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Pulse propagation, population transfer, and light storage in five-level media
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We consider adiabatic interaction of five-level atomic systems and their media with four short laser pulses
under the condition of all two-photon detunings being zero. We derive analytical expressions for eigenvalues of
the system’s Hamiltonian and determine conditions of adiabaticity for both the atom and themedium.We analyze,
in detail, the system’s behavior when the eigenvalue with nonvanishing energy is realized. As distinct from the
usual dark state of a five-level system (corresponding to zero eigenvalue), which is a superposition of three
states, in our case the superposition of four states does work. We demonstrate that this seemingly unfavorable
case nevertheless completely imitates a three-level system not only for a single atom but also in the medium,
since the propagation equations are also split into those for three- and two-level media separately. We show that,
under certain conditions, all the coherent effects observed in three-level media, such as population transfer, light
slowing, light storage, and so on, may efficiently be realized in five-level media. This has an important advantage
that the light storage can be performed twice in the same medium; i.e., the second pulse can be stored without
retrieving the first one, and then the two pulses can be retrieved in any desired sequence.
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I. INTRODUCTION

Coherent interactions of light signals with quantum systems
have attracted considerable interest for their importance in
both fundamental science and practical applications. A promi-
nent example of coherent interactions is electromagnetically
induced transparency (EIT) [1–3], which can be used to
eliminate the resonant absorption of a laser beam incident upon
a coherently driven medium with appropriate energy levels.
EIT technique allows controlled manipulations of the optical
properties of atomic or atomlike media via coupling themwith
signal and control fields. In particular, it is possible to greatly
slow down the optical (signal) pulse [4–6] and even stop it to
attain reversible storage and retrieval of information [7–9].
Despite a huge number of publications, light storage

remains in the focus of attention of researchers, since it is
one of the key components in optical (quantum) informa-
tion processing [1,10–14]. Another application of coherent
interactions is controllable population transfer between the
atomic levels and constructing desired coherent superpo-
sitions of different states [15–17]. These effects are also
employed widely in such fields of research as laser cooling
of atoms, lasing without inversion, new precision techniques
of magnetometry, coherent control of chemical reactions, and
so on.
All the above-listed phenomena have been comprehen-

sively studied, both theoretically and experimentally, for
various three-level systems and their media [18–24]. Although
multilevel atomic and atomlike systems do not provide new
physical principles in addition to quantum interference and the
principle of superposition, they widen essentially the possibil-
ities of experimental realizations and practical applications.
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The idea of a double-EIT (DEIT) regime is introduced in
Ref. [25] and modified in Ref. [26]. The laser cooling scheme
for trapped atoms or ions which is based on DEIT is discussed
in Ref. [27]. DEIT in a medium, consisting of four-level atoms
in the inverted-Y configuration, is discussed in Ref. [28].
DEIT in a ring cavity is studied in Ref. [29]. Enhanced
cross-phasemodulation based onDEIT is reported inRef. [30].
Zimmer et al. [31] examine dark-state polariton formation in
a four-level system. Quantum memory for light via stimulated
off-resonant Raman process is considered in Ref. [32] beyond
the three-level approximation. Choi and Elliott [33] propose,
through numerical calculations, to use multilevel systems
involving hyperfine structure in problems of localization of
excitations via dark-state formation inEITprocesses.Ottaviani
et al. [34] investigate five-level atoms and media driven by
four light pulses in a nonadiabatic regime. Two of four pulses
are assumed to be weak and treated as perturbation in the
first order. Chen et al. [35] observed experimentally off-
resonance EIT-based group delay in multilevel D2 transitions
in rubidium. Enhancement of EIT in a double-� system in
cesium atomic vapor by specific choice of atomic velocity
distribution is observed in Ref. [36]. A scheme based on two
sequential Stimulated Raman Adiabatic Passage (STIRAP)
processes with four laser fields is proposed in Ref. [37] for
measurement of a qubit of two magnetic sublevels of the
ground state of alkaline-earth metal ions. Another topic where
multilevel systems were used was generalization of the notion
of dark-state polariton [38] and discussion of the possibility of
applying multilevel EIT to quantum information processing.
In the present article we study both analytically and nu-

merically a five-level atomic system interacting adiabatically
with four copropagating laser pulses of different durations and
different sequences of turning on and off. We require that
each laser pulse interacts (be resonant) with only one of the
adjacent transitions and assume all the two-photon detunings
to be zero. Two examples of such level diagrams are shown in
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FIG. 1. (Color online) Five-level coupling schemes: (a) extended
� scheme and (b) M-type scheme.

Fig. 1. Another example is the ladder system, which may turn
out to be rather useful for problems of excitation of Rydberg
states.
As distinct from all the above-cited works, we concentrate

on those eigenstates of an interaction Hamiltonian (see below)
whose eigenvalues are different from zero. We show that
these eigenstates are similar to the well-known dark and
bright states in a three-level system. As distinct from the
state in the M system considered in Ref. [15], the levels 2
and 4 are at interaction with laser fields populated, but the
population of level 3 remains zero. We demonstrate for our
case that an efficient and more flexibly controllable population
transfer and light storage becomes possible. We also study
the advantages of this technique. Specifically, we show the
possibility of successive storage of two pulses with their
subsequent retrieval. The first pulse is stored in the coherence
ρ51, which exactly reproduces, after turning off the interaction,
the shape of the pulse�2. Since the coherence ρ31 remains zero
for the duration of the interaction, the same medium can be
used again for storage of another pulse.
The article is organized as follows. In Sec. II we

derive eigenfunctions and eigenvalues of systems under
consideration and discuss the relevant cases. In Sec. III we
study adiabatic population transfer in five-level systems.
Section IV derives the equations of propagation and presents
their analytical solution. In the same section the regime of
adiabaton is demonstrated. In Sec. V we show the possibility
to store optical information in considered media. We conclude
with a final discussion in Sec. VI.

II. EIGENFUNCTIONS AND EIGENVALUES
OF INTERACTION HAMILTONIAN

Consider a five-level atomic system as shown in Fig. 1. Four
(in general) laser pulses are close to resonance with respective
transitions (Fig. 1). The Hamiltonian of interaction in the
rotating-wave approximation, and under the assumptions that
the carrier frequencies of laser pulses are tuned near resonance
with one of the adjacent atomic transitions and that pulse
durations are much shorter compared to relaxation times in
the system, has the following form:

H =
∑

i

σi,iδi−1−
( ∑

i

σi,i+1�i + H.c.

)
, (1)

with the projection matrices σij = |i〉〈j |, the Rabi frequencies
�i at transitions i → i + 1, and δi−1 representing (i − 1)-
photon detunings (with δ0 = 0). The Rabi frequencies are
assumed to be real and positive. Phases, which can vary
during propagation, are included in the single-photon detun-
ings (�i = ωi+1,i − ωi + ϕ̇i , if ωi+1,i > 0, and�i = ωi,i+1 −
ωi + ϕ̇l ifωi+1,i < 0). The definition ofmultiphoton detunings
depends on the specific scheme of interaction. For anM system
[see Fig. 1(b)] the multiphoton detunings are δ2 = �1 − �2,
δ3 = �3 + δ2, and δ4 = �4 − δ3. For an extended � system
[see Fig. 1(a)], the multiphoton detunings are δ2 = �1 + �2,
δ3 = −�3 + δ2, and δ4 = −�4 + δ3.
Eigenvalues of the Hamiltonian (1) can easily be derived

analytically if all of the two-photon detunings are zero, i.e.,

δ2 = 0, δ3 − δ1 = 0, δ4 − δ2 = 0. (2)

For an M system, these conditions mean equal single-photon
detunings, while for the extended � system the single-photon
detunigs have equal absolute values, but differ in sign (see
Fig. 1). When conditions (2) are met, one of five eigenvalues
of the Hamiltonian is λ = 0. The detailed calculations of the
remaining four eigenvalues are presented in the Appendix.
Consider now a special case, when the pulses �1 and �4

coincide by their temporal profiles (but the frequencies and
phases of pulses may be different). In this case, the eigenvalues
of the Hamiltonian (1) are

λ0 = 0,

λ1,3 = 1
2

(
� ∓

√
�2 + 4�2

1

)
, (3)

λ2,4 = 1
2

(
� ∓

√
�2 + 4(�2

1 + �2
2 + �2

3

))
.

We note that, when the fields are turned off, we get λ1,2 → 0
and λ3,4 → �. It should be emphasized that the eigenvalues
λ1,3 depend upon only the field�1 and coincide with the eigen-
values of a two-level system, driven by field �1. Similarly,
the eigenvalues λ2,4 are equal to the eigenvalues of a two-
level system, driven by an effective field (�2

1 + �2
2 + �2

3)
1/2.

Adiabatic evolution requires the following conditions to be
met (see the Appendix for details):

�T � 1,

(
�2
2 + �2

3

)
T

�
� 1,

�2
1T

�
� 1, (4)

with the duration T of the shortest pulse. The first condition
mirrors the adiabaticity condition for a two-level system. The
second condition corresponds to the adiabaticity condition
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for a three-level system. The third condition is only relevant
in the time interval where all pulses overlap (i.e., when
�2
2 + �2

3 �= 0).
To write the eigenvectors corresponding to the eigenvalues

λ1 and λ2 we introduce the following notations:

�2 = �2
2 + �2

3, tan θ = �2

�3
,

tan�1 = − λ1

�1
, tan�2 = − λ2

�1
, (5)

tan� = − �

�1
cos�2.

Then, the eigenvector corresponding to the eigenvalue λ1 is

|λ1〉 = |ψ1〉 cos θ − |ψ2〉 sin θ, (6)

where |ψ1〉 and |ψ2〉 are superposition states of the two-level
systems 1 → 2 and 5 → 4:

|ψ1〉 = cosφ1|1〉 − sinφ1|2〉,
(7)

|ψ2〉 = cosφ1|5〉 − sinφ1|4〉.
It is apparent that the eigenvector corresponding to λ1 does not
involve state |3〉 and is equal to the dark state of a three-level
� system, if we replace the lower states by the superposition
states |ψ1〉 and |ψ2〉.
Similarly, the eigenvector corresponding to the eigenvalue

λ2 yields

|λ2〉 = |ψ ′
1〉 cos� sin θ − sinφ|3〉 + |ψ ′

2〉 cos� cos θ, (8)

where

|ψ ′
1〉 = cos�2|1〉 − sin�2|2〉,

(9)
|ψ ′
2〉 = cos�2|5〉 − sin�2|4〉.

As in the previous case, the eigenvector |λ2〉 is equal to that of
the bright state of a three-level� system [39,40], if we replace
the lower states by the superposition states |ψ ′

1〉 and |ψ ′
2〉. The

time behavior of eigenvalues λi in the special case above for
different pulse sequences is demonstrated in Figs. 2 and 3.

III. POPULATION TRANSFER

As follows from the expressions (6) and (8) the five-level
system imitates the three-level � system. Thus, we can use
the state |λ1〉 to transfer the system from state |1〉 to state
|5〉 by a STIRAP-like process, driven by the pulse sequence
introduced above (see Fig. 4). In contrast to a simple three-level
� system, during the interaction some transient population
shows up in the intermediate levels |2〉 and |4〉 of the five-
level system. However, these transient populations are very
small, if the one-photon detuning is sufficiently large, but still
satisfies the adiabaticity condition (3). It should be noted that
the condition of large one-photon detuning is not very crucial
for the population transfer. The dynamics of populations in the
described case is shown in Fig. 4.
Similarly, the state |λ2〉 is analogous to the bright state of

a � system and we can use these states for adiabatic transfer
from state |5〉 to state |1〉 by a b-STIRAP-like process [39,40]
driven by the pulse sequence in Fig. 3, because the state |λ2〉
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FIG. 2. (Color online) Time dependencies of the pulses (top) and
the adiabatic energies (bottom) for considered systems. The shapes
of all pulses are Gaussian. The single-photon detuning is� = 10/T .
It is seen clearly that in the range of overlapping of the pulses, the
adiabaticity of interaction is ensured.

is not realized with the pulse sequence of Fig. 2, according
to the definition of the angle �. We emphasize that the
STIRAP technique is applicable for both schemes of pulse
sequence in Figs. 2 and 3. The dynamics of populations in the
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FIG. 3. (Color online) Same as in Fig. 2, but for another sequence
of pulses.
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FIG. 4. (Color online) Dynamics of the population transfer from
the initial state |1〉 to the final state |5〉 if the atom is in state |λ1〉 and
the pulse sequence is the same as that in Fig. 3 (Pi = |〈i|λ1〉|2). The
single photon detuning is � = 20/T .

b-STIRAP case are demonstrated in Fig. 5. Note that the two
eigenstates |λ1〉 and |λ2〉 render the five-level system, driven
by a considered pulse sequence, fully reversible. Thus, we
can transfer atomic population from state |1〉 to state |5〉 by
a STIRAP-like process and from state |5〉 to state |1〉 by a
b-STIRAP-like process with the same sequence of pulses.

IV. MEDIUM OF ATOMS

Now we move from a single-atom case to that of a medium
consisting of the described atoms. We start from the well-
known truncated Maxwell equation in running coordinates x,
τ = t − x/c.:

∂Ei

∂x
= i

2πωi

c
Ndi. (10)

Here Ei are the complex amplitudes of electric fields of the
pulses, N is the number density of medium atoms, and di are
the amplitudes of induced dipole moments of each individual
atom at a frequency ωi , 〈ψ |d|ψ〉 = ∑

diexp(−iωit)+ c.c.
These amplitudes can be expressed in terms of the amplitudes
of atomic populations bi of bare states and the matrix elements
of the dipole moment 〈i|d|i + 1〉: di = b∗

i bi+1〈i|d|i + 1〉 if
ωi+1,i > 0 and di = bib

∗
i+1〈i|d|i + 1〉 if ωi+1,i < 0. The co-

efficients bi are determined by the nonstationary Schrödinger
equation with the Hamiltonian (1).
Separating real and imaginary parts in the truncated equa-

tion of propagation, differentiating the equation for the phase
with respect to time, and combining the obtained equations
with the Schrödinger equation, we obtain in the general case
a self-consistent system of equations describing the variation
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FIG. 5. (Color online) Dynamics of the population transfer from
the initial state |5〉 to the final state |1〉 if the atom is in state |λ2〉.
The pulse sequence and parameters are the same as those in Fig. 4
(Pi = |〈i|λ2〉|2).

of frequencies (one-photon detunings) and intensities (Rabi
frequencies) of pulses during propagation in medium. For
example, in the case of themedium consisting ofM-type atoms
we obtain

∂�2
1

∂x
= q1

∂|b1|2
∂τ

,

∂�2
2

∂x
= −q2

∂(|b1|2 + |b2|2)
∂τ

,

∂�2
3

∂x
= −q3

∂(|b4|2 + |b5|2|)
∂τ

, (11)

∂�2
4

∂x
= q5

∂|b5|2
∂τ

,

∂�i

∂x
= qi

∂

∂τ

Re(b∗
i bi+1)
�i

,

where qi = 2πNωi |di,i+1|2/c� is the propagation constant. In
the case of an extended � system [Fig. 1(a)] the equations
remain essentially the same, but we must change the signs
of the right-hand sides in the second and third equations. As
follows from Eqs. (11), during propagation in the medium
not only the shapes of pulses may vary essentially but also
the conditions for detuning of resonances may be violated.
Variations of resonance detunings are caused by processes
of self-phase modulation (parametric broadening of the pulse
spectrum [41]). The modification of the shapes of pulses is
caused both by the nonlinear group velocity (which can result
in formation of shock wave fronts [42]) and by energy transfer
between the pulses (which can lead to full depletion of one of
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the pulses [43]). It is, however, obvious that all these processes
are proportional to the length of propagation. Hence, if the
optical length of themedium is sufficiently short, the variations
of detunings and intensities can be negligibly small.
Since it is only the time derivatives that enter the right-hand

sides of Eqs. (11), we can use expressions (6) and (8) for
the atomic amplitudes in these equations and this will be
equivalent to allowance for the first nonadiabatic corrections.
Correspondingly, the conditions of smallness of the right-hand
sides of Eqs. (11) serve as a criteria of the insignificance
of changes in spatial and temporal characteristics of pulses
and thus a criteria of adiabaticity of the interaction in the
medium. For simplicity we restrict ourselves to the case
of equal oscillator strengths in all transitions (in the case
of different oscillator strengths, we can proceed as in the
three-level system [44]). In case of the state |λ1〉 we now
obtain from Eq. (11)

∂
(
�2
1 + �2

4

)
∂x

= q
∂ cos2 �1

∂τ
,

∂(�1 + �4)

∂x
= −q

∂

∂τ

cos(2�1)

�
,

∂�2

∂x
= −∂�3

∂x
= 0, (12)

∂�2

∂x
= 0,

∂θ

∂x
+ q

�2

∂θ

∂τ
= 0.

Weemphasize that the systemof Eqs. (12) has an interesting
and important peculiarity. Propagation of fields �2 and �3

occurs independent of fields �1 and �4 and is described by
propagation equations for a three-level-atom medium under
conditions of dark-state formation [1]. Fields �1 and �4

are described by propagation equations for a two-level-atom
medium [42]. This peculiarity is important because both
problems are studied in sufficient detail in the literature and
have analytical solutions. In particular, we can realize all
phenomena taking place in the usual � systems with the
three-level 2-3-4 system which is supported by two-level
1-2 and 4-5 systems pumping level 2 and depleting level 4,
respectively. As an example, we obtain, in the considered
five-level system, propagation of the adiabaton [45] in the
five-level system. Figure 6 visualizes this phenomenon (details
are in the figure caption).
Equations (12) are valid if the state |λ1〉 is formed on

the entire length of the medium. This requires fulfillment of
two conditions: (i) the detunings |�i | = � for all i and Rabi
frequencies �1 = �4 and (ii) the adiabaticity of interaction
in all of the medium. Let us examine when these conditions
are met. Equations (12) show that detunings �2 and �3 are
preserved during propagation (as they should be in a three-level
system), whereas�1 and�4 can vary with propagation length
because of self-phase modulation (as in a two-level system),
but, as shown in Ref. [42], these variations can be neglected if
we limit the length by

qx

�

1

�T

 1. (13)

FIG. 6. (Color online) Distortion-free propagation of the signal
pulse�2 at the subluminal group velocity. Shapes of pulses are chosen
to be�1T = �4T = �3T = 30e(−0.2(τ/T )2) and�2T = 0.1e(−5(τ/T )2)

(linear case). The single-photon detuning is � = 100/T . The scaled
length L = �2

0(τ = 0)T/q and the time delay in the medium is
�t/T = x/L.

On the same length we can take �1 = �4 (adiabatic approx-
imation for a two-level system). As follows from the results
of cited works the adiabaticity of interaction in a two-level
system breaks at the lengths when (qx/�2T ) ∼ 1, whereas
the interaction adiabaticity in a three-level medium does not
break at all. Another condition imposed on the length requires
nondepletion of the pump pulse in a three-level medium for an
effective population transfer [43]:

qx

�

�

�2T
∼ 1. (14)

It follows from Eqs. (13) and (14) that the influence of
the medium is determined by the factor qx/� times the
adiabaticity conditions for a single atom. This means that it
is sufficient to require the medium parameter qx/� to not
exceed unity by much. If we express this parameter in terms
of the linear coefficient of absorption of medium α0, we obtain
restriction for the optical length in the form

qx

�
= α0x

�

�
∼ 1, (15)

with � being the maximum of the relevant widths.
So, in the case of a large one-photon detuning the length

of the adiabaticity of interaction can exceed the length of
linear absorption in the medium several times. On this length
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FIG. 7. (Color online) The x dependence of the ξ (x) function
and the spatial distribution of coherence ρ51 after the interaction is
switched off (top) and the temporal profile of the pulse �2 at the
medium input (bottom).

Eqs. (12) can be solved analytically and the solution has the
following form:

�1 = �4 = �10(τ ),

�2 = �0(τ ) sin θ0(ξ (x,t)), (16)

�3 = �0(τ ) cos θ0(ξ (x,t)),

where �10, �0, and θ0 are the boundary conditions given at
the entrance of the medium and ξ (x,t) is an implicit function
defined by the following expression:∫ τ

ξ

�2
0dt = qx. (17)

We note that all of the above is true only if the dressed state
|λ1〉 is realized in the medium. In case then, as a result of an
adiabatic interaction, the other dressed state (for example |λ2〉)
is realized, the propagation equations (11) are no longer split,
and finding their solution requires additional investigation.

V. LIGHT STORAGE

It follows from the solution (16) that, after turning off all
pulses, the coherence ρ15 induced by these pulses remains in
the medium (like in the three-level system):

ρ15 = − sin θ (ξ ) cos θ (ξ ), (18)

where function ξ (x) is defined by the following expression:∫ ∞

ξ

�2
0dt = qx. (19)

Figure 7 shows x dependence of the ξ function and
coherence ρ15 after all pulses are turned off, together with
the input shape of the probe pulse. The figure demonstrates

FIG. 8. (Color online) Propagation of the signal pulse �2 (light
storage). Shapes of pulses are chosen to be �1T = �4T =
30e(−3(τ/T )2), �3T = 30e(−(τ/T )2), and �2T = 0.1e(−5(τ/T )2). The
single-photon detuning is � = 100/T . The group velocity u =
c/(1+ qc/�2

3) → 0 when �2
3 → 0.

that the distribution of coherence along x mirrors the arbitrary
t-shape of the probe pulse at the medium entrance. It is also
apparent that the ξ function has two asymptotes, x = 0 and
x = xmax. The existence of the maximal length of the medium,
i.e., the length where the probe pulse disappears, is the essence
of the light storage phenomenon. For the realization of storage
(and the mapping of the t dependence onto the x distribution)
the medium must not be shorter than xmax. It follows from
Eq. (19) that the maximal length is representable in the form
xmaxN = Nph, where N is the number density of resonant
atoms in the medium and Nph is the overall photon fluxes in
control and probe pulses at the medium input:

Nph =
∫ ∞

−∞

(
cE2

p0/�ωp + cE2
s0/�ωs

)
dt. (20)

Thus, in order to write completely a light pulse into a medium,
it is necessary that the number of atoms interacting with
radiation be comparable with the total number of relevant
photons.We emphasize that xmax does not depend on �1 and
�4 (the latter enters only the adiabaticity condition). Note that
in the linear approximation in�2 we can construct a dark-state
polariton similar to that in a � system [7].
Figure 8 shows, by means of numerical solution of

corresponding equations with the use of the Lax-Wendroff
method [46,47], the process of writing a light pulse into
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a medium. The described process of light storage is more
visualizable in the generalized � system, but has no principle
advantages as compared to the usual � system. In contrary,
the M system is much more interesting because it enables
double storage; i.e., we can write two different pulses, one
after another with the possibility of subsequent retrieval in any
desired succession. Indeed, during the whole interaction time
(and also after the first writing), the coherence ρ31 remains zero
and the population of the level 1 is close to unity (in linear
approximation in �2). This means that the same medium is
ready for the usual� storage of the second pulse. For example,
we can write the pulse �1 into the same medium. For this
purpose the pulses �1 and �2 should be divided into two
beams before the first storage attempt. The weak portion of�1

and the strong portion of �2 should be sent to a delay line, to
be used for the second storage (using �2 as a control pulse).

VI. CONCLUSION

We considered the behavior of a five-level atomic system
and a medium of such systems driven by four laser pulses of
different amplitudes and frequencies. We showed for such a
system the possibility of analytical determination of system
eigenfunctions and eigenvalues in the case where all two-
photon detunings are zero.Wehave obtained that, in addition to
the traditional zero eigenvalue, there exists a nonzero one, for
which the propagation equations in the medium are split into
the equations for two- and three-level system media, i.e., two
of the four laser pulses travel independently of the other two.
This splitting is caused by the fact that in this case the five-level
system reduces to a certain effective “�” systemwhose ground
states are superpositions of two states. We derive the dressed
states and dressed energies of the system, as well as conditions
for adiabatic evolution, and show that the length of medium
where adiabaticity is preserved exceeds several times the linear
absorption length. We show that adiabatic passage permits
reversible transfer of the atomic population from an initial
to a target state, and back again. The obtained mechanism
of the population transfer may be employed for excitation
of Rydberg states in atoms. We analyzed the traveling of
pulses in the medium and obtained, in particular, adiabaton
(distortion-free) propagation at the group velocity lower than c.
Also the process of information storage in a five-level medium
was examined. We propose a possibility of double storage
of light pulses in the same medium with subsequent retrieval
of the two stored pulses in the desired sequence. We note
that the relaxation processes have not been taken into account
throughout the work. Allowance for these processes requires

separate investigation. Finally we note that the considered
five-level systems can experimentally be realized in a number
ofmedia, such as hyperfine structures of D lines of alkali-metal
atoms, in optical transitions of rare-earth-ion impurities in
crystal matrices, in rovibrational levels of different electronic
states in molecules, in problems of population transfer in
entangled three two-level atoms, and so on.
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APPENDIX

The equation for eigenvalues of the interaction Hamilto-
nian, i.e., the equation det(H − λI ) = 0, has, under conditions
δ2 = δ4 = 0 and δ1 = δ3 = �, the following form:

λ2(λ − �)
[
λ(λ − �)+ �2

s

] + V 4λ = 0, (A1)

where �2
s = �2

1 + �2
2 + �2

3 + �2
4 and V 4 = �2

2�
2
4 +

�2
1�

2
3 + �2

1�
2
4. With the notation x = λ(λ − �) the equation

above becomes λ[x2 − �2
s x + V 4] = 0 and the eigenvalues

are obtained directly:

λ0 = 0,

λ3,1 = 1
2 [� ± (�2 + 4x1)1/2], (A2)

λ4,2 = 1
2 [� ± (�2 + 4x2)1/2],

where x2,1 = (1/2)[�2
1 ± (�4

s − 4V 4)1/2]. We note that the
condition �4

s � 4V 4 is always met.
Conditions of interaction adiabaticity for a single atom,

|λi − λj |T � 1 for any i �= j with T being the time of
interaction, leads to the following requirement imposed on
the parameters of pulses:

(x2 − x1)T(
�2 + 4x2

)1/2 � 1,

(�2 + 4x1)1/2T � 1, (A3)

x1,2T

(�2 + 4x1,2)1/2 � 1.

Note that the last condition can be fulfilled only for V 4 �= 0,
i.e., in the range of overlapping of pulses.
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