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Abstract. Statistical inference is important for all those who engage in the
analysis of spatial data. The issue is becoming increasingly important given the
explosion in the availability of spatial data and the proliferation of Geographic
Information Systems (GIS) across different academic disciplines and application
areas. The aim of this paper is to provide a brief overview of some of the
concepts and controversies inherent in statistical inference in the hope of raising
the level of awareness within the geographic information science community that
different points of view exist when it comes to inference. We argue that the
concept of statistical inference in spatial data analysis and spatial modelling is
perhaps broader than many GIS users imagine. In particular, we argue that
different types of inference exist and that process inference is just as valid as
sample inference, even though the latter appears to dominate the GIS literature.

1. Introduction

The notion of inference is important for all those who are involved in the
analysis of spatial data. It is extremely useful to make informed statements about
something that, ultimately, is unknown: it is equally useful to consider how likely
these statements are to be wrong. A great deal of research is based on the collection
of data, both qualitative and quantitative, in order to understand processes that
cannot be observed or to draw conclusions about larger numbers of unobserved
subjects. In both cases, one must generally engage in an inferential process. Here,
we primarily consider the role of statistical inference in spatial data analysis.

This is a useful time to highlight this topic given the explosion in the availability
of spatial data and the proliferation of Geographical Information Systems (GIS) to
assist in the analysis of such data. It is particularly pertinent given that discussions
of inference are relatively rare in GIS texts. One recent exception to this, which is to
be applauded, is that by Longley er al. (2001). However, even there, in line with
what we suspect is a fairly widely held view in the GIS community, the authors
espouse the view that there is one method of statistical inference, based on classical
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Neyman—Pearson concepts of significance testing. The notion either that this
method might not be applicable in some instances or that it might just be one of
several competing and equally valid methods of statistical inference is not generally
considered. However, within the statistical community, there is much debate about
the relative validity and utility of a variety of approaches to statistical inference
(inter alia, Nester 1996). These debates need to reach a wider audience within the
Geographical Information Science (GISc) community so that alternatives to the
Neyman-Pearson framework of inference might be considered in the analysis of
spatial data.

Thus, the aim of this paper is to provide a brief overview of some of the
concepts and controversies of statistical inference in the hope that this might raise
the level of awareness of these other approaches within the spatial analysis and GIS
communities. We do this by asking two major questions: ‘Why do we need to
infer?” and ‘How do we infer?’.

2. Why do we need to infer?

There appears to be a fairly widely held belief among geographers that statisti-
cal inference is a valid method only when one is making inferences about a popula-
tion from a sample. This is perhaps most explicitly stated in the following passage:

Before using inferential tests on spatial data, therefore, it is advisable to ask two
fundamental questions:

e Can I conceive of a larger population that I want to make inferences about?
e Are my data acceptable as a random and independent sample of that
population?

If the answer to either of these questions is no, then inferential tests are not
appropriate (Longley et al. 2001: 322).

These certainly are important questions, but they are not the only questions to
ask in terms of inference, and the conditional statement that follows the questions
is therefore wrong. A third question should be added to the above list: ‘Can I
conceive of a data-generating process about which I want to make inferences?’.

Neither of the original two questions, for example, addresses the need to make
inferences about processes as well as populations, and neither recognizes that
inferences about processes can, and should, be made on the basis of population
data. To make the difference between these two types of inference explicit, we will
refer to them as process inference and sampling inference. In process inference, the
null hypothesis is a statement about the data-generating process rather than about a
population. In sampling inference, the null hypothesis is about the characteristics
of an unknown population. It would seem that most GIS researchers are more
familiar with sampling inference than with process inference, but both are equally
valid forms of inference.

To see how process inference can be applied, and indeed is the only form of
inference that is plausible in some instances, suppose a newly manufactured six-
sided die were thrown 100 times and the score recorded at each roll. At the
conclusion of the experiment, the die is destroyed: the act of destruction ensures
that the 100 recorded numbers constitute a population data set. Despite the fact
that we now have a ‘population’ data set, it is still reasonable to use inferential tests
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here to examine the issue of whether the die was a true one or not. This is an
example of process inference. The task of the analysis is to determine the
probability that the die was fair (that is, that the probability of obtaining any given
score was one-sixth).! Notice that although a population is being analysed, it is still
reasonable to draw inferences about the process that produced the population.

The example above may appear contrived, but it does demonstrate the nature of
process inference and how it is used in practice. Inference in this context is used as a
type of benchmark. The actual set of die scores is compared with that which would
be obtained in an ideal situation—the perfectly fair die. The significance level
provides a measure of how close the real scores are to those expected from this
ideal. In the real world, this interpretation is extremely useful when considering
many types of spatial data, such as those on the spatial distribution of diseases, for
example. Suppose we examine the spatial incidence of some type of disease, and we
plot the home addresses of those with the disease on a map. Again, we may have a
‘population’ of disease occurrences, but it is still useful to ask: ‘How likely is it that
the observed spatial pattern of the disease has arisen from a random process given
the underlying spatial distribution of the population-at-risk?’. Obviously, if the data
are very unlikely to have been generated by a random process, this will lead us to
explore different causal mechanisms from the situation in which the data appeared
to result from a random process. We could determine the probability that the data
have been generated by a random process by comparing the actual data with those
expected from a Poisson process where the expected values in each zone are
proportional to the population at risk (for an example, see Fotheringham and Zhan
1996). The Poisson process provides a benchmark of ‘randomness’. It is therefore
useful in such a situation to consider statistical inference, even though the data set
might constitute a population.

A further example of inference not based on populations is found in
randomization testing. As Manly (1991) and Jacquez (1999) observe, randomization
methods allow inference to be made about patterns in a sample regardless of the
population from which it is drawn. For example, consider a variable, x, distributed
across a set of spatial units {xi, xa,...x,}. Suppose we are interested in the degree
to which similar values of x are found in adjacent locations. We could compute
some measure of spatial autocorrelation for the distribution of x and examine the
null hypothesis that the observed distribution of x has arisen from a random
process. If the null hypothesis is correct, any permutation of x-variables among
a set of geographical zones would be equally likely. We can randomly rearrange
the values of x across the n zones and recalculate the measure of spatial
autocorrelation. Repetition of this process allows us to build an experimental
distribution for the spatial autocorrelation statistic from which we can make some
inference about the observed distribution. If the statistic based on the observed
distribution of x is sufficiently distant from the mean of the experimental
distribution, we may claim that the spatial distribution of the observed data is
highly unlikely to have arisen from a random process. Conversely, if the statistic for
the observed distribution is not sufficiently far from the mean of the experimental

!Given that 100 is not an integer multiple of 6, it is impossible to obtain equal or “fair’
proportions of each possible score in this population data set, so a simple description of the
population would automatically lead to the conclusion that the die is not fair, regardless or
whether it is or not!
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distribution, we would fail to reject the null hypothesis and conclude that a random
process is in operation. Once again, the null hypothesis is not about a population
but about a process.

3. How do we infer?

The above discussion highlights the situations in which inference is useful. It
claims that process inference is just as useful as sampling inference. Here, we
consider the different ways of making inferences from statistical data regardless of
the situation in which the inference is being made.

Inferential methods can be categorized in several ways; here, we have chosen to
divide them into two types: formal and informal, with the former being subdivided
into theoretically formal and computationally formal. Formal approaches are
generally used to test a hypothesis that has been suggested by theory before the
data have been collected. When using a formal approach, one attempts to quantify
the plausibility that the observed data lead to the hypothesis. A part of formal
inferential tests is a set of ‘rules’ which, although perhaps arbitrary, if applied
consistently will lead different people to reach the same conclusion about whatever
hypothesis is being examined. With theoretically formal methods, given the same
data and the same set of rules, everybody will reach the same conclusion. For
instance, if 100 researchers are asked to calculate a p value for a z-test associated
with the difference in two sample means using the same data and if they are given
the same set of rules (e.g. that the null hypothesis is rejected is the p value is less
than 0.05), they should all reach the same conclusion because the test makes
reference to a standard theoretical distribution. In computationally formal tests, the
reference distribution is generated computationally from the data and not from a
theoretical model. Hence, different researchers are likely to generate different reference
distributions and therefore are not guaranteed to reach the same conclusion about the
null hypothesis. The p value used in the computationally formal test determines the
proportion of researchers (in an infinite sample) who would not reach the same
conclusion as the majority. Informal approaches are less rigorous and much more
subjective: the aim is simply to provide some information on the system under
investigation rather than to test a specific hypothesis. For instance, graphical
techniques may be used to display data so that any patterns become apparent.
However, there is no ‘black and white’ test available, and what one person ‘sees’ in the
data might be quite different from what another sees. For example, looking at a
scatterplot of points in which variable Y is plotted against variable X, one researcher
might conclude that there is a relationship between Y and X, whereas another
might conclude that no such relationship exists. The objective in devising new methods
for informal inference is to develop ways of presenting data that maximize the
proportion of reasonable conclusions that are reached regarding relationships
within the data. For instance, mapping data based on administrative boundaries,
where the size of units is often inversely related to their populations, can often be
misleading, and cartogrammetric representations might offer the chance of more
accurate conclusions being drawn regarding trends in the data (Tobler 1973, Dorling
1991). Prescribed hypotheses could be considered in informal tests, but informal
approaches are perhaps more useful as generators of hypotheses. Identifying patterns in
the observed data, for example, can often suggest new research questions. We now
consider these different methods of inference in more detail.
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3.1. Theoretically formal tests

Theoretically formal tests of significance fall into two main types: those which
lead us into a discrete decision which is either to ‘reject’ or to ‘fail to reject’ a null
hypothesis and those which indicate which is a better model of the data being
analysed. Of the former type, there is a distinction between Classical (sometimes
also referred to as ‘Frequentist’) and Bayesian modes of inference.

Classicial inference

The vast majority of examples of statistical inference in spatial analysis and GIS
still make use of classical inference, which involves ideas of confidence intervals and
significance testing. In the context of hypothesis testing, the difference between the
Bayesian and the Classical approaches is very clear. Regardless of whether
probabilities are subjective or objective, a Bayesian draws conclusions of the form
‘the probability that hypothesis X is true is r’. In classical inference, hypothesis X
(the null hypothesis) is not regarded in probabilistic terms. It is assumed to be a
state that is either true or false. To determine the truth or falsehood of the null
hypothesis, a numerical test is applied. This returns a verdict of ‘fail to reject’ or
‘reject’, but of course, this verdict could be wrong, and one can consider the
probability of being wrong. Thus, in classical inference, there are four possible
outcomes, each with an associated probability (table 1).

The probability a is referred to as the significance level of the test, and the
probability b as the power of the test. Thus, the probabilities in classical inference
do not refer to the truth of the null hypothesis but refer to the success of the testing
process. They are operating characteristics of the test. The significance level of the
test is fairly easy to specify, provided one can specify the probability of the test
outcome in terms of the null hypothesis. There are a vast number of examples of
tests of this kind in many standard statistical texts—typical are tests of whether a
particular model parameter is equal to zero. The power is generally harder to
specify. Typically, the null hypothesis is a simple mathematical statement such as a
particular regression coefficient being zero. However, there are an infinite number
of alternatives to this, and the power of the test will depend on how different the
regression coefficient is from zero in addition to the sample size. Classical inference
can also be applied to parameter estimation where confidence intervals are
constructed denoting a range of values having the probability 1-a of containing the
true parameter.

One might ask why alternative forms of statistical inference exist and why some
people prefer not to follow the classical approach to inference. Although the
classical approach is very frequently used, it is not without its problems. Most
opponents of the classical approach identify problems with hypothesis testing. The
main problem is that most null hypotheses are expressed in the form | ~ 0, or some

Tablel. Four possible outcomes in classical inference.

Outcome Probability
Null hypothesis is true, and test result is ‘fail to reject’ l-a
Null hypothesis is true, but test result is ‘reject’ a
Null hypothesis is false, and test result is ‘reject’ b

Null hypothesis is false, but test result is ‘fail to reject’ 1-b
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other specific number, where | is a parameter. If the sample size is sufficiently large,
a classical hypothesis test would reject the null hypothesis of |~ 0 for only very
small differences between the estimated parameter and its value under the null
hypothesis. This serves as a reminder that there can be a difference between
statistical significance and real-world importance.

Another problem with classical inference is demonstrated in the following
example. Suppose a six-sided die were thrown 24 times, and the only time a six was
thrown was on the 24th throw. How reasonable is this for a fair die? The problem
could be investigated using classical inference. Since we only have information
about sixes being thrown, we could estimate the probability of a six being thrown
on any roll. Call this h. We would estimate the quantity h by computing the
proportion of sixes in the sample. Call this sample statistic ¢. Here, ¢~ 1/24. To test
for fairness, we need to test the null hypothesis, H,: h~ 1/6, against the alternative,
H,: hv 1/6.

In this case, it is assumed that the concern is whether the die provides enough
sixes, so the test is one-tailed. Under the null hypothesis, the distribution of the
number of sixes thrown will be binomial with parameters n~ 24 and h~ 1/6. n is the
number of trials, and h is the probability of a success in any one trial. If we let S be
the number of successes (sixes thrown), then

P(S~ 5)~ Cuh(1{ hy"®”

The lower one-tailed significance of our observed test statistic ¢ is P(¢«f 1/24|H,),
which is equivalent to P(Sf 1|H,). Using the binomial distribution formula, this is
approximately 0.073, which is the p value of our test. Common practice at this stage
is to note that p exceeds the magical value of 0.05 and conclude that our result is
not unreasonable for a fair die.

However, now suppose that the experiment was not to throw the die 24 times
but instead to throw it until a score of six occurred. In this case, the number of
sixes thrown, S, is fixed at one, and n, the number of trials, is the random variable.
Here, n has a negative binomial distribution. In this case, P(:f 1/24|H,) is
equivalent to P(no 24|H,). This can be shown to be approximately 0.010. Thus, the
result now seems to be highly significant, and we would conclude that we do not
have a fair die!

Thus, the method of data gathering seems to affect the significance as well as the
experimental outcome itself. In the above example, the same physical events happened
for both analyses—from a scientific viewpoint, the experimental outcomes were
identical. The only differences were in the intentions of the experimenters about how
the experiment would be terminated—either throw the die 24 times, or throw it until a
six was scored. The consequences are quite controversial and determine whether or
not we conclude that we have a significantly low proportion of sixes. Hence, we can
make the statement that: In classical inferential theory, significance depends not
only on the observed data but also on the data collection policy.

This can be important to those who use GIS because it is sometimes possible to
vary the form of data collection in the course of an experiment. For example, if
fieldwork required to collect data is deemed too dangerous or too costly during the
course of an investigation, it may be curtailed. Similarly, if, during an interview
process, it becomes apparent that a particular question is too sensitive or too
controversial, that question might be dropped. In such instances, it is difficult to
derive formal inferential statistical tests for the variables affected.
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Bayesian inference

One inferential framework that avoids these problems because it contains no
concept of a sampling set is that of Bayesian inference. In Bayesian inference, rather
than considering a test statistic as a random variable, the model parameters are
considered as the random variables. The output of a Bayesian analysis is a
probability distribution for the model parameters (termed the Posterior distribu-
tion). In the die example, the model parameter is h. We would use the distribution
of h to assess hypotheses about the procedure producing the observed data. For
example, we could find the probability of hf 1/6. Since sampling sets are not
involved, the data-collection policy does not influence the determination of this
probability. However, this is not without its price, since Bayesian analysis does
require input from the analyst in the form of a Prior distribution, which represents
the analyst’s a priori beliefs about the values of the parameters before data
collection. One way of combating this, assuming the analyst wishes to aim for an
objective analysis, is to use a so-called non-informative prior, representing a state of
no prior belief that any one set of parameter values is more likely than any other. In
the die example, this would be a uniform distribution for h in the range 0-1.
Fotheringham et al. (2000: chapter 8) provide a detailed account of Bayesian
inference in a geographical context.

Selecting the best model

The methods we have considered until now, whether they be classical or
Bayesian, all work with the notion that there is a ‘true’ model that can be either
tested (significance testing in classical inference) or calibrated (confidence intervals
in classical inference, posterior distributions in Bayesian inference). However, this is
not always a helpful notion. In some instances, we do not really believe that x is
exactly normally distributed, or that y is exactly linearly related to x. In these situa-
tions, we adopt such models more because they are close to reality, and therefore
reasonable predictors or providers of explanations, than because they represent
reality exactly. In this case, most conventional approaches to inference are flawed.
What intellectual ground do we have for testing some hypothesis when we have a
priori reasons for thinking that it is not strictly true? A more practical approach in
these situations is to consider a number of ‘candidate’ models and attempt to decide
which of these is closest to reality. The term closest deserves emphasis here—it is
not assumed that any of the models are perfect, just that some reflect reality better
than others. The inferential task here is identifying the best model, not the ‘truth’.
This approach is that adopted by Akaike (1973) and others, and is outlined very
clearly in Burnham and Anderson (1998). The general idea is that statistics can be
constructed, consisting of a goodness-of-fit term and a penalty term. The penalty
term reflects model complexity, typically as a function of the number of parameters
in the model. These statistics are used as measures of the information lost when
approximating reality with a given model. The key idea is that the data are gener-
ated by the ‘true’ model (regardless of what that is), and the statistic is a measure of
how well a given model measures up to this in information-theoretic terms.

This approach is one that is generally overlooked when applying ideas of
statistical inference to spatial problems but could often be an appropriate one. In
many practical cases, we have no compelling theoretical arguments for the func-
tional forms we use in our models or for the distributions used when considering
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random errors in models; in such situations, we are forced to specify ad hoc models.
In other cases, we are faced with competing theories—and all theories arise from
simplifications of reality. In either of these situations, an approach to inference that
attempts to find the closest model to reality from a set of competitors has promise
as a practical quantitative tool.

3.2. Computationally formal tests

In theoretically formal classical inference, a test statistic is calculated from the
sampled data set and then compared with a theoretical distribution with known
probability properties (for example, a normal distribution). On the basis of this
comparison, we either reject or ‘fail to reject’ the null hypothesis according to some
a priori and arbitrary cutoff point, and we can also calculate the probability that we
rejected the null hypothesis when it is true. Alternatively, and often preferably, we
can derive a confidence interval for the parameter which consists of a range of
values within which the unknown population value of the parameter lies with a
stated degree of confidence. Whichever approach we take to making inferences
using this classical approach, it is necessary to be able to assume some form of
theoretical distribution for the test statistic. For some statistics, such as the sample
mean and ordinary least-squares parameter estimates, the theoretical distributions
are well known and, in most circumstances, can be used with confidence that the
assumptions concerning the distributions are met. However, for some statistics,
either there is no known theoretical distribution against which to compare the
observed value or, where the distribution is known, the assumptions underlying the
use of that particular distribution are unlikely to be met. In the former case, a
formal theoretical test may still be possible (for example, a Mann—Whitney U-test
for comparing two sets of rankings when the underlying distribution is unknown);
however, there are other instances when no such formal theoretical test is available.
In these instances, which are common in the analysis of spatial data, the
construction of experimental distributions is especially useful (inter alia, Hope 1968,
Costanzo 1983, Diaconis and Efron 1983, Efron and Gong 1983, Efron and
Tibshirani 1986, Mooney and Duvall 1993). We term this ‘computationally formal’
inference here because although it relies on the procedures adopted in classical
inference, it replaces a theoretical distribution of the test statistic with one
computed from the data being analysed.

The central idea in the use of experimental distributions for statistical inference
is that the sampled data can yield a better estimate of the underlying distribution of
the calculated statistic than making perhaps unrealistic assumptions about the
population. The sampled data are resampled in some way to create a set of samples,
each of which yields an estimate of a particular statistic. If this is done many times,
the frequency distribution of the statistic forms the experimental distribution
against which the value from the original sample can be compared. Consequently,
experimental distributions can be constructed for any statistic, even if the
theoretical distribution is unknown as is the case, for example, with statistics
such as the mean nearest-neighbour distance for an irregularly shaped study area.
Fotheringham et al. (2000) provide an example of the use of experimental
distributions to assess the significance of a spatial autocorrelation coefficient and
compare the results with classical tests.
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3.3. Informal tests

Informal tests are those that rely on a subjective interpretation of data.
Frameworks that encapsulate this concept include non-visual exploratory data
analysis techniques (Tukey 1977, Ehrenberg 1982), visualization (Cleveland 1993,
Hearnshaw and Unwin 1994) and data mining methods such as cluster analysis and
neural networks (Hertz et al. 1991, Gurney 1995). These give the user a ‘feel’ for
trends within the data and exceptions to these trends. Although they are not usually
thought of as inferential tools, and indeed some might argue that they are not, they
can provide a useful guide to inference. For instance, simply mapping a data set on
disease incidence against the population-at-risk can be sufficient for us to infer that
there is a clustering process taking place and that the incidence of the disease
is highly unlikely to be random. In very large and complex data sets, more
sophisticated data mining techniques such as various forms of cluster analysis or
neural networks can be used to infer something about the data. A ‘good’ informal
inference procedure is one that would lead to a large proportion of users drawing
the correct inference from the data. Some methods are clearly better than others in
this regard but ultimately we often do not feel comfortable relying entirely on what
we know are subjective decisions. Even when the inference drawn from a data set is
virtually without doubt, we still like to undertake a formal test in order to convince
ourselves and to convince others. Additionally, if the informal inference procedure
relies on a mapped or graphical representation of the data, issues regarding visual
perception need to be taken into account (Tufte 1983, MacEachran et al. 1998) and
if the data are being displayed dynamically, further issues on how individuals
perceive animated displays need to be considered (Dorling and Openshaw 1992,
Cook et al. 1998). We have all been fooled by visual tricks of display, and the
reluctance to rely entirely on our visual perception of trends and relationships is
strong.

4. Summary

We argue here that the concept of inference in spatial data analysis and spatial
modelling is perhaps broader than many GIS users imagine. Equally, we argue that
different types of inference exist and that process influence is just as valid as sample
inference, the latter being more commonly examined in geographical studies.
Ultimately, inference is similar to the presentation of evidence in a court of law: we
use it to try to convince people of a point of view. For this reason, total reliance on
informal inferential procedures is often discouraged, even though in many cases the
trends or relationships exhibited by the data are obvious to any reasonable person.

In a similar vein, it is interesting to note the longevity of the ‘magical’ p values
such as 0.05 and 0.01. Despite the fact that almost all researchers use high-speed
computers and statistical packages that routinely display exact p values associated
with a test statistic, there is still a great use made of formal inferential tests in which
the outcome is a discrete ‘accept’ or ‘reject’ of a null hypothesis with the exact p
value unreported. All that is often reported is that the exact p value is either less
than or greater than some magical mark. This desire for a crisp answer may be
simply an anachronism that will eventually be superseded by the widespread use of
exact p values, or it may be part of our innate desire for ‘clean’ answers—we prefer
unambiguity (however apparent) to fuzziness. For instance, even when exact p

2Strictly speaking, this should be “failure to reject’.
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values are reported on a test statistic, we often mentally compare these values to the
mental yardsticks of 0.05 and 0.01 and make judgements based on whether or not
the reported p values exceed these yardsticks.

To summarize our position in this paper, just as there are different types of
evidence, so there are different types of inference and even though we might express
a preference for one type of inference, we should recognize the validity of other
approaches. Not to do so would lead to a very restrictive type of quantitative
spatial analysis that would undoubtedly miss many important findings.
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