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Abstract

An exploratory data analysis tool termed the comap is introduced. This is essentially a
geographical variant of the coplot, an exploratory graphical method to investigate the rela-
tionship between a pair of variables conditioned on a third variable (and perhaps also a
fourth). In the comap, the first pair of variables represent geographical location, and the
graphical technique is adapted to reflect this. After the concept of the comap is discussed and
an example is given, computational aspects are considered. The paper concludes with a brief
discussion. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Investigating the relationship between variables is a fundamental aspect of data
analysis. One common approach is to consider the distribution of one variable con-
ditioned on another one. A typical example of this is bivariate linear regression.
Although this technique is frequently viewed as a means of predicting some variable
Y from another variable X, in actuality one is attempting to find the probability
distribution for the variable Y given X — the so-called predicted Y values are simply
estimates of the conditional mean value of Y for a given X value.

However, in many situations it is not just the mean of Y that is of interest. For
instance, knowing something about the standard deviation of Y for a given X is also
important, since this gives some idea of the reliability of the mean of Y given X as a
predictor of Y. More complex information about the distribution of Y given X is
also useful. The relationship between the two variables can be better understood by
answering questions such as “Does the variance of Y change for given X values?”
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and “Is the distribution of Y multimodal for any given X values?”. It is usually
helpful to have tentative answers to questions like these before any formal mathe-
matical or statistical modelling is attempted. For this reason, it is generally helpful
to investigate such phenomena using exploratory graphical techniques as a first
stage of data analysis. Some excellent examples supporting this principle are pro-
vided by Cleveland (1993) and Tukey (1977). For the ““Y conditioned on X’ situa-
tion discussed above, basic scatterplots are often powerful tools.

The above reasoning is no less true when applied to geographical information —
although here the Y variable may be a two-dimensional map entity rather than a
simple continuous variable. For example, ¥ might be the location of a weather sta-
tion and X the average annual rainfall. One may then consider conditional dis-
tributions of Y, and pose questions such as ““given that a rain gauge has recorded an
average annual rainfall of Y, where is it likely to be located?”. As before, one would
need to consider more than a single statement of location — there may be several
areas having an annual rainfall of around Y, or a very large area over which Y
would be a representative figure. As with the non-geographical situation, issues of
variability and multimodality are important in understanding the data. Also, in
accordance with the non-geographical situation, the use of exploratory graphical
techniques provide an important tool for initial data investigation. However, in the
geographical situation it is not obvious what graphical tools could be used. This
paper proposes such a tool, based on the concept of the coplot (derived from the
term COnditional PLOT). The coplot is essentially a multi-panelled plot where each
panel (or small graph) is constructed using data selected conditionally on some
variable. In this paper, the comap is introduced. The name here is derived from the
term Conditional MAP.

Since coplots are not used often in geographical, planning or environmental lit-
erature, this paper will begin with a review of the coplot together with a practical
example of its use. Subsequently, the extension of these ideas to the notion of comap
will be discussed, and applied to the earlier example. Following this, practical com-
putational issues will be considered.

2. The coplot: a review

The notion of a coplot utilises the principle of using ‘small multiples’ of diagrams
to highlight differences in pattern, as discussed in Tufte (1990). In particular, coplots
show changes in the relationship between the variables Y, and Y, conditioned on a
third variable X. An example is given in Fig. 1.

The data set used here is a subset of mean annual rainfall figures recorded
from several rain gauges throughout the UK. Here, 600 of these observations,
all from Scotland, were selected. These data were originally compiled by the Climate
Research Unit, University of East Anglia, where they were made available for aca-
demic research. In this study, four variables were recorded: the easting and northing
and height above sea level of each gauge, and the mean annual rainfall. For the
remainder of this paper, these variables will be referred to as east, north, height and
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Fig. 1. Coplot of height vs. rainfall given easting of gauge. Reading from left to right, the bottom scat-
terplots are numbered 1 to 3, and the top are numbered 4 to 6 in order of ascending easting category
midpoint.

rainfall, respectively. In relation to the more generic terminology for variables used
in earlier discussion, in Fig. 1 we have height = Y}, rainfall= Y, and east= X. At this
stage, north will not be considered.

The plot contains seven panels — a broader one at the top and six below this
comprising a two-by-three matrix of scatterplots. Each of the six panels in the lower
matrix contain only data whose X values fall within a specific range. The ranges are
selected so that an identical number of observations appear in each scatterplot, and
also so that the ranges of X overlap. The top panel (which Cleveland terms the given
panel) shows the six ranges graphically. Suppose we number the scatterplots as
below:

5 6
1 2 3
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Then, as the scatterplots progress from 1 to 6, the midpoint of the range of X-
values increases. Since in this example X =east, scatterplots 1 to 6 show the change
in relationship between height and rainfall as a geographical ‘moving window’ pro-
gresses from east to west. Certain patterns are immediately apparent: most promi-
nently, the slope of the relationship between the two quantities becomes steeper as
one moves west. This trend is made easier to see in the scatterplot panels by the
addition of least squares regression lines. Other features are also noticeable —
the variability of the intercept point of the regression line is perhaps also of interest.
These patterns are consistent with the phenomenon of orographic enhancement
which arises from a number of mechanisms that serve to increase the levels of rain
precipitation over and near to hills in some areas (Pedgley, 1970; Sawyer, 1956). The
coplot is useful in allowing one to explore exactly how the relationship between
elevation and precipitation varies across geographical space. In this instance, prior
knowledge of the topography of Scotland lead to the choice of east as the con-
ditioning variable.

This example demonstrates many of the useful features of coplots. Firstly, as a
concept they are highly intuitive; provided one is already familiar with the concept
of a scatterplot, it is a small step of the imagination to consider a sequence of scat-
terplots based on ‘windows’ of a third conditioning variable. Secondly, it is relatively
easy to extend the basic coplot. Here, for example, regression lines were added in
order to explore the changing relationship between height and rainfall. Other mod-
ifications are also possible — in Fig. 2 scatterplots of absolute residual (that is, the
positive difference between fitted and actual rainfall values) against the rank of
height are used. The replacement of heights with their ranks will be justified at the
end of this section. Here we see that in all six scatterplot panels the magnitude of
the residuals increases with height — and arguably the effect is more pronounced
in the extreme east and extreme west scatterplots. This calls into doubt the assump-
tion in simple linear regression that the error term variance is constant and perhaps
suggests that even the way it differs from constancy varies geographically. In addi-
tion, we note that in all six panels the greatest level of variation is about the same,
but recall from Fig. 1 that the relationship with height differs — the panels toward
the west attain the greatest level of residual variance at lower heights.

Since the ranges of the conditioning variable overlap along the scatterplots, each
point will be shown on more than one scatterplot — this is particularly helpful if
only a small dataset is being used. In this case partitioning the observations between
scatterplots without duplication would result in very few points appearing in indi-
vidual panels, making trends or patterns difficult to spot.

A final useful property of the coplot is the fact that each scatterplot has the same
number of points — or as close to this as the sample size, number of scatterplot
panels and degree of overlap allows. Here, each scatterplot has 171 points. In an
informal sense, this means that each graph is subject to roughly the same degree of
sampling uncertainty, and that no graph is notably more prone to ‘freak’ results or
outliers than any of the others — thus if some panels appear to show more varied
results than others this is more likely to be due to genuine differences in the rela-
tionship between Y| and Y, as X varies. This last point is perhaps best demonstrated
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Fig. 2. Coplot of rank height vs. regression residual given easting of gauge. Reading from left to right, the
bottom scatterplots are numbered 1 to 3, and the top are numbered 4 to 6 in order of ascending easting
category midpoint.

visually: Fig. 3 shows two sets of pairs of points (Y7,Y>). The only difference
between the two samples is that there are 1000 (Y;,Y>) pairs in the left hand panel,
but only 100 on the right — those on the right are a random subsample of those on
the left. The points on the left appear to be spread over a larger area, and also a
seem to have greater proportion of outliers, but in fact these observations are
entirely attributable to the difference in sample size, as both were generated from the
same population distribution. Some of the patterns observed in scatterplots are an
artifact of the number of points used, and keeping the number of points in each
panel in the comap the same is a method of controlling for this.

An interesting variant of this problem occurs when using scatterplots to investi-
gate the variance of the Y, variable as Y7 varies (or vice versa). If the marginal
density of the Y; variable changes along the axis, then the effect is that of having
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Fig. 3. Effect of sample size on observed scatterplot patterns.

more points in some Y;-ranges of the plot than in others. Thus, even if the variance
of Y, is constant given Y;, it may appear to alter. This would result in a mis-
diagnosis of heteroskedasticity. A good example of this is given in (Cleveland, 1979);
see also Brunsdon, Fotheringham and Charlton (1999). One way of overcoming this
problem is to replace Y; with the rank of Y, in the scatterplot. Since ranks will be
spread evenly between 1 and n, the marginal density of the new variable will remain
constant — and observed heteroskedasticity becomes much less likely to be a ‘false
alarm’. This is the reason that ranks were used for the height variable in Fig. 2.

3. The comap: extending the coplot

In this section, ways in which the coplot may be adapted to provide more appro-
priate exploratory data analysis tools for geographical data sets will be considered.
The first, and arguably most obvious shortcoming of the basic technique for geo-
graphical data is that only one of the two spatial dimensions is used as a condition-
ing variable. In Figs. 1 and 2 this is not as limiting as in some cases, as we suspect
that there is a strong variation in the relationship between height and rainfall in the
east-west direction. However, while the plots seem to bear this out, they shed no
light on any other geographical patterns. Also, in a more general setting prior
information about the direction of pattern variation may not be available. For-
tunately, Cleveland shows how coplots can be extended in an obvious way to
incorporate two conditioning variables. In Fig. 4 this is shown, with east and north
as the conditioning variables.

The main difference between this plot and the earlier ones is that there are now
two ‘given’ panels — the second along the side of the scatterplots. Both east and north
are used to divide the observations between the scatterplots. The bottom row cor-
responds to observations in the lowest north windows and so on up to the top row,
and for the columns a similar correspondence occurs, this one depending on the east
windows. Using this plot it is possible to investigate the relationship between height



C. Brunsdon | Comput., Environ. and Urban Systems 25 (2001) 53-68 59

Given : east

100000 150000 200000 250000 300000 350000 400000
1 1 1 Il L 1

[ |
T T T 1 T T T
1000 2000 3000 4000 1000 2000 3000 4000
§ 1
8 w
2
=1 - o
(=]
2
o~ —
o
_é -
2
L - e £
L <
= o ] ® o
8 -8 c
£ =
s - o
w2
o L3O
g - ° )
(=] wn
3 | <
- @
o
(=]
&
N L

1000 2000 3000 4000
height

Fig. 4. Coplot using two conditioning variables. Number of observations is shown in top left hand corner
of each scatterplot.

and rainfall over two-dimensional geographic space. One feature that now becomes
apparent is that the slope of the regression line of rainfall on height seems to get
steeper as one heads north, but only on the eastern side of the country.

One problem encountered with the two-conditioning-variable coplot is that it is no
longer possible to choose ranges of the given variables that ensure that each scat-
terplot has exactly the same number of observations. It is possible to solve this
problem marginally, so that the total number of points in each row of scatterplots is
the same, as is the total number of points in each column of scatterplots, but to solve
for each individual plot would require different east windows for each column, or
different north windows for each row — so that visually scanning a line of plots may
not be comparing like with like.

Here, the author proposes a minor addition to the scatterplots. The number of
observations in each scatterplot is printed in the top left hand corner. Although this
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clearly does not remedy the possible problems that differences in numbers of obser-
vations create such as those illustrated in Fig. 3, it does provide a quick diagnostic; if
one plot is seen to have an unusual pattern it is then possible to check whether this
may be due to that plot having an unusually large or small number of observations.
It could also be argued that the very presence of these numbers serves as a reminder
that observation counts are not guaranteed to be perfectly balanced between the
plots. In Fig. 4 it can be seen there although the number of points does vary between
scatterplots, this variation is not too great, ranging between 134 and 160 points in a
single scatterplot. This is only a variation of under one tenth of the mean number of
points in a plot — note that the effect in Fig. 3 was due to the number of points in a
pair of plots differing by a factor of five.

Next, note that the conditioning variables are divided into a small number of
overlapping classes, whilst the scatterplot variables are depicted in continuous space.
This is inevitable since a scatterplot matrix with too many units would be difficult to
read. However, for geographers there are situations where we may wish to reverse
the roles of the two pairs of variables. In the example here, this would mean that the
conditioning variables would be height and rainfall, and the scatterplot variables
would be east and north. In essence, the scatterplots are now crude point maps of
rain gauge locations. This “role reversal” of the variables would show spatial loca-
tions in much more detail, at the expense of detailed graphical information for
height and rainfall. This may be useful in identifying small-scale local patterns.
Obviously, a more direct correspondence to geographical patterns is now estab-
lished. In Fig. 4, not only are eastings and northings reduced to three broad (albeit
overlapping) groupings, but also the geography is distorted — Scotland is deformed
into a square!

This type of plot is illustrated in Fig. 5. As well as the exchanging of variable
pairs, a number of other modifications have been made. Outlines of the Scottish
coast have been added to the scatterplot panels, and the gridlines have been drop-
ped. The gridlines in the original coplot provided graphical reference features when
comparing plots. For instance, to see whether the intercept of a regression line is
changing between plots, one could compare the point where the line meets the y-axis
against the horizontal grid-lines. However, when the points in the scatterplots were
geographical locations, it was felt that geographical reference features were more
useful — hence the inclusion of the coastline. Note that other such features could
also be added. In this example relating to orographic enhancement of rainfall, some
generalised details of features of mountains could perhaps be added. However, one
should perhaps exercise restraint in adding such features. A small number of these
may aid interpretation, but too many may serve to clutter the diagram, and obscure
patterns in the locations of interest. Tufte’s (1990) ‘small multiples” work best when
the graphical panels are simple. From Fig. 5 it is notable that in the highest altitude
category, the greatest degree of rainfall occurs on the western coast, and that in the
lowest altitude category there is a shift away from the eastern coast as rainfall levels
increase. This is again consistent with orographic enhancement — the gauges in the
lowest altitude category recording the most rainfall are closer to those in the higher
altitude category recording high rainfall. The advantage of visualising the data in
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Fig. 5. Comap using two conditioning variables. Each point on a map panel represents an individual rain
gauge.

this way, rather than as in Fig. 4 is that a more precise picture of the geographical
pattern is communicated.

This line of argument is not intended to be dismissive of the original coplot
approach used to generate Fig. 4 — clearly the technique provides very strong gra-
phical evidence that the relationship between height and rainfall is not constant over
geographical space. However, it may be helpful to visualise a more precise geo-
graphical structure of the variations in the relationship. For this reason, it is
recommended that data of the kind being considered here should be visualised in
both ways. Using a greater variety of graphical views of a multivariate data collec-
tion should increase the likelihood of features in the data being identified.

Another modification in five is that all scatterplots now have an aspect ratio of
unity — the scale in the x-direction is the same as the scale in the y-direction. This is
a departure from a standard coplot — (Cleveland, 1993) suggests rules for choosing
aspect ratios for scatterplots which may not suggest unity even when the x and y
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axes relate to quantities having the same physical dimension. There are good reasons
for adopting these rules in many situations, but the aim here is to represent geo-
graphical patterns faithfully, which in this case neccessitates over-riding the original
rules. As observed earlier, once the above alterations have been made to the stan-
dard coplot, the scatterplot panels have essentially become maps. Bearing this in
mind, the term comap is defined to mean a coplot in which the scatterplot panels
have been replaced by maps of some sort.

4. Beyond the basic comap: an example using density estimation

A comap need not use point-based representations of spatial data. Like coplots,
the basic idea is adaptable — indeed the map panels may be any form of map that
could represent the geographical information. As an example, instead of simply
plotting the point locations for east and north, a smoothed map of point intensity
could be used. The purpose of this would be to highlight larger scale trends in geo-
graphical pattern. This could be achieved using kernel density estimation techniques
(Brunsdon, 1995; Silverman, 1986). In its two dimensional form this method may be
used to provide an estimate of a probability density function f{Y7,Y>) given a set of n
observed values of Y; and Y>, say (y,,y,) for i={1...n}. The formula used for the
estimation is

| DYvy: DYvy:
Y, v.Ua — gk L Jlog 22 7% au
v nh? h h

ial

where the hat over fdenotes that it is estimated rather than a known true value, Kis a
univariate probability density function, and / is a constant (whose dimension is length
in geographical applications) referred to as the bandwidth. In the geographical case an
isotropic model is used — it is possible, for instance, to have different bandwidths in
the Y and Y, directions, but in practice this has not proved worthwhile. f( Y7, Y,) may
be thought of as a surface or set of contours showing where the greatest concentration
of points occur. Contour maps of this kind will be used as the map panels in the
comaps proposed here. Inspecting Eq. (1) suggests that the choice of K and 4 will
determine the appearance of f In fact, the outcome is fairly robust to the choice of
K — provided it is smooth, unimodal and symmetrical about the mode — see Bow-
man and Azzalini (1997), Wand and Jones (1995) or Silverman (1986) for further
discussion. Here, K will simply be the normal density function. However, f does
depend fairly heavily on the bandwidth. Very large values of /4 tend to smooth out
features, whereas very small values tend to give ‘spikey’ surfaces. Neither of these
outcomes are desirable, and so some way of choosing / from the data is needed.
There are many such techniques in the statistical literature, but it is argued here
that an appropriate method for this application should be based on a conservative
choice of /. “‘Conservative’, in this context, means that it is likely that some degree of
oversmoothing occurs. As stated above, it is not desirable to massively oversmooth
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the data, but since the aim here is to detect geographical trends at a larger scale it is
helpful to be reasonably confident that any features detected do genuininely reflect
some underlying process, and are not a one-off artifact of the particular data sample
being visualised. A number of conservative smoothing approaches have been sug-
gested. Bowman and Azzalini (1997) suggest choosing the optimal / under the
assumption that (Y;,Y>) are normally distributed, optimal being defined in terms of
minimising the expected value of the integrated mean square error between f and f
For the density estimate specified in Eq. (1) with K a normal density function this
gives

where s is the pooled estimate of the standard deviation of Y; and Y,. In the
comapping context, [1and n would be supplied on a panel-by-panel basis, so that
different bandwidths would be used in each map panel. To some extent, this over-
comes the problem of differing numbers of points in each panel — when there are a
smaller number of points in a map panel / tends to be larger, and the density surface
is spread out more, compensating for the effect demonstrated in Fig. 3.

The standard deviations of Y; and Y, are assumed to be the same in Eq. (2). Note
that in reality, neither this assumption or the assumption of normality are expected
to apply. The reason that they are used for conservative smoothing is that they
are likely to provide an over-estimate of 4. If the data really were bivariate normal,
then a relatively large degree of smoothing would be an appropriate choice, as
it would tend to yield a univariate f However, the requirement for an optimal
choice of / tends to stop it becoming oo large — very large values would certainly
produce normal-shaped f’s, but with too much variance. Typically, the outcome of
choosing a bandwidth in this way is that one is unlikely to obtain a multimodal (or
multi-featured) density estimate if the true distribution is unimodal, but there is
some chance that a multimodal true distribution may be oversmoothed giving a
unimodal density estimate. This essentially encapsulates the conservative nature of
the technique — if a multimodal density estimate is obtained it is unlikely to have
arisen spuriously. Terrell (1990) goes on to consider and extend the idea of con-
servative smoothing in more detail.

This may seem something of a mathematical diversion from what is essentially an
exploratory technique, but it may be viewed as some ‘under the bonnet” work to
ensure that the density visualisation proposed here is not misleading. For such a
technique to be used easily, some form of automatic choice of / is needed. Often in
density estimation, ‘automatic’ bandwidth choice does not mean optimal, and so
rather than aim for an optimal 4, a ‘safe’ choice is made, in the sense of one that is
unlikely to highlight spurious features. The slight oversmoothing can also be justi-
fied from a visualisation viewpoint — the idea of the smoothed map is to compli-
ment Fig. 5, and so concentrate on large-scale trends. If a smooth map is seen as
being ‘risk-averse’ in terms of showing spurious features, a point map is ‘risk-prone’,
since it shows every single data point. Perhaps a more wholistic view of the geo-
graphical structure in the data may be obtained by viewing both of these maps.
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An example of a density-based comap is given in Fig. 6. Here, each map panel is
based on kernel density estimates as described above. The maps themselves use five
grey-shaded contour bands, clipped around the coast of Scotland. It was decided to
omit keys on these maps, since they tended to overload the diagram. Also, the main
goal here was to communicate the changing shape of the surfaces between map
panels, rather than the exact values of the densities. The comap thus produced tells
essentially the same story as Fig. 5, although perhaps the pattern has been made
more striking. For the lowest height band, there is a distinct eastward shift in the
densities as one progresses up the rainfall bands. Also, there appears to be a corre-
sponding northward shift when one considers the medium height category maps.
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Fig. 6. Density estimation comap.
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5. Software issues

All of the coplots and comaps in this paper were produced using the R software
package. R consists of a programming language together with a runtime environ-
ment with graphical capabilities (Thaka & Gentleman, 1996), and it is available as
Free Software under the terms of the Free Software Foundation’s GNU General
Public License (Free Software Foundation, 1991). It is similar in functionality to the
commercial software package S (Becker, Chambers & Wilks, 1988; Chambers &
Hastie, 1992), although its implementation is somewhat different — for discussion of
this see Hornik (1999).

R is used here for a number of reasons. Firstly, a coplot function is already pro-
vided in the standard distribution. This function allows the basic coplots (with one
or two conditioning variables) to be drawn. This function is designed to be flexible —
one very useful feature of R (and also of S) is the ability to treat functions as though
they were variables, so that R code can be passed as parameters to other R func-
tions. This is the key to adapting the basic coplot. One of the arguments to the
coplot function (named panel) provides code which determines how the scatterplot
panels are to be drawn. If no value is supplied, it defaults to a simple point-based
plot. However, defining your own functions and passing these as the panel argument
allows different kinds of plots to be drawn. For instance, Fig. 1 was created by
defining a function which plotted a set of (Y}, Y>) pairs, computed the regression line
for this data set, and then added this to the plot. A similar approach was used to add
the counts of numbers of points in the top left hand corners of panels for subsequent
coplots and comaps.

A second reason for using R is that the source code is freely accessible and
modifiable — this is part of the terms of the GNU Public Licence. This is particu-
larly helpful when adapting coplots into comaps in R. A number of features
of comaps could be added using the method described above — but some features of
the coplot function could not be adjusted in this way. In particular, setting the
aspect ratio of the scatterplot panels to unity and switching off the grid could not be
achieved via the panel argument, or indeed any other arguments to coplot. How-
ever, since the code for the coplot function is provided (in fact, it is written in the R
language) it is possible to take a copy of these, and then define a modified function
(here called adjusted.coplot) in which these adjustments (and a few others) have
been made.

Once adjusted.coplot is defined, it is a relatively simple task to define functions to
produce the comaps shown in this paper. R lends itself to data analysis and statis-
tical data processing, and a two-dimensional kernel density estimation function may
be defined in a small number of lines of code. Creating the maps themselves is rela-
tively simple, as R provides primitives to add points, lines, polygons and text to a
graphics window. Perhaps the most sophisticated mapping task is to draw filled
contour maps of the estimated density functions which have been clipped by the UK
boundary — although even this is relatively simple. The clipping effect is actually
produced by drawing a set of filled contours over a rectangular area (a function
already provided by R), and then masking out the parts of the area that are not on
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the Scottish mainland. For the whole of the UK, two such ‘masking’ polygons are
shown in Fig. 7. If it is assumed that the background of the maps are white, then
drawing these two polygons with solid white shading and solid white borders has the
desired clipping effect. The border could then be emphasided by adding the UK
border as an unfilled polygon with black lines.

In summary it is relatively easy to produce comaps in R for two reasons — part of
the problem has already been solved by the coplot function, and the openness and
flexibility of the system allow one to extend and modify this partial solution and go
on to finish the job. The R code used here is available on the world-wide web
(Brunsdon, 2000).

Fig. 7. Masking polygons to clip maps around the UK coast. The two shaded polygons cover any area in
the surrounding rectangle that is not on the UK mainland.
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6. Conclusion

In this paper Cleveland’s concept of a coplot has been discussed, with particular
attention to geographical applications. Following on from this, a new but related
concept, the comap, has been defined. Both coplots and comaps offer a relatively
simply understood means of visualising and exploring multivariate spatial data,
based on Tufte’s notion of ‘small multiples’ of diagrams. In particular, comaps allow
the investigation of spatial patterns given the variation of one or two atribute vari-
ables for geographical objects. As with many ‘small multiple’ applications of visua-
lisation, it is best if each of the map panels in a comap are relatively simple, and that
they are identical in design — the only characteristics that alter between panels
should be those that depend on the individual data samples.

Although the example given in this paper related to rainfall data, the range of
potential applications for comaps and coplots is very much broader than this. For
example, one could consider house price and floor area as two conditioning
variables — in many situations the relationship between housing characteristics and
price may vary geographically (Brunsdon et al., 1999). Another useful application
may be in visualising point patterns in space and time — here time could be used as
a conditioning variable. Indeed, in the latter approach one could then add a second
conditioning variable — for example if the space-time point patterns were incidence
of some disease, then one could consider age of patient at time of diagnosis. This
may be useful in identifying changing trends in the characteristics of some illness in
both temporal and spatial terms.

The two examples given above give some idea of the variety of applications when
considering geographical point patterns, but comaps need not be limited to this one
kind of geographic object. Since the way maps are drawn in comap panels may be
easily altered or extended, there is no reason why zone-based or arc-based objects
could not be viewed in this way. Given this, the comap approach could potentially
lead to a very broad class of visualisation techniques for investigating bivariate
geographical patterns or space-time patterns.
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