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For vehicle platoons, the leader following control architecture is known to be capable of achieving string
stability while maintaining tight formations. In this paper, we study a variety of schemes where the leader
state is available to the other members of the platoon. We show that in some cases it is possible to
achieve string stability in the presence of certain amounts of time delay in the leader state reception.
We also compare other properties of the different schemes and discuss some of their advantages and
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1. Introduction

In recent decades, formation control of autonomous vehicles
has received great attention; see for example Chien and Ioannou
(1992), Chu (1974), Levine and Athans (1966) and Swaroop and
Hedrick (1996). More recently, researchers have studied exten-
sively the simple case of a 1-D platoon of vehicles with linear dy-
namics, considering diverse alternatives to achieve coordinated
movement of the string (see for example Hao, Yin, & Kan, 2012;
Jovanovic & Bamieh, 2005; Lin, Fardad, & Jovanovic, 2012, and the
references therein).

One simple approach, which can be implemented using linear
controllers, is to equip every member of the formation with a
compensator that stabilizes its position in closed loop, using as a
reference the position of its predecessor in the string and a desired
constant inter-vehicle spacing. The internal stability of the whole
system is ensured by the simple interconnection, the design of
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the compensator and the assumption of linear dynamics for each
vehicle. In Seiler, Pant, and Hedrick (2004) it was shown that this
simplistic architecture suffers from a drawback known as “string
instability” namely, the amplification of disturbances along the
string as a response to a disturbance in a single vehicle. In this case,
the problem occurs if identical vehicles and local controllers are
used (homogeneous control) and whenever the controller-vehicle
pair has two integrators, regardless of the chosen compensator
parameters. Moreover, in Barooah and Hespanha (2005) the
authors show that including also the immediate follower position
in the control signal of each vehicle (bidirectional control) does not
remove the disturbance amplification, complementing the work
done in Seiler et al. (2004).

The term “string stability” has been defined in many different
ways. In this work we consider a similar approach to that in Mid-
dleton and Braslavsky (2010): in an interconnection of multiple
systems, we consider a set of relevant closed loop transfer func-
tions (e.g. the ones that describe the effect of disturbance on the
inter-vehicle spacings). String stability occurs if the functions have
frequency magnitude peaks that are bounded independently of the
platoon size. String instability, has a number of undesirable impli-
cations for the safety and performance of a platoon of vehicles, the
most dramatic being the increased chance of collisions as the size
of the platoon grows. Several measures aimed at ensuring string
stability of a formation have been proposed. The authors of Chien
and loannou (1992), Klinge and Middleton (2009) and Swaroop,
Hedrick, Chien, and Ioannou (1994) introduce “time headway”,
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Fig. 1. Platoon of vehicles.

where inter-vehicle spacings are dependent on vehicle veloci-
ties. Equipping each vehicle with a controller that depends on its
position along the string (heterogeneous control), has also been
proposed to overcome the difficulty, see for example Khatir
and Davidson (2004), Lestas and Vinnicombe (2007) and Shaw
and Hedrick (2007). Unfortunately this only helps if control
“bandwidths” are allowed to diverge (either to 0 or oco) as the
string length grows, (Middleton & Braslavsky, 2010). Alternatively,
“leader following” schemes such as the ones studied in Seiler et al.
(2004) and Xiao, Gao, and Wang (2009) obtain string stability of
the formation by providing every follower with the state (or an
estimate) of the leader, at the cost of increasing networking re-
quirements. A limited range of forward communication, which
would imply a loss in leader state reception along the string,
does not allow linear controllers to achieve string stability with-
out the use of constant time headway policies (see Middleton and
Braslavsky (2010)). The use of a network to provide the members of
a string of vehicles with the leader state (position and/or velocity)
immediately poses questions on the effect of disruptions of the
communication. In this context, the works presented in Liu, Gold-
smith, Mahal, and Hedrick (2001) and Xiao et al. (2009) studied the
effect of time delays for leader following schemes under restric-
tions on controller structure.

Other researchers have studied more complex approaches to
formation control that also present issues as the platoon size
increases. In Jovanovic and Bamieh (2005), the authors study
optimal control strategies for platoons with an increasing number
of vehicles and show that some related LQR problems are “ill-
posed”. The work in Bamieh, Jovanovic, Mitra, and Patterson (2012)
shows that in the 1-D case it is impossible to have large “coherent”
platoons with only local feedback. A PDE approach was used by
the authors of Barooah, Mehta, and Hespanha (2009) to show
that the “stability margin” of a bidirectional control architecture
can be improved by “mistuning”. More recently Lin et al. (2012)
integrated the previous results in the design of optimal controllers
to enhance the coherence of a formation.

Leader following schemes can provide string stability and “tight
formations” in which a fixed, prescribed inter-vehicle spacing is
maintained, regardless of the platoon speed. These properties en-
sure some degree of safety and performance for the vehicles’ ma-
noeuvres and are important for applications where the tightness
of the formations is required (e.g., increased throughput in Auto-
mated Highway Systems, Hedrick, Tomizuka, & Varaiya, 1994).

The main contributions of this paper can be summarized as
follows. We revisit the leader-predecessor following architecture
where each follower tracks simultaneously the positions of its
immediate predecessor and the leader. We also propose two novel
alternatives based on it: the first one considers a modification of
the way the leader position is communicated to the followers; the
second one makes the followers track the velocity of the leader
instead of its position. We provide formulae in the frequency
domain for the dynamics of the resulting interconnections with
and without the presence of time delays and for general linear
controllers. Finally, we study the string stability properties of the
three architectures mentioned above and their ability to achieve a
tight formation.

The paper is organized as follows. Section 2 gives the notation
and framework. Section 3 defines the control architectures to be
studied and in Section 4 we present the corresponding vehicle
dynamics. The main results of the paper are presented in Section 5.

Section 6 includes numerical examples that illustrate the results
obtained and Section 7 gives some final remarks.

2. Framework and problem formulation

2.1. Notation

The notation used in this paper follows much of the stan-
dard systems and control literature. Lowercase is used for real
scalar signals, x : R — R with specific values of the signal de-
noted by x(t). Uppercase is used for scalar complex-valued Laplace
transforms of signals and transfer functions, X : C — C with
specific values denoted by X(s). For the sake of brevity in the
notation, where there is no confusion, the argument (s) will be
omitted. Vectors will be denoted as x(t) € R" and X € C", while
x()T and X" denote their transposes. The imaginary unit is de-
noted by j, with j2 = —1. Boldface will be used for matrices G €
C™™ and the (i, k)th entry of G is denoted by G; ;. The magnitude
of X when's = jw, w € R, is denoted by |X| and its magnitude peak
over all possible values of w is denoted as || X« = sup, |X(w)|.
For z € C, 9M(z) and J(z) denote the real and imaginary parts of z
respectively.

2.2. Vehicle model and preliminaries

We consider a platoon of n € N identical vehicles that travel in
a straight line, with the aim of maintaining a desired and constant
inter-vehicle spacing A > 0. The vehicle dynamics considered are
linear and time invariant, namely

m¥;(t) = —kgx;(t) +di(t) + f(ui(t)) for1<i<n, (1

where: x;(t) denotes the position of the ith vehicle along the string;
m its mass; kg is the vehicle drag coefficient; f is the force applied
by the engine, which is a function of u;(t), the control signal;
and d;(t) is a disturbance force that acts on the vehicle. Assuming
simple dynamics for the engine, i.e. f (u;(t)) = u;(t), we can work
in the frequency domain. For simplicity we assume that every car
starts from rest and is initially positioned in the desired formation,
that is x;(0) = (1 — i)A and x;(0) = Ofori = 1,...,n and
we define X;(t) = x;(t) + (i — 1) A. Therefore, taking the Laplace
transform we obtain the frequency domain vehicle models

Ui+ D
s(ms + kq)

Now, the control goal is to keep a tight formation, that is, to
maintain the errors e/ (t) = x;_1(t) — xi(t) — A = X;i_1(t) — Xi(t)
as close to zero as possible. This small error performance should
be achieved in steady state, under disturbances to any member
of the platoon, and for a constant speed of the leader. To achieve
this, the control signal for each vehicle u;(t) is computed using
the local measurement of the immediate predecessor position
(indirectly through the measure of the inter-vehicle spacing) and
the information being received from the leader (see Fig. 1). As a
consequence, the leader—follower errors efe“(t) = x1(t) — x;(t) —
(i— 1)A = x1(t) — x;(t) will have a steady state response similar
to that of e/"*(t). These error signals can be associated with the
performance of the system when considering traffic density issues
and throughput. With this, we have that the Laplace transforms for
the errors are given by

- A
X = :Xi—i—(i—l)? for1<i<n. (2)

1

A ~ ~
E" =Xi1—Xi— 5 =X X 3)

lea . A v v
EC =X =X —(i-DT =X —X (4)

These two errors will be central to our later analysis.



66 A.A. Peters et al. / Automatica 50 (2014) 64-74

3. Architectures for formation control

We consider three main approaches to achieve the platoon
control objectives.

3.1. Leader-predecessor following

The leader-predecessor following structure is implemented by
the use of the vehicle inputs

Ui = KMEP® + (1 = E) = KmXiet + (1 — X1 — X)), (5)

where n € (0,1) and K is a dynamic compensator (in the
present case taken to be identical for all vehicles) that stabilizes
each vehicle in closed loop. Each car takes the weighted average
spacing error of its predecessor and leader to regulate its own
position. Some drawbacks of the scheme are: (i) each follower
must be aware of its own position within the string since the
leader-follower errors are given by egea(t) =x1(t)—x;(t)—(i—1)A;
(ii) each vehicle must have a highly accurate absolute position
reference to compute x;(t) — x;(t); (iii) each follower must use the
same value for A, imposing a coordination requirement. These can
be overcome by the schemes described below.

3.2. Leader velocity tracking and predecessor following

Here we drop the leader position knowledge for each vehicle,
exchanging it for measurements of the position of its predecessor
and the velocity of the leader. The control signal for each car takes

the form
O 0 O O

T K, - -
Ui = KpE"™ + KysEf* = K ?”x,-,ﬁ 1—?" X=X, (6)

where K, K, and K = K,+sK, are dynamic compensators such that

K stabilizes each vehicle in closed loop. This choice aims to keep a
tight inter-vehicle spacing and simultaneously track the leader ve-
locity in every follower. One advantage of this architecture is that
each follower does not need to be aware of its position along the
string. New members can join the rear of the platoon without hav-
ing to know the number of vehicles that separate them from the
leader. Every follower has to listen to x;(t) (see Fig. 1) while mea-
suring with local sensors (e.g. radar) its distance to its predecessor.

Remark 1. This scheme has a connection with time headway
policies. This can be seen from (6), which can be written as:
0 0

Ui = Kp X,‘_] — Xi — KJSXI‘ + KUSX1. (7)
K,

Therefore, in terms of the local dynamics, the feedback includes the
equivalent of a (possibly dynamic) time headway, K,, /K,,.. The use of
the leader velocity means that improved dynamic properties may
be achieved without increasing the steady state vehicle separation
that commonly occurs with time headway policies (Chien &
loannou, 1992).

3.3. Alternative algorithm: indirect leader state broadcast

Leader state information need not be sent directly to each mem-
ber. Alternatively it can be computed indirectly at any follower
from local measurements and information being sent by its pre-
decessor. For instance, consider the control signal

U= K(E"™ + (1 —mTE-), ®)

where E;_q is a signal sent by the (i — 1)th member, containing
an estimate of the state of the leader and I' is a stable transfer

function. In the particular case E_; = E/*, and I' = 1, i.e. the es-
timation is perfect, the control signals coincide with the first case
of leader-predecessor following

U= KE"™ + (1 —mE®) =KnXir + A =X —X),  (9)

and the resulting dynamics are identical to (5).

In the general case, each member receives I'E;,_; from its pre-
decessor assuming that it is exactly Eile_”r This allows any vehicle
to estimate their own leader-follower error adding the local mea-
surement E" to the received signal, that is

E=IE_1 +E", (10)

which in turn is sent to the immediate follower. The main bene-
fit of this alternative is that the coordination requirements of the
leader-predecessor following are no longer needed.

4. Closed loop dynamics

In this section, we derive formulae that will allow us to study
the properties of the three architectures defined in Section 3. In
particular we are interested in studying the effect of time delays
in the reception of the leader state and the following derivations
prove to be useful in that regard.

4.1. Vehicle string dynamics for direct leader state broadcast schemes

The two unidirectional control structures introduced in Sec-
tions 3.1and 3.2 share a similar mathematical description, differing
only in the compensator and the weights of the errors. Moreover,
they belong to a broader class of MIMO systems. In particular we
consider the class of control laws

Ui = K(PXi_1 + LiX; — X)), (11)

where L; and P are arbitrary stable transfer functions such that
L;(0) + P(0) = 1. The constraint on the DC gains of L; and
P is required to ensure bounded control signals u;(t) when the
vehicles move at a constant speed (and for consistency with (5) and
(6)). Here we allow the leader transfer function L; to vary, while
considering homogeneous predecessor transfer functions P. This
will allow us to include a factor that accounts for time delays in
the reception.

Remark 2. In some of the following discussions when referring to
the leader-predecessor following architecture we will note it by
stating P = n € (0, 1). Otherwise, a dynamic P will be referring to
leader velocity tracking.

We are interested in the response of the string to input distur-
bances on the vehicles. First, we define the vehicle model transfer
function as

H= ! :>H=E, (12)
ms + kg S

and we let

T=HKQ+HK)™", S=1-T (13)

be the usual closed loop sensitivity functions. Then, if the lead ve-
hicle does not possess a controller and it drives independently, the
vehicle dynamics are given by

X = (I — HKG)"HD, (14)
- ny b
where X = X; --- X, ,Iisthe n x n identity matrix, D =
[D1 --- Du]" and G € C"™*" is the interconnection matrix:
a a
¢=" o' (15)
L 8~
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where L = [Ly L3 --- Ly]", 0 € R™ Y is the zero vector and the
matrix 8 € CV*0"Disgivenby 8;; = —1for1 <i<n-—1,
8it1i = Pfor1 < i < n — 2 and all other entries of 8 are
zero. Note that, the selection Gy ; = 0 represents the freedom of
movement for the lead vehicle. In other words, its trajectory will
be determined only by X; = HD,. Corresponding results to those
presented here can be derived for alternative formulations using
a fictitious leader or other strategies, but the essential results that
follow remain unaltered.
Now, the matrix (I — HKG) and its inverse have the following
structures
0

(I—HKG) ' =

0, O 0
10" 1 0"

_KHL 2 kp2 -, 210 (16

where 2 e C"D*=D satisfies @;; = KHT 'for1 <i<n— 1,
®iy1; = —KHP for 1 < i < n — 2 and all other entries of 2 are
zero.

Computing 2 ~' is straightforward since 2 is lower triangular

O
1

O

21—TE e ﬂ (17)
KH - S
e ... PT 1

Under these considerations, disturbances at any member of the
string will affect the vector of predecessor errors
Epre — Egre e Egre as
O a
1 -1
EP® — FD = H H (I — HKG)™'HD. (18)

1 -1
4.2. Vehicle string dynamics for indirect leader state broadcast
The string dynamics for the alternative algorithm from Sec-

tion 3.3 can be determined by first inserting (8) in (2) and taking
the difference in position for two successive followers

Xio1 = HK((1 — n)'Ei, + EP) + HD;_4, (19)
Xi = HK((1 — ) 'E—; + EP) + HD;, (20)
EP = HK((1—n)(1 — INE_; + nE’ — E™)

+H(Di_1 — Dy). (21)

Merging the last equation with (10) we can write

o o 0 a0 a
EP _ pHK (1—-n(1—-TI)HK E
E 0 r E
HK 0 E™ . Diy-D
E; i—1 — Di
1 0 IIE, +H 0 , (22)
fori > 3.

For this case we will only focus on disturbances at the leader
and set D; = 0 fori = 2, ..., n. For the first follower, i.e.i = 2, we
have
Ol O (90wl OO

2 - _ 2 1

E = 10 & +H 0 (23)

and hence, E, = E}" = SHD;. With these facts we can solve the
first order recursion in (22) obtaining the desired dynamics
0,0 O 0,00
EP nT 1-na-D0T 1

E A=nA=DT+T 1

L= 7 SHD;. (24)

5. Properties of the interconnections

In this section, we present the main results of this paper.
Our approach to string stability is to show that certain transfer
functions from disturbances to errors have a magnitude peak with
a bound that is independent of the string length (Middleton &
Braslavsky, 2010). We use the following definition.

Definition 1. Let {F,} be a sequence of stable transfer functions.
The sequence will be called string stable if there exists ¢ € R,
independent of n € N such that ||F,|lc < c for all n. It will be
called string unstable otherwise.

Remark 3. In the following we assume that K has at least one
pole at s = 0, which is a requirement for the string to achieve
zero velocity tracking error for constant velocity trajectories of the
leader.

The following lemma, stated in Seiler et al. (2004) and Middle-
ton (1991) implies string instability under the assumptions given
above in the leader-predecessor following scheme when there is
no leader communication.

Lemma 1. Let T be a real rational scalar function of the complex
variable s. Suppose that T(0) = 1 and also that T is stable (analytic
in the closed right half complex plane). Then

0

o . Jdo  m_,
ln|T(]a))|—2 > —T'(0). (25)
0 w 2

In the current case, T is given by (13). Since the dynamics con-
sidered for vehicles and controller are such that the term HK has
two poles at the origin, it is easy to see that T’(0) = 0. Therefore,
Lemma 1 implies that ||T|» > 1.

In the leader-predecessor following scheme, it is straightfor-
ward from (5) that with no leader communication, i.e. n = 1,
the sequence of predecessor errors for a disturbance D, at the
leader will be given by EX"® = HST"2D; = F,D;. Since H and K
have a finite number of zeros it is possible to choose wq such that
|H(jwo)S (jw)| # 0 and |T (jwp)| > 1 (Seiler et al., 2004). There-
fore, we have that the sequence {F,} = {HST" 2} is string unsta-
ble according to Definition 1. The following simple proposition will
help in the presentation of the main results.

Proposition 1. Let PT be a stable and proper transfer function such
that |PT|. < 1. Also let W, Q be transfer functions such that
IW oo 1Ql0o are well defined and W + Q (PT)" is stable for every
n € N. Then, the sequence {W + Q (PT)"} is string stable.

Proof. First, we have from the triangle inequality that |W +
Q(PT)"| < |W| + |Q||(PT)"| holds for all w > 0,n € N. Since
IPT || < 1itisalso true that |[W|+|Q||(PT)"| < |[W|+|Q].If we
let [W|le = aand ||Q|loc = bthen |W + Q(PT)"| < a + b for all
w > 0,n € N. Hence, the sequence {W + Q (PT)"} is string stable
according to Definition 1withc =a+b e R. O

5.1. Disturbances at followers: direct leader state broadcast schemes

A disturbance Dy at the kth follower, where k is fixed, will affect
the nth predecessor error E;'*,n > k > 1, through the entry F, ; of
the matrix F defined in (18). In other words

Eﬁre = n,ka7 (26)
with

O
1 =PTY(PT)" *'sH ifn >k

Fae="¢y ifn = k.

(27)



68 A.A. Peters et al. / Automatica 50 (2014) 64-74

0
IfF = |

i~k Fn.k» the corresponding leader errors are given by

Ef = EP* =F,Dy = (2 — (PT)" *)SHD, (28)
i=k

that is, F, x is the transfer function from a disturbance at the kth
member to the nth leader error.

The selection of L; (which determines the leader information
reception) does not affect these responses directly. Moreover,
disturbances at the followers will not affect predecessors (which
is obvious from the interconnection).

Theorem 1 (Disturbances at the Followers). Consider the sequences
{Fa.x} and {F i} given by (27) and (28) respectively. The following
statements are true:

(1) F(0) = Fx(0) =0foralin > k > 1.

@) If IPT||s < 1, then {F, x} and {F , x} are string stable.

Proof. (1) Since the product KH has exactly two poles at s = 0, we
can write S = s25 with §(O) # 0 (S has two zeros at s = 0). The
vehicle transfer function is H = I:I/s, I:I(O) # 0 as defined in (18).
From their definitions P and T are stable and consequently we can
rewrite F, y = s(1 — PT)(PT)”*"*@INJ. Evaluating at;s = 0 yields
Fox(0) =0forn > k]> 1. From its definition F,, , = ?:k Fnxand
therefore F, x(0) = i, Fyx(0) = 0, forn > k > 1 which is the
required result.

(2) For {Fy x} Proposition 1 holds with W = 0and Q = (1 —
PT)SH. For {F, ;} it holds withW =2SHQ = —SH. 0

The first part of Theorem 1 implies that constant disturbances
at the followers will yield zero steady state errors. String stability
of {F,x} implies that disturbances at the kth member are not
amplified for the remaining followers (n > k), accounting for a
string safety condition. Moreover, string stability of {F \} ensures
that disturbances at the kth follower do not create increasing
leader—follower spacings.

On the other hand, suppose there exists wy > 0 for which
P(jwo)T (jwe) = ye? with y > 1. Since the product SH has no
poles at the origin (the pole of H is cancelled by one of the zeros of
S) and is stable, we have |S(jwo)H (jwg)| = o < 00. Moreover, PT
is stable which implies |1 —P(jwo)T (jwg)| = B < oo and therefore

|Fa(jwo)| = apy" 1, (29)
IFni(wo)| = a2 — " KT kHD0| (30)

for al n > k > 1. Therefore, in this case the disturbance
amplification will grow unbounded with the string length, i.e. we
will have string instability in (27).

Remark 4. Our assumptions on the vehicle and controller dynam-
icsH and K imply that ||T || > 1.Therefore the design of P through
the leader state communication must be aimed to achieve at least
IPT|lcc < 1. For the leader-following approach P = n € (0, 1)
and it suffices to have n < ||T ||go1. However, for the leader velocity
tracking approach K = K}, + sK, and P = K,/ (K, + sK,) where K,
and K, are stable transfer functions. This means that

K,H

=——"  _ —K,HS, (31)
1+ H(K, + sK,)

and K,, K, must be designed in order to satisfy at least ||PT ||, < 1.
Whether it is possible to satisfy this condition for any H with
marginally stable (for integration) K, and K, is the subject of
ongoing research (although it can be seen that K = K, + sK, can
be fixed to achieve closed loop stability and K, can be designed to
achieve the bound, the question is if the resulting K, = (K — K},)/s

remains stable). In the following we will be interested in transfer
functions P such that P(0) = 1 and ||PT|| < 1. We will provide
some numerical examples that show the feasibility of satisfying
this condition.

5.2. Disturbances at the lead vehicle: direct leader state broadcast
schemes

Now we focus our attention on the effect of disturbances to the
lead vehicle. From (18), the inter-vehicle spacing transfer function
for the last member of the string when a disturbance in the leader
occurs is given by

O O
i1 _
(1-=pPT) LED'—L, TH. (32)
i=2

Fp1 =

The transfer function that describes the effect of D; on the
leader error for the last member, that is Eff“. is given by

[n
Fri=  F1. (33)
i=2
In general L, = 1 since the second member of the platoon just
follows the leader using its predecessor error E5® = X; — X,. The
elements L; for i > 3 can be used to describe the reception of the
leader information along the string. We are mainly interested in
the effect of time delays on the resulting DC gains and string sta-
bility conditions for the transfer functions mentioned above. Three
cases are studied.

(a) Perfect communication

The case of perfect reception of the leader information can be
studied whenL; = 1—P fori =3, ..., n.Inthis case (32) and (33)
yield

Fo1 = SH(PT)"?, (34)

[n _ n—1
(PT) 2% = sprﬂ. (35)

Fn1 = SH
! 1-PT

i=2

We have the following result.

Theorem 2 (Disturbances at the Leader: Perfect Communication).
Consider the sequences {F, x} and {F } given by (34) and (35) re-
spectively. The following statements are true:

(1) Fpe(0) = Fpr(0) =0;

@) if IPT||ooc < 1, {Fy,1} is string stable;

) if IPT|lo < 1and PT # 1 for s = jo, w > 0, then {F 1} is
string stable.

Proof. (1) The proof is analogous to part (1) of Theorem 1.

(2) Proposition 1 holds with W = 0 and Q = SH, which implies
string stability of the sequence {F, 1}.

(3)If||IPT|| < 1,PT # 1fors = jw, w > 0, then the magnitudes
[W| = |SH/(1 — PT)| and |Q| = |SH/(PT — 1)| are well defined
forw > 0.IfP = n € (0,1) or P(0) # 1, evaluating yields
W(0) = Q(0) = 0. For dynamic P such that P(0) = 1 (and
therefore P(0)T(0) = 1) it is easy to compute

__ SH __ sSH S(0)H(0)
lim = lim = —
s>01—PT s>01—PT P’(0)
which implies that |W]|» and ||Q ||« are well defined for any

P satisfying the conditions. Hence, Proposition 1 shows that the
sequence {F, 1} is string stable. O

: (36)

If there is perfect reception of the leader state, and distur-
bances occur at the lead vehicle, Theorem 2 shows that the
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two architectures with direct leader state broadcast, namely
leader-predecessor following and leader velocity tracking, achieve
a tight formation. Also, both architectures are string stable for the
error signals of interest, for appropriately designed P, differing only
in the resulting dynamics.

It can be noted that there is an extra condition for the string
stability of {F, 1}, when compared to Theorem 1. Let PT = & at
some w = wy, then, if 6 = 2kw k € Z, thatis PT = 1 ats = jwy,
we have

1— e}'@(n—l)

1— el

1— (PO
1—PT

lim

w—wc

= =n-—1 37

9—1>2k7r " ’ ( )
and consequently, |F, 1 (wo)| = |S(wo)H (jwo)|(n—1). This means
that the disturbance amplification grows linearly with the size of
the platoon and we have string instability.

(b) One-step string relay communications

Here we study the effects of a single occurrence of time delay
on the architectures. Choose some n, with 3 < n, < n and setting
L =1—Pfori =3,...,n,and ; = (1 — P)e" ™, 7 > 0 for
i=n,4+1, ..., n.This corresponds to one rebroadcast of the leader
state with a delay 7, by the n,th member of the string. For this case
(32), whenn > n,, is given by

0
[ ‘
For=TH (1—PT)(PT)" >4+ (1 —-PI)(1—P) (PT)" !
1:3j
1 ,
+(1=PI(1 =P (P L,
i=nr+1

0 3 ]D
=TH (PT)"PS+ (1 —e ™)(1 =P)(PT)" ™" . (38)
To compute (33) first we note that

5 i n
Fi1+ Fi1, (39)

i=2 i=2 i=ny+1

where we separate terms for vehicles without time delay, from
those with delay. Inserting the formulae obtained above for F;
with and without delay we obtain

— n—1 _ n—ny
2O emya—pym — DT

Fn1=SH
' 1-PT 1—-PT

. (40)
Substituting T = 0 yields the same expressions as in the perfect
communication case.

Theorem 3 (Disturbances at the Leader: One-Step String Relay Com-
munication). Consider the sequences {Fy } and {F } given by (38)
and (40) respectively. If T > 0,3 < n, < n, then the following holds:

(1)if P =7 € (0, 1) then F, 1(0) = tH(0)(1 — n)n" "' and
Fn1(0) = tH(0)(1 — n"™). If P is dynamic with P(0) = 1 then
F1(0) = Fy1(0) = 0;

@) if |PT||oo < 1, {Fy,1} is string stable;

) if IPT|leoc < 1and PT # 1 for s = jow, ® > 0, then {F 1} is
string stable.

Proof. See Appendix A.

The previous result states that both architectures are affected in
different ways if there is a time delay in the reception of the leader
state—in particular, time delays after a certain position along the
string. We see that the tight formation is lost when ¢ > 0 for
the leader-predecessor following scheme, whereas leader velocity
tracking still provides 0 DC gain on both transfer function errors
Fn1 and F, ;. Both architectures remain string stable for both

sequences {F, 1} and {F, 1}, when the leader state reception is
delayed t seconds for vehicles behind the n,th member.

(c) Multi-step string relay communications

An increasing time delay along the string can be seen as a worst
case of communication constraints where multiple re-broad-
casting along the string is required. This corresponds to the selec-

tions L; = (1 — P)e~ (=2 fori = 3, ..., n. Now, the predecessor
error transfer function is given as
0

Fn,] =TH (l — PT)(PT)H_3 — (‘1 _ P)e—(n—Z)rs
0
e_(i_z)TS(PT)n—l—i ) (41)

-1
+ (1 —=PI)(1-P)

i=3

With some more manipulations we obtain
0

Foi=TH (1— PT)(PT)" 3 — (1 = P)e~ ("=

0
n-3 _ ,—(n-3)ts
+(1—PT)(1—P)e™ ((PT)PT - :_TS ) (42)

Proceeding in a similar fashion as in the previous case, we can
write the leader error transfer function as
0

(1= (PN H(e™~T)
et — PT

Fni1=H

0
N (1="P)(1 — e~ (=Drs)T
e~ — PT

(43)

Once more, setting T = 0 results in the expression for the
perfect communications case.

Theorem 4 (Disturbances at the Leader: Multi-Step String Relay
Communication). Consider the sequences {F,i} and {F} with
elements defined in (42) and (43) respectively. If T > 0, then the
following holds:

(1) if P=n € (0, 1) then
F1(0) = tH(O)(1 —1"?), (44)

O O
~ 1— nn 1

Fn,l(O) = TH(O) n—1-— ﬁ . (45)
If P is dynamic with P(0) = 1 then F, 1(0) = Fp,1(0) = 0;

) let |PT||oo < 1,and PT — e~ # 0for s = jo, ® > 0. If
T # —P'(0) the sequence {F, 1} is string stable;

(3) the sequence {F , 1} is string unstable for any selection of P.

Proof. See Appendix B.

If the amount of time delay for the reception of the leader state
increases at every member, Theorem 4 states that neither archi-
tecture can provide string stability for {F, ;}. This means that the
leader error E,’f“ = X; — X, will grow unbounded with the pla-
toon size, implying a degradation in the performance of the string.
On the other hand, both architectures achieve string stability on
the predecessor errors, provided that P is designed properly. This
ensures a degree of safety, even when the time delay increases pro-
gressively along the string. The key difference between the two ar-
chitectures is the values of the DC gains F, 1(0) and F ;(0). When
the platoon travels at a constant speed the leader velocity track-
ing scheme provides a tight formation under the communication
constraint, whereas the leader-predecessor following scheme will
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have spacings that differ from the desired formation with an offset
that increases with the amount of time delay as seen from (44) and
(45).

Remark 5. Part (2) of Theorem 4 shows that a condition for string
stability is that T # —P’(0), which is only relevant for dynamic
P, that is, for the leader velocity tracking case. This critical value
for the time delay yields string instability in the predecessor errors
(see Appendix B for details). However, for time delays larger or
smaller than this critical value, which depends on the design of P,
the leader velocity tracking architecture remains string stable in
{Fu1).

5.3. Disturbances at lead vehicle: indirect leader state broadcast
schemes

We study the string stability properties of the dynamics ob-
tained from the use of the alternative algorithm defined in (8).
Only time delay on the communications will be studied, that is
r=e™".

The nth predecessor error is affected by a disturbance on the
leader as E;® = F,D; which can be computed from (24) by
eé(panding the powers of the matrix

nT A=A —e™T
nT (1—n)(1—e )T +e ™
O

O
—s 10
1 1

=e "M (s)

u IST (-l )( s ])TU
e — e —

We will prove that for any selection of the parameters H, K or
n, the existence of time delay in the estimation of the leader error,
ie.I' = e ™, with r > 0will yield string instability. The following
lemma will aid us in that regard.

Lemma 2. Let T be any stable rational transfer function, and consider
the real parameters n € (0, ||T||gol] and T > 0. Then, the spectral
radius of the matrix

O
T (1—mE” =T

M= 0 A—pE®—1DT+1 °

(47)

satisfies |[p(M (jw))| > 1atsome w € R.

Proof. If t > 0, we note that for values s = jw;, with w;, =
2km /T, k € Z, the factor e™ — 1 vanishes, M (jwy) becomes lower
triangular and therefore the eigenvalues satisfy A1 (jwy) = nT (jwy)
and A; (jwy) = 1 at these frequencies. Since the equality nT (jwy) =
1 can only hold at a finite number of these wy (given that T is
real rational), we have that the eigenvalues A;(jwy), A2 (jowy) are
algebraically simple for infinitely many wy. Now, for algebraically
simple eigenvalues, Theorem 6.3.12 of Horn and Johnson (1999)
can be applied to M (jwy) yielding the derivative of A;(jw) with
respect to w at w = wy as
) y'M (jor)x

)L/z(]wk) = T, (48)
where x, y are the right and left eigenvectors of M (jwy) corre-
sponding to A, (jwy) respectively and (-)* denotes the conjugate
transpose. In particular, as

O TGion) 0]

. n [0
M = . , 49

U= G 1 4
the right and left eigenvectors x, y corresponding to A (jewy) are
given by

00 O T

,
x= 7. y= B0 g (50)
= 1= nTGax)

The derivative M ’(jwy) takes the form

0., O
nT (o) j(1 =TT (jou)

M ' (jwy) = . ! g 51
U0 = ) 51— myrTGwn) (51)
and substituting these expressions in (48) results in

. Ja =T (jor)
My ljw) = =———. (52)

1 — T (jox)

If we consider the derivative of |A,(jw)|?> with respect to w at
w = wy we have

(A;(Jw))»z(iw))ﬂw:wk = (A ()™ + Ay (jox), (53)

since A;(jwx) = 1 and therefore |A;(jw)| > 1 either at w > wy
orw < if and only if | A5(jw) # 0. Now, from (48)
N A, (wr) = 0ifandonlyif I {T Gwr)/(1 — 3T (jwy))} = 0, how-
ever, recalling that T is a rational function this can at most be true
at a finite number of frequencies. Consequently, since there are in-
finitely many wy, I{T (jwy)/(1 — nT(jwy))} # 0 and |A;(jw)| >
[X2(wy)| = 1holds for some w # wy. [

Theorem 5. Let E;® = F, D, where F, ; is computed from (24).
Then, if T > 0and ||nT||s < 1thesequence {F; 1} is string unstable.

Proof. Lemma 2 states that there exists w, such that the spectral
radiusof M (jw,) satisfies p(M (jwc)) > 1,then Aq(joc) # Aa(joc)

since |detM (jw)| = |nT| < 1for all w > 0. Now, the following
decomposition holds at all w such that p(M (jw)) > 1
0o

M 0) ] = ahle) 2y () + Ghae) Cuyie).  (54)

where v, (jw), v, (jw) are the respective eigenvectors and ¢y, ¢; €
C are constants such that in (24) we can write

[1[
€10, (o) + ey (jo) = 1 (55)
at the particular value w. Furthermore, if we take the products
D1j : ne”*T + (1 —n)(e” — DT
MO T et T - - DT+ (56)
0 a1 =mE”*-1T

we see that[1 1]7 cannot be an eigenvector for any w and therefore
the constants c; and ¢, in (55) belong to C\ {0}. Similarly, the vector
[0 1]T can only be an eigenvector if &7 — 1 = 0 which shows that
v1,1(jo) and v, 1 (jw), the first components of the vectors v, (jw)
and v, (jw) respectively, are not 0 at the frequencies considered.
The result is that both eigenvalues in (54) will be contained in the
expression for F, ; whenever &™ — 1 = 0. In other words, at
frequencies such that p(M (jw)) > 1

1| = ISHI|c1v1,1A] %01 + cou2 105 20, (58)

and recalling that at these frequencies |A;|"™2 — 0 and | A" —
0o as n — oo we can state that there is no ¢ € R such that
|Frillo < cforallme N. 0

The previous result does not require ||T || > 1 nor does it de-
pend on the value 7. We can see that this particular method for pro-
viding the followers with the leader state (alternative algorithm)
leads to unavoidable string instability when there is time delay in
the broadcast.
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Gain plots for T(s),n T(s) and P(s)T(s)
1.4 T T
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Fig. 2. Magnitude plots of T, nT and PT for the selected parameter values.

Inter—vehicle and leader—follower errors for a step disturbance at the leader
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Fig. 3. Inter-vehicle and leader-follower errors for the leader-predecessor

following scheme for a step disturbance of magnitude 10 at the leader. No time
delay.

6. Examples and simulations

For all the examples we use

H= 1 _ 2s+1 _ 1
T s(0.1s+ 1) " s(0.055s+ 1)’ P 50,055+ 1)°
2 1
y=————— P=——  3=0.5.
$(0.05s + 1) 25+ 1

In Fig. 2 we can view the magnitude plots of T, nT and PT that
yield from the selected parameters above. The reader can note that
K, and K, are marginally stable and that ||PT ||, < 1withP(0) =1
(see Remark 4).

6.1. Leader-predecessor following

Simulations for the leader-predecessor following scheme
illustrate the results stated in the previous sections. Under the
absence of time delays in the communications it can be seen in
Fig. 3 that the response of a step disturbance of magnitude 10 on
the leader yields inter-vehicle errors that decrease along the string.
Moreover, the steady state errors are 0, which is consistent with
our derivations. It is of no surprise to see that the leader-follower
errors are also bounded with the string size increases.

Next, we consider multi-step string relay communications. For
a time delay of t = 0.6 (s) we see in Fig. 4 that the 0 DC gain of the
inter-vehicle spacing error transfer functions is lost, as predicted

Inter—vehicle and leader—follower errors for a step disturbance at the leader

9 : . 50 .
n=1
8t A ] 45} n10", ]
o
| VY | 40t 1
7 1"\\‘
AUSS 35} 1
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§5'n=2,:)‘||,“--- £ ,\\
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L HEN @ 20t boos 1
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f S —
0
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Fig. 4. Inter-vehicle and leader-follower errors for the leader-predecessor
following scheme for a step disturbance of magnitude 10 at the leader. Multi-step
string relay communications with = 0.6 (s).

1=P(0)'=2(sec)

1=0.6(sec)
- 90 T 8

T=4(sec)

1.8
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o (rad/sec) o (rad/sec)
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Fig. 5. Magnitude plots of F,; for n = {5, 100, 1000} for the leader velocity
tracking scheme. Multi-step string relay communications with ¢ = 0.6 (s) (string
stable), T = P’(0) = 2 (s) (string unstable) and t = 4 (s) (string stable).

by Theorem thm:distlead 1relay, which in this case yields

Fo1(0) = TH(0)(1 — n""2) = 0.6(1 — 0.5"72), (59)

which tends to 0.6 as n — oo. Additionally we see the leader-
follower errors growing along the string, as predicted by Theo-
rem 4.

6.2. Leader velocity tracking

For the velocity tracking scheme we compute some magnitude
plots of F, 1 in the multi-step string relay communications. The first
and third plots of Fig. 5 show that values of time delay different
from the critical value (which in this case is T = P’(0) = 2 (s)),
yield string stability for the predecessor error transfer functions.
This is suggested by the fact ||F1000,1/loc < IIF100,1llcc in both plots.
On the contrary, for the critical time delay, the second plot of Fig. 5
shows a clear increase of ||F; 1| as n grows. Finally, it can be seen
that the bound on the magnitude peak increases with the value
of r.

6.3. Alternative algorithm: indirect leader state broadcast

Finally, we consider the alternative algorithm for leader state
broadcast. In Fig. 6 the step response of the predecessor errors is
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Inter-vehicle for a step disturbance at the leader
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Fig. 6. Inter-vehicle errors of the alternative leader-predecessor algorithm for a
step disturbance of magnitude 10 at the leader. Communications with 7 = 0.6 (s).
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Fig.7. Magnitude plots of the eigenvalues A4 (jw), A, (jw) of the matrixM (jw) from
the alternative algorithm for different amounts of time delay.

plotted for a time delay of t = 0.6 (s). It provides 0 DC gain for
the predecessor errors; however, string stability is lost under the
presence of time delay. This is reflected by the increase in the peak
response of the predecessor errors as the string length grows.

The magnitudes of the eigenvalues of the matrix M (jw) are
plotted in Fig. 7 with the time delay as a varying parameter. It
is clear that |A,(jw)| takes values greater than 1 for t > 0 as
predicted by Lemma 2.

7. Conclusion

In this paper, we studied three leader tracking schemes for
formation control of vehicle strings. In particular we provided
the inter-vehicle and leader-follower spacings dynamics resulting
from the use of the three schemes, including possible time delays.
We have shown that these architectures provide tight formations
and string stability if the leader state is received instantaneously
by the followers. However, if time delays occur in the leader state
transmission only one of the schemes, namely leader velocity
tracking, is able to maintain a tight formation while achieving
string stability in the predecessor errors. An immediate extension
to the present work is to obtain conditions for the existence and a
methodology for the design of the controllers K, and K, in (6) from
the velocity tracking scheme.

As a final remark we note that the presence of time delays
in the broadcast of the leader state has different effects for each
architecture, despite the fact that the three share some similarities.
In particular, the alternative algorithm for indirect leader state
broadcast becomes string unstable for any amount of time delay,
independent of the vehicle dynamics or the design of the local
controllers. This fact suggests that the way in which the leader
state is sent to the followers and/or used by them plays a major
role in the capability of a leader tracking architecture for formation
control to achieve string stability.
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Appendix A. Proof of Theorem 3

(1) The proof is similar to part (1) of Theorems 1 and 2.
(2) For dynamic P, such that P(0) = 1 we can rewrite (38) as

0
Fo1 = H(1—P)(PT)"™"'T + (PT)"%HS
0
—e H(1 —P)(PT)™ ™~ 'T . (A1)

We have that SH and H(1 — P) are bounded at s = 0 since the
integrator of H is cancelled by the zero ats = 0 of S and (1 — P)
respectively. Now, Proposition 1 can be applied to every term of
(A.1) and {F; 1} is string stable.

For P = n € (0, 1), we can once again rewrite F 1

0
(1-mn)

Fap= (T)"HS + (1 — e ™")H———(T)" ™ (A2)
n
The limit
1—e ). ~
lim(1 — e~™)H = lim % i — f10)r. (A3)
s—0 s—0 S

shows that ||(1 — e"™)H]||« is well defined and depends on the
value of 7. Proposition 1 can now be applied since [|[nT|lo < 1and
ISH]| o0 and ||(1 — e~ ™*)H(1 — ) /||« are well defined. Thus the
sequence {F, 1} is string stable when P = n € (0, 1).

(3) For the leader error transfer function F,; we focus our
attention on the second term of (40), noting that the first is exactly
F .1 of the perfect communication case in (35). Since we assume
that ||PT||c < 1,and PT # 1fors = jw, w > 0, the norm ||(1 —
P)/(1 — PT)|| is well defined. Recalling that ||(1 — e""™)H||», <
0o, we have that ||(1 — e"™)H(1 — P)/(1 — PT)||c < o0 and
Proposition 1 shows that the sequence {F, 1} is string stable. ]

Appendix B. Proof of Theorem 4

(1) First, we will show that the term (1 — PT)(PT)" 3 — (1 —
P)e~*"=2 inside of the brackets in (42) has two zeros ats = 0
when P is dynamic. Differentiating we obtain
U )
(1—PT)(PT)"* — (1 —P)e ""2*

= (n—3)(1 — PT)(PT)""*(PT)’ — (PT)"(PT)" >
+Pe 25 L r(n—2)(1 — P)e T, (B.1)

Since S has two zeros at the origin we have that T'(0) =
—S’(0) = 0 which in turn implies (PT)’(0) = P’(0). Recalling that
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P(0) = 1 we have that

0 0
4 (1= PT)(PT)" 3 — (1 — P)e T2 @
ds s=0

= —P'(0) + P'(0) = 0, (B.2)

and, due to the fact that the third term inside the brackets of (42)
has two zeros at s = 0, we have that F, 1(0) = 0 and consequently
Fn,1(0).

The DC gain when P = n € (0, 1) can be obtained in a similar
fashion.

(2) The first two terms inside the brackets of (42) satisfy the
hypothesis of Proposition 1 for any P. The third term requires
further study. For dynamic P, such that P'(0) % —t, we have the
limit

. 1—-PT P'(0)
lim =— .
s—>0 PT —e~7S P'(0)+

Also, PT — e~"* has only one zero at s = 0 and no other zeros for
s = jo, @ > 0. Therefore ||(1 — PT)(PT — e""*)| < o0 and
Proposition 1 implies string stability of {Fy 1}.

(B.3)

Remark 6. If the conditions for part (2) of Theorem 4 are not met
we have string instability. If PT — e~ has a zero at s = ja, that is
P(jwc)T (jo,) = €7, string stability is lost since we can only claim

(PT)n—B _ e—(n—3)rs

lim =n-3. (B4)
s—jor PT —e™ ™
If T = —P’(0), that is, the critical amount of time delay, string
instability arises once again. The limit
PT n-3 __ e—(n—3)rs
lim (PT) =n-3, (B.5)
s—0 PT — e~ 78

yields a magnitude peak of the last term inside the brackets of (42)
that grows with n.

(3) If P is dynamic, we note that for t > 0, 1 — e~ has
zeros at arbitrarily low values of w for increasing n and e™* — PT
will not cancel them in (43). Now, it remains to compute the limit
for the first term of (43)

(1— (DN ™ —T) (1—n)THO)P'(0)
mH = .
T + P’(0)

This limit shows that for small frequencies |F , ; (jw)| will grow
unbounded with n, regardless of the selection of the dynamic P
and the value of ¢ > 0. Moreover, we will have an even worse
response if T gets closer to —P’(0), which is expected from the
analysis carried out for Fy 1.

ForP =1 € (0, 1), the DC gain of F,  is

li

B.6
s—0 e~ —PT (B)

tHO)(1—n"?)
i=2

Fn,l(o) =

- 1
:rI:I(O) n—1-—

_ nn—l
1-n
This value grows with the platoon size n and implies the string
instability of {F, 1}. O

(B.7)
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