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Abstract—The statistical analysis of spatially referenced information has been acknowledged as an
important component of geographical data processing. With the arrival of GIS there has been a need to
devise statistical methods that are compatible with, and relevant to, GIS-based methodologies. Here an
algorithm is presented which estimates a “risk surface™ from a set of point-referenced events. Such a
surface may be viewed as an object embedded in three-dimensional space, or as a contour map. In addition
to this view, it is possible to incorporate these surfaces into a broader based GIS framework, allowing
the mapping of these patterns in conjunction with other data, overlay analysis, and spatial query. The
technique is adaptive, in the sense that parameters which control the surface estimation are adjusted over
geographic space, allowing for local variations in point pattern characteristics. The paper is concluded
with an example based on probabilistic mapping using data taken from Californian Redwood seedling

data.
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INTRODUCTION

Recent years have seen great advances in the capabili-
ties of Geographical Information Systems (GIS).
These software packages provide powerful tools
for the manipulation and presentation of spatial
data, and recently have incorporated features allow-
ing some forms of spatial analysis. For example,
many features of the GRID module in the ARC/
INFO GIS allow the analysis of networks and trans-
port costs to be carried out within the package. These
techniques allow, for example, the computation of
cheapest routes from one location to another, or
indices of accessibility for a study region. Although
this is useful, most of these analytical techniques
require the provision of exhaustive and accurate
geographical data over the region under study. In
many other situations complete data may not be
available, so that sample-based analyses must be
employed. In these situations some analysis of levels
of uncertainty may be required to interpret the spatial
patterns observed. However, few GIS provide facili-
ties for the statistical analysis of spatial data or for
the analysis of probabilistic data. In an era where
*. .. the GIS revolution is generating vast amounts of
spatial information and geography-relevant data”
Openshaw (1994) it may seem that there is little
demand for techniques of this sort. However there are
many situations where the data obtained are only a
subsct of a population for some geographical

phenomenon, possibly because not all incidences of
that phenomenon can be detected, or because of the
prohibitive cost of data collection. For example, it
may not be possible to obtain details of all household
burglaries occurring in a given area, because some
may not be reported to the police, or the data may
have been collected by an insurance company who
would only record burglary claims for their own
policy holders.

Many researchers in the GIS field have commented
on the lack of probabilistic analytical statistical
functionality within GIS packages, most notably
Fotheringham and Rogerson (1993) and Openshaw
(1990), and have called for the provision of software
to meet this shortcoming. The opinion also has
been expressed that any statistical analysis techniques
that are used in conjunction with a GIS should
retain the general character of both the GIS and
statistical disciplines. Thus, although considering
data in a probabilistic sense, the analysis also
should provide graphical, man-based output.
Some statistical techniques already in existence
may be adapted easily to this GIS framework, but
others less so. The possibility that new statistical
techniques may need development also must be
considered.

A particularly important factor when consider-
ing any statistical technique for linkage are the
assumptions that are made when it is applied.
For example, statistical methods which assume a
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Gaussian distribution in their study data at least
will have to be checked for robustness in situations
where this assumption is violated. More fundamen-
tally, techniques which “assume away" the geogra-
phy of the situation should be avoided-—in particular,
the supposition that observations related to a
set of geographical zones are distributed indepen-
dently is unlikely to be true in many geographical
contexts.

Another shift in character from traditional statisti-
cal techniques to a GIS approach is a greater empha-
sis on location itself. In the former situation,
regression models, principal component analyses, and
other related techniques are applied to the attributes
of points or zones in space, but far less the location
itself is treated as a random variable. Although the
work of Anselin (1988) and others on spatial
regression, which rejects the independence assump-
tion, assumes that the zonal system is fixed and
without error. However, it is perhaps in the analysis
of location itself that statistical techniques have most
to offer the GIS community. Much of the output of
GIS-based analysis is in cartographic form, answer-
ing questions as to where certain conditions are met,
or where certain phenomena occur; the ability to
estimate population spatial patterns from a sample,
or test hypotheses based on locational characteristics
would fit into a wider GIS framework, and could
perhaps be offered by some well-selected statistical
techniques.

In this paper, one such method is proposed.
The kernel-based approach to probability density
function estimation (Silverman, 1986; Diggle,
1985, 1990) provides a tool for determining the
shape of a probability density distribution given a
set of points that have been drawn from that
distribution. The method can be applied to points
in any dimension of Euclidean space. Most impor-
tantly for geographical analysis, it may be applied
specifically to points in two-dimensional space. Given
a set of locations of some phenomena, such as
the locations of houschold burglaries or road acci-
dents, it is possible to estimate a “risk surface™
showing the relative likelihood that further events
have of occurring in various parts of the study region.
This form of statistical analysis can provide carto-
graphic output, and addresses spatial randomness by
treating the location of events as the outcome of a
two-dimensional random process. It also may be
thought of as estimating a “population” spatial pat-
tern from a sample. For example, by applying the
technique to a sample of household burglary lo-
cations for a fixed term study period, estimations
relating to probability patterns for all household
burglaries in an area may be made. Finally, the
technique may be thought of as nonparametric, or
distribution free, because rather than making any
distributional assumptions about the point data pat-
terns, it attempts to estimate these from the data
themselves.
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STATISTICAL BACKGROUND
Overview of kernel density estimation

Before discussing the computational techniques
used to carry out this analysis, some statistical back-
ground is presented. As its name suggests, the kernel
density estimation technique provides for estimating
the probability density function f of a distribution
from which a sample {x,} has been observed. This is
done by centering a probability density function k
(the kernel distribution function) around each of the
observed points, and then taking the average value of
all of these. k usually is selected to be unimodal and
symmetrical. As is demonstrated visually in Figure 1,
this average value gives a form of estimate of
the probability distribution of the sample points.
Mathematically, the estimate may be expressed as

12 x =X
f(.r)-n—hr_)_jik( " ) M)

where n is the number of observations in the sample.
This in itself, when extended to two dimensions, can
provide the basis for a cartographic technique. For
discussion and an example of this extension, see
Langford and Unwin (1994). However, Equation (1)
leaves some unresolved problems. The variable A is
of key importance here. Usually referred to as the
bandwidth or radius of the kernel estimation, this
parameter controls the variance of the density func-
tion k. Large values of h will cause & to have a large
variance, whereas smaller values will have the oppo-
site effect. The implications of this are illustrated in
Figures 2 and 3. Clearly, when h has an unacceptably
large value (Fig. 2), the estimated distribution f
becomes nondescript, and shows no response to
changes in density of the observations {x,}. In fact,
if the value of 4 is greater than the range of the x;’s,
fwill take on the shape of k regardless of any patterns

Individual Kernel
Density Estimate  s——
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Figure 1. Kernel density estimation method.



An adaptive kernel algorithm

Individual Kernel
Density Estimate —=————

csssssssssassesnnannen.

Figure 2. Result of too large bandwidth.

in the data. Figure 3 shows the opposite effect. If A
is too small, for example having a value less than the
average separation of the x;'s, then f will appear to
be a series of spikes centered on the observed data
points. The value of & used in Figure 1 gives a
more reasonable £, but these three examples suggest
that there should be some “optimal” (or at least
automatic) way of selecting h.

One such method is that of cross-validation. This
draws its inspiration from the idea of maximum
likelihood estimation. In maximum likelihood esti-
mation, the probability density function for some
variate x is expressed as f(x; @) where a is a vector of
parameters for some distribution f. The likelihood of
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Individual Kernel
Density Estimate —————

Figure 3. Result of too small bandwidth.
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a set of observations |x,} is the product of these
probability densities for each x;:

(x}ia) = T f(x;a). @)

One method for estimating a is to select a value which
maximizes the product. Although in this situation f'is
not of a known form, it may be thought of as being
dependent on the value of A. It therefore is possible
to write a likelihood function /({x,}: h) which could
be maximized in terms of h. There is, however, one
difficulty. Noting the form of Equation (1), consider
the value of f(x,), that is the estimate of the prob-
ability density function at any of the sample points.
This is an average of kernels, and the sum may be
split into the kernel around x,, and the remaining
kernels:

1 = | X, — X,
f('t')-ﬁk(0)+,..z,,,ﬁk( p ) 3)
The first term is a function of zero because the
numerator to the argument of k is proportional to
x; — x,. Note that as the value of h tends to zero, the
value of f(x,) tends to infinity. Thus, applying
the maximum likelihood method directly would
suggest that zero is an optimal value of h. Figure 3
suggests that this would not be appropriate, as it
yields a series of Dirac spikes positioned on the
observation points. (Dirac spikes may be defined
informally as improper functions whose value is
“infinite” at a single point on the real line, and zero
elsewhere.) A more satisfactory result may be ob-
tained if the first term in Equation (3) were dropped
from the esimate of f(x,). This is not an unreason-
able action. It effectively defines a new estimate of f,
denoted here as /1 as

ey L% X=X
[ =— Y k( > ) @)

j= i

which is an estimate of the probability density func-
tion based on all values in the sample except the ith.
If the likelihood function is modified slightly to

rdx) h) = ﬁl_f' W(x,: h). (5)

This can be thought of as a likelihood estimate using
the kernel technique to estimate the probability den-
sity at each x, given all of the remaining observed
values. The avoidance of each individual data point
in the estimation of density at that point itself
removes the problematic term in Equation (3), and
allows more suitable estimates of & to be achieved.
Because the technique involves estimating the value
of the probability density for each x; in terms of
the rest of the data set, the term cross validation is
applied.

Making kernel estimates adaptive

The technique may be enhanced further by allow-
ing the value of A to range between different regions
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Individual Kernel
Density Estimate —me————

Figure 4. Adaptive kernel density estimate.

of the sample space. In this situation, the density
estimation function becomes

I 21 X — X,
.f(-t)=EZEk( h, ) (6)

im]

where h, varies with x,. This is useful when the
distributional density differs notably within the
sample region. If points are close together, it may be
more appropriate 1o use a smaller value of A, as this
will reduce the effects of over-smoothing and allow
the estimated density to be more responsive to subtler
details of variation within the sample (see Figs 4 and
5 for an example). This is relevant particularly to
human geographical data—most events to be ana-
lyzed will occur in the most densely populated areas,
and it is in these areas that identification of variations
in probability density will be of most interest. Thus,
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Figure 5. Golden section search optimation.

some system for reducing the A, values in high-density
regions, and increasing them in low-density regions
should be sought. A plausible way of achieving this
may be set out in two steps:

e Compute a fixed-h estimate of density for each x,
e Use these estimates to obtain an A, at each of
these points

One possible method which could be used for the
second step is to compute h, as /,h where

NZACIAY
)

and /" is a fixed-h density estimate. This follows
from Silverman (1986), who suggests that x should
take a negative value. The selection of the initial value
for h has been determined not to affect greatly the
final result. Again, an appropriate selection for « may
be determined using cross-validation techniques. This
is investigated in greater detail later in the paper.

The remaining problem is to implement these
techniques in two-dimensional space. All of the for-
mulae so far have considered estimating a scalar
density function. Fortunately, most of the adaptation
of these for the two-dimensional situation involves
replacing the scalar x with a two-dimensional vector
x. The only additional consideration is the kernel
density function. In the two-dimensional situation,
the kernel function has a circle of influence around
the location of each observed point which decays with
distance. In mathematical terms, this may be
expressed as

Iz Ix —x|
f(x)-;“;):k( h ') (8)

the only changes are that the scalar difference of
the sample point and evaluation point is replaced
by a vector distance and h is replaced by k? in
order to normalize a two-dimensional density
function k. Substitutions of this form may be made
to Equations (1)«7) to estimate the corresponding
two-dimensional densities.

IMPLEMENTATION ISSUES
Working with SAS

In this paper, two methods of computation are
proposed. Firstly, the spatial data may be analyzed
using a statistical package, SAS (The SAS Institute,
1994). Secondly a more conventional programming
language may be used. Here, sample code is supplied
in FORTRAN 77. The justification for the first
approach is that SAS provides a powerful language
for handling spatial data—the Interactive Matrix
Language (or IML), and when the analysis has been
completed the results may be fed seamlessly into
graphical or mapping facilities within SAS.

However, although the use of powerful interpreted
languages may allow concise solutions to compu-
tational problems of this type, compiled languages
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will become necessary when working with larger
data sets. For this reason, the algorithm has been
coded in FORTRAN 77. An added advantage is
that the stand-alone program may be integrated
into the ARC/INFO GIS environment, allowing the
results of the distribution estimation to be manipu-
lated within a GIS. Although this is not as simple to
use as the SAS macro, larger data sets may be
analyzed, and integrated with other geographical
information. Working in FORTRAN 77 has the
added advantage that spatial data may be manipu-
lated as complex numbers; this can lead to a simplic-
ity of expression for algorithms which are applied to
spatial data.

Computational methods

A model for computation which applies well to
kernel-based density estimation is the tableau. In this
approach, intermediate results are arranged in a
rectangular table, similar to a spreadsheet (although
not necessarily visible to the user), and the final
results may be expressed in terms of mathematical
functions applied to the elements of the table, or on
a row-by-row or column-by-column basis. In this
situation, each row in the tableau is associated with
the location of one of the observations in the sample
data set and each column with the location of an
estimation point. In the first instance, these esti-
mation points can be spaced on a regular lattice
within a rectangular zone over which the densities are
to be investigated. A distance table is computed
between row data points and column evaluation
points. This is equivalent to the |[x —x,| term in
Equation (8). Next, for each cell in the table, the
function k is applied, using a prespecified value for A.
Thus, for each evaluation point column, the ith row
of the tableau contains the ith term in Equation (1).
Averaging down the columns therefore gives the
kernel density estimate for each estimation point.

This can be implemented relatively easily in IML
(see Listing | in the Appendix). The availability of the
Kronecker product operator is useful particularly in
this calculation. The Kronecker product of two
matrices is obtained by multiplying the second matrix
by each element of the first in turn, with these new
matrices laminated in the same relative positions as
the elements of the first matrix. Algebraically:

ayb apb - - ab
asy b

a®b = . . )]
arlb arrb

where ® is the symbol for the Kronecker product
operation, and the matrix a has r rows and ¢ columns.
Note that each item in the square brackets on the
right-hand side are themselves matrices not scalar
elements of a matrix.

This operator comes into its own when either a or
b is a row or column vector of ones. In this situation,
the other matrix will be repeated n times either
vertically or horizontally in the Kronecker product.
Combining one matrix of vertical repetitions of the
evaluation points with another of horizontal rep-
etition of the sample points on an element-by-element
basis allows each sample point/evaluation point inter-
action to be considered. For example, subtracting the
first matrix from the second gives a difference
tableau. In IML this may be programmed as:

diff =j (I, r, N@a —j (1, 1,c)@b;

where the @ symbol denotes the Kronecker product,
and the j(x, v, z) function provides a uniformly
x-valued matrix of y rows and z columns. If the
kernel function were Gaussian, the next step is to
apply this clement-by-element to the variable diff
using a prespecified value for A.

diff = exp(—diff # # 2/h)/(h = sqripi);

here, the double hash operator is an element-wise
exponentiation operator, and sqripi is a normalizing
constant. The more conventional double asterisk is
reserved for matrix exponentiation. It remains only
to average the values down the columns to obtain
the density estimates at the specified points. For
such calculations, there are a number of reduction
operators in IML; that is operators that reduce the
dimension of a matrix by applying some row or
column-wise function and returning a scalar value,
One of these is the mean operator, which may be used
as shown here:

estimate = difff, # J;

the hash in the column index position denotes that
the mean function is to be applied to each column.
Thus, using IML it is possible to carry out a simple
kernel density estimate in just three lines of code.
For brevity the one-dimensional situation is shown,
but extension into two dimensions is relatively
straightforward (Listing 1 in the Appendix).

It is a similar problem to code the cross-validation
estimation technique in IML, Essential to this is the
evaluation of the /! values at each point x,. In this
situation the tableau is square, because the values at
which the function is to be evaluated are the same as
those observed in the sample. Because the density
estimates at each sample point miss out the density
contribution from that point itself, the leading diag-
onal must be removed from the tableau. A simple
way of doing this is to multiply each element in the
leading diagonal by zero before averaging the
columns:

diff = diff # [j (1, n, n) — i(n)];

The single hash denotes elemental multiplication,
and the i function gives an n-dimensional identity
matrix. After the averages have been computed, the
cross-validation likelihood may be estimated, as in
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Equation (7). Because multiplying several probability
densities together is likely to result in extremely small
numbers, the sum of their logarithms is actually
computed. This is relatively straightforward in IML,
using the + reduction operator:

| = In(estimate);
lhood = I{+];

Clearly, this likelihood can be viewed as a function
of the kernel bandwidth, h. Maximizing this quantity
is equivalent to maximizing the likelihood product in
Equation (7), and so by maximizing | in terms of A,
an “optimal” bandwidth may be selected.

The next matter for consideration is the method
used to determine the value of A maximizing /. For
some kernels, it may be possible (although compli-
cated) to use Newton's method (see for example,
Hosking, Joyce, and Turner, 1981), to locate a zero
of the first derivative of / with respect to h. A more
general, numerical-based solution is to use a golden
section search (Baxter, 1976; Greig, 1980). In this
method, if a range of h is given which is known to
contain a single maximum, this range is subdivided
into three sections, delimited by the two end points
and two intermediate points B and C in positions
/(1 + /5) of the length AD from A and D respect-
ively. Depending on whether the value of the function
at B exceeds that at C, the search region for the
maximum is shrunk either to AC or BD. If B has the
larger value, as in Figure 5, then AC is selected,
otherwise BD 1s selected. As Greig (1980) demon-
strated the positions of B and C are selected to
minimize the maximum potential width of the new
interval. Clearly, cach time this operation is repeated,
the size of the interval containing the maximum value
is reduced by a factor of 2/(1 +./5), so that the
maximum can be located to any specified tolerance if
the golden section subdivision is repeated a sufficient
number of times.

To implement this here, the cross-validation likeli-
hood needs to be computed for A values selected
according to the golden section search methodology.
This is achieved by encapsulating the likelihood
computation in an IML subroutine, taking A as a
parameter, and returning the likelihood value,
and then calling this subroutine in a loop until the
upper and lower limits for the “optimal™ h-value are
sufficiently close together.

Having selected an optimal value of h, one final
task remains; this is to compute the kernel density
estimates at a set of evaluation points. This requires
just one more pass of the kernel tableau procedure,
this time evaluated conventionally (not excluding any
observations as with the cross-validation), as in
the earlier simple kernel routine. The entire process
is carried out by the code in Listing 2 (see the
Appendix).

The final problem is to compute the adaptive
kernel estimates for a given set of evaluation points.

C. Brunsdon

Again, this will require the tableau methodology to
be employed. However, in this situation h is not
thought of as a scalar, because its value is different for
each point in the sample of points. Thus, in the
tableau format, the computation of the kernel den-
sities is not repeated for the entire table; a different
h-value is required for each row. If the h-values are
stored in a column vector termed hvec then the IML
code to compute a Gaussian kernel is

hk = hvec@j (1, 1,¢);
diff = exp(—diff # # 2/h)/(h * sqrtpi);

The first line duplicates the column vector along
each of the columns, and the second computes the
kernel densities on an element-by-element basis.
Again, note that the Kronecker product is used in this
computation. To obtain the density estimates,
column averages are taken once again. This entire
process of computation is employed in Listing 3 (see
Appendix) a SAS IML program to obtain adaptive
kernel estimates at a set of evaluation points, given a
point data sample.

Working with a traditional compiled language

In Listings 1-3 (see the Appendix), techniques in
SAS/IML are given which obtain two-dimensional
kernel estimates. As discussed earlier, these may be
integrated into the SAS environment, which provides
statistical analysis, graphical, cartographic, and data
manipulation functionality. However, as this is an
interpreted language, there may be times when a data
set is large enough to make computation in SAS/IML
prohibitively slow. In such situations, a compiled
computer language should be used. To demonstrate
how density estimation techniques may be used from
this viewpoint, implementation of the given methods
in FORTRAN 77 now will be considered. The par-
ticular flavor of FORTRAN 77 used here is Sun
FORTRAN, with VAX extensions enabled, running
on a Sun Sparcstation 10.

When working with traditional compiled languages
of this sort, a helpful way to implement a suite of
techniques such as these is to code them as a subrou-
tine library. Then, certain “driver” programs are used
to call these routines, and output the results. The
technique is helpful particularly here, because factors
that are liable to differ from problem to problem,
such as the format of the input data, or the graphical
environment used to present the output, may be dealt
with in the calling program. However, the invariant
part of the problem, the density estimation algorithm
itself, may remain encapsulated in the library.

The subroutine library is given in Listing 4 (see
Appendix). The computation techniques are equival-
ent to those given in the section on Statistical Back-
ground making use of the tableau concept. However,
as FORTRAN 77 does not offer the luxuries of array
handling provided in SAS/IML, much more use of
explicit do-loops occurs. However, as mentioned



An adaptive kernel algorithm

10

3 .
93 ot
BE .“..b..

- ‘> t
7- R

63— >

5 - . 9

E o
53 ¥

4 3

s oy

33 .

..

23 <

3 . .:

1; s []
o:llll Ty LAl LARBELAAARAARANBAARI VAR LA A M\ L
0 1 2 3 4 5 6 7 8 9 10

Figure 6. Location Californian Redwoods (Diggle, 1984).

earlier, the use of complex variables does help to
simplify the implementation of these algorithms in
two-dimensional space.

A CASE STUDY: THE CALIFORNIA
SEEDLING LOCATION DATA

The data set

REDWOOD

Similar to most computational techniques, kernel
density estimation is best illustrated with a practical
example. In this case, the data relating to the
locations of Californian Redwood seedlings will be
used to demonstrate the method put into practice.
This data set, which was extracted by Ripley from a
larger data set in Strauss (1975), relates to the
locations of Redwood seedlings in a 1km square
sample quadrant. It was used subsequently as an
example data set by Diggle in his 1983 book on point
pattern analysis. For each tree, its coordinate pair is

0

Figure 7. Using contours to show probability density.
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Figure 8. Using three-dimensional surfaces to show
probability densities.

recorded in terms of northern and eastern displace-
ment from the southwestern corner of the sample
zone. The tree locations are shown in Figure 6. Here,
the location of the trees will be considered as a
random process: in some regions trees are more likely
to survive than others. The actual location of the
trees therefore can be thought of as a realization
of a random spatial process. The task for this case
study is to estimate the probability density function
associated with this process.

Graphing the analysis results

Graphical output is an important product of this
type of analysis—the probability density function
may be thought of as a mathematical function
over geographical space, and visual appearance per-
haps is the most important key to its interpretation.

0 0102030405060.70809 1

Figure 9. Using bubble diagrams to show probability
densities.



884

However, there are many types of graphical tech-
nique used to represent two-dimensional surfaces in
three-dimensional space. Because these all have nota-
bly different appearances, some thought must be
given to the selection of method when presenting
results of this sort. Three possible presentation
methods are suggested here:

e Contouring (Fig. 7)

® Three-dimensional perspective drawing (Fig. 8)

e Proportional area ‘bubbles’ on a regular grid
(Fig. 9)

e A gray-scale map (Fig. 10)—as used for example
in Gatrell (1994).

Although usually the most popular method, the
perspective drawing has the disadvantage that when
viewed from some directions, part of its features are
obscured. This possibly can be overcome in an inter-
active environment, where the viewer could use con-
trols provided by a computer program to rotate the
surface, but this is not the situation with printed
matter! Contouring overcomes this problem, but it is
not immediately clear which areas on the contour
map are peaks and which are troughs. This is resolved
in the gray-scale map, but in this situation it is
difficult to relate relative levels of probability to the
change in gray scale. Although all of the other surface
representations are useful in specific applications, it
has been decided here to use the “*bubble plot™ option
to illustrate the surfaces computed in this case study.

Fixed radius kernel density estimation

Initially, a simple kernel estimate for the density
estimation will be carried out, based on the KERNI
subroutine (in Listing 4 in the Appendix). In the first
instance the k value selected will be the mean nearest
neighbor distance between the trees. This gives the
probability surface shown in Figure 9. However, this
may be thought of as an arbitrary choice of k. A more

Figure 10. Using gray-scaled pixels to map densities
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Figure 11. Log cross-validation likelihood vs. kernel radius.

rigorous approach may be to apply the cross-
validation likelihood technique. A graph of k vs.
cross-validation likelihood is shown in Figure 11. As
can be seen, an optimal value for k is around
0.062 km. Using the golden section search technique,
a more accurate value of k of 0.0626 km is deter-
mined. The surface obtained using this value is shown
in Figure 12. Clearly, this value is notably more
peaked than the “first guess” method based on the
mean nearest neighbor distance.

Variable radius kernel density estimation

In this section, density estimation based on the
adaptive techniques outlined in the section on mak-
ing kernel estimates adaptive is carried out. Recall
that two parameters have to be specified in this
situation—a bandwidth for the initial fixed-radius
estimate and then a value for «, the exponent on the

0 0102030405060.70.80.9 1

Figure 12. Probability density for cross-validated fixed
radius kernel estimate.
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adaptive bandwidth adjustment formula. Arbitrary
selection for both of these would be difficult to make,
so once again the cross-validation likelihood method
may be used. Figure 13 shows the value of the
likelihood (on a contour graph), for « values between
—2 and -1, and initial k-values between 0.04 and
0.06. It may be seen from this graph that the cross-
validation likelihood is optimized when k is about
0.05 and x about —1.5.

To obtain more accurate values for these par-
ameters, a more rigorous search routine is employed.
In this situation it is the simple stepping search of
Hooke and Jeeves (1961). An initial guess is made for
optimal values of k and a. and the cross-validation
function is evaluated at this point, and at points +h,
from k and + h, from a. If the value of the likelihood
is higher at one of these sample points, the optimal
guess for the parameters will be updated accordingly.
If the original guess faired better than the sample
points, then each h is halved and the search continues.
This is repeated until the h values are considered to
be sufficiently small.

This gives a good example of the utility of the
subroutine library approach. The general “building
blocks™ for the adaptive techniques are coded in the
KERNLIB library, but the more problem-specific
Hooke and Jeeves algorithm is coded in the calling
program (Listing 5 in the Appendix). Note that once
again the two-dimensional nature of this problem
suggests that using variables of type COMPLEX will
simplify the coding of the algorithm.

Running this program gives the optimal parameter
estimates as k = 0.0478 and o = — 1.48, The conver-
gence of the Hooke and Jeeves search for these values
is shown in Figure 14. The density estimate itself is
illustrated in Figure 15. The main distinction between
the appearance of this estimate and the optimal fixed
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Figure 13. Cross-validation likelihood contours vs. alpha
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Figure 14. Convergence of Hooke and Jeeves' algorithm
(1961).

radius estimate is that there is a greater tendency for
sharp edges to occur in this distribution. In areas
where a dense cluster of trees is neighbored by barren
land, the adaptive method tends to use low band-
width value, ensuring that the “spillage™ of density
resulting from the kernels is not great. In the non-
adaptive technique, this would not be possible with-
out the penalty of obtaining “spiky” estimates in
other less densely clustered areas of trees.

CONCLUSIONS AND DISCUSSION

This paper has provided a method for estimating a
spatial probability distribution, given an initial set of
points generated from this distribution. Unlike many
techniques this also has the ability to alter the
parameters of surface estimation in a geographically
adaptive way. As stated in the introduction to the
paper, there is a need to consider linkages between
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Figure 15. Adaptive kernel density estimate.
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statistical methodologies and GIS. It is believed that
the technique presented in this paper is one such
linkage. Firstly, its adaptive nature reflects the gen-
eral geographic context that all places differ—allow-
ing at least quantitative representation of “place™ as
well as “*space”. Secondly—and perhaps more signifi-
cantly for the GIS community—it provides a novel
form of map layer which may be incorporated with
other geographical information.

For example, in the last section a probability
surface giving the likelihood of Californian Redwood
trees growing in a particular arca was estimated.
Consider the context of this probability. The event
that a tree grows on a particular spot could be
dependent on many factors—the spatial distribution
of seeds falling in the locality, the condition of the
ground on which the seeds fall, the terrain of local
land (which governs the amount of sunlight received
in different regions), and several others. A research
question arising from the case study might be to
determine the degree with which each of these factors
effects the probability of a tree growing. One thing
that all of the factors have in common is that they are
all geographical variables, and may be represented in
map form. If this information were available in the
study quadrant, it could be stored as a series of
coverages in a GIS. Combining this information with
the output from the adaptive kernel algorithm would
allow associations to be explored in a cartographic
sense.

The linkage of output from this algorithm to a GIS
presents few problems. If a program is produced
which produces as output an ASCII file listing prob-
ability densities in grid format, it is relatively simple
to convert this into the internal format of most GIS
packages. For example, in the ARC/INFO package,
the command ‘“asciigrid” performs the task. The

operation could be automated to a further degree by
creating a macro in the ARC/INFO Macro Language
(AML) to run the FORTRAN 77 program and feed
its output into the conversion routine in a single
command. When this task has been completed, the
results of the kernel estimation may be combined with
any other data stored in the GIS, using various
display techniques incorporated in the GIS. Two
examples are given here, (Figs. 16 and 17) showing
ways in which the point locations of the Redwoods
may be combined with the probability surface itself.
The first of these makes use of the “‘bubble plot™
approach used earlier, overlaying the tree locations,
whereas the second “drapes™ a map of tree locations
over a three-dimensional view of the surface. Both of
these demonstrate the ability of GIS to combine two
data sets from the same region on the same map. In
this situation, the auxiliary data was simply the
original point data set, but if the data were readily
available, it just as easily could have been infor-
mation about slope or aspect of the ground, soil
acidity, or any other factor which might influence the
likelihood of a tree surviving in a given location.
Thus, the technique outlined in this paper
demonstrates that there are methods in statistics
that are “GISable,” using Openshaw's terminology
(Openshaw, 1994). The questions that remain to be
answered are mostly in terms of how much further,
and in what directions, should the union between GIS
and statistics go? For example, would it be possible
to extend the cartographic aspects of inspecting the
relationship between the density function and other
geographical factors to a more rigorous statistical
test? Could probability surfaces be used as the basis
for simulations allowing GIS to provide “what-if "
modeling with a spatial, stochastic element? It is
hoped that this paper, and others in the same spirit

Figure 16. ARC/INFO image of density surface showing Redwood sapling locations.
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Figure 17. Bubble diagram with Redwood sapling locations from ARC/INFO.

will encourage the publication of more research and
practical examples of the benefits of developing links
between statistical analysis and the use of GIS,
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APPENDIX

/* Listing 1 --- Simple Kernel Density Estimates*/

/* IML Code to carry out simple density estimates */

/* Listings 1-3 run on SAS version 6.08 & later */

/* The IML code requires an input data set of 2D points, */
/* in variables called x and y. */

/* output is a new data set with variables x y and prob */

/* x and y are points on the grid,

/* estimate */
/* Read in the data -

data redwood;

prob the probability */

here it is Diggle's Redwood Data */

infile 'd:\research\kernel\redwood.dat';

input x y;
format x 6.2 y 6.2;
x = x/10;

y = y/10;

run;
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/* Define the IML Procedure to run the kernel algorithm */

proc iml;
start kernel(k,s);
/* k = bandwidth s= points on side of square of
evaluation grid */
/* here, sample space assumed to be [0,1]x[0,1] */
/* Rescale if needed */
use redwood;
read all var({'x' 'y'}) into xvec;
a=j(1,nrow(xvec),1);

/* create the sample points for estimation */
(0:8)/s;
(0:s8)/s;
repeat(x” ,s+1,1);
shape(repeat(y ,1,s+l), (s+1)##2);
grid = x || y;:

oM M

/* use the tableau method to estimate densities */

dl = xvec[,1]@j(1,(s+1)##2,1)-(algrid([,1]) ;

d2 = xvec[,2]€j(1, (s+1)##2,1)-(algrid[,2])";

d = exp(-(d1##2)/ (k##2) -(d2##2)/(k##2))/(k##2)/1.77245381;
/* Guassian Kernel used here */

prob = grid || d[:,]7; /* Create a new data set with
X,y and densities on grid */

create probs from prob [colname = {x y prob}];

append from prob [colname = {x y prob}l;

finish;

run kernel(0.06,50); /An example run */
quit;

/* Use gcontour to draw surface */
proc gcontour;

pattern7 value=solid color=cxff0000;
pattern6é value=solid color=cxcc0000;
pattern5 value=solid color=cxaal000;
pattern4 value=solid color=cx880000;
pattern3 value=solid color=cx440000;
pattern2 value=solid color=cx220000;
patternl value=solid color=cx110000;
plot x*y=prob/pattern join;

run;

/* Listing 2 --- Cross Validation Likelihood Estimation */
/* Data input requirements are as in listing 1 */

/* Golden Section Search */

proc iml;
start kernel (kmin, kmax);

use redwood;
read all var({'x"' 'y'}) into xvec;

a=j(1l,nrow(xvec),1);
dl = xvec[,1])@a-(a@xvec|,

1])°
d2 = xvec[,2]@a-(alxvec([,2])"

- e

gs2 = (sqrt(5)-1)/2;
gsl =1 - gs2;

kl = kmin;
k2 = kmin+gsl*(kmax-kmin);
k3 = kmin+gs2*(kmax-kmin);
k4 = kmax;
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run xval(k2,dl,d2,xvec,f2);
run xval(k3,dl,d2,xvec,f3);
/* Main search routine */

do i =1 to 15;
if £2 > £3 then do;

k4 = k3;

f3 = £2; k3 = k2;

k2 = kl+gsl*(k4-k1l);

run xval(k2,dl,d2,xvec,f2);
end;
else do;

kl = k2;

f2 = £3; k2 = k3;

k3 = kl+gs2*(k4-kl);

run xval(k3,d1l,d2,xvec,f3);
end;
end;

/* Choose an optimum */
kopt = (k3+k2)/2;

print 'K Optimum = ' kopt;
finish;

/* Cross-validation likelihood computation for search */

start xval(k,dl,d2,xvec,prob);

d = exp(-(dl/k)##2 -(d2/k)##2)/(k##2)/1.772453851;

d =d # (j(nrow(xvec), nrow(xvec)) - i(nrow(xvec)));
prob = log(d[:,] );

prob = prob[+];

finish;

/* Run example program --- Guess at optimal kernel
bandwidth between 0.05 and 0.07 */

run kernel(0.05,0.07);
quit;

/* Listing 3 - IML code for adaptive Kernel estimation
/* Data input requirements as in listing 1 */

/* Define the main IML Procedure */
proc iml;
start adrad(k,f,alpha,kmat);
/* Calculate the adaptive kernel radii */
logf = log(f);
gmean = exp(logf[:]);
kmat = k*(f/gmean)##alpha;
print gmean;
finish;

start adkern(k,s, alpha);

/* k = bandwidth s= points on side of square of evaluation

grid */

ﬁ* alpha = power correction factor for adaptive method
*

/* here, sample space assumed to be [0,1]x[0,1]

*/

;* Rescale if needed

*

use redwood;

*/

889
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read all var({'x' 'y'}) into xvec;

/* First, let create the 'base' estimate */

a=j(1l,nrow(xvec),1);

dl = xvec([,l1]@a-(afxvec([,1])"
d2 = xvec[,2]@a-(a€xvec[,2])"
f = exp(-(dl/k)##2 -(d2/k)##2

f =

-

/(k##2)/1.772453851;

—

fl:,1;

run adrad(k,f,alpha,kmat);

/* Calculate the adaptive radii */
/* Create the sample points for estimation */

kmat = repeat(kmat, (s+1)##2) ;

x = (0:8)/s;
y = (0:8)/s;
x = repeat(x ,s+l,1);
y = shape(repeat(y ,1,s+l),(s+1)##2);
qrid=xﬁl i
/* use the tableau method to estimate
densities */
dl = xvec[,1]€j(1, (s+1)##2,1)-(algrid[,1]) ;
d2 = xvec[,2]@j(1,(s+1)##2,1)-(algrid[,2])";
d = exp(-(dl1##2)/(kmat##2)

-(d2##2)/ (kmat##2) )/ (kmat##2)/1.77245381;
prob = grid || d[:,]";

create probs from prob [colname = {x y prob}];
append from prob [colname = {x y prob}];
finish;

run adkern(0.06,50,-1.5); /* An example run */
quit;

noooaoaoaOOOOOOONNOOQ0OQC0OO0O

Listing 4

Library for kernel estimation

Chris Brunsdon June 1994

Simple kernel algorithm

Subroutine KERN(X,N,RADIUS,XS,NS,LS,CVL)

X -> Complex array of incidence point locations

N => Dimension of X

RADIUS -> Kernel Bandwidth

XS -> Sampling set of points at which kernel density

valuated

NS -> Dimension of XS and LS
LS -> Likelihoods To be evaluated at the XS points.
CVL -> Cross Validation Likelihood of the model

subroutine kern(x,n,radius,xs,ns,ls)
integer n, ns
real radius, r, ls(ns), kerfun, f
complex x(n), xs(ns)
doi=1, ns

ls(i) = 0.0

do j=1,n

r = abs(xs(i)-x(3j))

f = kerfun(r,radius)

1s(i) = 1s(i) + £

end do
1s(i) = 1s(i)/n
end do
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return
end
c
c function CVL(X,LS,N,RADIUS)
c
c X -> Complex array of incidence point locations
c LS -> Likelihood at each of the X's
c N -> Dimension of X and LS
c RADIUS -> Kernel Bandwidth
c CVL -> Cross Validation Likelihood of the model
c
c
§unction cvl(x,1ls,n,radius)
integer n
real radius, r, cvl, kerfun, scl, f, ls(n)
complex x(n)
cvl = 0.0
doi=1,n
1s(i) = 0.0
do j =1, n
r = abs(x(1i)-x(j))
f = kerfun(r,radius)
1s(i) = 1ls(i) + £
if (i.eq.j) scl = £
end do
cvl = cvl+log((ls(i)-scl)/(n - 1))
ls(i) = 1s(i)/n
end do
return
end
c
c
¢ Kernel function...change as needed.
c
c

function kerfun(r,radius)
real kerfun, r, radius, temp
temp = r/radius
if (temp .lt. 3.0) then
kerfun = exp(-
(r/radius)**2)/(radius**2*1,.772453851)
else
kerfun = 0.0
end if
return
end

Adaptive kernel algorithm
subroutine KERNA(X,N,RADIUS,XS,NS,LS)

X =-> Sample grid. Complex array

N -> Dimension of X and RADIUS

RADIUS -> Bandwidth. In this case an array also.
XS ~> Evaluation point complex array

NS -> Dimension of XS and LS

LS -> The computed likelihoods

aonaonoanoaoaoaaoaa0aaan

subroutine kerna(x,n,radius,xs,ns,l1s)
integer n, ns
real radius(ns),r,ls(ns), kerfun, f
complex x(n), xs(ns)

doi=1, ns

1s(i) = 0.0

doj=1,n
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r = abs(xs(i)-x(3))
f = kerfun(r,radius(j))
1s(i) = 1s(i) + £

end do
1s(i) = 1s(i)/n
end do
return
end
c
¢ Subroutine to create a sampling grid
c
c subroutine SGRID(CORNER,SIDE,GRID,M,N,MTN)
c CORNER -> Complex. Bottom left corner of grid
c SIDE -> Side (or lattice length) of grid
c GRID -> A complex array of dimension MTN. This will
be the
c
grid.
c M -> Grid width
c N -> Grid Height
c MTN -> M times N !
c
subroutine sgrid(corner,side,grid,m,n,mtn)
integer m,n
complex corner, grid(l:mtn)
real side
doi=1,m
do j =1, n
grid((i-1)*n+j) = corner+side*cmplx(i-1,j-1)
end do
end do
return
end
c
c
c subroutine FIXRAD(LS,AR,N,RADIUS,POWER)
c
c LS -> Likelihood function from a fixed kernel method
c AR -> Adaptive radius
c N -> Dimension of LS and AR
c RADIUS -> Radius from initial fixed kernel estimate
c POWER -> Exponent on correction term
c
c
subroutine fixrad(ls,ar,n,radius,power)
integer n
real gml, ls(n), ar(n), radius, power
gml = 0.0
doi=1,n
gml = gml + log(ls(i))
end do
gml = exp(gml/n)
doi=1,n
ar(i) = radius*(ls(i)/gml)**power
end do
return
end
c
c function ACVL(X,LS,N,RADIUS)
c
c X -> Complex array of incidence point locations
c LS -> Likelihood at each of the X's
c N -> Dimension of X and LS
c RADIUS -> Kernel Bandwidth array
c CVL -> Cross Validation Likelihood of the model
c
c

function acvl(x,1ls,n,radius)
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integer n
real radius(n), r, acvl, kerfun, scl, £, ls(n)
complex x(n)
acvl = 0.0
doi=1,n

1s(i) = 0.0

do j=1,n

r = abs(x(i)-x(3j))

f = kerfun(r,radius(j))

ls(i) = 1s(i) + £

if (i.eq.j) scl = f

end do
acvl = acvl+log((ls(i)=-scl)/(n - 1))
1s(i) = 1s(i)/n
end do
return
end

Listing 5.
Adaptive Bandwidth Kernel Density Estimation

Chris Brunsdon May 1994

noaao0n0n

integer n, dmax

complex x(1:500), xs(1:500), centre, simplex(4),
step(4)

complex grid(1:400)

real east, north, radius, 1s(1:500), ar(1:500), cvl,
acvl

real fcentre, fsimplex(4), £, gl(1:400)

Main section -~ read data into a complex variable

anoan

open (1,file='redwood.dat')
open (2,file='kernel.dat’')
n=20
100 read (1,*,end=110) east,north
n=n-+1
x(n) = cmplx(east/10.0,north/10.0)
xs(n) = x(n)
go to 100
110 continue

Sets up a four-point simplex

noaan

centre = (0.05, -1.5)
step(1l) = (0.0,0.1)
step(2) = (0.01,0.0)
step(3) = (0.0,-0.1)
step(4) = (-0.01,0.0)
doi=1, 4
simplex(i) = centre + step(i)
fsimplex(i) = f(simplex(i),x,1ls,ar,n)
end do
fcentre = f(centre,x,ls,ar,n)
c
c
c Hooke and Jeeves maximisation method for alpha and
initial
c bandwidth.
c
do while (abs(step(l)).gt.l.0e-
5.or.abs(step(2)).gt.1.0e-4)
fmax = fcentre
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c
c

c Finally evaluate the density estimates at sampling

C. Brunsdon
dmax = 0
doi=1, 4
if (fsimplex(i).gt.fmax) then
fmax = fsimplex(i)
dmax = i
end if
end do
if (dmax.eqg.0) then
doi=1, 4
step(i) = step(i)/2.0
simplex(i) = centre + step(i)
fsimplex(i) = f(simplex(i),x,1ls,ar,n)
end do
else
doi=1, 4
simplex(i) = simplex(i) + step(dmax)
fsimplex(i) = f(simplex(i),x,1ls,ar,n)
end do
centre = centre + step(dmax)
fcentre = f(centre,x,1s,ar,n)
end if
end do

points on a

c
grid
c
c
call sgrid((0.025,0.025),0.05,grid, 20,20, 400)
call kerna(x,n,ar,grid,400,q9l)
do i=1, 400
write (2,*) real(grid(i)), imag(grid(i)), gl(i)
end do
end
c
c
¢ Cross validation likelihood function used in above
program
c
c

function f(z,x,ls,ar,n)
real radius, pwr, ls(n), ar(n), cvl, acvl
complex z, x(n)

radius = real(z)

pwr = imag(z)

xx = cvl(x, 1ls, n, radius)

call fixrad(ls, ar, n, radius, pwr)

f = acvl(x,1ls,n,ar)

return

end



