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1. Introduction

The max algebra, which is the focus of this paper, consists of the nonnegative real numbers R
equipped with the basic operations of multiplication, a ® b = ab, and maximization a @ b =
max{a, b}. This algebraic system arises directly in applications such as the Viterbi algorithm [1] and
has also been used to construct ranking vectors for analytic hierarchy processes [2]. Furthermore, the
max algebra is isomorphic to the max-plus algebra, which provides a natural framework for analysing
a broad class of discrete event systems arising in areas such as transportation and manufacturing. In
fact, the max-plus algebra has been used in applications such as the design and analysis of bus and
railway timetables as well as in the scheduling of high-throughput industrial processes [3].

Given their importance in applications, dynamical systems and matrices in the max and max-plus
setting have received considerable attention. Many key results in these areas relate to extensions of
the classical Perron-Frobenius theory [4,5] to the max setting. A very early result in this direction
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was obtained by Vorobyev in [6]. For more recent references giving details on results of this type and
their applications, see [1,7] and references therein. For a recent reference focussing specifically on the
Perron-Frobenius Theorem for the max algebra, see [8], wherein several proofs of this fundamental
result were presented. Formally, the max Perron-Frobenius Theorem states the following; for an
irreducible nonnegative matrix A, the maximal cycle geometric mean, 1 (A), which is defined below,
is the unique eigenvalue of A over the max algebra. Furthermore, the eigenvectors corresponding to
1 (A) must be strictly positive in this case.

The classical power method was modified to obtain a technique for calculating the max eigen-
value and max eigenvectors of an irreducible nonnegative matrix in [9,10]. Conditions guaranteeing
convergence of the power method were also given in these papers.

More recently, results relating classes of matrix norm, the maximal cycle geometric mean and
asymptotic stability for a single matrix in the max algebra were presented in [11]. This line of research
was then further extended to sets of matrices in [12,13]. Here, a max algebra version of the generalised
spectral radius, which plays a central role in determining stability and convergence properties of
discrete linear inclusions and nonhomogeneous matrix products was introduced and the generalised
spectral radius theorem was extended to the max algebra.

In the present paper, we consider another aspect of the spectral theory for the max algebra.
Specifically, we investigate matrix polynomials defined over the max algebra and obtain a set of
results corresponding to those presented recently in [ 14] for nonnegative Perron polynomials. It should
be emphasised that matrix polynomials over the max-plus algebra have previously been considered
in connection with scheduling problems and timetable analysis [3]. The spectral properties of such
polynomials have important implications for the stability of timetables with respect to the propagation
of delays. For both the max and the conventional algebras, matrix polynomials are closely related to
multistep difference equations. In [ 14], this relationship was exploited to derive a multistep version of
the Fundamental Theorem of Demography for the conventional algebra. For a reference highlighting
the role played by classical Perron-Frobenius theory in the Fundamental Theorem of Demography and
other key results of population dynamics, see [15].

The layout of the paper is as follows: In Section 2, we introduce the main notation used throughout
the paper as well as some preliminary results and define formally what is meant by a max matrix
polynomial. In Section 3, in the spirit of [14], we show how to associate a companion matrix with a
max matrix polynomial and show that there is a perfect correspondence between the eigenvalues and
eigenvectors of the polynomial and those of the companion matrix. This allows us to apply the Perron-
Frobenius theorem for the max algebra to obtain a corresponding result for matrix polynomials over
the max algebra. In Section 4, we investigate the implications of these results for the convergence
of multistep difference equations in the max algebra, while in Section 5, we derive a number of
inequalities for the largest max eigenvalue of a max matrix polynomial in terms of the largest max
eigenvalue of a fixed matrix naturally associated with the polynomial. Finally, in Section 6, we present
our conclusions.

2. Preliminaries

Throughout the paper, R denotes the set of real numbers; R denotes the set of nonnegative real
numbers; R" stands for the vector space of all n-tuples of real numbers; R"*" stands for the space of
nxn matrices with real entries. For v € R" and 1 <i < n, v; denotes the ith component of v. Similarly,
for A € R"™™"and 1 <i, j <n, aj refers to the (i,j)th entry of A. We use AT and v" for the transpose of
A € R™"and v € R" respectively.

A vector v € R" is said to be positive if v; > 0 for 1 <i<n. This is denoted by v > 0. If v; >0
for 1<i<n, we write v> 0. Similarly, for A € R™", we say A is positive (nonnegative) and write
A > 0(A>0)ifa; > 0(a;>0)for1<i, j <n.Thesetof nonnegative matrices is denoted by A € R/*".

We callA € R"f" reducible if there exists a permutation matrix P such that PAPT has the form

A Ap
0 A |’
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where A € R’fﬁk, A € Rl_t(("_k), Ay € RS':"‘)X(""‘) and 0 is the zero matrix in ]Rfc_k)Xk for

1<k < n. A matrix is said to be irreducible if it is not reducible. A nonnegative matrix A is primitive if
and only if A" > 0 for some positive integer n.

For A € R™", the weighted directed graph associated with A is denoted by D(A). Formally, D(A)
consists of the finite set of vertices {1, 2,...,n} and there is a directed edge (i,j) from i to j if and
only if a; > 0. It is standard that A is an irreducible matrix if and only if there is a directed path
i =1iy,i,...,0k = j between any two vertices i, j in D(A), where (ip, i,4-1) is an edge in D(A) for p =
1,...,k — 1. The weight of a pathi = iy, i, ..., ik = j of length k — 1 is given by a;,;, a,i; - - - Gi_,i,.-

A cycle I" of length k in D(A) is a closed path of the form iy, iy, . . ., ik, iy Where iy, iy, . . ., iy are in
{1,2,...,n} and distinct. For such a cycle its cycle geometric mean is /@i, iy - -+ Gjyig - The maximal
cycle geometric mean in D(A) over all possible cycles is denoted by 1t (A). Throughout the paper, we
adopt the notation 7w (I") = aj,;,0i,i; - - - Gj,i; for the product of a cycle I” and I(I") = k for the length
of a cycle.

A cycle whose cycle geometric mean equals to £ (A) is called a critical cycle. Vertices that lie on
some critical cycle are known as critical vertices. The critical matrix [9,10] of A € R"*" denoted by A°,
is formed from the submatrix of A consisting of the rows and columns of A corresponding to critical
vertices as follows. Set ag = aj if (i, j) lies on a critical cycle and ag = 0 otherwise.

The max algebra consists of the set of nonnegative numbers together with the two basic operations
a® b = max(a,b) a ® b = ab. These operations extend to nonnegative matrices and vectors in the

obvious manner. Throughout the paper, A]® denotes the jth power of A in the max algebra. Note that
A®B)T =BT @A
The eigenequation in the max algebra is given by

ARV =Ly, (1)

wherev>0, A >0and (A ® v); = max|¢j<aqivjfori=1,2,...,n.1Ifv>0, A >0 satisfy (1), then v
is a max eigenvector of A with corresponding max eigenvalue A. For A in R”+X”, W (A) is the largest max
eigenvalue of A; this is still true in the case where D(A) contains no cycles and w(A) = 0 [11]. If A is
irreducible, then 1 (A) is the unique max eigenvalue of A and there is a positive max eigenvectorv > 0
corresponding to it [8]. The eigenvector v is unique up to a scalar multiple if and only if the critical
matrix of A is irreducible.

3. Eigenvectors and eigenvalues for max matrix polynomials
In this paper, inspired by the work of [ 14] for nonnegative matrix polynomials over the conventional

algebra, we consider the spectral properties of matrix polynomials defined over the max algebra.
Formally, we consider polynomials given by

P(L) =Ag @ rA1 @ -+ D A" 1Ay, )
where Ag, A1, . ..,Ap—1 arein ]Rr_f(”. We refer to P()) as a max matrix polynomial of degree m — 1.1In

analogy with the definitions for the conventional algebra [14], we say that

(i) k¥ > 0is said to be a right max eigenvalue of P(A) with corresponding right max eigenvector v >0
if P(k) ® v = k™v. (k, v) is then a right max eigenpair of P(1).

(ii) T > 01is said to be a left max eigenvalue of P()) with corresponding left max eigenvector w > 0
ifwl ® P(t) = t™w’. (r, w) is then a left max eigenpair of P(1).

The key result of this section, which allows us to directly apply the Perron-Frobenius theorem
for the max algebra to obtain corresponding statements for max matrix polynomials is Proposition
3.1 below. Essentially, as was done in [14] for the conventional algebra, this establishes a one to one
correspondence between the max eigenpairs of the polynomial P()) in (2) and the max eigenpairs of
the companion matrix
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o I 0 0
0 0 I 0
Gp=|: : : Do e rET (3)
0o 0 ... 0 I
A A1 ... Apn—2 Am—

Proposition 3.1. Consider the max matrix polynomial P()) given by (2) and the corresponding companion
matrix given by Cp (3). Then (k,v) € Ry x R} is a right max eigenpair of P()) if and only if (x, V) €
Ry x R is a right max eigenpair of Cp, where

V= |- (4)

Moreoyer, (r‘, w) € Ry x R is a left max eigenpair of P(A) if and only if (r, W) € Ry x R" is a left
max eigenpair of Cp, where

1Al @w
1 AT 1 AT

(Al o oAl @1l ) ew
w

Proof. It is a straightforward calculation to verify that Cp ® V is given by

KV

K%y

P(k) ® v

Hence, if (k, v) is a right max eigenpair of P(1), it is immediate that Cp ® ¥ = «¥.
For the converse, it is clear that any right eigenvector of Cp must be of the form (4). Then equating
the last rows of Cp ® V = «V, we have
P)QV=A QVDKAIQV®D - ® k™ 1An_1 @ v =rxmv.
For the left eigenpair statement, we have W ® Cp given by

Al ®@w r

(%Ag ® A{) Qw

:
o @ W

Since (z, w) is a left max eigenpair of P(1), it follows that W ® Cp = W . For the converse, equating
the last columns of W ® Cp and tw!, we see that

P(7)
T
w e .L-m—l

=tmw = w @Px)=1t"w. O

nxn

ForanyAinR;™", u(A) = w(AD). It follows from Proposition 3.1 that the largest right and left max
eigenvalues of the polynomial P(A) coincide. We now define & :=u(P(X)) to be the largest right (or
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left) max eigenvalue of P()1). However, note that in general the set of right and left max eigenvalues
of A and AT need not coincide. For example,

A=[‘21 g] 6)

The following result, which extends the Perron-Frobenius theorem to matrix polynomials over the
max algebra now follows easily from combining Proposition 3.1 with Theorem 2 of [8].

Theorem 3.1. Consider the max matrix polynomial P()\) given by (2) and let Cp be the corresponding
companion matrix (3). Suppose that Cp is irreducible. Then w(Cp), the maximal cycle geometric mean of
Cp, is the only max eigenvalue of P(A). Moreover, writing (. := 1+ (Cp), there exist positive vectors v,w > 0
inR" such that P(n) @ v = u™vand w' ® P(u) = pu™w'.

Remark 3.1. It has been pointed out in [ 14] that Cp will be irreducible if Ag is irreducible. Note that the
irreducibility of Cp only implies that the eigenvalue u is unique; there may be multiple eigenvectors
corresponding to . The following result describes a situation in which the eigenvector is also unique.

Theorem 3.2. Let the max matrix polynomial P()\) be given by (2) and let Cp be the corresponding com-
panion matrix (3). Further, let c,§ denote the critical matrix of Cp. Then P()\) has unique left and right

eigenvectors up to scalar multiples if and only if the graph of CE is strongly connected.

4. Multistep difference equations in the max algebra

The association of matrix polynomials with multistep difference equations was studied in [14] for
the conventional algebra. In this section, we show how the max matrix polynomial P(A) given by
(2) is related with multistep difference equations over the max algebra. As noted in the introduction,
equations of this type have been previously studied in the max-plus setting [3].

Consider the multistep difference equation:

Utm =An-1 QUiym1 @ DA QU1 DA Qu; (=01,...). (7

where Ag, Ay, ..., An—1 € RY" are coefficient matrices and ug, uy, . . . un—1 € R’} are initial values.
As with multistep difference equations for the standard algebra, the system (7) is equivalent to the
singlestep difference equation given by

Xir1 =0 ®x (=01,..). (8)
Uy
Uj+1
This is seen by setting x; = : € RI!". For a given initial condition xo € R", the solution of
uj+1;1—1

(8)is

Xj = C{a® ® Xp. (9)
Hence, the solution of (7) can be written in the form:

w=[ 0 - 0]®&C ®x. (10)

N— ——
GRI_‘;—an

Throughout this section, we assume that Cp is irreducible and that the critical matrix CE is primitive.
Therefore, as CIE is certainly irreducible, it follows that P(A) has unique left and right max eigenpairs.
Under the above assumptions, it follows from Theorem 2.2 in [9] that max powers of the normalized

companion matrix ﬁC{,@ converge in finitely many steps to a matrix Coo. In fact, Theorem 2.2 of [9]
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established that for any irreducible A € R'" with A® primitive, there is some K € R} and some

Aso € R such that for Vk > K,
X
Ag
Ak

The following lemma restates the above convergence result of [9] in terms of the normalized max
eigenvectors of A.

= Asc. (11)

nxn

Lemma4.1. Let A € Ry be irreducible and A€ be primitive. Then there exists some K > 0 such that

J
A

n(Ay
wherev > Oandw > 0 are the unique right and left max eigenvectors of AsatisfyingA ® v = (A)v, AT ®
w=pu@wandvI @w = 1.

=vew!, forj>K, (12)

k
Jalc)

Proof. It follows from (11) that there is some K > 0 and a matrix Ay such that LAk = Ao for all
k> K. Now calculate A ® Axo:
. g
® Ax ®/~L(A)K M()M(A)K_H H(A)Aco

It follows immediately that the columns of Ay, are right max eigenvectors of A and hence that Ao =
v ® x for some x € R].
On the other hand,

AT _ g (AL
(A (AKX
But, Asc = v ® x! and hence,

AT@xev = u(A)x@vT AT @x= w(A)x.

Thus, x = Aw for some A € Ry.Itis explicit that Axe ® Aso = Ao Since Aoo = AV ® wT, we have

(AZ'@)K-H

= M(A)W = ,U«(A)Ago-

ATl =A"T®

Vvaw @vew = wew =1 =1.
N —
1
Therefore, we conclude that x = wand Ao = v @ w'. O

In Theorem 4.2 of [ 14], a generalisation of the so-called Fundamental Theorem of Demography was
derived. In the following result, we extend this to the max algebra.

Theorem 4.1. Let P(A) be the max matrix polynomial given by (2); let Cp be irreducible and c,€ be primitive.
Let v and w be the right and left max eigenvectors of P(A) corresponding to u normalized so that

v
Tofh wWel(haei) ... mv o
(Ve we(hel) we| M =1 (13)
Mm—lv
Writeu;, j = 0,1, ... for the solution of the multistep difference equation (7) corresponding to a nonzero
up
uq
initial vector xg = . |e R

Um—1
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Then there is some positive integer K such that for allj > K

oW é jE_Bli ® uj ®v (14)
W =1 \e=o W i .

Proof. Let ¥ and w be the right and left max eigenvectors of Cp given by (4), (5) respectively. Lemma
4.1 implies that there is some integer K > 0 such that for all j > K,

) v
& L v
=i = olev el we(feh) oo w
,le_lv
vew % vaw @ (%4 o) VO w
wew @ wew e (o) . wew
Mm_1v®wT®’;‘—f Mm_1v®wT®(% %) u’"_lv@wT
Thesolution of (7)isgivenbyu; =[I 0 - 0]®C{,®®xo.ltimmediatelyfollowsfromtheabove
calculation that for all j > K,
J
4 _ Cry
E_[I 0 0]®uf ® X9
uo
_ T o A T A A T L251
=[vew@} vewe(tol) - vew|s|
Un—1
A A A
=v®<wT®°®uo@wT®(g®]>®u1@-~@wT®um_1).
2 2 2
Using the fact that w' = w ®P(A) w®<% u’:f_] A"l';]),weﬁndthatforallj}l(,

[ Bd2) e ) o

as claimed. O

Note that the above result implies directly that

lim ﬂ =|w'® é ]G_BlA—k ® uj—1 ®v. (15)
j=oo W j=1 \k=0 Hj_k

which is a direct generalisation of Theorem 4.2 of [14].
5. Some bounds for p1

In this section, we explore the relationship between the max eigenvalues of the max matrix poly-
nomial (2) and the max eigenvalues of the n X n, nonnegative matrix

S:=An_1 DPAn2®--- DA D Aop. (16)
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Specifically, we present a number of results relating 4 and w(S) that are similar to those given in
Proposition 3.8 of [14] for matrix polynomials over the conventional algebra.

Before deriving the main result of the section, which is Theorem 5.1 below, we first need to introduce
some notation and a number of preliminary results.

GivenAy, . ..,An—1, we write ag- for the (i, j) entry of A, for 0 < p <m — 1. Throughout this section,
we shall write M for the multigraph associated with the setAy, . . ., Am—1.Thus M consists of the vertices
{1,...,n} with an edge of weight agfrom i to j for every p for which af]’- > 0.In an abuse of notation we
shall identify the edge with its weight ag- in this case. A cycle in the multigraph M is then a sequence
of vertices iy, iy, . . ., ik, ik+1 = i1 and edges afﬁ-j+1 > 0, 1<j<ksuch thatiy,...,i are distinct and
P1,-..,prarein {0, ... m — 1}. The geometric mean of a cycle in M and the maximal cycle geometric
mean (M) of M are defined analogously to the case of a simple graph. Critical cycles are defined for

M in the obvious manner. For a cycle I" in a graph or multigraph, we write 7t (I") for the product of the
weights of the edges in the cycle.

Lemma 5.1. Let (M) denote the maximal cycle geometric mean of the multigraph associated with
Ao, A1, ..., An—1 and let . (S) be the maximal cycle geometric mean of

S=An-19D - DAo.
Then (M) = w(S).

Proof. Firstitisimmediate that any cycle in D(S) is also a cycle in M. This implies that 1 (S) < w(M).On
the other hand, if Iy is a critical cycle in M with product a; ;. ab, - - - ab ,itis clear that iy, iy, . . ., iy, iy
is also a cycle in D(S) and moreover from the definition of S,
pP1 P2 Dk
SitiySiziz "+ * Sigiy Z Qi Ty * ai,:il :

This implies that 1 (S) > w(M). Hence w(S) = (M) as claimed. [

ii3 iki1

Before proceeding, note that the argument used above also shows that u(M) = 0 if and only if
n(s) =0.

The following result plays a central role in the proof of the main result of this section. It shows that
there is a 1-1 correspondence between cycles in the multigraph M and cycles in the directed graph
D(Cp). In the proof of this result we write c;; for the (i, j) entry of Cp.

Lemma 5.2. Let I'yy be a cycle in the multigraph M with cycle product 7 (I'};) and length j. Then there
exists a cycle I'c in D(Cp) of length k > j such that w (I'c) = 7 (I'y). Conversely, for every cycle I't in D(Cp)
of length k, there exists a cycle I'y; in M with cycle product w (') = w(I'c) and length j < k.

Proof. Let I'} be a cycle in M with product
() =aa, - ag’il.

Note that for 1 <s <}, the entry ai §s+1 corresponds to the entry in the companion matrix Cp given by
C(m—1)n-+is,psn-+iss1 - NOW note that the form of Cp means that for any p with0<p < m — 1, and any i
with 1 <i< n, there exists a simple path in D(Cp) from the vertex pn + i to (m — 1)n + i. Further, all
the entries of Cp used to construct this path are equal to one. It follows immediately from this that
there exists a cycle I't in D(Cp) whose product is equal to 77 (I};) but whose length k may be greater
thanj (as extra edges of weight 1 may have been added to define the cycle in D(Cp).)

For the converse, note that any cycle I'c of length k in D(Cp) must contain at least one vertex
corresponding to an index i with (m — 1)n + 1 <i<mn (an index from the bottom n rows of Cp).
Suppose the product 7t (I'¢) contains j terms from the bottom n rows of Cp and is given by

C(m—1)n+iy,pyniy C(m—1)nip,pantiz * * * Cm—1)n+ij,pjn+iy
(where we have omitted terms equal to one from the product).
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Then the cycle I'yy in M consisting of the vertices iy, . . ., ij, ij+1 = i1 and the edges with weights
Pl P2 DPj
afliz’ ipiz? c * c aiji]

has length j with j < k and moreover, it is immediate that 7 (I'y) = 7w (I¢). O

Again, note that the above argument shows that (M) = 0 if and only if © = 0. Hence, from
Lemma 5.1, u(S) = 0 if and only if & = 0. As all of the following results are trivial in the case where
uw = u(S) = 0, we henceforth assume that u == 0.

Corollary 5.1. Let p denote the largest max eigenvalue of the max matrix polynomial given by (2) and let
1 (S) denote the maximal cycle geometric mean of the matrix S given by (16). Then there exist integers
J1.J2, k1, ko with 0 < ji <kq, 0 < jy <kj such that

uSYVM < < syt (17)
Proof. First let I}y be a critical cycle in M of length j;. Then the product of Iy is given by p (M), From
Lemma 5.2 there is a corresponding cycle, not necessarily critical, It in D(Cp) of length k; > j; with
the same cycle product. It follows from the definition of w that p (M) M < u.

On the other hand, let I'¢ be a critical cycle in D(Cp) of length k,. Then as above the cycle product

of I'cis /L’Q and there exists a (not necessarily critical) cycle in M of length j, < k, with the same cycle
product. This implies that

'ukz/jz < u(M).

Rearranging this, we see that

< My,
As (£ (M) = (S) from Lemma 5.1 the result follows. [

Next, we present a numerical example to illustrate the result in Lemma 5.2.

Example 5.1. Let P(1) be given by

P(/\):[g ﬂ@[g g])\@[g ;}AZ. (18)

Then, the corresponding companion matrix and S are as follows:

Cp

— WO O oo

0 0

0 0

1 0 0 3

o 1| 52[4 5]' (19)
0 1

3 5

Il
cocoococoo
MOOOO R~
NN OO —O

Consider the cycle I" in M whose productis 7 (I") = 0?2051 = s12521 = 12 with [(I") = 2. Writing c;;
for the (i, j) entry in Cp, the following cycles in D(Cp) both satisfy the conditions in the above lemma.

1.0y:
2. 15

—_

<

5,2,4,6,3,5. 71(1“1’) = (52024C46C63C35 = S12521 = 12 and I(F{) = 5.
6,3,5,2,4,6. IT(FZ/) = (63C35C52C24C46 = S21512 = 12 and 1(1“2’) = 5.

We are now able to state the main result of this section, which provides a max algebra version of
Proposition 3.8 in [14].

Theorem 5.1. Let P(A) be the max matrix polynomial in (2) and S = P(1). Further, 1t is the largest max
eigenvalue of P(1) and (4 (S) is the maximal cycle geometric mean of S. Then, the following hold.
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(i) u(S) < lifandonlyifu < 1.
(ii) w(S) > lifandonly if u > 1.
(iii) u(S) = 1ifandonly if u = 1.

Proof. This result follows immediately from the identity

M(S)jl/kl <u< M(S)jz/kz
established in Corollary 5.1. [J

The following Corollary is obtained immediately from Corollary 5.1.

Corollary 5.2

w(S) > 1= u < u(S), (20)
w(S) < 1= u>u(s),
u(S) =1=pu = u(s).

Theorem 5.1 shows that i = w(S) when ;£ (S) = 1. In the nextresult, we give a necessary condition
for u = u(S) when u(S) # 1.

Corollary 5.3. If u(S) # 1 and . = wu(S), then u = w(Am—1).

Proof. Consider u = u(S).

Case 1: Let u(S) > 1. Using Corollary 5.1, we have u < ujZ/kZ = /Ll_jZ/kz < 1. This is only possible
whenj, = ky. This means that there is some critical cycle in D(Cp) whose product only contains terms
from the last n rows of Cp. This immediately implies that all the terms in this product are in A;;—1, SO
in this case u = w(Am—1)-

Case 2: Let £(S) < 1.As above, using Corollary 5.1, we have /Hl/kl < =1< ,ul_jl/kl.This isonly
possible when j; = ky. As in Case 1 this implies that & = w(An—1). O

As a final point, we note that the converse of the previous result does not hold. Specifically, the
example below has u = w(Ap—1) withm = 2 but u # u(S).

Example 5.2

0 0 0 1 0 0
O 0 0 0 1 0
0o 0 0 o0 1

=102 1 01 1 o5 3 |~Hn=28231 (21)
2 1 02 15 01 1
03 2 2 2 5 06
1 05 3

A=[15 01 1 |= @A) =28231 (22)
2 5 06
11 3

s=12 1 1|= ues) =3.1072. (23)
2 5 2

6. Conclusions

Continuing a recent line of work on spectral properties of matrices over the max algebra, we have
extended Perron-Frobenius theory for matrix polynomials to matrix polynomials defined over the max
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algebra. Specifically, we have shown that the basic theory for Perron matrix polynomials presented in
[14] carries over to the max algebra. We have also derived convergence results for multistep difference
equations over the max algebra analogous to those for the conventional algebra in [14]. A number of
results relating the maximal max eigenvalue p of a max matrix polynomial with the maximal cycle
geometric mean of the matrix S = P(1) have also been presented. An interesting possible direction for
future work is to investigate the potential for extending the results here to sets of matrix polynomials
over the max algebra. In particular, it would be interesting to investigate whether the results of Section
5 can be extended to the generalised max spectral radius studied in [12,13].
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