sub-squares forming a 9×9 grid. (ii)

Remove the central sub-square. (iii) Repeat recursively for each of the remaining

sub-squares for as many iterations as desired.

A similar set of rules is defined for constructing a Menger sponge from an ini-
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tial cube. An interesting result of the 3D Menger sponge is that as the number of

iterations increases to extremely large values the volume of the sponge approaches

zero while the surface area approaches infinity. There are many other examples of

fractal reduction topologies but it was the Sierpinski carpet that was the obvious

choice since the absorber in the SAFARI L-Band is square. In fact fractal geometry

structures have been shown to be the ideal solution for broadband receivers where

the efficient detection of a large range of frequencies is desired for a relatively small

antenna [Kadir, 2007]. Fractal designs can achieve this due to the self-similarity

that naturally arises from fractal structures [Hohlfeld and Cohen, 1999]. Some mo-

bile/cell phones now use antennas with either Sierpinski carpet or Sierpinski triangle

geometries.

(a) (b)

Figure 5.42: Examples of fractal geometry in 2D and 3D cases. (a) A cube having undergone 3 iterations of fractal

reduction resulting in what is generally known as a Menger sponge denoted as M3. (b) A square having undergone

4 iterations of fractal reduction resulting in what is generally known as a Sierpinski carpet denoted by M4. An

unaltered cube or square is denoted M0

The Sierpinski carpet absorber sheet was built in the COMSOL 2D environment

and then imported into the 3D model of the SAFARI L-Band in place of the solid 2D

absorber that was modelled previously. Absorbers with a range of iterations were

designed from one iteration (removal of the central square) to four iterations. Some

of the designs are shown in Figure 5.43. The results of the three and four iteration

absorbers are shown in Figure 5.44 along with the results from the solid sheet model

for comparison. The average power absorbed by the solid sheet across the band was

0.54. The average absorption across the band for the three and four iteration fractal
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absorbers was 0.46 and 0.43, respectively. This is a clearly a reduction in absorber

efficiency but not a drastic decrease. The equation to calculate how much of the

absorber area remains after each iteration is simply A =
(

8
9

)n
where n is the number

of iterations employed. So for the absorber with four iterations of fractal reduction

the remaining absorber area is 0.62 times that of the solid sheet. This method of

removing material from the absorber appears to be a better choice as the amount of

power absorbed by the striped design for example reduces by half [Mauskopf, 2011].

This 50% reduction is a result of only one polarisation of the signal being detected;

that which is polarised parallel to the absorber strips.

(a) (b) (c)

Figure 5.43: A CAD design of a 2D absorber with (a): Two levels of fractal subtraction, (b): three levels of fractal

subtraction, and (c): four levels of fractal subtraction.

Figure 5.44: Effiency of the SAFARI L-Band detector with a fractal absorber sheet with various fractal iterations.
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5.5 SAFARI S-Band Receivers

A significant collaborative research effort has been ongoing at both NUIM and SRON

in terms of the multi-moded SAFARI S-Band (short-wave band) as was described

in section 1.2.2 of chapter 1. The research team at SRON led by Dr. Gert de

Lange have built a SAFARI testbed and they have undertaken a test campaign with

many cool down and warm up cycles where at each warm up they can modify the

system and/or add components and then upon re-cooling the measurements can be-

gin again. The current detector configuration employs the traditional hemispherical

cavity backshort housing the bolometer being fed by a multi-moded smooth walled

conical horn [Audley et al., 2013]. Each bolometer consists of a superconducting

TES with a transition temperature of approximately 100 mK coupled to a Ta ab-

sorber on a thermally-isolated silicon nitride island. They report base temperatures

as low as 8 mK on the mixing chamber, and detector bath temperatures as low as

15 mK for dark measurements, which is significantly lower than the temperatures

required for testing the SAFARI detectors. This leaves room for heat loads such as

the blackbody source they use to illuminate the detector for optical measurements.

During the three months work placement at SRON the author of this thesis

attended regular weekly project progress meetings of the SAFARI testbed team

and gained a good understanding of the system. Some of the work performed by

the author at SRON during this period concerning characterisation of SAFARI-like

THz multi-moded feed horns is discussed in chapter 3. This section is concerned

with a new design for the cavity backshort for the S-Band detectors and results of

simulations for this new design.

The research team at NUIM has been making significant progress in mod-

elling the current SRON SAFARI testbed, and collaboration between the two in-

stitutes is ongoing and funded through an ESA technical development contract

[RFQ 3-6418/11/NL/CBi]. Stephen Doherty (post-doctoral researcher at NUIM)

has been carrying out most of the simulation work on the current system and the

author of this thesis has contributed to this effort through the modelling of alterna-

tive geometries for the S-Band cavities.

During the period of work by the author at SRON a concept for a new cavity de-

sign was discussed with Dr. Damian Audley and Dr. Gert de Lange, both of SRON.

234



The concept was to use anisotropic silicon crystal etching as an efficient and accu-

rate method for creating the integrating cavities required for the SAFARI S-Band

array. This process uses a chemical etching technique that relies on the different

chemical reactivities of different crystal planes in a silicon crystal [Alvi et al., 2008].

This plane dependent reactivity can be exploited through the use of specific chem-

ical agents that etch faster is one direction over others, allowing the user to etch

geometrical shapes such as pyramids.

There is a large amount of literature on the topic of anisotropic silicon crystal

etching as it is regularly used in the bulk manufacture of micrometer scale electronic

components on integrated circuits (see for example [Kovacs et al., 1998]). Whereas

isotopic etching will result in a hemispherical shaped cavity being formed on a flat

silicon substrate due to the chemical agent reacting in all directions at the same rate,

anisotropic etching will typically result in either square shaped trenches being etched

into the flat substrate, or pyramidal shaped structures, depending on the nature of

the chemical agents, how dilute the reactants are, and a number of other factors such

as which crystal plane is exposed on the surface of the substrate, i.e the orientation

of the crystal. For example, in his PhD thesis, Samuel Pollock discusses that certain

alkali hydroxides exhibit an etch rate significantly higher for the (100) and (110)

directions than for the (111) direction [Pollock, 2010]. His work with this etching

process involves building atom traps with the aim of performing measurements with

cooled trapped atoms, which is obviously a very different application to the work of

this thesis. He states that potassium hydroxide (KOH) etches the (100) plane 400

times faster than the (111) plane, while the (110) plane is etched 600 times faster.

This results in the etching on the (111) planes being insignificant and the (111)

planes are easily revealed and expose themselves as the faces of a pyramidal shaped

cavity (see Figure 5.45). The walls of the pyramid make an angle of 54.74o with

the flat substrate resulting in a pyramid with an apex angle of approximately 70.5o.

The resulting pyramidal cavity has a surface roughness significantly less than can

be achieved with any mechanical milling process on these micrometer scales. This

is particularly critical given the the small dimensions of the cavities and the short

wavelengths involved. The manufacturing process is also a lot easier than other

methods.

Another benefit of employing this approach is the possibility of including a
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Figure 5.45: Examples of geometries that result from various chemical etching techniques.

second pyramidal or square cavity section above the TES and absorber that would

link the integrating cavity with the feed horn array, thus removing the vacuum gap,

as shown in Figure 5.46. The overall cavity would therefore have an octahedron

geometry if two pyramidal structures were used, or another closed geometry if a

pyramid and cuboid were used. The wiring for the TES readout electronics could

be located within trenches that could be etched into the silicon wafer through the

chemical etching process. The straight, angled walls of the pyramidal cavity would

be similar to the almost straight angled sections of the sine profiled cavity design for

the SAFARI L-Band detectors discussed in section 5.4.3 of this chapter. In that case

the angled walls of the sine profile were shown to be a good solution for coupling

radiation to the resistive sheet; the result being an increase in absorber efficiency

and with a higher level of consistency across the band while reducing the losses

through the vacuum gap between the waveguide feed and the cavity backshort.

Before anything was built it was desired to know how much of an improvement

such a design would make over the current hemispherical design with the vacuum

gap. A 3D model of the double pyramid design was built in the COMSOL design

environment and a range of simulations were performed in order to investigate the

efficiency of the absorber sheet within this structure. Various absorber sizes were

modelled across the large frequency ranges corresponding to the operational range

of the SAFARI S-Band. A screen shot of the COMSOL model is shown in Figure

5.47 where the dimensions of the cavity structure are defined. These dimensions

give rise to the ≈ 71o angle that would result from appropriate anisotropic etching.
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Figure 5.46: Comparison of an open hemipshere cavity and a closed double-pyramid cavity. This CAD drawing

clearly shows the vacuum gap in the hemispere design and how it would be removed in the double pyramid design.

Figure 5.47: Screen shot of pyramidal cavity model showing the dimensions of the structure.

5.5.1 Single Mode Analysis

As a first step the new S-Band cavity design was simulated using only the TE10

mode as an input via a square waveguide section with a length of 200µm and with

the same transverse dimensions as the cavity entrance, i.e. 100 × 100µm. Five

different absorber sizes were modelled, ranging from 50 × 50µm to 250 × 250µm,

with the absorber positioned in the centre of the cavity in each case. The fraction
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of power absorbed as a function of frequency is shown for three of the absorber

sizes in Figure 5.48(a), and the average power across the band is shown in 5.48(b)

where it can be seen that there are two values for each absorber size. The blue points

represent the average efficiency across a range of 1.8THz (the cut-on frequency of the

square waveguide feed) to 10THz. The green points then correspond to the average

efficiency across the operational range of the SAFARI S-Band (4.3 - 10THz).

(a) (b)

Figure 5.48: Effiency of the SAFARI S-Band resistive sheet absorber fed by a single mode (TE10) for various

absorber sizes. (a): The efficiency of a resistive sheet absorber, for a frequency range of 1.5 to 10THz, for three

different absorber sizes. The actual frequency range of SAFARI is indicated by the red box on the x-axis. (b): The

average efficiency across the band for five different absorber sizes.

It is clear that the removal of the vacuum gap from the design has a significant

impact on the amount of power that couples to the absorber. Also, for an absorber

size above 100 × 100µm there appears to be roughly a linear relationship between

absorber area and average power absorbed, while reducing the absorber sheet size

to 50× 50µm results in a significant reduction in absorbed power. Figure 5.49 then

shows the efficiency profile for just two absorber sizes across the SAFARI S-Band

range where the frequency dependent behaviour of the absorbers is a bit clearer in

this expanded, less cluttered plot.

5.5.2 Analysis of Higher Order Modes

Having found that the resistive sheet absorber behaves well inside the double pyra-

mid cavity when fed by the fundamental TE10 mode, the system was then inves-
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Figure 5.49: Effiency of the SAFARI S-Band resistive sheet for two different absorber sizes. The behaviour across

the frequency range of the SAFARI S-Band (red box in Figure 5.48) is clearer in this graph.

tigated for excitation by the higher order modes that the waveguide feed could

support. Average efficiencies for each mode were calculated for an absorber size of

100×100µm across two frequency bands; the first corresponding to the full frequency

range of the SAFARI S-Band instrument, and the second range that accounted for

the cut-off frequency of each propagating mode. In the second instance the average

efficiency was calculated over the range from the switch-on frequency for the partic-

ular mode to the high end of the S-Band (10THz), and in this way the evanescent

behaviour of the higher order modes at the lower frequencies could be accounted

for. In fact this highlights an important question regarding multi-moded systems

such as SAFARI, where the efficiency can be ill-defined, and for this reason the band

average efficiency was calculated in the two ways just described.

As can be seen in Figure 5.50(b) and Table 5.2 the efficiency of the relatively

small 100×100µm absorber in the double pyramid cavity is very reasonable for each

higher order mode that the waveguide feed supports. There is of course symmetry

in the data with respect to the m = n diagonal of Table 5.2 simply due to the square

nature of the waveguide feed which would not be true for a rectangular guide.
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TEmn n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 / 0.795 0.653 0.739 0.717 0.850 0.542

m = 1 0.795 0.803 0.702 0.753 0.742 0.778 0.651

m = 2 0.653 0.702 0.616 0.714 0.666 0.816 0.548

m = 3 0.739 0.753 0.714 0.765 0.691 0.777 Cut-Off

m = 4 0.717 0.742 0.666 0.691 0.636 0.621 Cut-Off

m = 5 0.850 0.778 0.816 0.777 0.621 Cut-Off Cut-Off

m = 6 0.542 0.651 0.548 Cut-Off Cut-Off Cut-Off Cut-Off

Table 5.2: Average absorber efficiencies across the propagation frequency range for higher order modes in a pyramidal

cavity. The remaining power is lost as return power back through the waveguide since there is only one port and

PEC boundary conditions were in place meaning that no Ohmic heating can take place in the walls.

(a) (b)

Figure 5.50: Effiency of the SAFARI S-Band resistive sheet for higher order modes. The size of the absorber chosen

was 100 × 100µm. (a): The efficiency of each propagating mode averaged over the entire SAFARI S-Band range

(4.3 - 10THz). (b): The efficiency of each propagating mode averaged over a range from the cut-on frequency of

each specific mode to 10THz (propagation frequency range).

5.5.3 Experimental Verification

Having found the new S-Band cavity design to be well behaved as predicted by the

models, the next step involved designing and building a scaled model of the new

SAFARI S-Band pixel for testing at frequencies around 100GHz for verification of

the simulation approach. Experimental tests also serve to validate the modelling

approaches used for the SAFARI L-Band analysis presented in section 5.4 of this

chapter. The system used for the measurements was based on the VNA.

As already indicated in section 1.4 of chapter 1, the VNA system at N.U.I.
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Maynnoth has a frequency range of 75 - 110 GHz, and a dynamic range that de-

pends on the care taken with the calibration procedure, but with 70dB achievable.

The benefits of performing tests at these scaled frequencies is that there is little

atmospheric absorption of signal due to the atmospheric window around 100GHz,

and of course any thermal emission at these frequencies is greatly dominated by the

strength of the VNA signal, thus there is no need for vacuum systems or cryogenic

facilities. However, as a precaution, the temperature of the VNA laboratory was

kept constant to within ±0.5o. A further benefit of the scaled tests is based on the

dimensions of the scaled cavity and feed structures. Their sizes are clearly larger

at longer wavelengths meaning that standard machining processes can be employed

for their construction if care is taken and precision is maximised. Also, since the

ability of the thin deposit of Ta to absorb radiation is not frequency dependent it

was believed that the scaled measurements would provide valid data.

The disadvantage of this approach is that the results on the absorption of power

are not obtained by measuring the absorbed power directly. Rather, by measuring

the S11 parameter (return signal) of a one port VNA set-up, the efficiency of the

absorber is deduced. Essentially, any of the input power that is not observed to

return is assumed to have been absorbed by the Ta absorber. The Ta absorbers

used in the real SAFARI pixel will of course be coupled to ultra-sensitive TES’s,

which themselves will be coupled to superconducting quantum interference devices

(SQUIDs) for amplification, resulting in direct detection of the incoming signal.

Figure 5.51 shows a cut through the CAD design, and a photograph of the

scaled cavity that was designed by the author and then built by Mr. David Watson

in the departmental workshop at NUIM. The pieces of Ta absorber material shown

in Figure 5.52 were provided by the SRON. Each absorber consists of a layer of

Ta (≈ 6nm) deposited on a 0.25mm thick sapphire substrate. It was possible to

sandwich the largest absorber square between the top and bottom parts of the

cavity in order to fix it in position. The smaller pieces of Ta had to be mounted in

the cavity using fine thread as supporting legs, as shown in Figure 5.52.

Figure 5.53(a) shows the initial results for three different absorber sizes in the

cavity, together with a FEM simulation of the 5.0×5.0mm absorber. Figure 5.53(b)

shows the results of two measurements that were performed to investigate if the

thread had an effect in terms of absorbing power. Placing thread cross-hairs in the
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(a) (b)

Figure 5.51: The scaled pyramidal SAFFARI S-Band cavity that was designed and built at NUIM. (a): A cut

through the CAD design. (b): Some photographs showing how it was manufactured in separate pieces.

(a) (b)

Figure 5.52: Pieces of Ta absorber that were provided by SRON for the scaled VNA measurements at NUIM.

(a): The absorber pieces with a scale bar. (b): The absorber pieces showing the thread that was attached to the

absorbers for mounting in the cavity.

cavity results in an almost identical profile to an empty cavity as can be seen from

the comparison plots.

Although the data in Figure 5.53(b) indicates that the thread has no significant

effect on the amount of power absorbed in the cavity, it is clear that the empty cavity

is causing significant losses as can be seen from the apparent absorbed power. One

would expect to observe almost 100% return power from an empty cavity since the

structure is closed apart from the excitation/detection port. The reason for the

low return power is thought to be due to the excitation of higher order modes,

caused by the shape of the cavity. Only the TE01 mode is excited in the input WR-
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(a) (b)

Figure 5.53: Measured efficiency of square Ta absorbers in a double pyramid cavity, and empty cavity excitation.

(a): Measured power absorbed for three different absorber sizes. The model results are for a 5.0× 5.0mm absorber.

(b): Excitation of empty cavity with and without thread cross-hairs.

10 waveguide, however the break in symmetry inevitably causes power to scatter

into higher order modes inside the cavity. The higher order modes cannot return

back through the WR-10 guide as the dimensions of the guide give rise to a cut-

off frequency of 118GHz for even the first higher order mode (TE02). Since the

analysis is being performed for a frequency range of 75 to 110 GHz even the highest

operational frequencies cannot propagate back through the guide in the form of

higher modes. The multiple reflections from the walls of the cavity for these modes

cause them to be absorbed.

The COMSOL model was based on PEC cavity boundaries, meaning that no

power could be absorbed by the walls, and an empty cavity returned 100% of the

power, as expected. The simulations were performed again, with the PEC cavity

walls replaced with boundaries having the properties of aluminium. The difference

in the return power with the more realistic boundary conditions was negligible,

meaning that the absorption of power observed in the measurement cavity must be

due to some other parameter, most likely the surface finish on the cavity walls.

An attempt was made to correct for the cavity losses by using the empty cavity

data to rescale the absorber results. It was somewhat successful, although there is

still significant disagreement between the simulations and the measured data. The

reason for this is due to how the absorber itself affects the behaviour of the fields

inside the cavity. The cavity losses in an empty cavity will not be the same as the

cavity losses when an absorber is present, since a significant amount of the signal
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will be absorbed on its first pass through the Ta sheet. The higher order modes

are now preferably absorbed by the Ta absorber rather than the cavity walls. Thus

subtracting the losses observed in the empty cavity from the absorber measurements

is not an accurate approach.

Figures 5.54(a), 5.54(b) and 5.55(a) show the results for the apparent efficiency

of three different sized square Ta absorbers compared to corresponding FEM sim-

ulations for each absorber size. As can be seen in each case, the amount of power

absorbed in the measured data is significantly higher than that predicted by the

simulations. Figures 5.55(b), 5.56(a) and 5.56(b) show the corrected results, again

compared to the FEM simulations. In this case a scaled version of the bare cavity

data was used to flatten the results, where the scaling factor used was 0.45, which

gave rise to the best observed fit.

(a) (b)

Figure 5.54: Efficiency of square Ta absorbers in a double pyramid cavity. (a): Fractional power absorbed for a

large absorber (8.0 × 8.0mm) filling the cavity cross section. (b): Fractional power absorbed for a medium sized

absorber (5.0× 5.0mm) partially filling the cavity.

Since the shape of the pyramidal cavity was thought to be the cause of the

disagreement between simulation results and those of the particular single mode

measurement approach used, another set of absorber measurements were carried

out using a more symmetric cavity. A cylindrical cavity that was designed and built

previously by the THz Optics Group at NUIM was used, as it was believed that this

particular cavity would give rise to fewer higher order modes being generated, and

hence physical conditions that are more accurately suited to using the return power

as an indicator of power absorbed by the Ta sheet. The cylindrical cavity is shown

in Figure 5.57. A variety of similar rings as those shown in Figure 5.57(a) can be
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(a) (b)

Figure 5.55: Efficiency of a small square Ta absorber in a double pyramid cavity. (a): Fractional power absorbed

for a small absorber (2.5 × 2.5mm) partially filling the cavity cross section. (b): Fractional power absorbed for a

small absorber (2.5× 2.5mm) corrected with data from an empty cavity measurement.

(a) (b)

Figure 5.56: Normalised efficiency of square Ta absorbers in a double pyramid cavity normalised with data from

an empty cavity measurement. (a): Fractional power absorbed for a large absorber (8.0× 8.0mm) filling the cavity

cross section. (b): Fractional power absorbed for a medium sized absorber (5.0× 5.0mm) partially filling the cavity.

used to construct cylindrical cavities of a variety of depths and radii. The rings are

held in place in the holding tube also visible in the top left of Figure 5.57(a). The

absorber pieces can then be held in place by sandwiching the thread between two of

the rings as shown in Figure 5.57(b), where the carpet absorber [Crownover, 1995]

is shown mounted above a ring.

The dimensions of the particular cavity assembly that was used is illustrated in

Figure 5.58(a), and a screen shot of the COMSOL FEM model is shown in Figure

5.58(b) indicating the symmetry conditions used in order to reduce the problem size.

Figure 5.59 then shows the model following the meshing procedure, and finally the
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(a) (b)

Figure 5.57: Photographs of the cylindrical cavity used for the VNA absorber measurements. (a): The cavity, rings,

and front face showing the WR-10 waveguide input and screw holes for attachment. (b): The carpet absorber

mounted above one of the rings.

electric field magnitude through the structure. Figure 5.59(c) shows a comparison

between the apparent power absorbed by the empty pyramidal cavity and the empty

cylindrical cavity. It is clear that there are significantly lower losses in the cylindrical

cavity compared to the double pyramid cavity, although the levels are still relatively

high.

(a) (b)

Figure 5.58: Schematic and screen-shot of the COMSOL FEM model of the cylindrical cavity and absorber set-up.

(a): Schematic showing dimensions of cavity and waveguide feed structures. (b): The geometry of the model showing

the E-plane and H-plane symmetry conditions that were employed.

The results of the absorber measurements in the cylindrical cavity are shown in

Figures 5.60 and 5.61, where Figure 5.60(a) shows the results of a circular absorber

completely filling the cavity cross section, and as can be seen there is a much higher
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(a) (b) (c)

Figure 5.59: Screen-shot of the meshed model and the electric field from the cylindrical cavity and absorber FEM

model. (a): The model geometry following meshing, and (b): The electric field. (c): A comparison between the

apparent power absorbed by the empty pyramidal cavity and the empty cylindrical cavity.

level of agreement between measurement and model. Figures 5.60(b), 5.61(a), and

5.61(b) show the results of the 8.0 × 8.0, 5.0 × 5.0, and 2.5 × 2.5 absorbers, re-

spectively, in the cylindrical cavity. Again, although there is some disagreement

between measurement and model, the agreement is significantly better than for the

pyramidal cavity, as predicted.

(a) (b)

Figure 5.60: Efficiency of square Ta absorbers in a cylindrical cavity. (a): Fractional power absorbed for a large

circular absorber filling the cavity cross section. (b): Fractional power absorbed for a large square absorber (8.0×

8.0mm) partially filling the cavity.

The carpet absorber, where a central square (2.66 × 2.66mm) was removed

from the 8.0×8.0mm Ta square in its construction, was tested and compared to the

efficiency of the solid 8.0 × 8.0mm Ta square. The reasons for wanting to remove

some of the absorber volume were discussed in section 5.4.3 of this chapter. Figure

5.62(a) shows the measurement results, with the corresponding FEM simulation
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(a) (b)

Figure 5.61: Efficiency of square Ta absorbers in a cylindrical cavity. (a): Fractional power absorbed for a medium

square absorber (5.0×5.0mm) partially filling the cavity. (b): Fractional power absorbed for a small square absorber

(2.5× 2.5mm) partially filling the cavity.

results also shown, and the measurement results for the solid absorber are shown

again for comparison. It is clear that removing some of the absorber material in

this manner has very little effect in terms of reducing the efficiency of the absorber.

This was also found in the simulations presented in section 5.4.3 of this chapter.

(a) (b)

Figure 5.62: (a): Efficiency of a large square carpet absorber in a cylindrical cavity, where the carpet has dimensions

of 8.0× 8.0mm with the central square (2.66× 2.66mm) removed. (b): Average power absorbed across the band as

a function of absorber size.

Figure 5.62(a) then shows the average power absorbed across the frequency

band plotted against increasing absorber size. As is expected the average absorbed

power typically increases with absorber size, with the VNA measurements again

showing a higher level of apparent absorption, indicating other losses as already
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discussed above. Interestingly the largest absorber, which was the circular piece

filling the cavity cross section (≈ 12mm in diameter) shows a reduction in measured

absorption compared to the smaller 8.0 × 8.0mm. This also brings the result into

closer agreement with the model than for the other absorber sizes. This is further

evidence that it is the break in symmetry that is causing the cavity losses, since the

largest absorber clearly has the same symmetry as the cylindrical cavity, whereas

the square absorber pieces of course differ from the symmetry of the cavity. Thus,

power losses in the walls of the cavity dominate when multiple reflections occur,

whereas the losses occur in the absorber when it is placed in the cavity.

5.6 Conclusions

It was shown in this chapter that in order to fully model a complete SAFARI L-Band

or S-Band pixel, multiple simulation methods are currently required. The progress

being made by the THz Optics Group at N.U.I. Maynnoth in terms of developing

an integrated mode matching software was discussed. Such an integrated program

should be able to account for the conducting waveguide structures of the pixel,

the resistive sheet absorber housed in an integrating cavity, and any vacuum gaps

within the pixel. The extension of the Cylindrical SCATTER mode matching code

to include a resistive sheet absorber in the models was shown to agree well with the

conventional FEM simulation approach. The extended SCATTER code was also

shown to be up to three orders of magnitude faster than FEM simulations.

The particular shape of the integrating cavity backshort in a far-IR pixel was

shown to be very important in terms of detector efficiency. Using the extended

SCATTER code, a cavity backshort with a sine profile was demonstrated as being a

good improvement compared to the conventional hemisphere design. The efficiency

of the SAFARI L-Band pixel was then shown to increase significantly when the

hemisphere backshort was replaced with the sine profiled backshort. A reduction

in power leakage through the vacuum gap was also observed with the new L-Band

design, and thus potential cavity cross-talk was reduced.

A new design for the SAFARI S-Band was shown to be a significant improve-

ment over the current design. As was discussed in section 5.5, the primary cause

of the increased pixel efficiency was the removal of the cavity-to-cavity vacuum gap
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from the design.

Finally, it was shown that it is possible to use a scaled measurement system

to verify the results of the simulations of cavity mounted Ta absorbers, although

there are restrictions in terms of using structures that do lead to too much power

being scattered into higher order propagating modes. Choosing a structure with

high symmetry and smoothly varying boundaries, such as a cylindrical cavity, was

shown to produce results that are in reasonable agreement with those from the FEM

modelling approach. The FEM results in turn were shown to agree well with the

more efficient mode matching approach in section 5.2.4 of this chapter.
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Chapter 6

Summary and Conclusions
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The primary aim of this thesis was to demonstrate that it is possible to model and

characterise the full structure of a SAFARI-like pixel comprising the over-moded

input feed, the absorbing resistive sheet, and the multi-moded cavity backshort,

using a single computer with moderate processing power. This was achieved by

employing multiple simulation techniques, combining the commercially available

packages such as COMSOL for FEM analysis with novel mode matching code. Use

was made of the available in-house mode matching code SCATTER, and further

mode matching code was developed by the author for increased efficiency for specific

horn geometries.

The work of this thesis was primarily driven by two technical research pro-

grams (TRPs). The first was a TES TRP funded by ESA, and led by SRON, with

involvement from Cambridge University and RAL in the UK, Cardiff University in

Wales, and NUIM in the Republic of Ireland [TRP AO/1-5922/08/NL/EM, 2011].

The TES TRP was a research program contract to investigate transition edge super-

conducting bolometers toward development of detectors for the SAFARI instrument

for SPICA with sensitivities approaching 1 × 10−19 W/
√

Hz. The TRP was from

2010 until 2012 and the author contributed to characterising optical cross-talk (horn-

to-horn) between SAFARI horns as required by the contract, and as presented in

chapter 3 of this thesis. Other work that was carried out by the author as required

by the TES TRP contract involved characterising cavity cross-talk between SA-

FARI pixels, and determining the optical efficiency of the Ta absorbers suggested

for SAFARI-like detectors. Although the TES TRP has now officially ended (as

of January 2012), a strong collaboration still exists between the research institutes

in the Netherlands, the UK, and Ireland, and work continues on the TES detector

technology toward the SAFARI instrument.

The second TRP that the author was involved in was an Irish AO (Announce-

ment of Opportunity) and was again funded by ESA (Strategic Initiative by ESA

for Ireland) [RFQ 3-6418/11/NL/CBi]. This TRP was specifically aimed at the de-

velopment of new technology horn antennas for CMB and far-IR astronomy, with

the goal of producing a profiled smooth walled horn antenna consisting of multiple

straight smooth walled conic sections that could match the beam control of simi-
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lar corrugated structures. Producing such a horn antenna design required the use

of optimisation routines such as genetic algorithms, which must cycle through the

simulation code many hundreds or even thousands of times, to iteratively converge

on an optimum design solution [McCarthy et al., 2013]. As part of this work the

author developed and tested a new conical mode matching code in spherical coor-

dinates that reduced the number of calculations required for each simulation loop

by up to two orders of magnitude. This work is presented in chapter 4 with a de-

scription of the new code given and the results of some examples shown. The Irish

AO contract also involved continued work on detector development with SRON for

SPICA/SAFARI, including an extended visit by the author to SRON, Groningen

from June to August of 2013. The measurement work carried out by the author

while at SRON is reported on in chapter 3 of this thesis, and it involves the char-

acterisation of the multi-mode behaviour of SAFARI-like horns at THz frequencies.

Other modelling work performed by the author during the SRON visit is discussed

in chapter 5. This work involved the design and multi-mode analysis of a new twin

pyramid cavity for the highest frequency SAFARI band (SAFARI S-Band). Upon

returning to Ireland, the author then designed a scaled model of the new S-Band

cavity for testing at frequencies around 100GHz with NUIM’s in-house VNA ap-

paratus. The scaled cavity was built by Mr. David Watson of the Experimental

Physics Department of NUIM, and samples of Ta absorber material were provided

for the tests by SRON, Groningen.

The majority of the work in this thesis was carried out by the author. Anywhere

others were involved is clearly indicated, and credit is given as such. The two-port

VNA set-up described in section 1.4 was already in place (see [Yurchenko et al., 2014],

for example), and the precise alignment procedures that were used in preparation

for horn antenna far-field beam pattern measurements described in section 3.1.10

were developed by Dr. Marcin Graziel and Mr. Niall Tynan, B.Sc., both of the de-

partment of experimental physics at NUIM. Assistance was provided by Mr. Niall

Tynan, B.Sc. and Miss Niamh Tobin, B.Sc., in performing the cavity and absorber

measurements described in section 5.5.3. Dr. Stephen Doherty provided assistance

with the use of the SCATTER absorber code that was used for analysis presented

in chapter 5, and with the use of the Rectangular SCATTER code that is dis-

cussed in section 3.2.1. Parts of the Spherical SCATTER mode matching code
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developed by the author used the established Cylindrical SCATTER as heritage

[Murphy et al., 2010].

The series of horn throughput measurements that were carried out at SRON,

and described in section 3.3, were carried out under the supervision of Dr. Gert de

Lange, and large assistance was provided by Dr. Damien Audley and Mr. Willem

Jan Vreeling, B.Sc. The measurement system used at SRON was already in place,

and the work carried out by the author built on previous research by Mr. Chris de

Jong, B.Sc., and Dr. Manisha Ranjan. The design concept for the SAFARI S-Band

cavity, and the corresponding FEM simulations, discussed in section 5.5, were the

result of collaborative work by the author, Dr. Gert de Lange, and Dr. Damien

Audley.

In chapter 3 it was shown that the far-field beam patterns of the current SA-

FARI horn design can be efficiently calculated using the Pyramidal SCATTER mode

matching code [Doherty, 2012], since the electrically large size of the rectangular SA-

FARI horns leads to a FEM model that is very large computationally. However, the

characterisation of horn-to-horn optical crosstalk required the use of the FEM sim-

ulation approach, since the current mode matching code does not allow for analysis

in the near-field, nor for horn-to-horn interactions. It was shown that while the level

of crosstalk in the E-plane of two neighbouring horns can be orders of magnitude

larger than that in the H-plane, the predicted levels of crosstalk in the SAFARI

array are sufficiently low as to not overwhelm the detectors. The FEM simula-

tion approach for crosstalk analysis was verified using experimental measurements

carried out using a two-port VNA system.

It was demonstrated that the frequency dependent throughout of SAFARI-

like feed horns can be characterised using an FTS, provided care is taken with

proper calibration of the data. It was shown that the propagating modes can be

observed to switch-on in a step-like manner, as predicted by the geometrical analysis

of the switch-on frequencies of the rectangular waveguide section in the back-toback

horn configuration. Further work is required in terms of refining the measurement

technique, as described in section 3.3.7.

Chapter 4 focussed on the theory of conical waveguide modes, and by devel-

oping the new mode matching code Spherical SCATTER it was shown how new

technology smooth walled conic section horn antennas can be modelled in an al-
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ternative manner to the approximate cylindrical mode matching approach, where

the number of power scattering integrals required to be performed can be reduced

by up to two orders of magnitude. To date, however, analytical solutions to the

scattering integrals have not been found in the literature or independently, leading

to long calculation times due to numerical integrals. Thus, the Spherical SCATTER

code is currently less efficient than the Cylindrical SCATTER approach. The theory

for the new code was verified by comparing the results of a test horn modelled with

both Spherical SCATTER and the established SCATTER for cylindrical geometries.

Good agreement was demonstrated between the two approaches, and similar good

agreement was shown for a FEM model of the same horn.

Finally, in chapter 5, new designs for far-IR cavity backshorts were investi-

gated, with the aim of improving the SAFARI detector cavity design. By using a

combination of FEM and mode matching analyses the efficiency of the Ta absorbers

for both the SAFARI L-band and S-Band were predicted. It was shown that the

particular shape of the cavity backshort can have a significant effect on the amount

of power absorbed by the Ta sheet when housed in the cavity. The amount of power

lost through the vacuum gap between the horn array block and the detector array

chip was shown to be significant if the gap is too large, resulting in up to 65% loss

of signal for some frequencies of the L-Band. Again, the shape of the cavity was

shown to affect this parameter, with a sine profiled backshort providing a significant

reduction of this loss. Removal of the vacuum gap with a new cavity design was

shown to provide an improvement in the fraction of the signal absorber by the Ta

sheet, and of course removal of any free-space-gap losses, and thus elimination of

any cavity-to-cavity crosstalk. The simulation techniques were then verified through

experimental measurements using a one-port VNA set-up and small absorber pieces

mounted in conducting cavities. The measurement technique that was employed,

where analysis of the return power (S11) was used to infer the amount of power

absorbed by the Ta sheet, was shown to work only in special conditions. As was

discussed in section 5.6 care must be taken in choosing the profile of the cavity

structure to be used. The S11 parameter will only inform on the amount of power

returned in the fundamental TE01 mode, and therefore any power that is scattered

into higher order cavity modes will appear to have been completely absorbed by the

Ta, and hence lead to inaccurate inference of absorber efficiency.
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A list of publications and conference proceedings related to the work presented

in this thesis, and contributed to by the author, can be found below. It is envisaged

that further papers relating to work presented in this thesis will be submitted for

publication in appropriate academic journals, following submission of this thesis for

examination.
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