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Abstract

This thesis is concerned with the theory of Diophantine approximation from the point of
view of measure theory. After the prolegomena which conclude with a number of conjectures set
to understand better the distribution of rational points on algebraic planar curves, Chapter 1
provides an extension of the celebrated Theorem of Duffin and Schaeffer. This enables one to
set a generalized version of the Duffin—Schaeffer conjecture. Chapter 2 deals with the topic of
simultaneous approximation on manifolds, more precisely on polynomial curves. The aim is
to develop a theory of approximation in the so far unstudied case when such curves are not
defined by integer polynomials. A new concept of so—called “liminf sets” is then introduced in
Chapters 3 and 4 in the framework of simultaneous approximation of independent quantities.
In short, in this type of problem, one prescribes the set of integers which the denominators of
all the possible rational approximants of a given vector have to belong to. Finally, a reasonably
complete theory of the approximation of an irrational by rational fractions whose numerators
and denominators lie in prescribed arithmetic progressions is developed in chapter 5. This
provides the first example of a Khintchine type result in the context of so—called uniform

approximation.
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Prolegomena

Throughout, ¥ : RT — RT will denote a function which tends to zero at infinity and will be

referred to as an approzximating function.

Approximation in dimension one. Some of the main objects of study in Diophantine
approximation are the set W (W) of ¥—well approximable numbers and its numerous generali-

sations. The set is defined as follows :
W) = {zc0,1] : [gz| < ¥(q) forim. ¢ € N}.

Here and throughout, i.m. stands for infinitely many and | .| denotes the distance to the

nearest integer; that is,

| = miplz —pl M)

for any real number x. There is no loss generality in restricting the definition of the set W ()
to the unit interval as the distance function defined in (1) is clearly invariant by translation by
any integer. In what follows, to avoid cumbersome notation, the set W(q — ¢~7), where 7 > 0
is a real parameter, will be more conveniently denoted by W (7).

For any 7 > 1, it is relatively easy to show that W(7) is non—empty, for instance with
the help of the theory of continued fractions. A much stronger result has long been known :
Joseph Liouville (1809-1882) proved in [149] that the intersection () -, W (7) is non-empty.
An element in this intersection is referred to as a Liouville number, the most famous example

of which is the Liouville constant Y 2 107™.

A real number z € [0,1] is well approximable (resp. very well approximable) if = €
W(q — (cq)_l) for all ¢ > 1 (resp. if z € W(q — q_l_e) for some € > 0). It is badly ap-

proxzimable if it is not well approximable; that is, if
inf . 2
31211Q||Q$H>0 (2)

The set Bad of badly approximable numbers admits an easy characterisation with the help of
the theory of continued fractions : a real number lies in Bad if, and only if, its partial quotients

are uniformly bounded above (see, e.g., [136]).



One of the most fundamental results to the understanding of the set W(¥), and indeed
in the theory of Diophantine approximation, is due to Johann Peter Gustav Lejeune Dirichlet
(1805-1859).

Theorem 0.0.1 (Dirichlet, 1842). For any real number x and any integer Q > 1, there exists
an integer ¢ > 1 such that

1
llgz| < a and 1<¢g<Q. (3)

Unlike what its simple formulation might lead one to expect, Theorem 0.0.1 has far-reaching
consequences in many areas of mathematics. In proving this result in [72], Dirichlet popularized
the Schubfachprinzip, also known as pigeon—hole principle, or principe des tiroirs, or principio
dei casseti, or principio de las cajilas, or principiul cutiei, or skatulya—elv, or lokeroperiaate,

2. The latter simply states that, if Q objects are placed in Q — 1 boxes,

or zasada pudelkowa
then one of the boxes must contain at least two objects. It is remarkable that such a simple
argument leads to an optimal result uniformly in all real numbers. Indeed, as already observed
by Alexandre Iakovlevitch Khintchine (1878-1959) in 1926, if the right-hand side of the first
inequality in (3) was to be replaced by 1/(2Q), then Theorem 0.0.1 could hold only when x
is rational — see [132, 194]. On the other hand, if one considers the same inequality with
the right-hand side replaced with ¢/Q for some fixed ¢ in the interval (1/2,1), then the real
number x has to be badly approximable (see [51, Chap. 1, p.22] and a generalisation of this

result in [66]).

It should be clear from the definition of the distance function (1) that for any real number z
and any integer ¢ > 1, there exists an integer p such that |z —p/q| < 1/(2q). Denoting by ¥
the constant function equal to 1/2, this proves that W(\Ill /2) = [0,1]. The following trivial
corollary of Theorem 0.0.1 improves on the latter showing that W (1) = [0, 1].

Corollary 0.0.2. For any real number x, there exists arbitrarily large values of ¢ > 1 such
that

llqz|| < L (4)

LS}

In 1891, Adolf Hurwitz (1859-1919) strengthened Corollary 0.0.2 by proving in [120] that the
statement remains true with (\/Eq) in place of ¢~! in the right-hand side of (4). Furthermore,
the constant /5 is optimal in the sense that there exist real numbers 2 which do not satisfy the
inequality |[qz| < (V5 + e)q)_1 infinitely often for any given € > 0. This is for instance the
case when 1z is chosen as the golden ratio ¢ = (14+/5)/2, which is therefore badly approximable.
If the constant /5 was to be replaced by 3, then the inequality [gz| < (3¢)”" would still hold
true infinitely often for all but countably many values of x. The study of the optimal constants
that can be chosen in the right—hand side of inequality (4) for the result to hold up to countably

many exceptions gives rise to the Lagrange spectrum — see [62] for further details.

2This list is drawn from [51, Chap. 1].



While Hurwitz’s theorem implies that the set W (1) \W (1 + €) is non—empty for any € > 0,
another notable result in this direction is the celebrated Roth’s Theorem [164], which shows

that algebraic numbers are not very well approximable.

Theorem 0.0.3 (Roth, 1955). Let o be an algebraic number. Then, for any ¢ > 0, the
inequality

1
llqall < Tte (5)
q
admits only finitely many solutions in integers q > 1.

A far-reaching generalisation of Theorem 0.0.3 has been given by Schmidt in the form of his
Subspace Theorem [173] (see also [45, 52, 200] for surveys of some of the numerous consequences
of this result). However, determining an effective version of Theorem 0.0.3 (that is, a bound
for the largest solution ¢ to (5) in terms of o and €) remains a very topical unsolved problem in
Diophantine approximation. Another generalisation of Theorem 0.0.3 due to Waldschmidt [193,
p.260] seems beyond reach at the moment (see also [21, § 2.1]) :

Conjecture 0.0.4 (Waldschmidt, 2004). Assume that U is a monotonic approximating fun-

ction such that 352, W(q) < co. Then no irrational algebraic number lies in W ().

Approximation in higher dimensions. In higher dimensions, the most general version of
the set W(¥) can be defined as follows : given integers m,n > 1, let W (m,n, ¥) be the set of

simultaneously W—approximable linear forms in m variables in dimension n, that is,
W(m,n, ) :={(21,...,2n) €[0,1]™" : Yi=1,...,n, ||g.z;|]| < ¥(q|) forim. g€ Z™},

where | .| denotes the infinity norm. Here again, there is no loss of generality in restricting
the definition of W(m,n,¥) to the unit cube [0,1]™". The set S, (¥) of simultaneously ¥—
approximable vectors in dimension n then corresponds to W(1l,n,¥) and the set L, (¥) of
dually U—-approximable vectors in dimension m to W(m, 1, ¥). To avoid cumbersome notation,
the set W(m,n,q+— q~7) (resp. Sn(¢— ¢ "), L, (g — g~ 7)), where 7 > 0 is a real parameter,
will be more conveniently denoted by W(m,n,7) (resp. by S, (1), Ly, (7).

Dirichlet’s theorem (Theorem 0.0.1) can be generalized in this context with the help of
Minkowski’s Linear Forms Theorem.

Theorem 0.0.5 (Minkowski’s Linear Forms Theorem, 1891). Let X = (21,...,&,) € R™ be
a square real matriz and ci,...,c, be n positive real-numbers.

Then, there exists a non—zero integer vector q € Z™ such that
lg.x1| <c1 and |q.xi| <c¢ (2<i<n)

provided that ¢y . ..c, > | det X]|.

Corollary 0.0.6. Given any real matriz X := (1,...,%y) € [0,1]™" and any integer Q > 1,

there exists an integer vector q € Z™ such that

lg-@sl| < Q™™™ and 1<|q|<Q



foralli=1,... n,.
This corollary trivially implies the following one :

Corollary 0.0.7. Given any real matric X := (x1,...,Tn) € [0,1]™", there exist infinitely

many non-zero integer vectors q € Z™ such that
gzl < |q|~™/"

foralli=1,...,n,. In other words, W(m,n,m/n) = [0,1]™", whence in particular S, (1/n) =
[0,1]™ and L, (m) = [0,1]™.

The deduction of Corollary 0.0.6 from Theorem 0.0.5 can for instance be found in [57,
Chap. 1, Theorem VI]. However, Corollary 0.0.6 can also be proved with the help of the pigeon—
hole principle (i.e. with a box—counting argument) — see, e.g., [108, 174] for further details.

In view of Corollary 0.0.7, the concept of badly approximable numbers may easily be gene-
ralized to higher dimensions in the following way : the set Bad(m,n) of n badly approzimable
linear forms in m variables is the set of all those matrices X := (@1,...,%y) in [0, 1]™" such
that

inf i m/n | gl > 0. 6
et oy D g™ ||q-z4| (6)

Note that Bad(1,1) = Bad when n = m = 1. Furthermore, when n = m = 1, Hurwitz
Theorem guarantees that, for any real number z, the infimum appearing in (2) is always less
than 5~ 1/2. However, there is no known analogue of Hurwitz Theorem whenever mn > 1, even
if some upper bounds valid for all X € [0,1]™" have been established for the supremum over

all i = 1,...,n of the infima appearing in (6) — see, e.g., [174, Chap. 2].

0.1 Metric properties of the set of V—approximable points

In this section, A, will denote the n—dimensional Lebesgue measure (n > 1). For the sake of
simplicity of notation, set A := A;. A property will be said to hold for almost all x € R™, or,
for short, almost everywhere, if the n—dimensional Lebesgue measure of the set of points not

satisfying this property is null.

0.1.1 The Lebesgue Theory

In 1924, Khintchine [130] (see also [40, Chap. 1] and [136]) proved a beautiful zero—one law
enjoyed by the one—dimensional set W (¥) under the assumption of the monotonicity of the

approximating function.

Theorem 0.1.1. The following holds :

0 if Z;O:N/)(Q) < 0

A(W(D)) =
(wew) L oif 22,9 (q) = oo and ¥ is monotonic.



Theorem 0.1.1 provides very precise results regarding the behavior of almost all real num-

bers. Thus, for instance,
qig;fﬁ (log q) (loglog q) (logloglog q) ¢ |lqz|| = 0

for almost all x € R while

+

Jnf (1og ) (loglog ) (loglogloga)"*“ ¢ [lgz]| > 0

for almost all z € R and any € > 0.

The convergence part of Theorem 0.1.1 follows from a direct application of the Borel-Cantelli
Lemma from probability theory (see, e.g., [51, p.13]). Khintchine actually established the
divergent part of the result under the assumption of the monotonicity of the function ¢
q¥ (¢). The fact that the divergent part of Theorem 0.1.1 holds with the weaker assumption
on ¥ appearing therein emerged with the concept of a reqular system — see [13, 14] for details.

It should be clear on the one hand that Khintchine’s Theorem readily implies that the set
Uk>1 W(q 4 k) of very well approximable points has zero Lebesgue measure. This is
rather intuitive : given z € [0,1], an inequality of the form |z —p/q| < ¢=27¢ for integers
p,q > 1 and for € > 0 should give roughly (2 + €)N digits in the decimal expansion of & when
q has N > 1 digits. However, one has only 2N digits at one’s disposal when choosing p and q.
The fact that A (Uk>1 W(g+— qil’l/k)) = 0 confirms that this gain of information is indeed
“rarely” possible in t_he sense that it happens with zero probability.

On the other hand, Khintchine’s Theorem also implies that the set of well approximable
numbers, which is the intersection (1, W(q — (kq)fl), has full Lebesgue measure. In turn,
its complement, namely the set Bad,_has zero Lebesgue measure. Therefore, a “generic” real

number is neither badly nor very well approximable.

The Khintchine-Groshev® Theorem generalizes Khintchine’s Theorem to higher dimensions.

In full generality, it may be stated as follows :

Theorem 0.1.2. Let m,n > 1 be integers with mn > 1. Then

0 if o2y q" M (g)" < o0

Amn (W ) 7\11 =
(1.2 Loif 302, ™ M (9)" = oo

Here again, the convergence part is a consequence of the Borel-Cantelli Lemma. As for
the divergence part, Groshev [105] initially proved his result under the assumption of the
monotonicity of the function g — ¢™¥ (¢)". The redundancy of this assumption was established
by Schmidt [170, Theorem 2] whenever m > 3 and by Gallagher [98] whenever n > 2. The
remaining case m = 2 was solved only recently by Beresnevich and Velani [31], leading to the

statement given in Theorem 0.1.2.

3Very little biographical data can be found about Groshev, except that the initials of his first and middle
names are “A.V., that he worked for Moscow University and that he published papers in the 1930’s.



Together with Theorem 0.1.1, Theorem 0.1.2 implies in particular that Bad(m,n) has zero
Lebesgue measure for any integers m,n > 1. Also, the fact that the sets of approximation
W (m,n, ¥) satisfy a zero—one law is no coincidence. This ergodic property follows from their
invariance by translation by integer vectors. Thus, when proving the divergence part of Theo-
rems 0.1.1 and 0.1.2, showing full measure amounts to proving positive measure. Such ergodic

properties have been established for a large class of Diophantine sets — see, e.g., [26, 183].

Despite their generality, in the case of convergence, Theorems 0.1.1 and 0.1.2 do not provide
enough refinement to discriminate for example between the two zero—Lebesgue measure sets
Sp (T +¢€) and S, (1) for any € > 0 with 7 > 1/n, although one would expect the former to
be “smaller” than the latter. This intuition can be confirmed with the help of the concept of

Hausdorfl measure and dimension.

0.1.2 Hausdorff measures and Hausdorff dimension

The Hausdorff dimension of subsets in the n—dimensional Euclidean space R"™ is an aspect
of their size that enables one to discriminate between sets of Lebesgue measure zero. This
concept was first introduced by Felix Hausdorff (1868-1942) and then developed by Abraham
Samoilovitch Besicovitch (1891-1970). It can be defined in the context of any metric space,
but such a generalisation will not be needed in what follows. The definitions and properties
of this subsection will therefore be given only in the Euclidean framework. For very general
accounts on the topic, see [40, 75, 94, 95].

In what follows, f will denote a dimension function; that is, a function f : R>g — R>g
such that f(0) = 0 which is monotonic in a neighbourhood of 0. For any U C R™ non—empty,
let d(U) :=sup{||lx —yl||, : «,y € U} denote its diameter (here, | .||, is the Euclidean norm).
Given a non-empty subset X C R"™, a collection of subsets {U;},.y such that 0 < d(U;) < p
for each i € Nand X Cc |

For any positive p, define furthermore

;en Ui 1s said to be a p—cover for X.

H£ (X) = inf {Z f(d(U;)) : {Ui},ey is a p-cover of X} : (7)
i=0

It is readily checked that the quantity Hg (X) increases as p decreases and therefore admits
a (finite or infinite) limit as p tends to 0. This limit, denoted by H/(X), is the Hausdorff
f-measure of X :

HI(X) = lim HS (X) = sup 1} (X).
p—0F p>0

In the case where f(r) = r* for some s > 0, H/ is more conveniently denoted by H* and
is referred to as the s—dimensional Hausdorff measure. If s is an integer, say k, it can be
shown (see, e.g., [94]) that the k-dimensional Hausdorff measure H* is proportional to the k—
dimensional Lebesgue measure \;. Furthermore, the constant of proportionality is the inverse

of the Lebesgue volume vy, of the unit ball in dimension k. In other words,
Hk == l/k_l)\k.

6



This relation confirms the fact that the concept of Hausdorff measure refines that of Lebesgue
measure.

If U € R" is non—empty, 0 < p < 1 and 0 < s < t, then d(U)" < p!=*d(U)*. It follows
from (7) that H! (X) < p*~*H} (X), so that when H*(X) is positive, H*(X) is infinite and
when H*(X) is finite, H*(X) vanishes. The Hausdorff dimension dim X of X is then defined
as the unique value of s at which H*® (X) “jumps” from infinity to zero (see Figure 0.1.2). In

other words,
dimX = inf{s>0: H*(X) =0}, (8)
in such a way that

oo if s < dim X,
0 if s > dimX.

o - {

Note that the Hausdorff dimension of a set in R™ always exists.

= |
| |
| |
H(X) 4+ !
|
|
l
|
H(X) 4 +
|
|
|
|
l
0 50 — dim X s

Figure 0.1: The Hausdorff measures of a subset X C R™.

Further details and alternative definitions of Hausdorfl measures and dimension can be

found in [94], where the following classical properties are also proved :

Proposition 0.1.3 (Properties of Hausdorfl dimension). Let n > 1 be an integer and E, F
and E; (j > 1) be subsets of R™.

o If E CF, thendimFE < dimF'.
o dimFE <n.

e The Hausdorff dimension of any countable set is zero and the Hausdorff dimension of

any open set in R™ is n.



o If A\, (E) >0, then dim E = n (the converse is false).
o (Countable stability) dim (U;; Ej) = sup dim E;.
Jj=1

Also, if X and Y are two subsets of any Euclidean spaces such that there exists a bi—Lipschitz
function f mapping X ontoY (this means that [ is bijective and f and its inverse are Lipschitz
continuous), then dim X = dimY := s and the s—dimensional Hausdorff measures of X andY

are proportional.

In view of (9), an upper bound for the Hausdorff dimension of X can be obtained by finding

a value of s at which H*(X) vanishes. When X is a limsup set, i.e. when X can be written as

X =limsup Xy = ﬂ U X;={xeR" : z e X, forim. i e N}
N—oo N=1i=N
for a sequence of sets X; C R™, a simple Hausdorff measure counterpart of the convergent case
of the Borel-Cantelli Lemma may be used to show that H*(X) = 0 (see, e.g., [76, Lemma 2.2]

for a proof) :

Lemma 0.1.4. With the previous notation, let
X={zeR" : xeX,; forim. i€ N}.

If, for some s > 0,
S d(X0)° < o,
i=1

then H*(X) = 0 and therefore dim X < s.

Finding a non—trivial lower bound for the Hausdorff dimension of X C R” is usually much
more difficult. Various tools have been introduced to this end : these include the concept of
ubiquity due to Dodson and alii [78] (see also [40, 71, 73]), which reduces in dimension one
to the concept of regular systems introduced by Baker and Schmidt [10] (see also [75]) or else
the Mass Distribution Principle, which is very convenient when working with Cantor-like sets
(see [95, Chap. 1 & 4]).

0.1.3 The Hausdorff Theory

Vojtéch Jarnik (1897-1970) was the first to apply the concept of Hausdorff dimension to
Diophantine sets in order to estimate their “sizes”. Thus, he proved in 1928 in [124] with
the help of the theory of continued fractions that dimBad = 1. The corresponding result
for Bad(m,n) (m,n > 1), namely that dim Bad(m,n) = mn, was proved only in 1969 by
Schmidt [172] thanks to his now famous topological game. Since the mn—dimensional Haus-
dorff measure is proportional to the mn—dimensional Lebesgue measure, it follows from the
fact that A\, (Bad(m,n)) = 0 that

) 0 if s> mn,
H*(Bad(m,n)) =
oo if0<s<mn.



In 1931, Jarnik [126] studied the Hausdorff dimension of the one-dimensional set Sy (7) when
7 > 1. Later, in 1934, Besicovitch [44] undertook the same study in higher dimensions. Their

result is now known as the “Jarnik—Besicovitch Theorem”.

Theorem 0.1.5 (Jarnik—Besicovitch, 1931/1934). For any n > 1 and any T > 1/n,

n+1

dim S, (1) = =

Theorem 0.1.5 confirms the intuition that the “size” of the set S,, () should be decreasing
with 7. For example, dim &; (2) = 2/3 while dim & (3) = 1/2. However, Theorem 0.1.5 does
not give any information about the Hausdorff measure of the set S, (7) at the critical value
s=(n+1)/(1+ 7). Jarnik [125] answered this question in dimension one by establishing the

following general result :

Theorem 0.1.6 (Jarnik, 1931). Given an approzimating function ¥ and a dimension function

f such that g — q~1f(q) is a decreasing function tending to infinity as q tends to 0,

0 i Xaf (M2) <

MWD = e g (0 —

Thus, Theorem 0.1.6 implies that for any 7 > 1,

H2/ (W (1)) = oo.

But it actually says a lot more. To see this, consider the two approximating functions given by

1 1
Uy(q) = 5 and Us(q) = 3
qlog”q qlog” q

for all ¢ > 2. It easily follows from Theorem 0.1.6 that
dim(W(¥,)) = dim(W(¥y)) = 1.

Khintchine’s Theorem shows furthermore that W (¥, ) and W (¥3) are both of Lebesgue measure
zero. Let now f denote the dimension function defined for x € (0,1) as

f(z) = —zloguz.

Then,

qu<‘1’1@>> _ ZM N,

= qlog’q

whereas

= e e— < oQ.
— qlog”q

o ~ 9210 og3/2
S () - 52 g (q10"")
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It thus follows from Theorem 0.1.6 that
HI(W(¥,)) = o0 and HY(W(y)) = 0;

that is, Jarnik’s Theorem makes it possible to distinguish between sets which share the same
Hausdorff dimension s and the same s—dimensional Hausdorff measure.

Another feature of Jarnik’s Theorem worth pointing out is that the case when H/ is pro-
portional to the Lebesgue measure ) is excluded by the assumption ¢~ f(q) — oo as ¢ tends

to 0. This situation is nevertheless already covered by Khintchine’s Theorem.

In the general case of approximations of linear forms, an analogue of the Theorem of Jarnik—
Besicovitch (Theorem 0.1.5) has been established by Dodson [74]. The statement of the result
requires the definition of the lower order Ay of 1/¥, where the approximating function ¥ is

assumed to be non—vanishing. The quantity Ay is defined as follows :

Ay = liminf (—k’gw> : (10)
q—>00 log q

Note that Ay is non—negative when ¥(q) tends to 0 as ¢ tends to infinity.
Theorem 0.1.7 (Dodson, 1992). Assume that the approximating function U is decreasing.
Then, given integers m,n > 1,

(m—l)n—kmﬁ” if A\ > TEn

n

. m-+n
mn if Ay < TEEE

dim W(m,n,¥) =

Defining the upper order of the function 1/¥ as a natural analogue to the lower order (10),
Theorem 0.1.7 happens to be a particular case of a result due to Dickinson and Velani [71] when
the lower and the upper orders of 1/¥ coincide. Indeed, Dickinson and Velani have provided a

Jarnik—type result (that is, a result similar to Theorem 0.1.6) for systems of linear forms.

Theorem 0.1.8 (Dickinson & Velani, 1997). Let m,n > 1 be integers. Let f be a dimension
function such that ¢~™" f(q) — o0 as ¢ — 0 and q — ¢~ f(q) is non—increasing. Assume
that the approzimating function U is such that ¢V (q)™ — 0 as ¢ — oo and that g — ¢V (q)"™
is non—increasing. Furthermore, suppose that q — ¢ tDW(q)~ "=V (W (q)/q) is non—
increasing. Then

0 ifS < oo,

HE (W (m,n, ¥)) =
0 z'fE{; = oo,

where

. \y —\m— n_ _m\n -
o = 31 (2 ) wigy-mtngrii,
g=1

Here again, the case when H/ is proportional to the mn-dimensional Lebesgue measure
is excluded by the assumption ¢~™"f(q) — oo as ¢ — 0. Furthermore, the condition that
g™V (q)™ — 0 as ¢ — oo is natural in the sense that, if it was not met, then the Khintchine—

Groshev Theorem would ensure that W(m,n, V) has full measure. Also, it is worth pointing
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out that, under the assumptions of Theorem 0.1.8, there is no dimension function f such that

the f-Hausdorfl measure of W (m,n, V) is positive and finite.

0.1.4 The Mass Transference Principle and other Transference Theorems

Given the various forms of approximations (e.g., simultaneous or dual approximations) and the
various theories developed to understand them (e.g., the Khintchine-Groshev or the Jarnik—
Besicovitch theories), it is natural to ask whether information about one kind of approximation
or theory can lead to information about another. In full generality, a result of such a type is
referred to as a Transference Theorem. Two of them are mentioned in what follows for their
generality and their importance. Some others can also be found in the literature, e.g. the

so—called Inhomogeneous Transference Principle [30].

Transference Theorems for dual approximation. It is sometimes possible to find solu-
tions to Diophantine inequalities for a given set of linear forms from inequalities satisfied by a
related set of linear forms. Results of this kind were first discovered by Khintchine [131, 133]
and later developed by Dyson [84] and Jarnik [127]. A synthetic and more general result ini-
tially due to Mahler [152] is now presented. It can be found in [57, Chap V] — see also [8,
Appendix]. First, some notation is introduced.

Let m,n > 1 be integers. Consider n linear forms in m variables (L;) defined for all

q=(q1,---,qm) € R™ by

1<j<n

Li(q) = Y wjigi (1<j<n),
i=1

where X = (2;)1<j<n,i<i<m is a real matrix. Denote by (M;),,,, the corresponding trans-
posed system of m linear forms in n variables, that is, the system of linear forms defined for
all u = (u1,...,u,) € R” by

M;(u) = ijiuj (1<i<m).

Jj=1

Theorem 0.1.9. Assume that there exists a non—zero integer vector q € Z™ such that
ILj@l<C and |l <Q

forallj=1,...,n, where C and Q are real constants satisfying the inequalities 0 < C < 1 < Q.

Then, there exists a non—zero integer vector uw € Z" such that
[Mi(u)|| <D and  |u| <U
foralli=1,...,m, where
D= (l—1)Q (=W/=Ncn/t=1) 1 = (- 1)Qm/ (-~ (m=1/0-1)

and

l=m+n.
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An easy consequence of Theorem 0.1.9 is that an m x n matrix X with coeflicients in [0, 1]

lies in Bad(m,n) if, and only if, its transpose X T lies in Bad(n,m) (see [57, p.78] for details).

The Mass Transference Principle. Another duality in Metric Diophantine Approximation
deals with the Khintchine-Groshev theory on the one hand and the Jarnik—Besicovitch theory
on the other. In details, the former is concerned with metrical statements relating the size of
Diophantine sets to their Lebesgue measures while the latter relates them to their Hausdorff
measures and dimensions. A fundamental result to the understanding of this duality is the
recent Mass Transference Principle due to Beresnevich and Velani [27]. Before stating it, an
additional piece of notation is introduced : given a dimension function f and a ball B(z,r)
with radius 7 > 0 in R centered at € R™, let B denote its dilate by f; that is,

B =B (m, f(r)l/") .
In the case when f(r) = r® for a given s > 0, write B® instead of B'.

Theorem 0.1.10 (Mass Transference Principle, 2006). Let (By),~, be a sequence of balls in
R™. Let f be a dimension function such that v — r=" f(r) is monotonic and suppose that for

any ball B in R™,
H" (B N hmsupB,f) = H"(B).
k—o0

Then, for any ball B in R™,

HS (B ﬂlimsupB]j) = 1! (B).
k—oo

A surprising consequence of Theorem 0.1.10 is that Jarnik’s Theorem (Theorem 0.1.6) is
implied by Khintchine’s Theorem (Theorem 0.1.1), which in turn is a consequence of Dirichlet’s
Theorem (Theorem 0.0.1). This means in particular that the Lebesgue theory of limsup sets in
Diophantine approximation underpins the Hausdorff theory, which is counterintuitive inasmuch
as Hausdorff measures refine Lebesgue measure.

Another version of the Mass Transference Principle has been given in [28] to take into
account the case when one considers sequences of hyperplanes in place of balls. This enables
one to transfer Lebesgue measure statements regarding approximations of systems of linear
forms into Hausdorfl measure statements. As a consequence, Theorem 0.1.8 by Dickinson and

Velani becomes a corollary of the Khintchine-Groshev Theorem (Theorem 0.1.2).

0.2 Adding constraints on the approximants

The theory of Diophantine approximation has long been concerned with approximation of given
quantities when constraints are put only on the approximants. This is generally a difficult
problem which can be considered both from a metrical and a non—metrical point of view. For
instance, it has been proved in [153] that for any 7 < 1/3 and any irrational z, the inequality

|lpz|| < p~7 has infinitely many solutions in primes p. This best known result stands in sharp
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contrast with its metrical counterpart which asserts that such approximations are possible
almost everywhere for any 7 < 1.

In full generality, when considering questions in Diophantine approximation with restricted
rational approximants, two problems of a different nature emerge : those in which the numera-
tors and the denominators vary in prescribed but independent sets and those in which they vary
in dependent sets. A famous example related to the latter case is the Duffin—Schaeffer conjecture
(see subsection 0.2.2), where the rational approximants are required to be irreducible. As for the
former case, a survey of some general results may be found in [113]. In what follows, the focus
will rather be on one particular type of constraints, namely that of uniform approximation. In
short, in this type of approximation, one prescribes the interval in which the denominators of
the rational approximants satisfying the desired Diophantine inequalities lie. This amounts to

controlling their growth.

0.2.1 Uniform and asymptotic approximations

There is a fundamental difference between Dirichlet type theorems (Theorems 0.0.1 and 0.0.6)
and their corollaries (Corollaries 0.0.2 and 0.0.7). Indeed, while the former claim that an
inequality involving a rational with denominator bounded by an integer Q > 1 happens for all
@ > 1, the latter state something much weaker, namely that the inequality under consideration
is realized for arbitrary large values of @ > 1 (with ¢ = @). In other words, the former impose
the constraint that the occurrences of a type of approximation should not be too lacunary
while the latter just ask for there to be infinitely many solutions to some inequality. Given an
irrational £ € R, this motivates the introduction of its asymptotic irrationality exponent w(§)

and of its uniform irrationality exponent &(§) respectively defined as follows :

w(é) = sup{w >0: [|¢¢| < Q™" and 1 < ¢ < Q for arbitrarily large values of @ > 1}
(11)

@(&) :==sup{w>0:[j¢¢| Q™ and 1 < ¢ < Q for all Q > 1 large enough} . (12)

Thus, an upper bound for the measure of irrationality w(&) provides a lower bound for ||¢&||
in terms of the integer ¢ > 1. In some cases, the value of w(&) can be explicitly determined. For
instance, the Liouville numbers are precisely those irrationals £ for which w(§) = co and Roth’s
Theorem (Theorem 0.0.3) amounts to claiming that w(£) = 1 for any £ algebraic irrational.
Furthermore, Khintchine’s Theorem implies that w(£) = 1 for almost all reals £. Also, for any
7 > 1, the theory of continued fractions provides an easy way to exhibit an element in W(7)
which is not in W (7 + €) for any € > 0. This shows that the spectrum {w(€) : £ € R\Q} of w
is the interval [1, +o0].

When € is irrational,

w(§) 2 w(§) =2 1.

Moreover, since Dirichlet’s Theorem cannot be improved uniformly in £ € R\Q (see the dis-
cussion held after Theorem 0.0.1), this shows that &(§) = 1 for all £ € R\Q. The relevance of
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introducing a function constantly equal to one when the argument is irrational appears clearly

when considering generalisations of the functions w and @ to higher dimensions or degrees.
More precisely, let n > 1 be an integer and £ be an irrational. There are at least three

natural ways to extend the definitions of the exponents of irrationality (11) and (12) to more

general forms of approximation :

e One can first consider approximations of small linear combinations with integer coeffi-
cients of the successive powers 1,&,...,£" of £&. With this in mind, define the quantity

wy (€) as follows :

wp(§) == sup{w >0 : |P&)| < H™Y with P(X) € Z,[X]
and 1 < H(P) < H for arbitrarily large values of H > 1}, (13)

where Z,[X] denotes the ring of polynomials with integer coefficients and degree less
than or equal to n and H(P) is the height of the polynomial P(X) (that is, the maximum
of the moduli of its coefficients). The definition of the function w, first originated in
Mabhler’s classification of real numbers — see [150, 151] and [51, Chap. 3].

e A second possibility is to consider approximations of the irrational £ by algebraic numbers

of degree less than n. This leads to the introduction of the following quantity :

wi(€) = sup{w* >0 : [ —al <H ! witha €A,
and 1< H(«) < H for arbitrarily large values of H > 1}. (14)

Here, A,, denotes the set of algebraic numbers of degree at most n and H(«) the naive
height of « (that is, the maximum of the moduli of its minimal polynomial over Z). The
inclusion of —1 in the exponent appearing in (14) is standard and is motivated by some
heuristics — see, e.g., [54] for further details. The definition of the function w;} originated

in Koksma’s classification [143] of real numbers (see also [51, Chap. 3]).

e Another way to generalize definition (11) is to consider simultaneous rational approxima-
tions to &,...,&". Thus, define

An(€) == sup {)\ >0 : |q§k|| <Q*

max |
1<k<n

and 1 < ¢ < @ for arbitrarily large values of Q > 1}. (15)

It is also convenient to work with the inverse of A, (£) which, in what follows, will be
denoted by

*

*(€) and w] (&) gives rise to the corresponding hat exponent
On(&), @f(&) and @) (). The latter are defined in the same way as in (13), (14) and (15)

n

Each of the quantities wy(§), w

with the exception that the inequalities under consideration are required to hold for all @ > 1
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(resp. for all H > 1) large enough. Further, set &/, (€) := 1/A,(€). It should be clear that
the functions wy,(§) and w¥ () are always less than their hat versions and that &/, (§) is always

bigger than w/ (£).

*

It is generally difficult to determine the values of the quantities w,(£),w?(§) and W/, (€)

Ak

(resp. of the quantities &, (£), @*(€) and &, (£)) for an arbitrary irrational £ and an integer

n > 1. However, Theorem 0.0.7 readily implies the inequalities
wn(€) = @n(§) 2n  and  w(§) <@, (§) <n.

It has been a longstanding problem posed by Schmidt (following the work initiated by Wirsing

(1931-) in [199]) to determine a similar estimate for the function wy :

Conjecture 0.2.1 (Wirsing, 1961). Given an integer n > 1 and a real number £ which is not

algebraic of degree at most n, wr(§) > n.

Conjecture 0.2.1 follows immediately from Dirichlet’s Theorem (Theorem 0.0.1) when n = 1.
It has also been settled in the affirmative by Davenport and Schmidt [64] when n = 2. The

case when n > 3 remains open.

The spectrum of the sextuple

(Wn(€), wn(€), wn(€), @n(€), Wr(€), wr,(€)) € R (16)

that is, the range of this vector as £ takes all irrational values, is far from being completely
determined. From a metrical point of view however, the situation is much clearer as it is known
(see [54, 194]) that, for almost all £ € R,

Many partial results or particular cases are known towards the determination of the spectrum
of (16) and the reader is referred to [54] and to the references therein for an almost exhaustive
account on the topic. For instance, it is known that &} (£) = 1 when £ is a Liouville number
(Laurent [148]), that & (£) < 2n — 1 whenever £ € R\A,, (cf. [54]) and that &/, (&) > [n/2] for
any irrational ¢ (Davenport & Schmidt [65]), where [.] denotes the ceiling function.

In the same way, the reader is referred to [54, 194] for an almost exhaustive account on the
many inequalities relating the components of the vector (16). In most cases, these transference
theorems are not known to be sharp. However, and the situation here is similar to that of
Conjecture 0.2.1, the case n = 2 is much better understood. The following remarkable results,

respectively due to Jarnik and Damien Roy, illustrate this fact.

Theorem 0.2.2 (Jarnik, 1938). For any { € R\A,,



Jarnik established Theorem 0.2.2 in [127] when taking an interest in the relations between
exponents of approximation related to systems of linear forms — see [127, 128, 129] and the
surveys [55, 56]. In 1969, Davenport and Schmidt [65] proved further that the hat exponent
W4 (€) is always bounded above by (3 4+ v/5)/2 for any real ¢ which is neither rational nor
quadratic. Roy [165, 166] has provided a very nice proof to show that this upper bound is

actually optimal :

Theorem 0.2.3 (Roy, 2003). There exists a countable family of real numbers £ which are

neither rational nor quadratic such that

B4(6) = - (17)

Roy also observed that, as a consequence of the Subspace Theorem, the real numbers

satisfying equation (17) must be transcendental.

It should be noted that the so—called parametric geometry of numbers very recently intro-
duced by Schmidt and Summerer [175, 176] has given new impetus to the theory of exponents
of approximation. Indeed, the tools developed by Schmidt and Summerer enable one to unify
many results in this theory in a unique framework and also to prove new ones (for instance,

new transference theorems) — see [167] for a very detailed survey on the topic.

0.2.2 The Duffin—Schaeffer conjecture

One of the most profound and fundamental conjectures in the Metric Theory of Diophantine Ap-
proximation was enunciated by Richard James Duffin (1909-1996) and Albert Charles Schaeffer
(1907-1957) in 1941. It is concerned with removing the assumption of the monotonicity of the
approximating function in the divergent part of Khintchine’s Theorem (Theorem 0.1.1). In
their seminal paper [83], Duffin and Schaeffer provided a counterexample to show that this
assumption is necessary in full generality. This led them to consider a modified version of the

set of U—well approximable numbers, namely
W'(¥) = {z€10,1] : |gz —p| < ¥(q) forim. p€eZ and ¢ € N with ged(p,q) = 1}.

An easy application of the Borel-Cantelli Lemma shows that W’(¥) has Lebesgue measure

zero when

- ¢(0)
Y 2L(g) < o,
q=1 4
where ¢ denotes Euler’s totient function. The conjecture of Duffin and Schaeffer states that

the divergence of this sum is a sufficient condition for the set W’ () to have full measure :
Conjecture 0.2.4 (Duffin & Schaeffer, 1941). Given any approzimating function U taking its

values in the interval (0,1/2),

o) =1 i Y M) - o (18)

q=1
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There is a natural probabilistic interpretation of Conjecture 0.2.4. To state it, denote by &,

the intersection with the unit interval of the union over all p of intervals of the form

(P‘I’(q) p, Y9
q

L with  ged(p,q) = 1. 19
. . . > ged(p, q) (19)

Let (Xq)qu be a family of random variables such that, for all ¢ > 1, X, equals 1 (and 0
otherwise) if a random variable U uniformly distributed in [0, 1] falls in &,. Thus, it is easily
seen that E(X,) = A (&) < ¥(q)¢(q)/q for all ¢ > 1, where < relates two quantities whose ratio
and its inverse are both bounded. Claiming that the divergence of the sum of the probabilities
E(X,) should ensure that any real number falls with probability one in the set W'(¥) comes
down to postulating some pairwise independence relation (or, at least, some pairwise non—
correlation relation) for the family of random variables (X) . Note in particular that there
would be no reason to believe that the random variables in this family should be pairwise
independent, and indeed no reason to state Conjecture 0.2.4, if the distribution of the invertible
elements in Z/gZ was not believed to distribute “uniformly enough” modulo ¢ for arbitrarily
large values of q.

If the family of random variables (Xq)qu was to be pairwise independent, then, for integers
r # s, the relation E(X,X;) = E(X,)E(X,) would yield the relation A(E, N Es) < A(E:)A(Es).
It is actually enough to prove a weaker form of the latter relation for the Duffin—Schaeffer

Conjecture to hold, namely that

MENE) < U(r)u(s) ED 2 (20)

T S

for non—zero integers r # s, where < denotes the usual Vinogradov symbol. Indeed, such an
estimate together with Gallagher’s zero-one law [97] for the set W’ (¥) (see also [113, §2.2])
would readily imply Conjecture 0.2.4 from a well-known result initially due to Erd6s and
Chang [61] which gives a partial converse to the Borel-Cantelli Lemma (see [51, p.125] for a
proof) :

Lemma 0.2.5. Let (&)
>0 A (&) diverges.
Then,

>0 be a sequence of A—measurable sets in [0,1] such that the sum

Zlgr,sgq A (57’ n 55)

q— o0 q—o0

A <limsup 5q> > limsup < (O her A (&) > )

Unfortunately, the relation of quasi-independence (20) does not hold in general for arbitrary
distinct integers r and s as explained in more detail in [25, §2]. In view of Lemma 0.2.5, the
hope is that it should hold on average over r and s.

In their seminal paper, Duffin and Schaeffer [83, Lemma II] used the elementary bound
AENES) < 4T(r)¥(s) (21)

valid for r # s to prove a weaker version of their conjecture :
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Theorem 0.2.6 (Duffin & Schaeffer, 1941). Conjecture 0.2.4 holds under the additional as-

sumption that
' iy (k) £
lim sup qu \I/(k)k > 0.
q—00 k=1

Later, Pollington and Vaughan [160] refined the estimate (21) to establish a higher dimen-
sional analogue of Conjecture 0.2.4 stated by Vladimir Gennadievich Sprindziik (1936-1987)
in [183]. Evidence is also given in the latter reference to show that the one-dimensional case

might be related to the Riemann Hypothesis.

As it stands, the Duffin—Schaeffer Conjecture has been proved under various additional as-
sumptions on the approximating function W. Thus, Erdés [91] established it in the case when
U(g) =0 or €¢/q for all ¢ > 1 and some e > 0. This was generalized by Vaaler [188] to the case
when ¥(q) = O (q_l). The best known results towards the conjecture involve a single extra—
divergence assumption on the approximating function. They are due to Haynes, Pollington and
Velani [117] on the one hand and Beresnevich, Harman, Haynes and Velani [25] on the other

and respectively read as follows :

Theorem 0.2.7 (Haynes & alii, 2012). If ¥ is an approximating function such that

i (w>1+6@(q) = 00

q=1 4
for some € > 0, then A (W'(¥)) = 1.

Theorem 0.2.8 (Beresnevich & alii, 2013). If there exists ¢ > 0 such that

- ©(q)¥(q) o

(c (loglog q) (log log log q))
then A (W'(T)) = 1.

The dimensional analogue of the Duffin—Schaeffer Conjecture is also proved in [117], namely
that the set W/ (¥) has full Hausdorff dimension if the sum in (18) diverges. Previously, it had
been established in [27] thanks to the Mass Transference Principle (Theorem 0.1.10) that a
Hausdorff measure version of the conjecture is implied by the original one. Also, the authors
of [117] have set out a programme to tackle the Duffin—Schaeffer Conjecture by making use of
the properties of dimension functions close to the Lebesgue measure. Theorem 0.2.8 should be

seen as a preliminary advance obtained in carrying out this programme.

One might wonder about the existence of a sufficient condition that would guarantee, without
any assumption of monotonicity or coprimality, that the one-dimensional set W (¥) should have
full measure. Catlin [59] provided the following version of the Duffin—Schaeffer conjecture in

this context :
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Conjecture 0.2.9 (Catlin, 1976). Given any approzimating function U, the set W (V) has full

Lebesgue measure as soon as

i U(q) max Yiat) = 0. (22)

t>1 gt

The maximum appearing in equation (22) admits a natural interpretation : it is related to
the length of the largest interval of the form (19) when one replaces p/q with any other rational
it is equal to.

Catlin claimed that his conjecture was equivalent to the Duffin—Schaeffer conjecture. How-
ever, Vaaler [188] found a mistake in Catlin’s proof in such a way that it is still unknown
whether the two statements are equivalent. It should also be noted that, in the same way as
for the Duffin—Schaeffer conjecture, a higher dimensional version of Conjecture 0.2.9 has been
established — see [21, 31].

0.3 Approximation on manifolds

An important and active field of research in Diophantine approximation is the study of the
intersection of the set W (m, n, ¥) with manifolds. This amounts to considering approximations
of dependent quantities, which induces major difficulties in the determination of the measure
theoretic structure of the underlying set of approximation. In most cases, the study is restricted
to the intersection of a given manifold with either the simultaneous set S, (¥) or the dual one
Loy (D).

In what follows, unless stated otherwise, the manifolds under consideration will be smooth
d—dimensional (d > 1) immersed submanifolds of Euclidean space R™ (n > 1) and will be taken
without boundary. Since the subject of interest is the measure theoretic properties of such
manifolds, it is possible to simplify further the problem by working locally. In turn, this means
that one may consider throughout and without loss of generality a smooth embedded manifold

M arising from a parametrisation map

fix=(x1,....2q) €U — f(z)=(fi(z),..., fnlx)) €R", (23)

where U is an open subset of R?; that is, M = f(U) and the partial derivatives of f exist at all
orders. The manifold is moreover analytic (resp. of class C* for some k > 0) if the coordinate
functions f1,..., f, are analytic (resp. of class C*). Even if it means shrinking further the open
set U, it may also be assumed without loss of generality that the manifold M is bounded.

For convenience, write S, (¥, M) := S, (¥) N M and L, (T, M) := L, (¥) N M. In the
same vein, define in the natural way the sets S, (7, M) and £L,, (7, M). It should be clear that
if the dimension d of the manifold is strictly less than the dimension n of the ambient space,
the Lebesgue measures of the sets S, (¥, M) and £,, (¥, M) will always be null irrespective
of the approximating function ¥. It is therefore natural to work with the induced Lebesgue
measure on M. The latter, which will be denoted by A4, is defined as follows : for any subset
ACM,

Ai(A) 1= /M xa(E)dV,
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Here, x4 is the characteristic function of the set A and dV is the volume element for the
induced Riemannian metric on M which can be expressed in terms of the first fundamental
form associated to M — see [40, §1.4] for details. For instance, in the case of a planar curve

I" parametrized by
I = {x(t) = (z1(t), z2(t)) : t €I} (24)

on a real interval I (here, d = 1 and n = 2), the induced Lebesgue measure of an arc joining

the points x(tg) and x(¢1) is nothing but the usual arc-length of I' between these two points.

A fundamental geometric property of the manifold M which plays an important role in
problems of Diophantine approximation is its curvature x. The latter is a function which
associates to each point on the manifold a real number that quantifies the “flatness” of M
around that point. The general definition of the curvature is involved and depends on the
so—called second fundamental form and on the tangent and normal spaces at a given point
& € M. For an exhaustive account on the topic, the reader is referred to [142, Chap. IX]. For
a more elementary one, see [40, §1.4]. The situation is however simpler for a planar curve T’
as in (24). Indeed, the idea of curvature renders in this case the concept of the derivative of
the angle between the curve and the tangent at a point. More precisely, the function x is then

given, for all ¢ € I, by the usual equation

K(t) = (825 (t) — 27 (D) (t). (25)

It is easily verified that if the curvature vanishes constantly on an interval, then the curve I'
reduces to a straight line on this interval. Also, as illustrated by formula (25), in the more
general situation of a smooth curve in dimension n > 1 (with d = 1), the curvature is closely

related to the determinant of the Wronskian matrix (di 1)/ dti)1 <ij<n’

0.3.1 Non—degenerate manifolds, extremal manifolds

Non—degeneracy. Generally speaking, the Diophantine properties of manifolds strongly de-
pend on whether the curvature vanishes or not. It is also convenient to work with a more
general concept of “non—flatness” known as non—degeneracy. The latter renders the idea that
the manifold, in a neighborhood of a given point, is “bent enough” not to be near any affine
subspace. In detail, M is non—degenerate at * € U if the partial derivatives of f at orders
up to some integer [ > 1 span R™. It is non—degenerate if it is non—degenerate at almost
every £ € U. Note that in the general case, the function f must be at least C? in order to
ensure that M is non—degenerate. It is not difficult to see that any connected and analytic real
manifold which is not contained in a hyperplane of R™ is non—degenerate. With the parametri-
sation (23), this amounts to claiming that the functions 1, f1,..., f, are linearly independent
over R (see [16, 141] for details).

Extremality. The concept of extremality is useful when trying to extend the classical results
of Khintchine and of Groshev (Theorems 0.1.1 and 0.1.2) to the simultaneous and the dual
sets Sy, (¥, M) and L, (T, M). In order to define it, first notice that the transference theorem
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stated in Theorem 0.1.9 easily implies that

U Su(ro M) = Lo (o M).

7—>% a>n

An element in this set is a very well approximable vector lying on M. By similarity with the
case of the Euclidean space R", the manifold M is said to be extremal if the set of very well
approximable vectors lying on it has zero Axs—measure.

The concept of extremal manifolds emerged from transcendental number theory. Indeed,
Mabhler, in connection with his classification of real numbers (see the definition of the exponent
wy, in subsection 0.2.1), conjectured in 1932 that the Veronese curve in dimension n > 1, viz. the
curve

Vnz{w:(x,xz,...,x") : z€R}, (26)

is extremal. This was proved in 1965 by Sprindzuk [182] who introduced on this occasion
the method of essential and inessential domains. It is clear from Sprindzuk’s proof that the
same result holds for a manifold parametrized by (23) if f1, ..., f, are polynomials with rational
coefficients and degrees at most n. The extremality of many other classes of manifolds has since
been established depending on their regularity and their curvature [18, 42, 77, 80, 145, 147, 171]
(see also [113, Chap. 9] and [183, 184, 191] for surveys).

In 1975, Roger Baker (1947—) set in [9] the conjecture that the Veronese curve V), in

dimension n > 1 is strongly extremal; that is, that for almost all € = (z,22%,...,2") € V,,

n
R i
hqrggéf qTe I |1qu’H > 0.
im

This means that there should be almost no very well “multiplicatively approximable” points
on V,,. While Bernik [38] proved Baker’s conjecture in 1984, Sprindzuk [184] extended it into

a very general statement known as the Baker—Sprindzuk conjecture.

Conjecture 0.3.1 (Baker—Sprindzuk Conjecture, 1980). Assume that the manifold M given
by the parametrisation (23) is analytic and non—degenerate. Then M is strongly extremal; that

is, for Ap—almost all € = (x1, 29, ..., 2,) € M,
n
CE 1+4€ X
lim inf ¢ Hl llqz:]| > 0.
i

Conjecture 0.3.1 was emphatically settled in the affirmative by Kleinbock and Margulis
in 1998 using the correspondence between multiplicatively very well approximable points on

manifolds and unboundedness of orbits of unipotent flows in homogeneous spaces of lattices :

Theorem 0.3.2 (Kleinbock, Margulis, 1998). Assume that the manifold M is C* for some

integer k > 2 and non—degenerate. Then M is strongly extremal.

Since a strongly extremal manifold is clearly extremal, Theorem 0.3.2 includes most of the

previously known results on extremality of manifolds. It has also been subsequently generalized
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to the case of submanifolds in affine subspaces [137], of complex manifolds [138], of p—adic ap-
proximation [140] and of so—called friendly measures [139]. Also, Beresnevich [15] provided
in 2002 a “classical” proof of the extremality of any manifold satisfying the assumptions of
Theorem 0.3.2.

Manifolds of Khintchine or Groshev type for convergence or divergence. A natural
question refining the concept of extremality is to determine whether a Khintchine-Groshev type
theory can be developed for the simultaneous (resp. the dual) set S,, (¥, M) (resp. £, (¥, M))
associated to a given extremal manifold M. In this respect, the manifold M is said to be of

Khintchine type for convergence if the convergence of the sum

oo

> u(gr (27)
q=1

implies that Ay (Sp (¥, M)) = 0. It is said to be of Khintchine type for divergence if the
divergence of (27) implies that S, (¥, M) has full measure under the assumption of the mono-
tonicity of the approximating function ¥. Since the manifold M has been chosen as being
bounded without loss of generality, even if it means renormalizing the induced measure A4, it
may be assumed that full measure for a subset A C M means here that Ay (A) = 1.

In a similar way, M is of Groshev type for convergence if the convergence of the sum

o0

> ¢ u(g) (28)

implies that A (£, (¥, M)) = 0. Tt is said to be of Groshev type for divergence if the divergence
of (28) implies that Ay (L£y, (¥, M)) = 1 under the assumption of the monotonicity of ¥. The
manifold M is of Khintchine—Groshev type if it is both of Khintchine type and of Groshev type

for convergence as well as for divergence. The following conjecture is enunciated in [40, §2.3] :

Conjecture 0.3.3 (Bernik & Dodson, 1999). A C* (k > 2) non-degenerate manifold M is of
Khintchine—Groshev type.

In view of this conjecture, the dual case is much better understood than the simultane-
ous one. Thus, Beresnevich, Bernik, Kleinbock and Margulis [22] established that any non—
degenerate manifold is of Groshev type for divergence. Beresnevich [15] proved the convergence
counterpart of this result. Thanks to a new approach involving the geometry of lattices in R™,
Bernik, Kleinbock and Margulis [41] had earlier shown that any smooth non-degenerate mani-
fold is of Groshev type for convergence for a stronger multiplicative version of approximation.
On another front, in the case of degeneracy, Ghosh obtained Groshev type results for a fairly
large class of affine hyperplanes — see [99, 100, 101].

For simultaneous approximation however, most results are partial and deal with particular
cases. Those concerning planar curves (that is, when d = 1 and n = 2) will be discussed in
details in subsection 0.3.3 below. In dimension d > 2, some manifolds M are known to be of
Khintchine type when they satisfy strong conditions of regularity and geometry (e.g., curvature

properties as in [80, 81] or convexity properties as in [40, §2.3]). Also, Bernik [33, 35] has proved
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that if M C R™ is defined as the cartesian product of k non-degenerate curves in R”, then
M is of Khintchine type for convergence if k¥ > n and for divergence if n = 2 and k > 4. Most
recently, Gorodnik and Shah [104] have established a Khintchine type theorem for varieties
defined as non-singular rational quadrics with the further constraint that the rational vectors
of approximation have to lie on the variety.

When a manifold is of Khintchine type for divergence, one may further ask about quanti-
tative estimates such as the number of solutions to the Diophantine inequalities under consi-
deration from a metrical point of view. Results of this kind are more difficult and restricted.
For instance, Harman studied the problem under the assumption that the approximating fun-
ction ¥ is such that S,, (¥) = R"™ and Dodson, Rynne and Vickers [81] provided an asymptotic
formula for the number of integer solutions to the inequalities defining the set S, (¥, M) for
almost all x € M. However, the strong curvature conditions imposed in this formula drastically
restrict the dimension d of the manifold M. See also [34] and [183, Chap. 2, §12] for other

results in the same mould.

The problem of determining the measure theoretic structure of the set S, (¥, M) is very
closely related to that of counting the number of rational points with bounded denominators
lying near the manifold M. Indeed, an upper bound accurate enough for such a counting
function leads to the convergent half of a Khintchine type result, while for the divergence half
an accurate lower bound has to be combined with the proof of the ubiquity of the rational points
under consideration (that is, the proof of their uniform distribution in some sense — see [40,
Chap. 5] for further details). A volume-based heuristic estimate indicates the result which is
to be expected : for a smooth manifold M of dimension d, the number of rational points with
denominators bounded by @ lying on a thickening of the manifold by € > 0 should be of the order
of magnitude of €~ ¢Q"*!. While simple counter examples may be found to refute this heuristic
(cf. [24, §1.4]), the result has been completely established for C? planar curves whose curvature
is bounded by two positive constants thanks to the work of Huxley [121, 122, 123], of Vaughan
and Velani [189] and of Beresnevich, Dickinson and Velani [24]. In higher dimensions, the best
known estimate is due to Beresnevich who, in the remarkable paper [16], proved the lower
bound of the heuristic estimate for analytic non—degenerate manifolds. As a consequence, he
obtained the following very general result, which covers in particular the case of non—degenerate

analytic curves in any dimension n > 2 (with d = 1) :

Theorem 0.3.4 (Beresnevich, 2012). For anyn > 2, any non-degenerate analytic submanifold
of R™ is of Khintchine type for divergence.

As for the convergence counterpart of this theorem, it has recently been announced that
Beresnevich, Vaughan, Velani and Zorin have been able to establish it when the dimension d
of the manifold is strictly larger than (n + 1)/2.

0.3.2 The Generalized Baker—Schmidt Problem

In the case where the manifold M is extremal, or indeed in the case where it is of Khintchine
or Groshev type for convergence, one may try to determine the Hausdorff dimension (or, more

generally, Hausdorff measures) of sets of very well approximable vectors lying on it for a given
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type of approximation. This corresponds to the Generalized Baker—Schmidt Problem, after
the pioneering work of Baker and Schmidt [10] who initially only dealt with approximation of
linear combinations of the successive powers of a real number and therefore with the Veronese
curve (26). Here again, the situation is better understood in the dual than the simultaneous
case. The Generalized Baker—Schmidt Problem for planar curves will be discussed in more

detail in subsection 0.3.3.

The dual case. Regarding the Hausdorff dimension of the set £, (¥, M), the first results
were obtained for particular curves in dimension n > 2. For instance, Bernik [37, 43] proved
that for the Veronese curve (26),

n+1

dlm ['n (7', Vn) = m

for any 7 > n. A fairly general theory is now available. Thus, Dodson, Rynne and Vickers [77]
showed that for any C® manifold M with dimension d > 2 which is 2-curved everywhere except

on a set of Hausdorff dimension at most d — 1,

n+1

i n ) = -1
dim £, (1,M) = d —|—7__i_1

(29)

for any 7 > n. The condition of 2—curvature is technical in nature and means that at least two
of the so—called principal curvatures at a given point @ € M do not vanish for any unit vector
in the normal space to the manifold at . For surfaces in R? (d = 2), the condition reduces to
the non—vanishing of the standard Gaussian curvature but it is weaker as soon as the dimension
d of the manifold is bigger than 3. For more details, see, e.g., [40, §4.3.1].

The dimensional result (29) has been generalized by Bernik and Dodson [40, Theorem 5.14]

to the case of any decreasing approximating function :

Theorem 0.3.5 (Bernik & Dodson, 1999). Assume that M is a C* manifold embedded in R™
of dimension d > 2. Assume furthermore that the set of points at which M is not 2—curved has

dimension at most d — 1. Then, for any decreasing approximating function W,

. _ n—+1
dim £, (I, M) = d 1—&—)\\1’_'_1,

where Ay s the lower order of the function 1/¥ as defined in (10).

Also, the dimension in (29) has been shown to be a lower bound for dim £,, (7, M) in [68]
when M is extremal and C'. This has been generalized to the case of any dimension function

in [23, Theorem 18] in the following form :

Theorem 0.3.6 (Beresnevich, Dickinson & Velani, 2006). Let M denote a non—degenerate d—
dimensional manifold embedded in the n—dimensional Fuclidean space R™. Let f be a dimension
function such that the function q — q~%f(q) tends to infinity as q tends to zero and such that the
function q — q~f(q) is decreasing. Furthermore, suppose that the function q — ¢~ (=1 f(q)

is increasing. Then, if the approximating function ¥ is decreasing,
HI (L, (U, M)) = o0
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provided that

Zf (W) \Ij(q)f(dfl)qndefl = oo, (30)

Showing that
H (L (W, M)) =0

when the sum appearing in (30) converges remains one of the last major conjectures left open

in the metric theory of linear Diophantine approximation on manifolds.

The simultaneous case. By contrast, very little is known about the Hausdorff dimension of
the set S, (1, M) when the manifold M is extremal and 7 is strictly bigger than the Dirichlet
bound 1/n. Transference theorems in the manner of Theorem 0.1.9 may be used to obtain
lower and upper bounds for dimS,, (7, M) from the much better understood dual case, but
the bounds obtained this way remain rather crude. This is not surprising in view of a curious
result proved by Rynne [169] which shows that one can find arbitrarily close manifolds with
the same regularity but with completely different behaviours with respect to simultaneous
approximation.

The precise statement of Rynne’s result requires some definitions. Assume that the manifold
M parametrized by (23) is C* (k > 0) on the open set U C R? and that all the partial
derivatives of the component functions fi,...,f, up to order k are continuous on U and
extend continuously on its closure U. The map f, and by extension the manifold M, will then
be said to belong to the space €* (U,R") and the ¢*-norm of f will be defined as the real

number

n k _
flee = D> 10s£l2 .

i=1B]=0
Here, B = (B1,...,84) € N? in the inner sum is a multi-index whose length is the integer
18| = sz:1 B, |l ng denotes the supremum norm of a real valued function f defined on U
and
olBlf

ogf = —"—
o] 6:0[151 ...&ng

The space of functions €* (U,R") equipped with the norm |.|s is then a Banach space
(see [102] for details).

Theorem 0.3.7 (Rynne, 2003). Let M C R" be a d-dimensional C* manifold whose
parametrisation map f, defined on an open set U C RZ, belongs to the space €F (U, R™).
Then, for any € > 0, there exist manifolds M’ and M" such that the €* —norm between M and

each of these manifolds is less than € > 0 and such that
, 1
Sp(r, M) =0  for 7> max E’Qk_l

and
. ) 1+d 1 14d
> T4 - e g
dim S, (r, M) > Rt 1) >0 for 7 >max T

25



Theorem 0.3.7 suggests that, unlike the dual case, the properties of the set of simultaneously
approximable points lying on a manifold do not only depend on the geometric characteristics of
this manifold (e.g., its curvature or its convexity), but also on some of its arithmetical properties.
General results holding for a sufficiently large class of manifolds are therefore restricted in this
context. One notable exception is a theorem established by Beresnevich [16] when studying
the distribution of rational points near manifolds (see also Theorem 0.3.4 above). The latter

reads as follows :

Theorem 0.3.8 (Beresnevich, 2012). Let M be a non—degenerate analytic submanifold of
dimension d > 1 in R™. Let U denote a decreasing function such that q — q¥(q)"~? tends to
infinity as q tends to infinity. Then, for any s € (("7d)d d) ,

n—d+1?

H? (S, (U, M)) = oo whenever Z\I/(q)er"—dq—(s—d) — o

g=1

In particular, if the lower order Ay of 1/¥ as defined in (10) lies in the interval (1 L ),

n’n—d
then

dim S, (¥, M) > L1

— d.
Z Wil n -+

As for the determination of the exact value of dim S, (7, M), various results have been
obtained on a case—by—case basis. Some dealing with planar curves are fairly general but are
only valid when 7 is close to the Dirichlet bound 1/n (see subsection 0.3.3 below for more
details). All the other known results have been obtained in the case where the manifold M
is an algebraic variety defined as the roots of an integer polynomial P of degree dp when 7
is larger than dp — 1. The reason for this is that, under these assumptions, one has only to
consider rational points lying on the manifold M when studying the set S,, (1, M). This follows

indeed straightforwardly from this lemma :

Lemma 0.3.9. Let P(Xy,...,X,) € Z[X1,...,X,] be an integer polynomial in n > 1 vari-
ables of degree dp > 1. Denote by Mp the submanifold of R™ defined as the roots of P; that is,
Mp ={x €R" : P(x)=0}. Let U be an approzimating function such that ¥(q) = o (¢~ )
as q tends to infinity. Assume that

P2 B e

q q q
is a rational vector realizing a simultaneous V—approzimation of a point © = (x1, ... ,x,) €
S, (U, Mp); that is, a rational vector such that, for alli=1, ... n,
; v
L Pil (9)
q q

Then, for q large enough,



that is,
L e Mp.
q

Proof. The proof rests on the following trick : let p/g € Q™ and = € S, (¥, Mp) as in the

lemma. Then, for ¢ =1,...,n, one can write

i v
z=2 +9i7(q),
q q

where 0; € (0,1). With some obvious notation, the Taylor expansion of P at p/q yields the

equations

q

q
dp J
1 U(q) O
-3 .( z ”(%,> (@ho-. a1)
j=0 J k=1 4 k r _P1 P

where the implicit constant in the remainder may be chosen in such a way that it depends only

on P and on a predefined neighborhood of . Multiplying throughout by ¢%* gives

¢ P <Z> =0 (¢'7'¥(q)),

where the left—hand side is an integer. Due to the growth restriction on ¥, for ¢ large enough,
the right-hand side is strictly less than one in absolute value, which implies that the left-hand

side must equal zero, hence the lemma. Q.E.D.

Lemma 0.3.9 gives a sufficient condition for the set S, (¥, Mp) to be empty when
U(g) =o (q*dPH), namely that there be only finitely many solutions (g, p1, ... ,pn) to the

homogeneous Diophantine equation

qdpp(pl,...,pn> _o.
q q

For instance, since the polynomial R(X,Y,Z) = X3 + 2Y? + 473 — 9 admits no rational root

as may be seen by considering the reduction modulo 9 of its homogeneous version, the set

Sy, (1, MR) is empty as soon as 7 > 2.

Using Lemma 0.3.9 as a starting point of the proof, Drutu studied the case of a manifold Q4
defined by the equation ¢ = 1, where ¢ : R™ — R is a non—degenerate rational quadratic form
in dimension n > 2 which is naturally assumed not to be negative definite. The comprehensive
theory developed in [82] for the set S,, (¥, £04) implies in particular that

n—1

dim S, (1,9Q4) = ) =350 and H* (S, (¥,Qq)) = oc.
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More recently, Budarina, Dickinson and Levesley [50] studied properties of simultaneous ap-

proximation in dimension n > 2 on polynomials curves of the form
A = {(@ Pi(2),..., Par(z) -z €RY},
where P;(X) (1 <i<n—1)is an integer polynomial of degree d;. Their result, formulated for

general dimension functions, shows in particular that

2

=351 and H(S,(r,A)) =

for 7 > max {1,d — 1}, where d := max;<;<y,—1 d;. Budarina and Dickinson [49] also considered
the graph of the function (x1,...,7,-1) ER" s 2¢+ ... +2¢ | (d > 1,n > 2), namely the
hypersurface

== {(xl, ,xn_l,xf+-~-+xi_l) DXl Tp—1 ER}.

Provided that 7+ 1 > max {n/(n — 1),d}, n > 2% — 1 and d > 1, they proved that

dimSn(T,E)€< n ”“d).

dir+1) 7+1

0.3.3 The case of planar curves

Diophantine subsets of planar curves have been extensively studied in the literature. This
is not only because these are the simplest examples of non—elementary manifolds, but also
because a slicing technique introduced by Pyartli [162] shows that planar curves underpin
some fundamental aspects of the metric theory of Diophantine approximation for curves in any

dimension. The latter may be seen as a first step to the study of higher dimensional manifolds.

It should be noted that, in the case of planar curves, non—zero curvature implies non—
degeneracy at a point. Conversely, the set of points at which the curvature vanishes without
the curve being non—degenerate is at most countable — see [24, §1.1] for further details. From

a metrical point of view, the two concepts are therefore equivalent in this setup.

0.3.3.1 The general theory

A fairly large class of planar curves are known to be of Groshev type. Thus, extending earlier
results of extremality due to Schmidt [171] and Baker [11], Bernik, Dickinson and Dodson [39]
on the one hand and Beresnevich, Bernik, Dickinson and Dodson [19] on the other have proved
that any C® planar curve with non—zero curvature almost everywhere enjoys this property. In
view of the work of Beresnevich, Bernik, Kleinbock and Margulis [22] and of Beresnevich [15],
the result may be generalized to the case of any non-degenerate curve. As for the Hausdorff
theory of linear approximation on manifolds, Baker [11] proved that for any C3 curve I' with
curvature non—zero except on a set of zero Hausdorff dimension, dim £, (7,T) = 3/(7 + 1) for

7 > 2. This is a particular case of (29).
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Regarding simultaneous approximation, the situation is also well understood today. The
study began with the work of Bernik [36] who proved that the parabola of equation y = 2 (this
is also the Veronese curve (26) when n = 2), which is the simplest example of a non—degenerate
planar curve, is of Khintchine type for convergence. Beresnevich, Dickinson and Velani [24]
generalized this result showing that rational quadrics in dimension 2 are of Khintchine type.
They also proved that any C® non—degenerate planar curve is of Khintchine type for divergence.
The convergence half of this result was later established by Vaughan and Velani [189] under

weaker assumptions :

Theorem 0.3.10 (Vaughan & Velani, 2006). Any C? non—degenerate planar curve is of Khint-

chine type for convergence.

Vaughan and Velani’s proof relies on an accurate method of counting rational points lying
near planar curves meeting the assumptions of Theorem 0.3.10 and is based on estimates of
exponential sums. Note that the assumption that the curve be C? is the weakest possible
when requiring non—degeneracy. In [29], a divergent Khintchine type result is also obtained
in the framework of simultaneous approximation on planar curves when each coordinate is
approximated by different approximating functions.

General results have also been obtained for the Hausdorft dimension of the set Sy (7,T") for
large classes of curves I' in the plane. However, as Rynne’s theorem (Theorem 0.3.7) would
suggest, these results are only valid for 7 close to the Dirichlet bound 1/2. Thus, Beresnevich,
Dickinson and Velani considered, without loss of generality in view of the Implicit Function
Theorem, the case of the graph I'y := {(z, g(z); z € I)} of a C? function g : I — R defined on
a real interval I. The main theorem in [24], stated for general approximating functions, implies

in particular that for any given 7 € [1/2,1), if
dim{zerl;¢"(x)=0}<2-7)/(1+7),

then )
. -7
dim 82 (7_, Fg) = m = S9.
Moreover, if 7 € (1/2,1), then

H2 (S (1,Ty)) = oo.

This theorem has been generalized in different ways. On the one hand, Beresnevich and
Velani [29] have found an analogue in the case when different approximating functions are
used for each coordinate (see also [7]). On the other, Beresnevich and Zorin [32] have recently
extended it to a much wider class of functions. The statement of their result requires some
preliminary definitions which are taken from their paper.

Let §(I,c1,c2) be the set of C? real valued functions defined on a given interval I of positive
length such that

a <[f"(2)] <e

for all z € I, where 0 < ¢; < ca. Clearly, any function in §(I,c1,cq) is non—degenerate.
Denote by §(I,c1,c2) the closure of F(I,cy,cz) for the C%—topology of uniform convergence

on I. The curve I'y is weakly non-degenerate at xo € I if there exist constants co > ¢; > 0
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and a compact subinterval J C I centred at xy such that the restriction of g to J belongs to
§(J,c1,¢2). In turn, the curve I'y and the function g itself are weakly non—degenerate if I'y is
weakly non—degenerate almost everywhere on I. It should be clear that non—degeneracy implies
weak non—degeneracy. The converse, however, is not true : an example given in [32, §2] shows
that there exist weakly non—degenerate curves degenerate almost everywhere.

The major part of the proof by Beresnevich and Zorin consists of giving an effective gen-
eralisation to the class of weakly non—degenerate curves of the optimal estimates of counting
functions of rational points lying near planar curves obtained by Vaughan and Velani [189)
and by Beresnevich, Dickinson and Velani [24]. To illustrate the far-reaching nature of this
generalisation, the set F(I,cy,c2) is explicitly characterized in [32, §2] in terms of convexity
properties satisfied by its elements. In particular, it is shown that §(I,c;,cz) is contained in
C1(I) (the set of continuously differentiable functions on I) but not in C?(I). Estimating the

number of rational points lying near T', for f € F(I,c1,cz2) leads to the following statement :

Theorem 0.3.11 (Beresnevich & Zorin, 2010). Let ¥ be a decreasing approximating function
and g : I — R be a weakly non—degenerate function. Then :

a) the curve I'y is of Khintchine type for divergence.
b) H* (S2(¥,Ty)) = oo whenever 32, ¢"~*W(q)*™" = oo and s € (1/2,1).

c) dimSy (V,Ty) = (2— Ao)/(1 4+ Aw) = s3 if the lower order Ay as defined in (10) lies
in the interval (1/2,1) and if g is weakly non—degenerate everywhere except on a set of

dimension less than ss3.

The perturbation approach adopted for the proof of Theorem 0.3.11 allows one to weaken the
regularity conditions usually imposed on the curve I'y in such a way that it is only necessary
for the latter to be C' rather than C?. As a consequence, this enables one to consider a
less restrictive framework than non—degeneracy. In particular, the multiplicative version of
Theorem 0.3.11 stated in [32, Theorem 4] generalizes Theorem 0.3.2 by Kleinbock and Margulis
to this setup.

Theorem 0.3.11 provides a reasonably complete Hausdorff theory for simultaneous approxi-
mation on weakly non-degenerate planar curves when the error term does not decay “too fast”
and, together with Theorem 0.3.11, it establishes that a C? curve is of Khintchine type. As for
the Lebesgue theory of Diophantine approximation on weakly non-degenerate planar curves, it

has very recently been studied by Huang [119].

If one considers now an approximating function decaying at any rate, the Hausdorff theory
for the set of simultaneously approximable points lying on a planar curve is very incomplete
and is a very active domain of research. One notable exception is the case of the unit circle
S', where the situation is well understood. Indeed, while Dirichlet’s Theorem in dimension 2
(Corollary 0.0.7) implies that

dim Sy (7'7 Sl) =1 when 1<

)

| —
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it follows for instance from Theorem 0.3.11 that

2 — 1
dim S, (T, Sl) =1 n T when 3
T

<7< 1
Mel’'nichuk [154] studied the distribution of Pythagorean triples to prove that

when 7 > 1.

. 1
dim Ss (T,Sl) < T

Dickinson and Dodson [69] completed this study with the help of the concept of ubiquity to

establish that .
dim S, (7,8') = o, When 7>1 (31)

Thus, the dimension of the set S, (T,Sl) is known for all values of 7 > 0. Moreover, com-
plete Hausdorff and Lebesgue theories valid for any decreasing approximating function and a
fairly large class of dimension functions are now available for this set thanks to the work of
Beresnevich, Dickinson and Velani [23, §12.7.2].

As the situation is much less clear in the case of an arbitrary planar curve, an attempt is
made in the next subsection to overcome this lack by setting a number of conjectures concerning

a large class of planar curves in a framework where Lemma 0.3.9 applies.

0.3.3.2 A set of conjectures for algebraic planar curves

Let P(X,Y) € Z[X,Y] be an integer polynomial of degree dp > 1. Denote by M p the planar
curve defined by P, viz.

Mp = {(z1,22) ER® : P(21,25) =0}. (32)

From an algebraic point of view, M p may also be seen as the algebraic variety defined by the
equation
P(X,Y) = 0. (33)

As a consequence of this duality, the set of rational points lying on the planar curve (32)
will be denoted by Mp (Q). Furthermore, the Diophantine properties of the set Sz (¥, Mp)
will be analyzed depending on some algebraic invariants of the variety (33) when ¥ is, unless
stated otherwise, a decreasing approximating function such that ¥(q) = o (q*dp “) as ¢ tends
to infinity. Under this assumption indeed, in view of Lemma 0.3.9, the problem is reduced
to the consideration of the properties of the set Mp (Q). In this respect, it should be noted
that the study undertaken henceforth is strongly connected to the recent fury of activity in
the area of intrinsic Diophantine approximation initiated by Fishman, Kleinbock, Merrill and
Simmons [96], Gorodnik and Kadyrov [103] and Gorodnik and Shah [104]. In problems of
intrinsic approximation indeed, one is interested in approximation on manifolds by rational

points also lying on the manifold.
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When the lower order Ay of 1/¥ belongs to the interval (1/2,1), Theorem 0.3.11 provides a
clear picture for the dimension of the set Sy (¥, Mp). The case when Ay € (1,d, —1] (assuming
d, > 3) is, on the other hand, not addressed by the various known results and the conjectures
set below. More generally, this problem has already been noticed for general planar curves and
manifolds in [50, 67].

Genus of the curve Mp. The dimensional theory developed for the set So (¥, Mp) will
depend on the genus g(P) of the variety (33) considered as a Riemann surface. A succinct
account on this invariant is now given. For a more detailed exposition, see, e.g., [196].

The genus g(P) of the variety defined by equation (33) is a positive integer at most equal

to

(dp —1)(dp —2)
2

~ (34)

The genus is exactly equal to this quantity if, and only if, the projective version of the curve
is nonsingular over C. This means that, in each of the charts {X =1}, {Y =1} and {Z = 1},
the homogeneous version

QX,Y,Z):=2%P(X/Z,Y/Z)

of P(X,Y) defines a variety with no point with complex coordinates at which both @ and its
partial derivatives of order one vanish. On the other hand, if such a point exists, it defines
a singular point. A singular point S of multiplicity rg such that the projective version of the
curve read in the appropriate chart admits rg distinct tangents at S reduces the genus by
exactly rs(rg — 1)/2. Such a point is referred to as an ordinary singular point. Therefore, if
all the singular points S € P2 (C) on the projective version of the curve defined by (33) are

ordinary, the following equation holds :

29(P) = (dp —1)(dp —2) =Y rs(rs — 1),
S

where the second sum runs over the (finite) set of singular points. If the curve admits non—
ordinary singular points, then the previous formula only gives an upper bound for the genus of
the curve and the determination of the actual value of g(P) generally rests on the following fact :
if there exists a birational correspondence between two curves, then they have the same genus
(recall that birational correspondence between two curves means that the points of one of them
can be expressed as a rational function of the other, and conversely). Thus, in the most difficult
cases, the computation of g(P) can be done by transforming the curve under consideration into
a birationally equivalent curve with only singular points (see [196] for examples and details).
The Diophantine properties of the set of simultaneously very well approximable points lying

on Mp will now be discussed depending on whether ¢g(P) equals 0 or 1 or is bigger than 2.

Curves of genus at least 2. Assume first that g(P) > 2. Falting’s Theorem states that, if
the variety (33) defines a geometrically irreducible and smooth curve, then Mp (Q) is finite. It

is however possible to dispense with the latter two assumptions (see [47, Chap. 11] for details
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and for the definition of the concepts at stake) in such a way that Lemma 0.3.9 immediately

implies the following statement :

Theorem 0.3.12. Assume that the variety (33) defines a curve of genus g(P) > 2. Let U be
an approximating function satisfying W(q) = o (q_dP‘H) as q tends to infinity. Then, the set
S (¥, Mp) is finite.

Note that there is no assumption of monotonicity of the approximating function in Theo-

rem 0.3.12. As an application of this result, consider the family of Fermat curves
Fs 1 X°4+Y° =1 (35)

parametrized by the integer s > 2. In view of (34), one has

(s=1)(s—2)

9(Fs) = 5

for all s > 2 (this can also be seen as an easy consequence of the Riemann-Hurwitz formula).
Thus, g(Fs) > 2 as soon as s > 4 and Theorem 0.3.12 implies that Ss (7, Fs) is finite for any
s >4 and 7 > s— 1. This gives an alternative to the solution proposed by Bernik and Dodson,
who proved the same result in [40, Theorem 4.8] appealing to Wiles’ Theorem [198]. Note that,
when s = 3, the absence of non-trivial rational solutions to equation (35) has been known
since Euler [85] and here again Wiles’ Theorem may be avoided in order to prove that the set
S (1, F3) is finite when 7 > 2.

Curves of genus 1. Assume now that g(P) = 1 (in which case dp > 3). It may then well
be that the set Mp(Q) is empty. This is for instance the case of the curves defined by the
equations

X*+2Y?=17  and  3X®4+4Y?+5=0

respectively considered by Reichardt [163] and Selmer [177], who proved that they do not satisfy
the Hasse Principle : they admit a global solution in R and local solutions in Q,, for every prime
p, but they admit no rational solution.

However, if the curve defined by P is smooth and if a rational point lies on it, then the
chord and tangent method enables one to equip the set Mp(Q) with a group law. The curve
Mp together with a distinguished rational point on it (referred to as the “point at infinity”)
then becomes a model for an elliptic curve defined over Q. The reader is referred to [180]
for a classical reference about the theory of elliptic curves. The main point which needs to
be stressed here is that, from an algebraic point of view, elliptic curves are seen as a class
of isomorphic algebraic varieties; that is, each elliptic curve may be given by different curves
(its models) which are mutually birationally equivalent over C (this means that the coefficients
of the birational transformations under consideration lie in C). From the point of view of
Diophantine analysis however, the approximation properties of the points lying on one of the
models of an elliptic curve cannot be transferred to another one since they are not necessarily
preserved by birational transformations. This shows that one has indeed to state most of the

forthcoming results for a fixed model of an elliptic curve without the possibility to carry the
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properties under consideration to other models. However, any result which does not depend
on the choice of the model Mp (and of a rational point lying on it — this choice will have no
importance here) will be stated for the corresponding elliptic curve which will be denoted by
E.

The celebrated Mordell-Weil Theorem [180, Chap. VIII, §4] states that the set of rational
points £ (Q) lying on the algebraic variety £ is a finitely generated abelian group. In other
words,

S (Q) = ZT X gtors (@) 9

where r > 0 is an integer referred to as the rank of the elliptic curve and where &5 (Q) is
the finite subgroup of £ (Q) consisting of all torsion elements. In particular, if » = 0, then
only finitely many rational points lie on & and Sy (¥, Mp) is finite under the assumptions
of Theorem 0.3.12. On the other hand, when the rank is non-zero, an accurate estimate
of the growth of the number of rational points in £ (Q) has been obtained by André Néron
(1922-1985) in [157]. In order to state his result, given a rational point A € £(Q), let A =
[z(A) : y(A) : 2(A)] € P?(Q) denote its coordinates in the predefined projective model for &
induced by Mp. Assume furthermore that z(A),y(A) and z(A) are coprime integers. Define
the absolute height H(A) of A as follows :

H(A) := max {[z(A)], [y(A)], |2(A)]} -

Let 9tp (£ (Q), B) denote the cardinality of the set of rational points lying on the predefined
model for & whose absolute heights are less than B > 0.

Theorem 0.3.13 (Néron, 1965). Assume that Mp defines a model for an elliptic curve € over
Q of rank r > 1.
Then,
Np (£(Q),B) = (log B)"/?

for all B large enough.

Theorem 0.3.13 thus suggests that the rational points lying on any model for an elliptic
curve cannot be “excessively dense”. An easy covering argument enables one to deduce from it

the following statement :

Theorem 0.3.14. Assume that Mp defines a model for an elliptic curve. Let ¥ be a decreasing
approximating function such that ¥(q) = o (q*dPH) as q tends to infinity. Then,

dim S, (¥, Mp) = 0.

In the case when the rank corresponding to the elliptic curve given by the model Mp is
non-zero, Theorem 0.3.14 follows from Lemmata 0.1.4 and 0.3.9 and Theorem 0.3.13. It should
be pointed out that the assumption of the monotonicity of the function ¥ allows one to study,
without loss of generality, the metric properties of the set Sy (¥, Mp) with the additional
constraint that the rationals under consideration are irreducible (as in the definition of the
counting function Np (€ (Q), B)).
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Given that the Hausdorff dimension of the set of very well approximable points Sy (7, M p)
remains undetermined for 7 € (1,2] C (1,d, — 1], it seems relevant to pay attention to the set
of simultaneously well approximable points lying on Mp. With this in mind, the following

theorem due to Baker [12] is of interest :

Theorem 0.3.15 (Baker, 1976). Let f1, fa, ..., fn be C functions defined on an open set
QCR™ (m,n>1). Assume that the matriz of partial derivatives

17 ceey m
Ox; 1<s<n,1<j<m

18 mon—zero almost everywhere in €.

Then, for almost all o := (o, ..., qm) € Q, the point

(fl(a)v RS fn(a)) €R"™
is not badly approzimable.

Thanks to the Implicit Function Theorem, this result implies that the set of simultaneously

well approximable vectors lying on M p, viz. the intersection

N8 (0 (c) ™72 Mp)

c>1

has full Lebesgue measure.

The problem is also well understood today for the complement of the set of simultaneously
well approximable points on the curve Mp, viz. the set Bad (Mp) of simultaneously badly
approximable points lying on it. Specifically, a vector (z1,x2) € Mp is in Bad (Mp) if

lim inf max {q1/2 gz |, q"/? ||qx2||} > 0.
q—00

In a recent work, An, Beresnevich and Velani [4] made use of Schmidt’s game to prove that
the intersection of the set of simultaneously badly approximable vectors in dimension two with
any C? planar curve which is not a straight line segment has full dimension (see also the main
result in [17]). In particular,

dim Bad (Mp) = 1.

Also, even though the counting function DMp (€ (Q), B) grows relatively slowly, it is well-
known that, when the rank of £ is non—zero, the set of rational points lying on any of its
models is dense (in the usual Euclidean topology) in the real component containing the point
at infinity — see [192] for a proof of this fact. A natural problem associated with Theorem 0.3.15
is then the study of the set of intrinsically well approximable points lying on M p, which is the

intersection

ﬂ {(xl,xg) € Mp : max{|gz1 — p1|,|qx2 — p2|} < ql% for i.m. (]91’]?2> € Mp (Q)}

c>1
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Problem 0.3.16. Assume that Mp defines a model for an elliptic curve with non—zero rank.
Does there exist an intrinsically well approximable point lying on Mp? If so, what is the

Lebesque measure of this set?

It is likely that the solution to this problem will involve some properties of the natural group

law with which the set Mp (Q) may be equipped.

Curves of genus 0. Assume now that g(P) = 0. Since the Hasse principle applies to
all curves of genus 0 (see [196] for a proof), the set Mp (Q) is non—empty if, and only if,
equation (33) admits a solution in R and in all the local fields Q,, where p runs through all the
prime numbers. The condition about the existence of Q,—points on the curve concretely means
that there is no obstruction to rational solutions to (33) arising from considering this equation
modulo various integers. For a given curve, this leads to a finite number of verifications. It is
therefore straightforward to check whether M p (Q) is empty or not. See [58] and the references

therein for details, examples and proofs.

A classical result in the theory of algebraic curves (see, e.g., [196, p.151]) states that a
curve is of genus 0 if, and only if, it is unicursal; that is, if, and only if, it admits a rational
parametrisation by functions x(t), y(t) € C(t). This means that, up to finitely many exceptions,
every evaluation of the vector (z(t),y(t)) at a real number ¢ determines a point on the curve
and, conversely, all but finitely many points on the curve are obtained by the evaluation of the
parametrisation vector at some real number. For instance, as is well-known, the unit circle

X? 4+ Y? =1 may be parametrized with the help of the rational map

1—¢ 2t
t— (th, th) , (36)
where ¢ runs through all the real numbers (note that the point (—1,0) is obtained when “t =
00”).

The determination of the minimal field in which the coefficients of the rational functions
z(t),y(t) € C(t) may be chosen for a given curve of genus 0 is a problem of paramount im-
portance when determining the Hausdorff dimension of the set Sy (¥, Mp). It was solved a
hundred years ago by Hilbert and Hurwitz [118] (see also [178] for a modern approach and a
simplified proof) : given a field K of characteristic zero (K = Q in the problem under consi-
deration) and a polynomial P(X,Y) € K[X, Y] defining a curve of genus 0, the coefficients of
x(t) and y(t) may always be chosen in an algebraic extension L of K of degree at most 2. The
proof of this result turns out to be very informative as it enables one to distinguish between
the cases L = K and [L: K] = 2. Indeed, the construction of an “optimal” parametrisation
is obtained with the help of O (deg P) birational transformations, every such transformation
decreasing the degree of the curve by 2. This ultimately leads to either a line in the odd degree
case or to an irreducible conic defined over the same field K as the original curve when the
degree is even. In particular, a curve of genus 0 as defined by (33) always admits a rational

parametrisation over Q when the degree of P is odd. For example, the cubic Y2 = X? (which
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has a singularity at the origin and thus is of genus 0) may be parametrized by the function
t € R— (12, 13).

On the other hand, when the degree of P is even, the reduction process shows that every point
on the curve defined by P is in birational correspondence with a point on a conic C with the
exception of a finite number. When one wishes to determine the structure of the set Mp (Q),
this brings the problem down to the well-known case of conics : if a rational point lies on
C, then the intersection of C with a generic line through this rational point determines an
additional point on the conic from Bezout’s Theorem. Varying the slope of the line leads to
a rational parametrisation of C. Furthermore, if the lines have a rational direction—vector, all
the rational points on C are obtained in this way.

All this shows that a rational point lies on a curve of genus zero if, and only if, the curve
admits a rational parametrisation by rational functions with coefficients in Q. Since such a
function takes rational values when its argument is rational, a curve of genus zero has either
no rational point on it or infinitely many of those. In the latter case, all but a finite number of
them are given by the evaluation at a rational of a given rational parametrisation of the curve.

It is not difficult to exhibit curves of genus zero with no rational point lying on them
(according to the foregoing, the degree of the polynomial defining such curves has to be even) :

consider for instance the family of circles
SYR) : X?+Y?=R (37)

of radius v/R. They can be parametrized in the form

i (VEAL vRZ
T+627 7 142
as t runs through the real numbers. When R = 3 or R = 7, the reduction modulo R of the
homogeneous version of equation (37) shows that no rational point lies on the circles S*(3) and
SY(7). In particular, S, (7,S'(3)) = 82 (,S(7)) = 0 whenever 7 > 1 from Lemma 0.3.9.

These results naturally lead to the statement of the following conjecture which claims that,
under some standard assumptions, the metric properties of the set Sy (¥, M p) depend only on

the embedding of the curve of equation (33) in projective space.

Conjecture 0.3.17. Let P(X,Y) € Z[X,Y] be a polynomial of degree dp > 1 defining a
curve Mp of genus zero with (infinitely many) rational points lying on it. Let u(T), v(T),
w(T) € Z[T) be relatively prime polynomials such that the projective version of the curve may
be parametrized by

t— [u(t),v(t), w(t)].

Then, the Hausdorff dimension of the set So (¥, Mp) depends only on the degrees of u, v and
w provided that VU is a decreasing approzimating function such that V(q) = o (q_dP‘H) as q
tends to infinity.
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In the case of the unit circle S!, all the non-trivial Pythagorean triples are given by the
range of the projective version of the vector (36) as the parameter ¢ runs through the rational
numbers. In this case, u(t) = 1 — 2, v(t) = 2t and w(t) = 1 + > and the actual value
of dimS; (7,S') is given by (31) when 7 > 1. From this, one could expect that, under the
assumptions of Conjecture 0.3.17, the Hausdorff dimension of Sy (7, M p) should be of the form
C/(1+7) for 7 > dp — 1, where C' > 0 is a constant depending only on degu, degv and degw.

0.4 Organisation of the chapters

The thesis consists of five chapters :

e Chapter 1 deals with the problem of Duffin and Schaeffer (subsection 0.2.2) and provides
an extension of their theorem (Theorem 0.2.6) to the case when the numerators and
the denominators of the rational approximants are related by a constraint stronger than
coprimality. At the end of the chapter, a generalized version of the Duffin—Schaeffer

conjecture (Conjecture 0.2.4) is stated in this context.

e Chapter 2 is concerned with the theme of simultaneous approximation on manifolds. The
focus will be on the study of the Hausdorff dimension of the set of very well approximable
points lying on a polynomial curve which is not defined as a polynomial with integer
coefficients. This will provide the first results in this context and it will be shown that
the situation differs immensely from the known results in the case of polynomials with

integer coefficients (see subsection 0.3.2 above).

e Chapters 3 and 4 both share a common topic, which seems to be new in the theory of
Diophantine approximation. Indeed, while problems of approximation have been so far
exclusively concerned with “limsup sets”, the focus in these chapters will be on so—called
“liminf sets”. In short, in this type of approximation under constraints (see subsection 0.2
above), one wishes to approach a point in Euclidean space by infinitely many rational
vectors whose denominators lie in a prescribed infinite set of integers, but by finitely many
rational vectors with denominators in the complement of this set. A Hausdorff theory is

developed in Chapters 3 and 4 for simultaneous approximation in this context.

e Chapter 5 is also related to the topic of Diophantine approximation under constraints. A
reasonably complete theory of approximation of a real number by rationals whose numer-
ators and denominators lie in prescribed arithmetic progressions is developed here. The
results are of a uniform, non—uniform, metrical and non—metrical nature. The main nov-

elty is the proof of a Khintchine type statement in the context of uniform approximation.

The dependencies between the chapters is illustrated in the diagram below, where solid
arrows indicate that a result from one chapter is used in another one and where dotted arrows

mark a thematic link (in the theories developed or in the ideas involved in the proofs).
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Some very active domains of research in Diophantine approximation will not be broached in
this thesis. These include the theories of inhomogeneous, weighted and twisted approximation,
the theory of multiplicative approximation (in particular the celebrated Littlewood conjecture
and its “mixed” versions), the various studies dealing with the properties of the set of badly

approximable vectors or with the problems of approximation by algebraic numbers.
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Chapter 1

An Extension of a Theorem of Duffin
and Schaeffer

Abstract

Duffin and Schaeffer have generalized the classical theorem of Khintchine in metric
Diophantine approximation to the case of any error function under the assumption that
all the rational approximants are irreducible. This result is extended to the case where
the numerators and the denominators of the rational approximants are related by a con-

gruential constraint stronger than coprimality.

Notation. For convenience, the following notation will be used throughout this chapter :

o |z| (z € R) : the integer part of x.

[z,y] (z,y € R, z <y) : interval of integers, i.e. [r,y] ={n€Z : z <n <y}

a < b (a,b € R) : Vinogradov notation meaning that there exists a constant ¢ > 0 such
that a < ¢b.

Card(X) or | X]| : the cardinality of a finite set X.
e AX : the set of invertible elements of a ring A.

e P : the set of prime numbers.

e 7 : any prime number.

e ©(n) : Euler’s totient function.
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e 7(n) : the number of divisors of a positive integer n.

e w(n) : the number of distinct prime factors dividing an integer n > 2 (w(1) = 0).

1.1 Introduction

The well-known theorem of Duffin and Schaeffer [83] in metric number theory extends the

classical theorem of Khintchine in the following way :

Theorem 1.1.1 (Duffin & Schaeffer, 1941). Let (gx),>, be a strictly increasing sequence of
positive integers and let (o )k>1 be a sequence of real numbers in (0,1/2) which satisfies the

conditions :

(a) Zak = 00,
k=1

n n
(b) E %(qk) >c E ay, for infinitely many integers n > 1 and a real number ¢ > 0.
k
k=1 k=1

Then, for almost all x € R, there exist infinitely many relatively prime integers py and gy,

such that

Pk
r— =L

gk

Qg
gk

Here as elsewhere, almost all must be understood in the sense that the set of exceptions

has Lebesgue measure zero.

Several generalisations of Theorem 1.1.1 have been considered : on the one hand, the con-
jecture of Duffin and Schaeffer asks whether assumption (b) may be weakened by replacing
it with the divergence of the series >, <, o ¢ (qx) qlzl. Even if the analogue of this problem
has been proved in higher dimensions [160] or with some extra assumptions on the sequence
(ak)>q [117], the full conjecture is still open — see [Prolegomena, subsection 0.2.2] for further
details. On the other hand, one may try to see to what extent Theorem 1.1.1 remains true
when the numerators py and the denominators ¢, of the fractional approximations are related
by some relationship stronger than coprimality (in a sense to be made precise).

Indeed, many results have been obtained in the metric theory of Diophantine approximation
when the denominators of the rational approximants are confined to a prescribed set (see for
instance [51, Theorem 5.9]). However, restrictions on the numerators introduce new difficulties
which are not always easy to overcome (see [51, p.144] for an account on this fact). In a series
of papers [109, 110, 111, 112], G.Harman tackled the problem and gave several results in the
case where the denominators and numerators are confined to independent sets of integers. The
main theorems proved in this chapter give another approach to this problem and are concerned
with the case when numerators and denominators are confined to dependent sets of integers
in the sense that they are related, not only by the relation of Diophantine approximation of a

given real number, but also by some additional congruential constraints.
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Consider first a subsequence (qg) of the d*® powers of the natural numbers (d > 1 integer).

E>1
For any ¢ € N denote furthermore by 74(¢) the cardinality of the set of d" powers in a reduced

system of residues modulo ¢ and set for simplicity
ra(q)

salg) = "2 L (L1)

Theorem 1.1.2. Let (qx)r>1 be a strictly increasing sequence of positive integers and let
(ak)k>1 be a sequence of positive real numbers in (0,1/2). Fiz an integer a > 1 and assume

furthermore that :
oo
(a) Z Qg = 00,
k=1

n n
(b) Zaksd (q,‘f) > CZ ag  for infinitely many integers n > 1 and a real number ¢ > 0,
k=1 k=1

(c) ged(gr,a)=1 forallk > 1.

Then, for almost all x € R, there exist infinitely many relatively prime integers py and qi such
that

@
x — p—s < —s and pr = abz (mod gqi) for some by € Z relatively prime to qy.
95 9

Theorem 1.1.2 will play a crucial role in Chapter 2 in the study of a problem of simultaneous
Diophantine approximation of dependent quantities : given an integer polynomial P(X) and
a real number x, what is the Hausdorff dimension of the set of real numbers ¢ such that
t and P(t) + x are simultaneously 7-well approximable, with 7 > 07 It will be proved in
Chapter 2 that such an approximation implies an approximation of x by a rational number of
the form p/q?, where d is the degree of P(X) and where the integer p satisfies the congruential
constraint mentioned in the conclusion of Theorem 1.1.2 with a the leading coefficient of P(X).
The emptiness of the set of approximation under consideration is obtained for almost all z
as a consequence of the convergent part of the Borel-Cantelli Lemma when 7 > d + 1 and

Theorem 1.1.2 enables one to prove the optimality of this lower bound.

Theorem 1.1.2 can be generalized in the following way :

Theorem 1.1.3. (Extension of the Theorem of Duffin and Schaeffer). Let (qi)i>1 be a strictly
increasing sequence of positive integers and let (aux)r>1 be a sequence of positive real numbers
in (0,1/2). Let (ay)r>1 be a sequence such that for all k > 1, ay € (Z/qZ)™. For k > 1,
denote by G}, a subgroup of (Z/qZ)™ and by a, Gy, the coset of ay, in the quotient of (Z/qiZ)"
by Gj. Assume furthermore that :

(a) Zak = 00,
k=1

n n

G

(b) E akM >c E ay  for infinitely many integers n > 1 and a real number ¢ > 0,

dk
k=1 k=1
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() o(qr)

75— —— 0 ask tends to infinity, for some € > 0.
/2—e€
4y, |Gl

Then, for almost all x € R, there exist infinitely many relatively prime integers py and gy,
such that

c— Pk < & and pr € apG. (1.2)
qk qk
Remark 1.1.4. o Given the well-known estimate
q
e(q) >

loglogq’

assumption (c) in Theorem 1.1.3 is satisfied as soon as
|G| > ¢}/
for some € > 0 and all n > 1.

e If ¢ is a real number such that

G
7| k‘>c

>0 1.3
gk ( )

for all k& > 1, then (b) holds. However, if, instead of (1.3), one can prove the weaker

assertion

i@ > cn (1.4)

w— 1

for some ¢ > 0 and all integers n > 1, then, assuming that the sequence (a)g>1 is
non-increasing, condition (b) still holds true. This may be seen with the help of an Abel

transformation in the left-hand side of (b).

It is likely that formula (1.4) can be proved for many sequences (qk)k21 that do not
satisfy (1.3).

Theorem 1.1.2 happens to be a special case of Theorem 1.1.3 when Gy (k > 1) is taken
as the group of d*" powers in a reduced system of residues modulo qi. Nevertheless, it turns
out to be more convenient to prove first Theorem 1.1.2 as it will make it possible to introduce
some notation much needed in Chapter 2. This chapter is therefore organized as follows : first
some lemmata of an arithmetical nature will be recalled (section 1.2). They will be needed to
prove Theorem 1.1.2 in section 1.3, where the modifications to make in the proof to establish
Theorem 1.1.3 will then be indicated.

1.2 Some auxiliary results

In this section, various results which will be needed later are collected.
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1.2.1 Lemmata on arithmetical functions

For any integer n > 2, let 7(n) be the number of divisors of n and let w(n) be the number of

distinct prime factors dividing n. If
I
n= H i
i=1

is the prime factor decomposition of the integer n, recall that

wn)=r and 7(n)= H (a; +1).

=1

As is well-known, the average value of w(n) is asymptotic to log log n when n tends to infinity
(cf. [108, §22.11]). However, a stronger statement similar to Lemma 2.3.1 will be needed in the
proofs to come. To this end, the definition of the maximal order of an arithmetical function is

introduced.

Definition 1.2.1. An arithmetical function f has maximal (resp. minimal) order g if g is a

positive nondecreasing arithmetical function such that

lim sup M =1 (resp. lim inf M = 0) .
n—oo g(n) n—oo g(n)

For instance, it is not difficult to see that the identity function is both a minimal and a

maximal order for Euler’s totient function.

Lemma 1.2.2. (1) A mazimal order for w(n) islogn/loglogn. In particular, for any e > 0

and any positive integer m,

w(n) =o(logn) and m*™ =o(n).

(2) For any e >0, 7(n) = o(n®).

Proof. Regarding (1), the first claim is implicit in [108, p.355] and the others follow easily from
this one. As for (2), see, e.g., [108, §22.13]. Q.E.D.

If n > 2 and d > 1 are integers, recall that r4(n) denotes the number of distinct d** powers
in the reduced system of residues modulo n and let ug(n) be the number of d*® roots of unity

modulo n; that is,

rq(n) = Card {md (mod n) : me€ (Z/nZ)X},
ug(n) = Card{m € Z/nZ : m*=1 (modn)}.

Set furthermore r4(1) = ug(1) = 1.

Remark 1.2.3. Let u(f,n) be the number of solutions in = to the congruence equation

flx):= Z arpz® =0 (mod n),



where f € Z[X] is a given polynomial of degree d. It is well-known that, as a consequence of
the Chinese Remainder Theorem, u(f, n) is a multiplicative function of n. It follows that ug(n)

is multiplicative with respect to n for any fixed d.
The following proposition gives explicit formulae for r4(n) and ug(n).

Proposition 1.2.4. The arithmetical functions rq4(n) and ug(n) are multiplicative when d is
fized. Furthermore, if n = 7%, where 7 € P and k > 1 is an integer, then the following

equations hold :

ged(2d, o(n)) if2|d, 7 =2 and k > 3,
ged(d, p(n))  otherwise,

ra(n) = and ug(n) = {

where o is Euler’s totient function.

Proof. See, e.g., [190]. Q.E.D.

1.2.2 Dirichlet characters and the Pélya—Vinogradov inequality

Let G be a finite abelian group written multiplicatively and with identity e. A character x over
G is a multiplicative homomorphism from G into the multiplicative group of complex numbers.
The image of y is contained in the group of |G|* roots of unity.

It is readily seen that the set of characters over G form a group, the dual group of G, which
will be denoted by G in what follows. Its unit Xo is the principal (or trivial) character which
maps everything in G to the unity.

The following is well-known (see [88, Chapter 7)) :
Theorem 1.2.5. With this notation,
i) there are exactly |G| characters over G.

it) for any g # e,

> xlg) =0.

xeG‘

i) for any non-principal character x,

> x(g) =0.

geG

If n > 1 is an integer, consider the group G = (Z/nZ)*. A character Y over G may be
extended to all integers by setting x(m) = x(m (mod n)) if ged(n,m) = 1 and x(m) = 0 if
ged(n,m) > 1. Such a function is said to be a Dirichlet character to the modulus n and will
still be denoted by x with a slight abuse of notation.

In what follows, an upper bound on the sum of such characters over large intervals will be
needed. A fundamental improvement on the trivial estimate given by the triangle inequality is

the Pélya—Vinogradov inequality (see [88, Chapter 9] for a proof).
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Theorem 1.2.6 (Pdlya & Vinogradov, 1918). For any non principal Dirichlet characters x
over (Z/nZ)” (n > 1) and any integer h, the following inequality holds :

< 2y/nlogn.

h
> x(k)
k=1

Remark 1.2.7. When Y is a so—called primitive character (which is the case when n is prime),
the multiplicative constant 2 in the above may be replaced with 1. This refinement will not be

needed.

1.3 Irreducible approximations and subgroups of (Z/nZ)"

The first part of this section will be devoted to the proof of Theorem 1.1.2 : all the tools
introduced in the previous section will be used here. In the second subsection, the modifications

needed to prove Theorem 1.1.3 are given.

1.3.1 Proof of Theorem 1.1.2

All the new notation to be used hereafter is summarized in Figure 1.1.

H Notation H Parameters H Definition H
I ¢eun) | n=2,p>0 || Card{le[l,pun] : ged(l,n) =1} |
G n > 2 integer Any subgroup of (Z/nZ)*
Group of d** powers in a reduced
G%d) d>1 system of residues modulo

a fixed integer n > 2
a € (Z/nZ)™, || Coset of a in the quotient of (Z/nZ)™

aG,,

n>2 by G, ie. aGy, ={al : 1 € G,}
Uy (aGy) X>0 Card{l € [1,X] : l € aGy}
- <X .
d, (Gh) n> 2 Index of G,, in (Z/nZ)", i.e.

dn (Grn) = p(n)/ ¥y, (Gr)

Figure 1.1: Some additional notation

The key—step to the proof of the Theorem of Duffin and Schaeffer (Theorem 1.1.1) is the
study of the regularity of the distribution of the numbers less than a given positive integer and
relatively prime to this integer. The following is well-known and strengthens the result stated
in [83, Lemma III].

Lemma 1.3.1. Let p be a positive real number and let n > 2 be an integer. Let ¢, (n) denote

the number of positive integers which are equal to or less than un and relatively prime to n.

eutn) = o) (w40 ().

Proof. See, e.g., [155, Theorem 3.1]. Q.E.D.

Then, for any e > 0,
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Duffin and Schaeffer provide an error term of the form O (n~'/?) in Lemma 1.3.1, where
the implied constant is absolute. In fact, even such an estimate is too accurate in the sense
that their method only requires the error term to tend to zero uniformly in p. This remark will
play a fundamental role in the proof of Theorems 1.1.2 and 1.1.3.

The following theorem deals with the regularity of the distribution of the elements of a given
subgroup of (Z/nZ)* (where n > 2) and is the key-step to the generalisation of the result of
Duffin and Schaeffer.

Theorem 1.3.2. Let pi be a positive real number, n > 2 be an integer and a € (Z/nZ)™. Let
G, be a subgroup of (Z/nZ)*. Denote by W, (G,,) the cardinality of G, (which is also the
cardinality of aGy,) and by d,,(G.,) the index of Gy, in (Z/nZ)™; that is,

(@mz)| o

() = G T WG

Finally, for a real number p > 0 and an integer n > 1, let ¥, (aGy) denote the number of
positive integers k less than or equal to un such that k € aG,,.
Then, for any e > 0,

U, (aGh) = Ui (Gr) (u 40 (iﬁf”)) .

Proof. The proof makes use of the Dirichlet characters introduced in subsection 1.2.2 and some
ideas which probably date back to the works of Erdés and Davenport [63] on character sums.

Let H,, be the quotient group of (Z/nZ)™ by G,,. Any character x over H,, may be extended
to (Z/nZ)™ by composing with the canonical homomorphism from (Z/nZ)™ to H,. Such a
character will still be denoted by y. Let G 1, be the set of all characters over (Z/nZ)™ arising
from a character over H,, : it is readily seen that G #, is a subgroup of the group of characters
over (Z/nZ)* of cardinality |H,| (here, the notation of subsection 1.2.2 is kept).

Let a € (Z/nZ)* be the multiplicative inverse of a € (Z/nZ)*. By Theorem 1.2.5, |H,| =
dn(Gy) and the same theorem implies that

1
Vpn (aGr) = ER(EN) > 2 x(ak).
T ke[lun] xeGu,
On inverting the order of summation, two contributions from the sum may be distinguished :

e One comes from the principal character and equals Card ([[1, un] N (Z/nZ) X). Now, from

Lemma 1.3.1,

Card (ﬂl,un]] N (Z/nZ)X) = pu(n) = o(n) (u +0 ( : )>

nlfe
for any € > 0.

e The other comes from the (d,(G,) — 1) non-trivial characters and, by the Pdlya—
Vinogradov inequality (Theorem 1.2.6), each of them is bounded above in absolute value
by 2/nlogn.
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Therefore, for any € > 0,

Y 06) = 27005 (40 () ) + gy ot

where the remainder R, (u) satisfies |R,(u)| < 2¢/nlogn. Bearing in mind that d,(G,) =
©(n)/¥,(G,) and that p(n) > n/2°™ (this follows from the relation ¢(n) = n [L:n (1—n71),

where the product runs over primes), Lemma 1.2.2 leads to the inequality

’Rn(/_l,)‘ - 2/n2™ logn _ 0( 1 )

o(n) n nl/2—c

for any € > 0. This concludes the proof. Q.E.D.

The next result makes the link between Theorem 1.3.2 and Theorem 1.1.2 giving the repar-
tition of the d*™ powers in a reduced system of residues modulo an integer. The notation of

Theorem 1.3.2 is maintained.

Corollary 1.3.3. Letn > 2 and a > 1 be two coprime integers. Denote by G%d) the group of
d™ power residues in a reduced system of residues modulo n.
Then, for all e > 0,

ton (s07) = 0 (017) (w40 (577 ).

where ¥, (G%d)) =rq(n) = ¢(n)/uqs(n) as defined in Proposition 1.2.4.

Proof. Keeping the notation of Theorem 1.3.2, first notice that d,, (G%d)> = ug4(n). Now, since
the arithmetical function ug(n) is multiplicative (see Remark 1.2.3), Proposition 1.2.4 and

Lemma 1.2.2 imply that
dn (G40 = wa(n) < (24" = O (n)
for any € > 0. The result then follows from Theorem 1.3.2. Q.E.D.
In order to prove Theorem 1.1.2, the following notation will turn out to be convenient.
Notation. For any real number z € [0, 1/2) and any integer k > 1, let Ef denote the collection
D x p x
Gaata)

where 0 < p < qg is an integer relatively prime to gy, satisfying p = ab? (mod ¢) for an integer

of intervals of the form

b prime to g (with the notation of Corollary 1.3.3, this amounts to claiming that p € [0, ¢¢]
and p € an(;i))- Here and in what follows, the integer a is fixed and assumed to be relatively
prime to g for all k£ > 1.

For simplicity, set furthermore Ej := Eg‘k for all integers k > 1.
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With the notation of Corollary 1.3.3, Ej, is then the set in (0,1) consisting of

\qu (aGé’Z)) = \Ilq‘,j (Gz(zi)) =V, (G«(Ji)) QI(cFl (1.5)

open intervals which, up to the possible exception of two boundary elements, have length
20/ q,‘j. These intervals are all centered at a rational of the form p/qg, where p and ¢ are
integers satisfying the aforementioned constraints (note that equation 1.5 follows from the fact
that W q (aGéc,f,)) counts the number of integers p € [0,¢¢] such that p € aGgi). Since the

integer a is coprime with gy, it should be obvious that W g (aGSIi)) = Wy (Ggi))).

If (s, t] is some interval in (0, 1) (where s < t), an estimate of the measure of the set common
to Ej and the interval (s,¢] is needed. To this end, first note that, for any integer n > 1 and
any real number p > 0, ¥ ,,a (aGé‘z)) counts the number of positive integers p less than or
equal to un? such that p € aGgi).

Let k > 1 be an integer. The number of intervals in E), whose centers lie in (s, t] is exactly
Wy (aGg(,f)) — W (aG(gi)). From this it follows that at least Wy (aG((f,f)) -V, d (aG(gi)) -2

sqj;
such intervals are entirely contained in (s, ] and at most \I/tqg (aGéi)) - \I/ng (aG((;,?) + 2 of

them touch (s,t]. Thus the measure of the set common to Ej and (s, ] is
2
% (i (aGSD) = W,y (aGSD) +6) (1.6)
k
where [0] < 2.

However, since for any u > 0, qugflj is the greatest integer m satisfying mq; < ,uq,‘f, one
has

L (aGé‘i)) = gy '] ¥, (Géi)) + Card {p ellpal " an, naf] : pe aGE,i)} :

The second term on the right-hand side of this equation is ¥4, (afoi)) , Where
d_ |, d—1
L. i — [ na

” qu € [0,1).

Therefore, from Corollary 1.3.3,
Vg (aGEIi)) = L”qgilJ Vo (Gt(zi)> + Vg, (aGl(Ii))

1
= v, (Gf?) (Lﬂq;‘i‘lj + gyt = [pgi ]+ 0 <q1/z>>

k
1
o)
dy

Substituing this into (1.6) and denoting by A the one-dimensional Lebesgue measure, the

for any € > 0.
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measure of the set common to Ej and (s,t] is seen to be

2«
v (G1) s ) = A () (- 91 )

1
where n < (qg_lﬂ_e(t - s)) for any € > 0.

Thus the following lemma has almost been proved.

Lemma 1.3.4. Let A be a subset of the unit interval (0,1) consisting of a finite number of
intervals.
Then, there exists a constant c4 > 0 which depends only on the set A such that for any
integer k > 1,
AANER) < AA)A(Ek) (1 +cap(ar))

1
p(qe) = O (d_l/2_€>
4y

Proof. The lemma has been proved in the case where A is a single interval. The general case
follows easily. See [83, Lemma IV]. Q.E.D.

where

for any € > 0.

All the tools necessary for the proof of Theorem 1.1.2 are now available. In fact, the proof
has been reduced to that of the Theorem of Duffin and Schaeffer. The latter will be reproduced
for the sake of completeness. Note that a slight variant of this proof has been provided by
Sprindzuk in [183, Chapter 1].

The proof of the following lemma, even though it is not difficult, may be found in the original
paper by Duffin and Schaeffer. Recall that Ej := E.* (see after the proof of Corollary 1.3.3

for this notation).
Lemma 1.3.5. For any positive and distinct integers k and [,
A (E}C N El> < Adapq;.

Proof. Cf. [83, lemma IT]. Q.E.D.

Proof of Theorem 1.1.2. Let
E:= | Ex.
k=1

The notation of Corollary 1.3.3 is maintained. If it is shown that A(E) = 1, then for almost all

x € (0,1), there will exist at least one pair of integers (px, g ) such that

’a - %’; < % with py, € aG\Y. (1.7)
k k
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Assume for a contradiction that A(E) < 1. Let 6 > 0 and let

k1
A= U Ey,
j=1
where k; is chosen large enough so that
AME) =86 < AA) < A(E). (1.8)

Since A consists of a finite union of intervals, it can be inferred from Lemma 1.3.4 that, for any

integer k > ko, where ko is sufficiently large depending only on A and 4,
AANEL) <AA)MN(EL) (1459). (1.9)

Let n and m be integers such that m > n > ky + ko and let

B:=|JE;.
j=n
By the inclusion—exclusion principle,
SNE;) = A(B) = D> ME)- Y ZAEmEl
j=n j=n l=n+1j=n
so that from Lemma 1.3.5,
2
AB) = > NE) -2 a;| - (1.10)
Jj=n j=n
It follows from (1.9) that
(ANB) < > MANE;) < A(A)- [ D ME) | -(1+0)
j=n j=n

Since
ME)>A(AUB)=A(A)+X(B)—A(ANB),

inequality (1.10) implies that

2

AE) > A(A) + i/\(Ej) 1= A(A)(1+8) -2 iaj . (1.11)

Let 0 be so small that A (A) (1+ ) < 1. By assumption, there are arbitrarily large integers

ZO‘J >1 and ZO@Sd qk cZaj,

52

n and m such that



where @
o _ at (Gk )

Sd (qk) = d

dy

(see the definitions of sq(g) in (1.1), of ¥y, (G,id)) in Corollary 1.3.3 and of W (G;Cd)) in (1.5)
for the latter equation).

By substitution in (1.11),

2

AE) 2 A A) +c-(1=XA) A+)- [ D aj | =2(D a; | - (1.12)

The right-hand side of equation (1.12) is of the form X (A) + bt — 2¢? with ¢t = > i, aj and
b=c-(1-=X(A4)(1+9)) €(0,1). The maximum of this second degree polynomial occurs when
t = b/4. In order to satisfy this last condition, consider the following device : if the length of
some interval appearing in the definition F is decreased, the measure of E will obviously not
be increased. In view of this, let z € (0,1) and for any positive integer k, let E}, be the subset

of (0,1) consisting of U g (chd)) open intervals, each of length 2zay, /q¢ with centers at py/qf,

where py, € aGéd). Clearly, Ej, is contained in Ej, for any k > 1. Keeping A the same as before,

use in place of B the set

Thus (1.12) becomes

2

AE) 2 A e (1= A (115 S za; | ~2 (3 sy

j=n
with z € (0, 1). Choosing z in such a way that Z;":n za; = b/4, one obtains

/\(E)2/\(A)+§-(1—>\(A)(1+6))2.

On letting d tend to zero, it then follows from (1.8) that

ME) 2 A(B)+ S (1A,

which cannot happen if A (E) < 1. This contradiction proves that A (E) = 1.

It has thus been shown that for almost all z € (0, 1), inequality (1.7) is satisfied for at least
one pair of integers (py, qg). To prove that (1.7) is true for arbitrarily many pairs of integers

(pr,qi), let n > 1 be an integer and let (a})r>1 be a new sequence defined by

Qp = .
ap itk >n.

) {0 ifk<n

]



Then the sequence (o), ., satisfies the same conditions as those imposed on (ay);~; in The-
orem 1.1.2. Consequently_, by what has just been established, for almost all x € (O,E) there is
at least one pair of integers (pk,q,‘j) satisfying (1.7) with «j, instead of ay. This amounts to
claiming that (1.7) is true for some integer k > n. Let then D,, C (0,1) be the set of all real
numbers z € (0,1) such that (1.7) is true for at least one pair of integers (pk, q,‘f) with & > n.
Denote by D the set common to all D,, i.e. D := N,>1D,. It has been proved that for any
n > 1, A(Dy) = 1, hence A(D) = 1. Now if « € D, then (1.7) is true infinitely often. This
concludes the proof of Theorem 1.1.2. Q.E.D.

1.3.2 Proof of Theorem 1.1.3

In the course of the proof of Theorem 1.1.2, the main step was the proof of Theorem 1.3.2 and

the fact that the subgroup GE{” of (Z/nZ)* was sufficiently large in the sense that, for some

e >0,
d, (1)

nl/2—e —0
as n tends to infinity, with the notation of Corollary 1.3.3. Otherwise, no use whatsoever of any
specific property of the group of d* powers in a reduced system of residues modulo n was made.
Consequently, apart from some minor modifications due to the fact that, in Theorem 1.1.2, the
denominators of the rational approximants are prescribed to be d*"' powers, the same proof as

the one provided for Theorem 1.1.2 establishes Theorem 1.1.3.

1.4 Notes for the chapter

e Condition (c) in Theorem 1.1.3 is derived from the fact that the Pélya—Vinogradov ine-
quality (Theorem 1.2.6) gives 2y/nlogn as an upper bound for the absolute value of the

sum of the values taken by a non—principal Dirichlet character to the modulus n and the

fact that
2y/n2*™logn 1
n = O\ i

for any € > 0 (see the proof of Theorem 1.3.2). Therefore, any improvement on the
Pélya—Vinogradov inequality would lead to a condition weaker than (c). However, stated
in this form, the exponent 1/2 — € for some € > 0 appearing in condition (¢) cannot be
improved if a general result is required : indeed, assuming the Riemann Hypothesis for
L—functions (i.e. the Generalized Riemann Hypothesis), E. Bach [6] has shown that a
sharper upper bound for the sum of values of a non—principal Dirichlet character to the
modulus n is 2¢/nloglogn. Up to a constant, this is best possible since Paley [158] proved
in 1932 that there exist infinitely many quadratic characters x,, such that there exists a

constant ¢ > 0 which satisfies for some N € N* the inequality

N

Z Xn(k)

k=1

> cy/nloglogn.

54



Here, a quadratic characters x, refers to a character of the form y, (k) = (%) for some

odd integer n, where (E) is the Jacobi symbol.

In view of Theorem 1.1.3, it is tempting to generalize the Duffin—Schaeffer conjecture in

the following way :

Conjecture 1.4.1. Let (qx)r>1 be a strictly increasing sequence of positive integers and
let (ag)k>1 be a sequence of real numbers in (0,1/2). Let (ar)r>1 be a sequence such that
for allk > 1, ax € (Z/qZ)*. For k > 1, denote by Gy, a subgroup of (Z/qZ)” and by
apGy, the coset of ay, in the quotient of (Z/quZ)™ by Gy. Assume furthermore that :

= G
(1) Zaki‘ 4 = 00,
b1

dk

(2) 7@(%)

5. — 0 ask tends to infinity, for some € > 0.
/2—e€
4y |Gl

Then, for almost all x € R, there exist infinitely many relatively prime integers px and

qr such that

Pk
r— 2k

dk

o
< 2k
qk

and pi € apGg.
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Chapter 2

Vertical shifts and very well
approximable Points on polynomial

Curves

Abstract

The Hausdorff dimension of the set of simultaneously 7—well approximable points lying
on a curve defined by a polynomial P(X) 4 «, where P(X) € Z[X] and « € R, is studied
when 7 is larger than the degree of P(X). This provides the first results related to the
determination of the Hausdorff dimension of the set of very well approximable points lying
on a curve which is not defined by a polynomial with integer coefficients.

The proofs involve the study of problems in Diophantine approximation in the case
where the numerators and the denominators of the rational approximations are related by

some congruential constraint.

2.1 Introduction

Given a manifold M C R? and a real number 7 > 1, denote by /V[77 (M) the set of simultaneously

7—well approximable points lying on M, i.e.

Wr(M) = {(:my) eEM:

1 r 1
x—p‘<and ’y—‘<i.o.}.
q qr q qr

Here and in what follows, i.0. stands for infinitely often; that is, for infinitely many integers p,

r and q with ¢ > 1.
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Even in the simplest case where M is prescribed to be a planar curve defined by an equa-
tion with integer coefficients, the actual Hausdorff dimension dim WT(M) of the set WT(M)
may exhibit very different behaviours, although the starting point of the computation of the
dimension is generally the same : it is first shown that, if a pair of rationals (p/q,r/q) realizes
an approximation of (z,y) € M at order 7 as in the definition of the set /WT (M), then for 7
larger than some constant depending only on the curve, the point (p/q,r/q) has to belong to M
for ¢ large enough. The assumption that M is a curve defined by some equation with integer
coefficients is here essential. The following two examples illustrate this fact and complete the

discussion held in [Prolegomena, subsection 0.3.2].

Consider first, for any integer [ > 2, the Fermat Curve
Fi={(x,y) eR? : 2l 44/ =1}.

For 7 > 1, let (x,y) € W,(F;) and let (p/q,7/q) be a pair of rational numbers such that

P €0, T €yly
~+— and y=—-+——
q q q q

xr =

with €,,¢e, € {£1} and 6,,60, € (0,1). In particular, p = O(q) and r = O(q) as ¢ tends to
infinity. On rearranging the equation

1 l
€0, €,0
¢:@+¢1)+Q+;%>’

|ql7plfrl‘<M

— qT—l

it is readily seen that

b

where C(l,z,y) is a strictly positive constant which depends on x, y and [, but is independent

of g. For 7 > [ and ¢ large enough, this implies that
¢ =p +rh (2.1)

that is, that (p/q,7/q) € Fi. From Fermat’s Last Theorem [198], the latter equation is not
solvable in positive integers as soon as | > 3. Therefore, if (z,y) € WT(]-'I) (I > 3), then
(z,y) € {(1,0);(0,1)} if I is odd and (x,y) € {(£1,0);(0,£1)} if [ is even. This means that

—

W, (F;) contains at most four points if 7 > [ > 3.

In particular, this implies the following result :

Theorem 2.1.1. Forl >3 and 7 > [,
dim W, (F;) = 0.

Remark 2.1.2. If [ = 2, equation (2.1) is soluble in infinitely many Pythagorean triples
(p,q,r) and the result of Theorem 2.1.1 is no longer true. Indeed, Dickinson and Dodson [69]
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have proved that
1

dim W, (Fy) = =

p

for 7 > 2, which constituted the first reasonably complete non—trivial result for the Hausdorff

dimension of the set W, (M) for a smooth manifold M in R™ when 7 is larger than the Dirichlet

bound 1+ 1/n. From their proof, it is also clear that the result holds for any arc contained in
St = F.

Consider now the case where the manifold is an integer polynomial curve
I'={(z,P(z)) €R? : x € R}

in R?, where P(X) € Z[X] is a polynomial of degree d > 1. Since Hausdorff dimension
is unaffected under locally bi-Lipschitz transformations (see [Prolegomena, Proposition 0.1.3,
p.7]), it is not difficult to see that W, (T') (where 7 > 0) has the same Hausdorff dimension as
the set

< L and

T

1
P(x) — - <i.0.}.
@) q q

Working with an appropriate Taylor expansion of P(X), Budarina, Dickinson and Leves-

T — =

W.(P) := {:17 eER :

AR

ley [50] have proved that, for 7 > d, the only rational points which need to be taken into
account for the computation of the Hausdorff dimension of the set W, (P) actually lie on the
polynomial curve under consideration. Their result, which gave impetus to this work, is the

following :

Theorem 2.1.3 (Budarina, Dickinson & Levesley, [50]). For 7 > max (d,2/d), the Hausdorff
dimension of W-(P) is
2

T

In particular, for any 7 > 0, the set W, (P) is always of positive Hausdorff dimension and

therefore contains uncountably many points.

The main result of this chapter shows that this no longer holds true in the metric sense as
soon as the curve I is vertically translated by a real number. More precisely, given a € R, let
W, (P,) denote the set of simultaneously T—approximable points lying on the polynomial curve
Ty ={(z,P(z) + a) € R? : z € R} in R?; that is,

Tr— =

WT(Pa):{xeR : .

1 1
p‘ < — and ‘P(x)—i—a—r‘ < — i.o.}.
q

Then the main result proved hereafter reads as follows :
Theorem 2.1.4. Assume d > 2. If T > d+ 1, then

Wo(P,) =0
for almost all a € R.
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Here as elsewhere, almost all and almost everywhere must be understood in the sense that
the set of exceptions has Lebesgue measure zero.

Theorem 2.1.4 improves on a previous result due to Dickinson in [67, Theorem 4], where
the weaker lower bound 3d — 1 was proved for 7. The method developed in the proof of
Theorem 2.1.4 provides evidence that the bound d + 1 is in fact optimal. Indeed, it provides
an upper bound for the Hausdorff dimension of W, (P,) valid for almost all « € R and for
7 € (d,d + 1] which vanishes when 7 =d + 1.

Theorem 2.1.5. Assume d > 2. If 7 € (d,d + 1], then

Sd+1_T
T

dim W, (P,)

for almost all o € R.

The relevance of the result of Theorem 2.1.5 is also clear when compared with the following

one, first proved by Vaughan and Velani in [189] (see also [24]).

Theorem 2.1.6 (Vaughan & Velani, [189]). Let f be a three times continuously differentiable
function defined on an interval I of R and let Cy := {(z, f(z)) € R* : € I}. Let T € [3/2,2)
be given. Assume that dim{x €I : f"(z) =0} < (3 — 7)/7. Denote by W (f) the set of
simultaneously T-well approzimable points in R? lying on the curve Cy. Then
3_
dim W, (f) = L

T

Moreover, if 7 € (3/2,2), then the s—Hausdorff measure of the set W.(f) is infinite.

Now if the degree of the polynomial P(X) equals d = 2, then the upper bound for the
Hausdorff dimension of W_.(P,) given by (2.2) for almost all & € R and for 7 lying in the interval
(2, 3] has the same expression as the exact value of dim W, (P,) provided by Theorem 2.1.6,
which is valid for all & € R and for 7 € (3/2,2).

Theorems 2.1.4 and 2.1.5 seem to provide the first results related to the study of the Haus-
dorff dimension of the set of well approximable points lying on a curve which is not defined
by a polynomial with integer coefficients. Besides this fact, the method involved in the proofs
is also interesting in its own right since it includes the study of problems of Diophantine ap-
proximation by rationals whose numerators and denominators are related by some congruential
constraint. In this respect, some of the proofs in this chapter will strongly rely on results proved
in Chapter 1.

It should also be emphasized that Theorems 2.1.4 and 2.1.5 may easily be generalized to
the case of a general decreasing approximating function ¥ : R, — R, which tends to zero at
infinity. To this end, denote by Wy (P,) the set of U—well approximable points lying on the
curve defined by the polynomial P(X) 4 « in such a way that W, (P,) is the set Wy (P,) with
U(g) =g~ 7. Let Ay be the lower order of 1/¥, that is,

Ay = lim inf (_log\I/(q)> .
q—00 log q
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The lower order Ay indicates the growth of the function 1/¥ in a neighbourhood of infinity.
Note that this quantity is non—negative since ¥ tends to zero at infinity. With this notation at

one’s disposal, the generalisation of Theorems 2.1.4 and 2.1.5 may be stated as follows :

Corollary 2.1.7. Assume d > 2. If Ay > d+ 1, then

for almost all o € R. Furthermore, if Ay € (d,d + 1], then

<d+1—)\\p

dim Wq;(Pa) ~ \
4

for almost all a € R.
Proof. From the definition of the lower order Ay, it is readily verified that, for any € > 0,
U(q) < ¢ € for all but finitely many ¢ € N*.

Therefore, for any € > 0,
Wy (Ps) C Wiy —c(Pa).

The corollary then follows easily from Theorems 2.1.4 and 2.1.5. Q.E.D.

The chapter is organized as follows : the problem of simultaneous Diophantine approximation
under consideration is first reduced to a problem of Diophantine approximation concerning the
quality of approximation of the real number « by rational numbers whose numerators and
denominators are related by some congruential constraint (section 2.2). The auxiliary lemmata
collected in section 2.3 will be needed in the course of the proofs of Theorem 2.1.4 (section 2.4)
and Theorem 2.1.5 (section 2.5). Some remarks on the results and the method developed will
conclude the chapter (section 2.6).

For details about Hausdorff dimension and the proof of some of its basic properties which

will be used throughout, the reader is referred to [Prolegomena, subsection 0.1.2].

Since the set W, (P,) is invariant when the real number « is translated by an integer, it will
be assumed throughout, without loss of generality, that « lies in the unit interval [0,1]. Once
and for all, P(X) € Z[X] is a fixed polynomial of degree d > 2 whose leading coefficient will

be denoted by —ay € Z* for convenience.
Notation. The following notation will be used throughout this chapter :
e |z] (resp. [x]), € R : the integer part of = (resp. the smallest integer not less than ).
e (z)4 :=max{0,z} (z € R).
o f < g (resp. f > g) : notation equivalent to f = O(g) (resp. g = O(f)).
o [z,y] (x,y € R, x <y) : interval of integers, i.e. [z,y] ={n €Z : z <n <y}
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A : the Lebesgue measure on the real line (or its restriction to the unit interval).
e Card(X) or |X]| : the cardinality of a finite set X.

e A* : the set of invertible elements of a ring A.

e M* = M\ {0} for any monoid M with identity element 0.

e P (resp. m, v;(q) for ¢ € N*) : the set of primes (resp. any prime, the 7—adic valuation

of q).
e ©(n) : Euler’s totient function.
e 7(n) : the number of divisors of a positive integer n.
e w(n) : the number of distinct prime factors dividing an integer n > 2 (w(1) = 0).
e ||f]|L : the supremum norm of a continuous function f over a bounded interval I C R,
ie. £l = suplf(z)].
zel
e G,(q) (d,g > 1 integers) : the set of d*® powers modulo g.

e aGy(q) :={am : me€ Gq(q)} (d,q > 1 integers, a € Z/qZ).

2.2 From the simultaneous case to Diophantine approximation

under a constraint

In this section, simultaneous approximation properties of a real number = and of P(z) + « are
linked to some properties of Diophantine approximation under a constraint of the real number «,
and conversely. The aforementioned constraint implies the resolution of a congruence equation
involving the polynomial P(X). This section is the key step to the proof of Theorems 2.1.4
and 2.1.5.

2.2.1 Reduction of the problem

Let M be an integer and let WM (P,) = W, (P,) N [M, M + 1], i.e.

T ==

WM (P,) = {xe [M, M +1] :

p ‘

Plainly,
Wr (Po) = U Wy(Pa)~
MEZ
In order to determine the Hausdorff dimension of the set W (P,), it is more convenient to
first focus on the subsets W (P,). To this end, the following two lemmata are needed. Recall
that d := deg P.

Lemma 2.2.1. Let 7 > 0 and x € [M, M + 1] such that there exist rational numbers p/q and
r/q satisfying

and P(m)%—a—%z
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with 05,6, € (0,1) and e;, e, € {£1}.
Then

where Ky =1+ HP’||[OJ<\>/[’M+1].

Proof. The proof is straightforward. First note that

rg?t — ¢iP (g) 0

a+ P(z) — P(z) — - =% (P(a:) S (p)> .

q qr q

Now, from the Mean Value Theorem, there exists a point ¢ in (m, %) such that

[
qT

P(z)— P (p) = P (c)

q

Therefore,

which proves the lemma.

The next result provides a partial converse to Lemma 2.2.1. Here again, Kjs

[Pk

Q.E.D.

=1+

Lemma 2.2.2. Let b and q > 1 be integers such that there exists an integer p € [Mq, (M +1)q]

satisfying

b Z
d+P<p)€:_{a : aGZ}.
q q q q

Assume furthermore that

where 0 € (0,1) and € € {+1}.
Then there exists r € Z such that for any x € (% -1 % + %),

2

‘P(x)+a—2’ <

b

—~ + P (p> — I

q q q
From the triangle inequality and the Mean Value Theorem,

P b
Pz)—-P|= )|+ ‘a —
' (@) (Q>‘ q

1M, M+1]
P o,

qr qr

Proof. Let r € Z be such that

IN

T
Plx)+oa— -
‘() CI‘
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Hence the lemma is established. Q.E.D.

For any integer M and any real number K > 0, let

1 b K
Ry(a)[K]::{xe[M,M—Fl] : x—p‘<and a——| < —
q qr q qr
b Z
with d+P(p) = i.o.} (2.3)
q q q

and

T — =

WM (P)[K] := {x €[M,M+1] : p

1 r K
p‘ < — and ‘P(m)—i—a— ’ < — i.o.}.
q
For the sake of simplicity of notation, omit the square brackets in the above notation when
K =1
With these definitions, Lemmata 2.2.1 and 2.2.2 amount to claiming that, for any integer
M

)

WM (P,) C RY()[Kn] C WM (Pa)[2Ku].

T

It is readily seen that, for any € > 0, the above inclusions imply that
WM (Pa) € R (a) ¢ W, (Pa).

Defining

R ()= ] RY (), (2.4)
MeZ

it follows that, for any € > 0,
Wi (Py) CRr—(a) CWi_oc(Pn).

Thus, the following proposition has been proved :

Proposition 2.2.3. For any 7 > 0, dim W, (P,) < li%l+ dimR,_. (a) .
€E—>
Furthermore, the equality dim W, (P,) = dim R, («) holds at any point of continuity of the
function T — dim W, (P,) .

Since the function 7 +— dim W, (P,) is obviously decreasing, it defines a regulated function
(that is, it admits at every point both left and right limits). Now, it is well-known that the set
of discontinuities of a regulated function is at most countable, from which it follows that, for
almost all 7 > 0, dim W, (P,) = dim R, (&) .

In fact, much more may be expected. Defining the set W, (f) for any function f in the

same way as W, (P), one may indeed state this conjecture :

Conjecture 2.2.4. For any smooth function f defined over R, the map T — dim W, (f) is

continuous.

Obviously, the statement may be extended both to higher dimensions and by weakening

the assumption on the regularity of the function f. Note that in the case of simultaneous

64



approximation of independent quantities, the dimension function is known to be continuous
in any case (see [168] for the specifics of this assertion). On the other hand, one cannot ask
the function 7 — dim W, (f) to be differentiable for any positive value of 7 in the general
case as shown by the example of the circle S'. Indeed, combining the bidimensional version
of Dirichlet’s Theorem in Diophantine approximation, Remark 2.1.2 and Theorem 2.1.2, it is

possible to give the value of dim W, (S') for any 7 > 0 :

1 if0<7<3/2
dimW-(S") =9 (3—-7)/r if3/2<71<2
1/ if 7> 2.

From Remark 2.1.2, this also holds true for any arc contained in S'. Thus, the function
7+ dim W, (S!) is piecewise differentiable as a continuous piecewise rational function. It may
be expected, as a generalisation of Conjecture 2.2.4, that this behaviour holds true for any

function 7 — dim W,.(f) provided that f is “regular enough”.

In what follows, Theorems 2.1.4 and 2.1.5 will be proved for the set R, («). Since the
bounds provided by these theorems are continuous in 7, it suffices to study dim R, («) rather

than dealing with dim R,_. (o) before letting € tend to zero.
2.2.2 The congruential constraint

b Z
d+P<p) € —,
q q q

The condition

with b and p integers and ¢ a positive integer appears in the definition of the set R, («). Plainly,

it amounts to the congruence equation

=—¢'P (Z) (mod g%~ 1) (2.5)

having a solution. Since the reduction modulo ¢ of (2.5) is
— o d
= agp® (mod g)

(recall that the leading coefficient of P(X) is —agy), it should be obvious that

R, (o) C R, () C RE () (2.6)
for any 7 > 0, where
* pl_ 1 L. d .
Ri(a):=qz€R: |z —=| < —and |a— —| < — with b=agp” (mod q) i.o. (2.7)
q q q q

and where the set R, (a) is defined in the same way as R, (o) in (2.3) and (2.4) with the

additional constraint ged(q, pdag) = 1 on the rational approximants.
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In fact, the upper bound in Theorem 2.1.5 will be established in section 2.5 for the set
R (o)) whereas Theorem 2.1.4 will follow in an obvious way from the proof in subsection 2.4.1
that the set

b

o — —
qd

I*(P) := {a €(0,1) :

1
< e with b € aqGa(q) i.o.} (2.8)

has zero Lebesgue measure when 7 > d + 1 (recall that G4(q) denotes the set of d*® powers
modulo ¢). Furthermore, the bound d + 1 given by Theorem 2.1.4 cannot be trivially improved
if it is shown that I’* (P) contains a subset which is not of Lebesgue measure zero when 7 < d+1.

To this end, it will be proved in subsection 2.4.2 that the subset I,(P) C I*(P) has full

measure whenever 7 < d 4+ 1, where

I (P):= {a €(0,1) :

a— q% < qiT with b € aqG (q) and ged(q, dag) =1 i.o.} , (2.9)
and where G (¢) denotes the set of primitive d*™™ powers modulo g.

It should be noted that I (P) is to the set R, (a) as I*(P) is to the set R*(a) in the
following sense : assume that b = aqp? (mod q) for some p € Z satisfying ged(q, pdag) = 1 as
in the definition (2.9) of the set I, (P). From the Chinese Remainder Theorem, solving this
congruence equation modulo ¢ amounts to solving the same equation modulo 7%~(@) for any
prime divisor 7 of ¢. Now, under the assumption that ged(q, pdag) = 1, any solution p of
b= agp® (mod ﬂ”"(Q)) may be lifted, thanks to Hensel’s lemma, to a unique solution p of the
congruence equation (2.5) taken modulo 7¥~(9(4=1) (4 > 2) such that 7 does not divide the
product pday. Therefore, using once again the Chinese Remainder Theorem, a solution in p to
b=agp? (mod q) satisfying ged(q, pdag) = 1 may be lifted in a unique way to a solution p of
equation (2.5) such that gcd(g, pdag) = 1 as in the definition of the set R, ().

2.3 Growths of arithmetical functions and power residues

In this section, various results which will be needed later are collected. Some are more detailed

versions of lemmata seen in [Chapter 1, Section 1.2].

2.3.1 Comparative growths of some arithmetical functions

For n > 2 an integer, let 7(n) be the number of divisors of n and let w(n) be the number of
distinct prime factors dividing n. Some results about the asymptotic behaviour of these two

arithmetical function are now recalled.

Lemma 2.3.1. For any € > 0, 7(n) = o (n®) and the average value of T(n) is logn, i.e.

1 n
— ~ 1 .
- ZT(]C) ogn

n—oQ

Proof. See, e.g., [108, Theorems 315 & 320]. Q.E.D.
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Lemma 2.3.2. For any € > 0 and any positive integer m,
w(n) =o(ogn) and m*™ =o(nc).

Proof. See [Chap. 1, Lemma 1.2.2; p.45]. Q.E.D.

2.3.2 Counting the number of power residues in a reduced system of

residues

The congruence equations appearing in subsection 2.2.2 in the definition of the sets fT(P) and
I*(P) on the one hand and R, () and R¥(«) on the other involve power residues modulo an

integer ¢ > 1. The cardinality of such a set is now determined.

Let n > 2 and d > 2 be integers. Denote by r4(n) (resp. by eq(n)) the number of distinct
d*™ powers in the system of residues modulo n (resp. in the reduced system of residues modulo

n) and by ug(n) the number of d'" roots of unity modulo n; that is,

rq(n) = Card {md (mod n) : m € Z/nZ},
eq(n) = Card {md (mod n) : me€ (Z/nZ)X} ,
ug(n) = Card{m € Z/nZ : m*=1 (modn)}.

Set furthermore r4(1) = eq(1) = uq(1) = 1.
The following remark, which was already mentioned in Chapter 1, will be used several times

in this chapter. It is therefore reproduced hereafter.

Remark 2.3.3. If u(f,n) denotes the number of solutions in z of the congruence

d
f(z) = Zakxk =0 (mod n)
k=0

for a given polynomial f € Z[X] of degree d > 1, it is well-known that, as a consequence of the
Chinese Remainder Theorem, u(f,n) is a multiplicative function of n. It follows that ugq(n) is

multiplicative with respect to n for any fixed d.
In fact, the same holds true for r4(n) and eq(n) :

Lemma 2.3.4. For any fized d, the functions rq(n), eq(n) and uqg(n) are multiplicative with

respect to n.
Proof. See [144, Lemma 1] for the case of the functions r4(n) and e4(n). Q.E.D.

Explicit formulae may be given for r4(n), eq(n) and ug(n). Since these arithmetical functions
are multiplicative when d is fixed, it suffices to give such formulae in the case where n is a power

of a prime.
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Proposition 2.3.5. Let n = 7% be a power of a prime number (xr € P, k > 1 integer). Then,
the following equations hold :
p(rt) () p(rh—ma)

Bd(n) = and Td(n) = ’U,d(ﬂk) + ud(wk_d) + -+ W + la

where m stands for the largest integer such that k — md > 1.

Furthermore,

( ged(2d, o(n)) if2|d, 7 =2 and k > 3,
ug(n) =
¢ ged(d, p(n))  otherwise.

Proof. See [144, Lemmata 2 & 3]. Q.E.D.

Remark 2.3.6. Consider a partition of all numbers in the complete system of residues modulo
7% (r € P, k > 1 integer) into classes with regard to their divisibility by 7* and not 75*1;
that is, the numbers of the form z7® with ged(z,7) = 1 belong to the class numbered s
(where 0 < s < k). As is made clear from the proof of Proposition 2.3.5 in [144], the quantity
(k=54 Jug(n*~?) with k—sd > 1 counts the number of distinct elements modulo 7* obtained
when taking the d*™® power of the numbers in the s class. If sd > k, then the d* power of
any element in the s*® class is equal to zero modulo 7*.

Furthermore, the proof of Proposition 2.3.5 also implies that, if k—sd > 1 and if b (mod 7rk)
is the d*" power of an element in the s*" class, then the number of solutions in = to the

congruence equation b = z¢ (mod 7¥) is exactly uq(7*=5%).

2.4 The set W,.(FP,) when 7 > d+ 1

Theorem 2.1.4 is now proved and the optimality of the lower bound d 4+ 1 appearing in this

theorem is also studied.

2.4.1 Emptiness of the set for almost all « € R

In order to establish Theorem 2.1.4, recall that from the discussion held in subsection 2.2.1 and
from the inclusions (2.6), it suffices to prove that the set RX(«a) as defined in (2.7) is empty in
the metric sense whenever 7 > d + 1. This in turn follows from the fact that, as a consequence
of the convergent part of the Borel-Cantelli Lemma, the set I*(P) as defined in (2.8) satisfies
the same property.

To see this, first notice that, for any N > 1, a cover of I7(P) is given by (J > 5 J7(q), where

JHe= U (bd—l,ZJrl). (2.10)

T T
0<beq?—1 q q q q
beaaGalq)

d—1

If 7 > d and ¢ > 1 is large enough, J*(q) is a union of |a4G4(q)| ¢~ ' non—overlapping intervals,
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each of length 2¢~7; that is,

_ 2|aqGa(g)l ¢""

A(J7(9) e

, (2.11)

where A denotes the Lebesgue measure on the real line. On the other hand, since the ring

aq7Z/qZ is isomorphic to Z/§Z, where § = q/ ged(q, aq), the following relationships hold true :
ra(7) = 1Ga (7)| = laaGa(q)| < |Galq)| =: ra(q). (212)

In order to study the convergence of the series > -, A(J7(g)), an upper bound (resp. a
lower bound) for r4(q) (resp. for r4(g)) is established. Regarding the upper bound for r4(q),
Lemma 2.3.4 and Proposition 2.3.5 imply that

mg(m,d) 0 (ﬂ_y.,,(q)fsd)

Td(Q):H 1+ Z W )

TEP s=0
m|q

where mg(m, d) := L%J. Now, it is easily checked that, for all s € [0, m,(m,d)],

()0(71-”*(4)_55[) < © (7-(1’71'(‘1))
Ug (WVW(Q)*Sd) T uyg (71—V7r(4))

and hence

< 2¢Wr(q)q. (2.13)

As for the lower bound for r4(§), first notice that Lemma 2.3.4 and Proposition 2.3.5 lead
to the estimate

1< ualg) < (2d)°) (2.14)

valid for all ¢ > 1. It may then be inferred from that that

(2.15)

> —,
laal (4d)“

the last inequality following from the definition of §.
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Finally, the combination of relationships (2.11), (2.12), (2.13) and (2.15) yields the inequa-
lities
Qw(q)

ZW < Y M) < Z (2.16)

q=>1 q>1 a>1
From Lemmata 2.3.1 and 2.3.2, the right-hand side converges for any 7 > d + 1, hence
AIZ(P)) = 0 for 7 > d+ 1. This bound is the best possible according to the convergent
part of the Borel-Cantelli Lemma since the series } - A (J7(q)) diverges for 7 < d + 1. This
is indeed implied by (2.16) together with the following general result.

Lemma 2.4.1. Let n be a positive integer and z be a positive real number. Define for any

positive real number s the series

w(q)
z
L= ¥ S0
q=>1 g
ged(g,n)=1

Then the series L,(s) converges if, and only if, s > 1.

Proof. Let x, be the Dirichlet principal character modulo n; that is,

1 if ged(n,g) =1
xn(q) = )
0 otherwise

for all integers ¢ > 1.

Then,
w(q)

SO
q>1
Since xn(q)z*@ is a multiplicative arithmetical function, L.(s) admits an Euler product ex-

pansion given by

L.(s) H<1+an )Z 11 <1+7TSZ_1>. (2.17)

TeP TeP
ged(m,n)=1

Since only positive quantities are considered, L,(s) converges if, and only if, the right-hand
side of (2.17) converges. Taking the logarithm on both sides of the latter equation, L.(s) is

seen to converge if, and only if,

1
> X =
le(Z/nZ)* wzzw(ggd n)

converges, which is the case if, and only if, for any I € (Z/nZ)*
> =
7TS

TeP
7=l (mod n)
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converges. By Dirichlet’s Theorem on arithmetic progressions (see, e.g., [179, Chapter 6]), for

any | € (Z/nZ)™,
1 1 1
R e
T s—=1t p(n) s—1

TeP
7=l (mod n)

This completes the proof. Q.E.D.

2.4.2 Optimality of the lower bound d + 1

The divergence of the series »_ -, A(JX(q)) for 7 < d 4+ 1 does not guarantee that the set
I*(P) should not be of Lebesgue measure zero, in which case the bound d + 1 appearing in
the statement of Theorem 2.1.4 could be trivially improved. This problem is now tackled by
showing, as mentioned in the discussion held in subsection 2.2.2, that the subset I, (P) of I*(P)
as defined in (2.9) has full measure whenever 7 < d + 1.

To this end, consider the extension of the classical theorem of Duffin and Schaeffer in

Diophantine approximation obtained in [Chap. 1, Theorem 1.1.3]. For all integers ¢ > 1, let

ealq
sa(q) = ala) (2.18)
q
(see Lemma 2.3.4 and Proposition 2.3.5 for an expression of e4(q)). The following particular

case of Theorem 1.1.3 was also proved in Chapter 1 :

Theorem 2.4.2. (Chapter 1, Theorem 1.1.2) Let (qx)k>1 be a strictly increasing sequence of
positive integers and let (ag)r>1 be a sequence of positive real numbers in the interval (0,1/2).

Assume that :

(a) Zak = o0,
k=1

n n
(b) Z QESd (qg) > CZ ay  for infinitely many integers n > 1 and a real number ¢ > 0,
k=1 k=1

(c) egcd(gr,aq) =1 forallk > 1.

Then, for almost all o € R, there exist infinitely many relatively prime integers by, and qi such
that

b «
o — —Z < —5 and by € aqaGf (qr),
9 4

where G ¥ (q1) was defined at the same time as the set I.(P) in (2.9).

One can deduce from Theorem 2.4.2 a result stronger than the one required to prove that
the set I.(P) has full Lebesgue measure when 7 < d + 1 :

Corollary 2.4.3. Let s € (0,1] and let m be a positive integer.
Then, for almost all a € R, there exist infinitely many integers q and b, q > 1, satisfying
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(i) Ja- k<=
(it) b€ aiGy(q) ,
(i“’) ng(Q7 dad) =1 ’

(iv) w(q) < m.

In particular, N(I.(P)) = NI*(P)) =1 when 7 < d +1.

Proof. Maintaining the notation of Theorem 2.4.2, choose for the sequence (g ) k>1 the succes-
sive elements of the set {n € N* : gcd(n,dag) =1 and w(n) < m} ordered increasingly and

let (ax),~, denote the sequence (1/g}),~-

Then )
Saxy L
7TS

k>1 TeP
midag

and the right-hand side is a divergent series for s € (0, 1]. Furthermore, from (2.14) and (2.18)

on the one hand and from the choice of the sequence (gi),~, on the other, for any positive

integer k,
d
ay_ v (a) 1
salqy) = > > 0.
M qlua (gf) T (dd)m
Together with Theorem 2.4.2, this completes the proof. Q.E.D.

Remark 2.4.4. Tt is not difficult to see that, for almost all o € R, the sequence of denominators
(gr)k>1 in Corollary 2.4.3 may be chosen in such a way that (i), (ii) and (iii) hold and such
that the sequence (w (qx)),>; is unbounded. Indeed, define first for any positive integer m the

sequence (nm,, ;)r>1 as being the sequence of the successive elements of the set
{n e N* : ged(n,dag) =1 and w(n) =m}
ordered increasingly. Let (cm k)r>1 be the sequence (1/nj, ;)k>1, where s € (0, 1], and let

Dy, :i={a € (0,1] : (i), (#4) and (4i7) hold with w(q) = m i.o}.

Denote by (m;);>1 the increasing sequence of primes. Since for all k£ > 1,

1 1
d
sa(Np, ) > ad)™ >0 and Zam,k > Z )
k>1 1<i <o Sy 7T
71',-_7,)(2dad

which is a divergent series, arguing similarly as in the proof of Corollary 2.4.3 yields the equation
A Dy,) =1 for any m € N*. Then A (Ny,>1D;,) = 1 and the result follows.
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2.5 Upper bound for the Hausdorff dimension of W, (F,) when 7 lies
in the interval (d,d + 1]

Theorem 2.1.5 will be proved in this section after the study of the asymptotic behavior of the

number of solutions to Diophantine inequalities.

2.5.1 Number of solutions to Diophantine inequalities

Given a sequence of intervals (I;) -, inside the unit interval and a real number a, let N (Q, «)

q=1
denote the number of integers ¢ < @ such that ga € I, (mod 1), that is,

N(Q,a) :=Card{q € [1,Q] : qa €I, (mod1)}. (2.19)

The asymptotic behavior of V' (Q, @) as @ tends to infinity has been studied by SprindZuk who
exploited ideas from the works of W. Schmidt and H. Rademacher on the theory of orthogonal
series (see [183] for further details).

Theorem 2.5.1. ([183, Theorem 18]) Let (1), be a sequence of intervals inside the unit
interval [0,1] such that

Z/\(Iq) = 0.

q=1
For any real number «, define N (Q, @) as in (2.19).
Then, for almost all o € R,

N (@) = 2(Q) + 0 (V/I(Q) (log w(Q))*/*") ,

where
Q Q
®(Q) =Y Aly), W(Q):=) Ay)7(q)
g=1 g=1
and k > 0 is arbitrary.
The notation of Theorem 2.5.1 is maintained in the next corollary.

Corollary 2.5.2. Under the assumptions of Theorem 2.5.1, suppose that one of the following

conditions holds :

(i) ®(Q) > Q° for all Q >0 and for some & > 0.
(i) (1) is decreasing and ®(Q) > (log Q)Hé for all Q > 0 and for some 6 > 0.

Then o
N(QvO‘)Nz/\(Iq) as Q — oo.

q=1

Proof. If condition (i) holds, then the result is a simple consequence of Theorem 2.5.1 and the
fact that 7(¢) < ¢¢ for any € > 0 (cf. Lemma 2.3.1).
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If condition (ii) holds, since Zlgkgq 7(k) < glog g by Lemma 2.3.1, making an Abel trans-
formation in the expression for ¥(Q) shows that ¥(Q) < ®(Q)log Q. The conclusion follows
in this case also. Q.E.D.

Remark 2.5.3. In the statement of Theorem 2.5.1, no restrictions whatsoever are imposed on
the way the intervals I, vary with ¢q. Therefore, the condition qo € I, (mod 1) appearing in
the definition (2.19) of N (Q, &) may be regarded as holding for the numbers g of an arbitrarily

increasing sequence. Then Corollary 2.5.2 is still valid for such a sequence (g);~;-

2.5.2 Proof of Theorem 2.1.5

In order to prove Theorem 2.1.5, recall that it suffices to establish the upper bound for the
Hausdorff dimension of W (P,) in the case of the set R («) as defined in (2.7). Without loss of
generality, it may be assumed that 7 € (d,d+ 1), the result in the case 7 = d+ 1 following from
an obvious passage to the limit. Furthermore, since the set R*(«) is invariant when translated
by an integer, it suffices to prove Theorem 2.1.5 for the subset R (a)N [0, 1] which, for the sake
of simplicity, shall still be denoted by RX(«a) in what follows.

The fact that the fractions p/q are not necessarily irreducible in the definition of the set
R*(«) induces considerable difficulties as one needs to take into account the order of magnitude
of the highest common factor between p and ¢ to determine dim R}(«). It is in fact more
convenient to work with ged(b, ¢). To this end, define for € € [0, 1] and ¢ > 0 the set R (a, €, )

as

b
e

1.
<*TI.O.
q

1
xp‘<and
q qr

o —

{x €0,1] :

with b = agp? (mod ¢) and ¢¢ < ged(b, q) < q€+5}. (2.20)

It should be obvious that

Ri(e)= |J Ri(a,€9).

0<e<e+6<1

Let furthermore I*(«, €, ) be the set

1.
< — 1l.0.

T

o — —

I’ (o, €,0) := {a €(0,1) : y
q

with b € a4G4(q) and ¢° < ged(b, q) < q”‘s}. (2.21)

Notation. Given € € [0,1] and § > 0, let N (Q, a, €, §) denote the counting function of the set

I*(ay€,6), which can be defined more conveniently in this case as follows :

N(Q,a,¢€,6) = Card{qd e[1,Q] : ‘qda - b’ < ¢ io.

with b € agGq(q) and ¢° < ged(b, q) < q€+5}. (2.22)

With these definitions and this notation at one’s disposal, one may now state this lemma :
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Lemma 2.5.4. Assume that 7 € (d,d+ 1). Then the set R:(a,€,d) is empty for almost all
ac0,1]ife>d+1—r.
Furthermore, if 0 < e < e+ <d+1—7, then, for almost all « € [0, 1],

Qd+17776757,u < N(Q,@,G,CS) < QdJrlfoGJrl/’

where p,v > 0 are arbitrarily small.

Proof. To prove the first part of the statement, it suffices to show that the set I*(a,¢,d) is

empty in the metric sense as soon as € > d + 1 — 7. With this goal in mind, define

Bp(g,€,0) :=={b (mod q) : b€ asGa(q) and ¢° < ged(b,q) < ¢}

and b1 b 1
JHg.e0) = J <dT,d+T>, (2.23)
PN S A
0<b<g®—1
beBp(q,€,0)

in such a way that |J > v J7(q,€,6) is a cover for I7(a, €, ) for any N > 1.

Since
|Bp (g,€,0)| = Z Card{b (mod q) : b€ ayGqa(q) and ged(d,q) =a},
al
4 o gt
it should be clear that
|Bp (g,€,0)| = Z Card{b (mod q) : b€ Gy4(q) and ged(b,q) = a}
\
o ot

if ged(aq, ) =1 and that

|Bp (g,€,9)| < Z Card{b (mod q) : b € G4(q) and ged(b,q) = a}
al
q5§a<qq5+5

if ged(aq, q) > 1.
Now, if a divides g, the ring aZ/qZ is isomorphic to Z/GZ, where ¢ = q/a. Therefore, for

such an integer a,

Card {b (mod q) : b€ Ga(q) and ged(b,q) = a} = Card{b (mod 3) L be Gy (g)}

@

from the definition of rq(n) in subsection 2.3.2. Therefore,

|Bp (q,€,0)| = Z rd (%) = Z ra(l) (2.24)



if ged(ag,q) =1 and

Be@edl< > (i)=Y om0

alg llq
qega<qe+o q1—576<l§q1—

if ged(aq, q) > 1.
From (2.13) and (2.15), it is readily checked that

1—e—0o
q w .
4w = %: rall) < 2°97(q)%" ", (2.25)
q
ql—e—5<lgq1_

Thus, combining (2.23), (2.24) and (2.25), it follows that, if ged(aq, ¢) =1,

9 d—e—§ 218 5 d—1 2. 2w(q) 2 d—e
q < A(J:(q’€75)): | P(ana )|q < T( ) X

2.26
(4d)»(@qm — q - qr (2.26)

On the one hand, Lemmata 2.3.1 and 2.3.2 imply that the right—hand side of (2.26) is the
general term of a series which converges whenever ¢ > 1 4+ d — 7; hence, from the convergent
part of the Borel-Cantelli Lemma, A (I*(gq,€,d)) =0 assoonase>1+d— 7.

On the other hand, Lemmata 2.3.1 and 2.3.2 and inequalities (2.26) also imply that, for any
w,v >0,

1
1+d—7—e—6—p § § *
Q < qT d+e+d+p < J q,E 5))
1<q<@Q 1<¢<@Q

ged(aq,q)=1

14+d—7—€e+v
< Z ‘r T—dte—v < Q :
1<9<0 1

To conclude the proof, it suffices to notice that, if i is chosen so small that 1+d—7—e—d—pu > 0,
then, from Corollary 2.5.2,

N(Q,a,€6) ~ Z)\J*q,eé) as Q — oo

1<¢<Q

almost everywhere. Q.E.D.

Corollary 2.5.5. Let 7 € (d,d+1). Assume that € and 0 are such that0 < e < e+6 < 1+d—7.
Then, for almost all o € [0,1],

1+d—7+496
T

dim R} (e, €,0) <

Proof. By the definition of the set R(a,e€,d) in (2.20), its s—dimensional Hausdorff measure
H* (R (a,€,0)) satisfies the inequality

2
M (Ri(a,e,0) <D > Y —, (2.27)
>1 b o<pzg—1 I
b=aqp? (mod q)
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where the second sum runs over all the possible integers b such that

1
—| <= and ¢ <ged(b,q) < ¢, (2.28)

T

Note that, provided that ¢ > 1 is large enough and that 7 > d, there exists at most one
integer b which is a solution to (2.28). So let (gy),~; denote the strictly increasing sequence
of denominators g, such that (2.28) is satisfied for some integer b,,. From the definition of this

sequence, (2.27) may be rewritten as

H* (Ri(0,e,6)) < > ) (2.29)

n>1 1"

where ¢,, := Card {p (mod ¢,) : b, = agp? (mod qn)} .
In order to determine the value of ¢,, first note that, from Remark 2.3.3, ¢, is multiplicative
in ¢, (i.e. chm = cnCy whenever ged(qn, gm) = 1). Consider now the equation b, = agp?

(mod 7TV"(q")) , where 7 is any prime divisor of ¢, :

e Ifb, =0 (mod w”“(q")), then the equation agp® = 0 (mod 77”“(‘1")) amounts to the
following one : dvy(p) + vr(aq) > vx(gn). It is readily checked that the number of

solutions in p (mod ¢,) to this equation is

gvmlan) _ gka(mm) - where ky(n,m) =

{(Vw(qn) -

o)),

o If b, #£0 (mod TI'V'"(q")) , then the equation b,, = aqp? (mod TI'V"(q")) amounts to

b a -1
d_ _Un d uﬁ(qw—uw(ad))
P = e (Wumd)) (mOd i ’

where the division by 7¥~(@4) denotes ordinary integer division while multiplicative in-
version is performed in Z/ (w””(q")”’”(“d)) Z. Using the terminology introduced in Re-
mark 2.3.6, the class of any solution p (mod m=(4n)=¥=(ad)) to this equation has to
be (Vr(bn) — vx(agq))/d. Therefore, from Remark 2.3.6, the number of solutions in p

(mod WV”(q")7V“(ad)) to this equation is

e ) I CEUREELN) P ERLTR)

(see Proposition 2.3.5 for this last inequality).

All things considered,

e < 1T m¥rlan) 11 Ug (ﬂ””(q")) < ged(bn, gn) ud (n) -
7|qn 7|qn
bn=0 (mod 7= (n)) bu#£0 (mod ¥ (1))

Now, from the definition of the set R*(a,e¢,d), it may be assumed that ged(bp,q,) < ¢5F°.
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Then, upon using (2.14) and Lemma 2.3.2, it is readily seen that (2.29) implies that

1

n>1 1N

for arbitrarily small v > 0. Since N (¢n, @, €,d) = n by the definition of the sequence (q”)nZN
Lemma 2.5.4 yields the estimate

nl/(d+17776+7) < qn

valid for almost all « € [0, 1] and for arbitrarily small v > 0. Thus,

s * 1
H* (R7(,€,0)) < Zn(frsfeféf’y)/(cH»lfoe%»’Y)’

n>1

which is a convergent series for s > (d+ 1 — 7 + 0 4+ 2v)/7; that is,

d4+1—7405+2y
T

dim R} (a,€,0) <

The result follows on letting v tend to zero. Q.E.D.

The proofs of Lemma 2.5.4 and Corollary 2.5.5 rely strongly on the fact that, when e <
1+d—7, it is always possible to choose § > 0 and x > 0 so small that 1 +d—7—€¢—0 —pu > 0.
While Lemma 2.5.4 also implies that the set R*(a,€,) is empty in the metric sense whenever
€ > 14 d — 7, this leaves a gap corresponding to the case when ¢ = 1 + d — 7. This limit case
is now studied.

Since R*(a,€,8) = () for almost all o € [0,1] when € > 1+ d — 7, it should be clear that
Ri(a,1+d—7,0) = R:(a, 1 +d—7,p) for any d, u > 0, the equality holding true in the metric
sense. Denote by R (o, 1+d—7) the common set determined by these different values of 6 > 0
and p > 0, i.e.

Ri(o14+d—7):= ) Ri(a,1+d —7,0).
>0
In other words, Rf(a,1+d—7) = R*(a,14+d—7,6) for any § > 0 and for almost all « € [0, 1].
In a similar way, let
I'lo,1+d—71):= ﬂ (o, 1+d—1,9).
>0
Thus, I¥(a,14+d—7) is to R (a,14+d—7) as I (a,€,0) is to RE(a,€,0) when 0 < e < e+ <
1+ d — 7, these last two sets being defined in (2.20) and (2.21).

Notation. The quantity N (Q,a,1+d —7) will denote the counting function of the set
I*(a, 14 d — 7) defined in a similar way as in (2.22).

As might be expected, the asymptotic behavior of the function N (Q, a, 1+ d — 1) is diffe-
rent from that of N (Q,a,¢,8) when 0 <e<e+d<1+d—r7:
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Lemma 2.5.6. Assume that T € (d,d + 1). Then for almost all o € R,
N(Q7a71 +d_T) < QM7

where p > 0 is arbitrarily small.

Proof. Let 6 > 0. Define J*(¢,1 + d — 7,d) as in (2.23). Then the upper bound for
A(Jf(g,14+d —,0)) provided by (2.26) still holds, namely

2. 2907 (q)?

)‘(J:(qa1+d_T75)) S q

Therefore, since 299 = 0 (¢g*) and 7(q) = o (¢") for any p > 0 from Lemmata 2.3.1 and 2.3.2,
forall Q > 1,

1
q'~

Q
Q)= AJi(g1+d—10) < Y

q=1 q=1

3u
3u < Q

and, in a similar way,

V(Q) =3 AJi(g 1 +d—7.0)7(q) < Q.

q=1

Now, U,>n J7(¢: 1 +d —7,0) is a cover for I7(a,1+d — 7,0) for any N > 1. Since the latter
set is equal to I*(a, 1+ d — 7) for almost all « € [0, 1], it follows from Theorem 2.5.1 that, for
almost all a € [0, 1],

N(@al+d—1) = Q) +0 (VIQ (log ¥(Q)***") <« @™,

where k > 0 has been chosen arbitrarily. Q.E.D.

Corollary 2.5.7. Assume that 7 € (d,d + 1). Then, for almost all « € [0, 1],

1+d—-71
T

dim R} (a,1+d—17) <

Proof. Let § > 0. Denote by (qn)n21 the strictly increasing sequence of denominators ¢, such
that (2.28) with € = 1+ d — 7 is satisfied for some integer b,. Then inequality (2.30) still holds
for the set Rf(a,1+d — 7,0), namely

1
H (R0, 14+d = 7,0) < — g5

n>1 4N

for arbitrarily small v > 0.
Since I* (o, 1 +d — 7,9) = I*(a, 1 + d — 7) for almost all @ € [0, 1], the counting functions

of these two sets have the same asymptotic behaviour, hence, from Lemma 2.5.6,

n = N(,al+d—1) < ¢"
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almost everywhere, with p > 0 arbitrary. Therefore, for almost all a € [0, 1],

1
n(Ts=l—d+7=56—7)/1’

M (Ri(on1+d—7) < Y

n>1
which is a convergent series for s > (1+d— 7+ + v+ p)/7; that is,

d+1- 5
dim R} (a,1+d—7) < rloTHot Yt

T

The result follows on letting 7, § and p tend to zero. Q.E.D.

Completion of the proof of Theorem 2.1.5. In order to prove that dim Rf(«a) < (d+1—7)/7
for almost all @ € [0,1] when 7 € (d,d + 1), recall first that, from Lemma 2.5.4, the equation

Ri(a) = U Ri(a,e,6) | U R (a,1+d—1)
0<e<e+dé<l4+d—T7

holds almost everywhere. Corollary 2.5.7 also implies that it suffices to prove that

1+d-
dim U Ri(a,€,0) | < ranr
0<e<e+dé<1+d—7 T

for almost all a € [0, 1] when 7 lies in the interval (d,d + 1).
To this end, consider a strictly increasing sequence ( ﬁp)p> o of real numbers from the interval
(0,14 d— 7) tending to 1 +d — 7 as p tends to infinity. It should then be obvious that

U Riaed) =R, where Ria)lpl:= ) Ri(aed).

0<e<e+0<1+d—7 p>0 0<e<e+0<p,

Given p € N, let (ey(k))y<<,, be the finite sequence subdividing the interval [0, 3,] into n > 1

intervals of equal length d,(n) and satisfying the equations
p(0)=0 and €(n) =B =ep(n — 1)+ dp(n).

Then,

n—1

Ri(a)lp] = | R; (a, (k) 6,(n)).
k=0

Thus, from Corollary 2.5.5,

dim R (a)[p] = sup dim R’ (o, ,(k),8,(n)) < d+1—7408,(n)
0<k<n—1 -

)

which holds for almost all a € [0,1] and for any n > 1. On letting n tend to infinity, J,(n)
tends to zero and it follows that, outside a set of zero Lebesgue measure,

< 1+d-7

dim B2 ()]

T
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when 7 € (d,d + 1). Since the set R*(«) is the countable union of R*(a,1+ d — 7) and of
R:(a)[p] (p € N) for almost all « € [0, 1], this completes the proof. Q.E.D.

2.6 Notes for the chapter

e The upper bound for the Hausdorff dimension of the set W, (P,) stated in Theorem 2.1.5
is easily seen to be non—optimal as soon as 7 < d — 1 as it is superseded by the Hausdorff
dimension of the set of 7—well approximable numbers given by the Theorem of Jarnik and
Besicovitch (cf. [Prolegomena, Theorem 0.1.5, p.9]) : if W, denotes the latter set, then
W, (P,) C W, for any 7 > 0 and dim W, = 2/7 whenever 7 > 2.

Now if 7 € [d — 1,d], the study of the case d = 3 also tends to provide evidence that
the upper bound (1 + d — 7)/7 is still not relevant in the general case. Indeed, when
d = 3, on letting 7 tend to 2 from above (resp. from below) in Theorem 2.1.5 (resp. in
Theorem 2.1.6), the upper bound thus found for Tl_i>1£1+ dim W, (P,) is clearly seen not to
be sharp.

More generally, the determination of the actual Hausdorff dimension of the set of 7—well
approximable points lying on a polynomial curve when 7 is larger than 2 and less than
the degree of the polynomial remains an open question (see also [50] for another mention

of this problem).

e As mentioned in the introduction of this chapter, the upper bound for dim W, (P,,) given
by Theorem 2.1.5 is more than likely the actual value for the Hausdorff dimension of
W.. (P,) for almost all a € [0,1] when 7 lies in the interval (d,d + 1]. To also obtain
(d+1—7)/7 as a lower bound for dim W, (P,), it would be sufficient to prove such a
result for the set R, (a) as defined in (2.6). However, this would require the study of
the distribution of solutions to congruence equations and a quantitative result on the
uniformity of such a distribution. For arbitrary polynomials, this appears to be out of

reach at the moment.

e The set of exceptions (with respect to «) left by Theorem 2.1.4 actually contains uncoun-
tably many points. Indeed, let 7 > d+ 1 be given and let (z,y) be a pair of real numbers
simultaneously 7—well approximable — this set is uncountable as its Hausdorff dimension
is 3/7 from the Theorem of Jarnik and Besicovitch (cf. [Prolegomena, Theorem 0.1.5,
p.9]). Then, setting a = y — P(z), it is readily seen that x lies in W, (P,) since = and

P(x) + a are simultaneously 7—well approximable!.

e A natural continuation to the study undertaken in this chapter would be to answer the
following question : what can be said, for 7 > 0 “large enough”, about the Hausdorff

dimension of the set

x—p‘<1and ‘P(x—&—ﬁ)
q qr

r

1.
< —10. 0,
q q

W, (P['B]> = {x ER :

where 8 € R and P(X) € Z[X]?

IThis concluding remark is entirely due to Dr. Detta Dickinson.
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Some preliminary considerations seem to indicate that the problem boils down to consi-
dering approximations to a linear form whose coefficients come from the Taylor expansion
of P(X) at .

Since the result of Rynne mentioned in [Prolegomena, Theorem 0.3.7, p.25] rules out any
likely general result regarding the Hausdorff dimension of the set of very well approximable
points lying on a polynomial curve, the aim is to try to understand what a generic
result could be. Specifically, the aim is to recover a generic behaviour for the set of
approximation under consideration for almost all 5 € R and thus to obtain in combination
with the main theorems in this chapter a result regarding all polynomials that can be

obtained by vertical and horizontal shifts from an integer polynomial.
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Chapter 3

Liminf Sets in simultaneous
Diophantine Approximation : some

particular Cases

Abstract

Let Q be an infinite set of positive integers. Denote by W- ,(Q) the set of points
in dimension n > 1 simultaneously 7—approximable by infinitely many rationals with
denominators in Q. A non-trivial lower bound for the Hausdorff dimension of the liminf set
W7 (Q) = Wrn (N)\W;,n(Q) is established when n > 2 and 7 > 14 1/(n—1) in the case
where the complement set of Q satisfies some divisibility properties. The determination
of the actual value of this Hausdorff dimension as well as the one-dimensional analogue
of the problem are also discussed. Furthermore, the dimensional properties of a p-adic

version of the set W, (Q) are also studied.

3.1 Introduction

Let n > 1 be an integer and 7 > 1 be a real number. Given an infinite set of positive integers Q,
denote by W, ,,(Q) the set of points in dimension n > 1 approximable at order 7 by infinitely

many rationals with denominators in Q, i.e. the limsup set

Wrn(Q):i={x eR" : | —p/ql <q 7 forim. (p,q) € Z" x Q}. (3.1)
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Here and throughout, 7.m. stands for infinitely many, |2| is the usual supremum norm of a
vector & € R™ and p/q is shorthand notation for the rational vector (p1/q,...,pn/q), where
p=(p1,...,pn) € Z™.
Jarnik [126] and Besicovitch [44] proved independently that the Hausdorff dimension
dim W ,,(N) of the set W, ,(N) is
n+1

dim W, (N) = = (3.2)

as soon as 7 > 1+ 1/n. Subsequently, Borosh and Fraenkel generalized this result in [48] to
the case of any infinite subset @ C N by showing that
n+v(Q)

dim W (Q) = ——= (3.3)

when 7 > 1 4+ v(Q)/n, where v(Q) is the exponent of convergence of Q defined by

v(Q) :=inf{v>0: > q¥<oopel0l] (3.4)
qeQ

For recent developments and related results, see [113] (in particular Chapters 6 and 10), [70, 168]
and [Prolegomena, section 0.1.3].

On the other hand, the corresponding liminf set

W:n(Q) = Wf,n(N) \ WT,n (N\Q) = WTn(Q) \ Wf,n (N\Q) (3-5)

has received much less attention. Explicitly, this is the set of all those vectors & in R™ which
admit infinitely many approximations at order 7 as in (3.1) by rational vectors (p,q) whose
denominators ¢ lie in Q, but only finitely many approximations by rational vectors whose
denominators do not lie in @. To the best of our knowledge, the actual Hausdorff dimension
of the liminf set W, (Q) has not been studied yet. This seems to be a difficult problem which
will be discussed in this chapter in the case where Q is a set defined by divisibility properties.

Most of the results of this chapter will be complemented by the general result of Chapter 4.

3.2 N*\Q-free sets

In this section, Q will denote an infinite set of positive integers satisfying the following property :
for any integer ¢ € N*,

(¢eQ) & (WgQ, vfg). (3.6)

Such a set will be referred to as an N*\Q-free set following the definition of a B—free
set introduced by Erdés [90] '. Examples of sets satisfying this property are the square—free

integers (or, more generally, the k—free integers with k > 2 — conventionally, 1 is considered

However, unlike Erdds, the convergence of the series Z L is not required here. Note that a set

Q which is N*\ O—free must contain 1.

gEN*\Q a
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here as a k—free integer for any k > 2) or the set of integers coprime to a given natural number
m # 1.

The focus will be on the liminf set W, (N*\Q) which, for the sake of simplicity, will be
denoted by W:n(g) in what follows. Thus,

/W:n(Q) = {:B ER" : |z —p/q| <q7 forim. ¢¢ Q and fm. q € Q} , (3.7)

where f.m. stands for finitely many. For the definition of W:n(Q) to make sense, it is natural
to impose the further condition that @ & N*, which will be assumed throughout. It is indeed
easily seen that such a condition ensures that the complement set N*\Q is infinite.

3.2.1 A lower bound in any dimension

An elementary property of Hausdorfl dimension (see [Prolegomena, Proposition 0.1.3, p.7])
leads to the relationship

dim W, (N) = max {dim Wir.n(Q), dim ﬁv\:,n(g)} . (3.8)
It follows from (3.2) and (3.3) that dimWT*yn(Q) = (n+1)/7 as soon as v(Q) < 1 and
T > 14 1/n. In the case v (Q) = 1 however, the situation is much less well understood and
the determination of the actual Hausdorff dimension of the set W:n(Q) for any value of 7 > 0
and n > 1 may involve some deep results on the distribution of B—free numbers which are still

in the state of conjecture, as for instance those mentioned by Erdés in [90]. It is nevertheless

always possible to find a non-trivial lower bound for dim W\:,H(Q) when n > 2.

Theorem 3.2.1. Let Q be an infinite N*\ Q—free set. Assume that n > 1. Then

dim/W:n(Q){ =(n+1)/7 if v(Q) <1, 7>141/n and n>1,

’ €En/r,(n+1)/7] if v(Q=17>1+1/(n—1) and n>2.
Remark 3.2.2. If Q is any N*\ O—free set, define its support Supp (Q) as the set of all primes
dividing at least one element in Q. It is readily seen that, if the support of Q is finite, then
v(Q)=0.

On the other hand, if S is an infinite set of positive integers such that the series > _gs7#
diverges for some p > 0, one may construct by the diagonal process a subset S’ of S such that
the series ) .5 s7# diverges and the series ) s s7#7 converges for any € > 0 (that is, a
subset S’ such that v(S’) = u). Since the series of the reciprocals of the primes is divergent,
this shows that, for any « € (0, 1], there exists an N*\ Q—free set Q such that v (Q) = a.

It should also be noted that the exponent of convergence of an N*\ Q—free set Q depends
only on its support. Indeed, for any such set, it should be clear that

1 1 1
— < — < - 3.9
> mE<Xa<s X (3.9)
meSupp(Q) qeQ n€C(Supp(Q))

where v > 0 and C (Supp (Q)) stands for the set of positive integers all of whose prime fac-
tors belong to Supp (Q). The series on the right-hand side of (3.9) admits an Euler product
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expansion given by

> - I (1+54)

neC(Supp(Q)) " TESupp(Q)

Taking the logarithm of this last quantity, it is readily seen that the right-hand side of (3.9)

converges if, and only if, the left-hand side of (3.9) converges, hence the claim.

From Theorem 3.2.1, as soon as 7 > 1+ 1/(n — 1) (where n > 2), the inequality

dim W7, (Q) >

NS

holds true as it does for the set W, (Q) when 7 > 1+ v (Q) /n from (3.3). The result of the

theorem also implies that, for any fixed 7 > 1,

dimW;, (Q) ~ dimW,,(Q).

n—oo

The proof of Theorem 3.2.1 is based on the following lemma, which states that good simul-
taneous rational approximations to given rationally dependent real numbers must satisfy the
same rational dependence relationship as do the given numbers. This is a particular case of

[Prologomena, subsection 0.3.2, Lemma 0.3.9]. However, the proof is much simpler in this case.

Lemma 3.2.3. Let n > 1 be an integer and 7 > 1 be a real number. Let x = (x1,...,2z,) € R"

be such that there exist integers ay,...,a, and b satisfying

n
E A; T; = b.
i=1

Assume furthermore that, for alli € [1,n],

P 1
i R
where p1/4q,...,Dn/q are rational numbers.
Then, if q is large enough (depending only on the integers ay, ..., a, and on the real number

T),
n .
Z ai& =b.
=1 q

Proof. The proof is straightforward : notice that

n
qb — Z a;Pg
i=1

Thus, if ¢ is large enough, the left hand side of the above inequality is an integer with absolute

n

Z a;i(qr; — p;)

i=1

_ Xl

- qT—l

value less than one and therefore vanishes. Q.E.D.
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For any A = (aq,...,a,) € N"\ {0} (where n > 2) and any u,v € N*, denote by I',,(A, u,v)
the rational hyperplane

u

Tn(A u,v) := {w =(Z1,...,2,) ER" : Zaixi = } . (3.10)
i=1

v

Even if it means relabeling the axes, it may be assumed, without loss of generality, that a,, # 0.
For an infinite N*\Q-free set Q, choose v € N*\Q and u € N* coprime to v. Then
Lemma 3.2.3 implies that

(A, u,0) N W,y (N) € WE,, (Q) (3.11)

as soon as 7 > 1. Thus to prove Theorem 3.2.1 in the case v (Q) = 1, it suffices to establish
that the dimension of the set I'y(A4,u,v) N W, , (N) is the expected dimension of the set of

7—well approximable points in dimension n — 1 (n > 2).

Lemma 3.2.4. Let n > 2 be an integer and let T',,(A,u,v) be a rational hyperplane in R™ as

defined by (3.10). Then, forT>1+1/(n —1),
dim (T, (A, w,v) N W, ,, (N)) =

n
T

Proof. The upper bound for the Hausdorff dimension of the limsup set I, (A4, u,v) N W, ,, (N)
may be computed with a standard covering argument — the details are left to the reader. As

for the lower bound, notice that Lemma 3.2.3 implies that
(A u,v) "Wy (N)={z eR" : | —p/q| <q 7 forim. p/qeT,(A u,v)}.

For any vector * = (x1,...,2,) € R™ (n > 2), let ®,_1 be the subvector x,_1
(21,...,2p—1). Recall that |x| denotes the infinity norm of x. Taking K(A) =
(27 lag]) Jan| ™, it is then readily verified that

‘mn—l - yn—1| S |:B - y‘ S K(A) : |mn—1 - yn—1| (312)

for any x,y € T',,(A, u,v). Since Hausdorff dimension is invariant under a bi-Lipschitz trans-

formation (see [Prolegomena, Proposition 0.1.3, p.7]), this means that
dim (T, (A, u,v) N W, (N)) = dim V; (T, (4, u,v)) ,
where
Ve (Th(A u,v)) = {(:cl, ey Tpe1) ERYL (2, 1, ) € T (A u,v) N Win (N)} .

Note that, if (z1,...,2,_1) € R®7! then z,, as appearing in the definition of V, (I',,(4,u,v))
is uniquely determined.
From (3.12), it should be clear that the set
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Upno1 (K(A)) == {a:n_l = (21, Tno1) ER™D ¢ |@piy — p/q| < (K(A)g7) ™"

for i.m. ¢ > 1} (3.13)

is contained in V; (I',,(A, u,v)). To conclude the proof of the lemma, it suffices now to invoke
the theorem due to Dickinson and Velani stated in [Prolegomena, Theorem 0.1.8, p.10] : in
the latter reference, the choices f(q) = ¢°, ¥(q) = ¢ "THK(A)™!, m = landn =n -1
yield the equation dimU; ,,—1 (K(A)) =n/7if 7 > 1+ 1/(n — 1), the n/7-Hausdorff measure
of Ur 1 (K(A)) being infinite. Note that this also holds true for the sets V. (I, (4, u, v))
and T'), (4, u,v) N W, , (N) since a set of infinite Hausdorff measure is transformed under a
bi-Lipschitz transformation into a set of infinite Hausdorff measure (see [Prolegomena, Propo-
sition 0.1.3, p.7]). Q.E.D.

This completes the proof of Theorem 3.2.1.

3.2.2 Focus on dimension 1

Theorem 3.2.1 does not give any information about what happens if n = 1 and v (Q) = 1.
This situation is not uncommon in Diophantine approximation : some problems are easier to
apprehend in higher dimensions than in dimension one (for instance the conjecture of Duffin
and Schaeffer). Nevertheless, it is sometimes possible to prove that the set /ijl (Q) is not
empty, which is not obvious at first sight in the general case.

To illustrate this fact, consider a positive integer m # 1 and the N*\ Q(m)—free set
Q(m) :={n e N* : ged(n,m)=1}. (3.14)

Assume that the integer m is divisible by exactly r prime numbers mq,..., 7. and set II :=
{m1,...,m}. For simplicity, let WT* (IT) denote the set WT*J(Q(m)), that is,

—

W*(II) = {xeR :

T

1
x—p‘ < — for im. qﬁQ(Hﬂ) and f.m. qEQ(HW)}.
q q well well
(3.15)
Thus an element x € W:(H) is 7—well approximable by fractions whose denominators,

except for a finite number of them, are divisible by a prime in II. It will be proved that Wf (IT)

is never empty as soon as 7 > 2 if the cardinality of II is greater than or equal to 2.

To this end, the theory of continued fractions is needed : if necessary, the reader is referred
to [51, Chapter 1] for an account on the topic. Given an irrational number z, denote by (as),~q
the sequence of its partial quotients and by (ps/qs),~, the sequence of its convergents, which

are given by the relations of recurrence

Ds = GsPs—1 + Ps—2, (316)

and
Qs = Asqs—1 + Qs—2 (317)
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for s > 1 along with the initial conditions p_1 = 1, pg = ag, g—1 = 0 and gg = 1. The
convergents of x € R\Q are related to its rational approximations in the following way : if a

non-zero rational number p/q satisfies the inequality

z— ’ < —, (3.18)

then p/q is a convergent of x, i.e. there exists s € N such that p/q = ps/gs.

The following theorem may now be proved :

Theorem 3.2.5. Let II be any subset of the primes containing at least two distinct elements.
Let 7 > 2 be a real number. Then the set /W:(H) as defined by (3.15) contains uncountably

many Liouville numbers.

Theorem 3.2.5 will be derived from the following result, proved by Erdds and Mahler [92,

Theorem 2]. The notation introduced above is maintained.

Theorem 3.2.6 (Erdds & Mahler, 1939). Let x be a real number. Suppose that for an infinity
of different indices s > 1 the denominators qs—1, qs, qs+1 of three consecutive convergents of

are divisible by only a finite system of primes. Then x is a Liouville number.

Proof of Theorem 3.2.5. Let my and 7 be two distinct primes in II. From Theorem 3.2.6 and
Property (3.18), it is enough to prove the existence of uncountably many irrationals for which
all the denominators ¢, of their convergents are only divisible by my and 7; as soon as s > 1.

To this end, first note that the relationships (3.16) and (3.17) may be rewritten more succinctly

ps s\ _yr(ox 1
(psl QS1> I¢1;[() ( 1 O)

when s > 0. Taking the determinant on both sides of this equation, it appears on the one

in the form

hand that any sequence of positive integers (ps)s>o satisfying (3.16) is such that, for any s > 0,
ged(ps, ¢s) = 1 if the sequence (gs)s>o satisfies (3.17). It is therefore enough to solve (3.17),
where the unknowns are the two sequences (as)s>0 and (gs)s>0. On the other hand, the same
relationship shows that two consecutive denominators g5 and gs41 are coprime : this leads one
to choose all the g25 (s > 0) as powers of the prime m and all the gas11 (s > 0) as powers of
71 (or conversely).

Thus, let gqo = 1 and ¢1 = a; - g = m1. Setting gasy; = m; > for s > 0 and i = 0,1 with
(as)s>0 an increasing sequence of positive integers such that oy = 0, equation (3.17) amounts
to the following one : for all s > 0 and all ¢ € {0, 1},

25 —140 Q25 —2+1 A254i—O25—2+44 _
2544 T, =m (71'171- 1) .

It should be clear at this stage that both sequences (as)s>o and (g¢s)s>o will be uniquely

determined if the sequence (as)s>0 (With ag = 0) is chosen in such a way that, for all s € N*,

Q254i— 025243 1

T (mod ;2"

i
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for i = 0,1. It is easy to construct such a sequence (o)s>o (with ap = 0) by induction : for
two coprime integers a and b, denote first by w(a, b) the order of b in the multiplicative group
(Z/aZ)™. Then, choose a; € N* and set, for any s > 1 and i = 0, 1,

Q25— 1414

Q2sti = Qas—24i + kosyi w (7] (=) s

where at each step the integer ko4 is chosen in such a way that assq; > qogqi—1.
This proves the existence of a Liouville number in WT* (IT) (7 > 2). Since infinitely many
choices are possible for the integer kos1; at each step, W (II) actually contains uncountably

T

many Liouville numbers as soon as 7 > 2. Q.E.D.

3.2.3 Open problems

To conclude, two notable problems which complement the results of this section are mentioned

hereafter.

Question 3.2.7. Let I1 be any finite system of primes and let 7 > 2 be a real number. Define
W;‘(H) as in (3.15).

Does W (I1) contain any non—Liouville numbers?

Question 3.2.8. Let n > 2 be an integer and let T > 1 denote a real number. Let Q be an
N*\Q-free set of integers such that v (Q) = 1. Define W}, (Q) as in (5.7).
Is it true that, if x = (x1,...,2,) € /V[Z*n(Q), then x1, To, ..., T, are Q-linearly dependent?

Thus, Question 3.2.8 amounts to establishing the converse inclusion in (3.11) for suitable
values of A, v and v. This is a problem of particular interest when the set Q is chosen as
in (3.14) : indeed, the method used by Babai and Stefankovi¢ in [5] provides in this case
a positive answer to Question 3.2.8 if one takes €/q for a fixed € > 0 as the error function
in /VIZT” (Q) instead of ¢~7. However, their method, which consists of investigating certain
probability measures on lattices and their Fourier transforms, cannot be extended to a more

general class of error functions.

3.3 A p-adic example

Let p be an arbitrary but fixed prime.
An analogue of Theorem 3.2.1 is now studied in Q,. Consider first the p-adic version of the

set of 7-well approximable numbers (7 > 0) in Q,, namely
Wirn(p) = {w €Qy : lgz — 7|, <max(|r[,q)"" for im. (r,q) € Z" x N}. (3.19)

Here, |x| » denotes the supremum of the p-adic norms of the components of € Q.

Note that, unlike (3.1), the approximating function depends now both on |r| and ¢ rather
than simply ¢g. This is due to the fact that, in the p-adic setup, given x € Z,, a quantity of
the form |qz — r\p can be made arbitrarily small by taking r to be a rational integer with the

appropriate number of leading terms taken from the p—adic expansion of gx. Thus the set of
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x € Q) such that gz — r|p < ¢~ 7 for infinitely many (r,q) € Z" x N contains the whole of Z
and has therefore full Hausdorff dimension regardless of the value of 7 > 0.

Another difference with (3.1) is that, in the p-adic setup, there is no “normalizing” factor
g on the right-hand side of |gx — r|p. This is due to the fact that the p—adic norm is an ultra
metric. For more details, the limsup set W, (p) is studied in full generality in [23].

Let W, (p) be the liminf set obtained from (3.19) by imposing the constraint that all the
integers ¢ should be divisible by p, viz.

Wr,.(p) = {az €Qy : lgz —r|, <max(|r|,q)"" forim. (r,q) € Z" x pN

and fm. (r,q) € Z" X pN}. (3.20)

The set W7, (p) may be seen as an analogue of at least two different real liminf sets as
introduced in (3.5) : on the one hand, it is defined as the set of elements in Q) which are
7—well approximable only by integer vectors (r,q) such that ¢ is a multiple of the integer p
provided it is large enough. On the other, since the gcd of two p-adic integers is the highest
power of p dividing both of them (it is defined up to an invertible element), W7, (p) is also the
set of all elements in Q) 7—well approximable only by integer vectors (7, q) such that, provided
it is large enough, ¢ is not coprime to a given non unit s € Z,.

The structure of the liminf set W, (p) exhibits very different behaviours depending on

whether it is restricted to Z, or not.

Theorem 3.3.1. If 7 > 1+ 1/n, then

n+1
T

dim W7, (p) =
Furthermore, W, (p) NZ; =0 as soon as T > 1.

Thus the situation is quite original : the liminf set W', (p) has the same Hausdorff dimension
as the limsup set W ,,(p) when 7 > 1+ 1/n (cf. [23, Theorem 16]) but it contains no p-adic
integers. This is in sharp contrast with the fact that, when considering the limsup set W- ,,(p)
from a metric point of view, it generally suffices to study its intersection with Z; as the space
Q) can be written as a countable union of translates of Zj.

The proof of Theorem (3.3.1) rests on the following lemma which uses this definition : a
vector m = (ny,...,ny) € ZF with integer coordinates is said to be p-primitive if at least one

of the components n; of n is coprime to p.
Lemma 3.3.2. If 7 > 1, then
W n(p) = {a: €Q, ¢ lgz — 7|, < max(|r| ,q)" " for i.m. p-primitive (r,q) € Z" x N}.

Proof. Given & € Wy ,(p), let (uy := (Tk, qx));>; be the sequence strictly increasing in gj, of

elements of Z™ x N satisfying

grx — x|, < max (|rg|,qx) " (3.21)
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Note that if kg and m are positive integers, muy, satisfies (3.21) if, and only if,

-1 _
I < |m|p |m|T < |qk0w - rk0|p max (ka |Tko|) i
(r>1)
The first of these inequalities shows that wuy, is a multiple of a p—primitive vector i, and the

second one proves that the number of multiples of uy, satisfying (3.21) is finite. Q.E.D.

Corollary 3.3.3. Assume that 7 > 1.
Then
Wia(p) N2} =0,

Proof. Let © = (x1,...,2,) € W}, (p)NZy and let (r, q) € Z" x N be a vector of approximation
of &, i.e. a vector satisfying (3.21). From Lemma 3.3.2, (7, ¢) may be assumed to be p—primitive
which, from the definition of the liminf set W, (p) and provided that g is large enough, implies
on the one hand that p divides ¢ and on the other that |r;,| =1 for some component r;, € Z

of the vector r := (rq,...,r,) € Z". In particular,
|qiy — 70|, < max (g, |ri,|)"" (3.22)

Now, if 1 = [rjl, > [qipl,, then (3.22) implies that [qzi, —7i0l, = [7ipl, = 1 < |ri|, ",
which is impossible. If 1 = [r[, < |gz;,|,, then it follows from (3.22) that 1 < |qz;,|, =
lgzi, — 74, \p < ¢~ 7, which cannot happen. Finally, if |ri0|p =1 =|qx;, |p, then, since p divides

q,1 > |q|p = |@4, |;1 > 1, which gives again a contradiction. This completes the proof of
(IQEZP)
the corollary. Q.E.D.

Completion of the proof of Theorem 3.3.1. From the proof of Corollary 3.3.3, it also follows
that if (r, q) is a p-primitive vector of approximation of ® = (z1,--- ,x,) € W}, (p) such that
p divides ¢ but does not divide a component r;, € Z of r, then, necessarily, |r;, |p =1 = |qx;, |p.
This implies in particular that z;, € Q,\Z,. Note also that the condition |gz;,|, = 1 alone is
sufficient to guarantee that [ry,|, = 1 : indeed, if one had |r;,|, <1 = |gz;,],, then one would
also have |q;, |, = [q@i, — 1|, =1 < ¢~ ", which cannot be.

Thus, each p-primitive vector of approximation (r,q) of € W}, (p) determines at least
one component x;, of « such that z;, € Q,\Z,. Since there are only finitely many components,
it follows that

) gr —r| <max(|r|,q)" "
W, (p)=qxe€Q, : Jip € [1,n], z;, € Qy\Z, and | |p (Ifq) io. p,
|qxi0|p = |’ri0‘p = 1

where 7.0. stands for infinitely often. Therefore,

" z—7r| <max(|r|,q) "
W, (p) = U xe€Q : zi, € Qp\Z, and 4 b (irl,q) i.o.

io=1 |qzio], =1
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For any f € N, denote by W, ,, (p, io, f) the set

lgz — 7|, < max(|r|,q)""

Won (pdo, f) = Q& € Q¢ [w4,], = p/ and i.o.
|qxi0|p = 1
Then
W:_’n(p) = U U WT,n (p7 iO,f)
io=1f=1

and it suffices to establish the dimensional result in Theorem 3.3.1 for any of the sets

W’T‘,’I’L (pu io, f)
Fix f > 1 and ig € [1,n]. Given (r,q) € Z" x N, let v(r, q) := max (¢, |r|) and let

B(x,p) = {ang : |m_a\p<p}

denote the open ball of radius p > 0 centered at € Q. It should then be clear that a cover
for W-,, (p, io, f) is given by

NU U s(tw),

N=1v>N v(r,q)€A, (io,f)

where
A, Gio. f) = {(r.0) € 2" x N : Jql, =, ||, = L and v(r,q) = v

Furthermore, it is readily checked that #.A4, (ig, f) < v™, where the implicit constants depend
on n and p (here, #A4, (ig, f) denotes the cardinality of the set A, (g, f)). Hence, for any
N >0,

HS(WT,n (p, Z(),f))) < Z Z p TS < Z 1/77—5+n7

VSN u(r,q) €Ay (io.f) v>N
which is finite as soon as s > (n + 1)/7, so that dim (W, ,, (p, 0, f)) < (n+1)/7.

The proof that dim (W~ , (p, o, f)) > (n+ 1)/7 is very similar to the corresponding result
for the limsup set W, ,(p) as defined in (3.19) and will therefore not be given : this is due
to the fact that W, (p, o, f) is itself a limsup set. For further details, the reader is referred
to [1, 23).

This completes the proof of Theorem 3.3.1. Q.E.D.

3.4 Notes for the chapter

e It will be proved in [Chapter 4, Theorem 4.1.1] that for any infinite subset @ C N* such
that v (Q) = 1 (recall that v (Q) denotes the exponent of convergence of Q as defined
n (3.4)), dim W}, (Q) = dim W, ,(N) = (n+ 1)/7 for all 7 > 2+ 1/n. The proof is
non—constructive but provides a positive answer to Question 3.2.7 and a negative one to
Question 3.2.8.
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e Y. Sun has recently provided a positive answer to Question 3.2.7. Indeed, the following

stronger result is established in [185].

Theorem 3.4.1 (Y. Sun, [185]). Let m > 1 be an integer divisible by at least two distinct
primes w1 and wy. Let I := {my,m}. Define /V[Zf‘(l_[) in the same way as in subsec-
tion 3.2.2. Then for T > 2, the set /VV:(H) contains uncountably many reals whose

measure of irrationality is exactly T.

The proof is constructive in the sense that a real number satisfying the conclusion of this

theorem may explicitly be given in terms of its continued fraction expansion.

e B. Wang, Z. Wen and J. Wu [197] have recently proved in the case when n = 1 that,
for any N*\ Q—free set Q@ C N*, dim W:l(Q) = 2/7 for any 7 > 2 (note that this does
not solve the case 7 = 2 as the sets W;‘l(Q) are not decreasing for inclusion when 7
increases). Their result is more precise in this particular setup than the one of the next
chapter (cf. [Chapter 4, Theorem 4.1.1]) which is only valid, when n = 1, for 7 > 3.
Nevertheless, the proof given by B. Wang, Z. Wen and J. Wu strongly rests on the theory

of continued fractions and cannot be naturally generalized to higher dimensions.
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Chapter 4

Liminf Sets in simultaneous
Diophantine Approximation : a

Jarnik—Besicovitch Type Theorem

Abstract

Let Q be an infinite set of positive integers. Denote by W, (Q) the set of n—tuples
of real numbers simultaneously 7—well approximable by infinitely many rationals with de-
nominators in @ but by only finitely many rationals with denominators in the complement
of Q. The Hausdorff dimension of the liminf set W, (Q) is determined when n > 1 and

T>2+1/n.
a))*(((-

4.1 Introduction

Let n > 1 be an integer and 7 > 1 be a real number. Given an infinite set of positive integers Q,
denote by W, ,,(Q) the set of points in dimension n > 1 approximable at order 7 by infinitely

many rationals with denominators in Q, i.e. the limsup set
Wrn(Q):={xeR" : |&—p/q/ <q 7 forim. (p,q) € Z" x Q}. (4.1)

Here and throughout, ¢.m. stands for infinitely many, || is the usual supremum norm of a

vector * € R™ and p/q is shorthand notation for the rational vector (p1/q,...,pn/q), where
D= (p17"'7pn) ez".
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As mentioned in Chapter 3, Borosh and Fraenkel [48] have generalized the classical theorem
of Jarnik and Besicovitch [Prolegomena, Theorem 0.1.5, p.9] in metric Diophantine approxi-
mation by proving that

dim W, (@) = Q) (4.2)

T

when 7 > 14 v(Q)/n, where v(Q) is the exponent of convergence of Q defined as

v(Q) :=inf{v>0: > q¥<oopel0l] (4.3)
qeQ

In order to pursue the study undertaken in Chapter 3, consider the liminf set

W:n(g) = WTJI(N) \ W‘nn (N\Q) = WT,n(Q) \ WT,n (N\ Q) . (4-4)

Recall that this is the set of all those vectors @ in R™ which admit infinitely many approxima-
tions at order 7 as in (4.1) by rational vectors (p,q) whose denominators ¢ lie in Q, but only
finitely many approximations by rational vectors whose denominators do not lie in Q.

The previous chapter was partly concerned with the case when the set Q was a so—called
N*\ O—free set (that is, a set whose elements are divisible by no integer in its complement). A
non-trivial lower bound for dim W7, (Q) was then exhibited when n > 2 and 7 > 14+1/(n—1).
A construction, explicit in terms of the continued fraction expansion, of uncountably many
Liouville numbers lying in the set W, (71N U mN), where 7; and 72 denote primes, was also
provided when 7 > 2.

It is not clear that the set W} (Q) should be non-empty for a general infinite subset
Q C N*. This is in particular implied by the following much stronger statement which is the

main result of this chapter.

Theorem 4.1.1. Let Q C N* be infinite. Assume thatn > 1 is an integer and that 7 > 2+1/n

is a real number. Then

n+v(Q)

-
Thus when 7 > 2+ 1/n, the limsup set W, ,(Q) and the corresponding liminf set W, (Q)

actually share the same Hausdorff dimension. This leaves a gap corresponding to the case

dim W, (Q) =

where 7 lies in the interval (1 + v(Q)/n, 2 + 1/n]. The nature of this restriction will clearly
appear in the course of the proof and will be discussed in the concluding notes for the chapter.
It is however worth mentioning at this stage that the underlying difficulty does not seem easy

to overcome and may be linked to some deep problems in the metric theory of numbers.

Notation
In addition to that already introduced, the following notation will be used throughout this
chapter :

e r K y (resp. x>y, where z,y € R) : there exists a constant ¢ > 0 such that z < cy
(resp. = > cy).

e =<y (x,y € R) means both z < y and z > y.
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[z,y] (z,y € R, z <y) : interval of integers, i.e. [z,y] ={n €Z : =z <n <y}

e )\, : the n—dimensional Lebesgue measure (for simplicity, A := A1).

#X : the cardinality of a finite set X.

e |U] : the diameter of a bounded set U C R™.

0z (8) :== # (SN 1, z]) for any subset S C N and any real = > 1.

pP\.—(p_ L p L P
IT(q) = ( + qr), where q € Q.

[ ]
Q
/N
[
N———
i

[T, IT<&>, where p = (p1,...,pn) € Z"™ and ¢ € N (note that with this
P

q ().

. 2
convention, C( 22

" 3q is strictly contained in C

4.2 Auxiliary lemmata

In this section, & denotes an arbitrary infinite set of non—zero natural integers.

4.2.1 On the logarithmic density of a subset of integers

As is well-known, the exponent of convergence of the set S as defined by (4.3) is related to its

logarithmic density in the following way (see, e.g., [107] for a proof) :

V(S) = limsup (logé"(s)> . (4.5)

n—o00 1Og n

The next lemma provides a similar formula for v(S).

Lemma 4.2.1. The following equation holds :

(log (820 (S) — b (5”) .

logn

v(8) = limsup

n—oo
Proof. First note that, for n > 2,

log (92y, (S) — 0, (S)) < log o, (S) N log o, (S) .
logn - logn n—oo  log2n

Upon taking the limsup on both sides of this inequality, it is easily seen that (4.5) implies that

(10g(62n (S) —dn (8))> < v(S).

logn

lim sup
n—oo

This suffices to prove the result in the case v(S) = 0 since, the set S being infinite, da, (S) —
0p, (S8) > 1 for infinitely many n € N. Therefore, assume from now on that v(S) > 0. Then (4.5)

shows the existence of a sequence (ny),~, of positive integers such that

log 6n, (S) ~ v (S) logng. (4.6)

n—oo
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For a fixed k& € N, consider the following partition of the interval [2,n;] into w, :=
[log ny/log 2] subintervals :

U

ng ng

2.0 = U HQH +1 zﬂ
r=0

From the definition of the integer d,, (S), at least one of these intervals contains more than

(0n,, (S)—1)/(ug+1) elements of S, which determines a rational number [}, of the form ny /2¢+!

(0 < a < wuy —1) such that

On, (S§) =1 ng

G (S) — 1
< 2l — 1 1= < LTI S A—
1l S lp— (e +1)+ Iy < and

5 o < 021, (S) =61, (S) -

(4.7)

From (4.6) and from the definition of u, one deduces on the one hand that the first inequality

in (4.7) implies that the sequence (Ix),~, tends to infinity and that, on the other,

log (6, (S) — 1) —log (ux, + 1) log 6y, (S)
log ng n— o0 log ny n— 00

v(S).

Furthermore, it follows from (4.7) that

log (0n, (8) —1) —log (ux +1) _ log (a1, (S) — du, (S))
log ny, log Iy

Combining these last two inequalities leads to the relationship

<log (G2, (8) — 0y, (S))>
log I, 7

v(S) < limsup

n— oo

which completes the proof. Q.E.D.

One key-step in the proof of Theorem 4.1.1 is to approximate an infinite set of positive
integers by arbitrarily large subsets, the size of a subset being measured by its exponent of

convergence. In this respect, the following proposition will turn out to be very useful.

Proposition 4.2.2. Assume that v (S) > 0 and let v € (0,v(S)). Furthermore, let (o),
be a sequence of positive reals such that the sequence (n”an)nzo s increasing and such that
(log o/ logm), ~, tends to 0 as n goes to infinity.

Then, there exists a subset S, C S such that :
o foralln>1, 62, (S)) — 0, (S)) < n¥ay,.
e there exists a strictly increasing sequence of positive integers (”k)kzo satisfying

52nk (Su) - 5nk (Su) ~ TLZ Qi

k—o00
In particular, v (S,) = v.
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Proof. The fact that v (S,) = v follows immediately from Lemma 4.2.1. Note that this lemma
applied to the set S amounts to claiming the existence of a sequence of real numbers (3,),,~

tending to zero and of a strictly increasing sequence of positive integers (py),~, satisfying

v(8)+B8p,

San (S) = 0, (S) < n¥ S forall n € N and dyp, (S) — by, (S) Dy . (4.8)

k—o0

Also, the assumption that log v,/ logn tends to zero amounts to the fact that «,, = o (n€) for
any € > 0. Thus, the second relationship in (4.8) and the fact that v < v (S) guarantee the

existence of a smallest positive integer n; such that
[nY an, | < ban, (S) = bn, (S) :=11.

Now remove r; — |n¥ a,, | elements of S from the interval [n; + 1,2n1] to define a subset
Sl(,l) C S satisfying the following properties :

o S and S coincide on the intervals [1,71] and N\[1,2n4],

e for all n € [1,n1], dan, (851)) —0n (S,El)) < nay,

o dan, (S,Sl)) —n, (S,El)> = |nY apn, .

Consider then the smallest integer no > n; such that
[n% an,| < don, (Sf,”) — On, (551)) = ro.

Since for n > 2n1+1, dap (Sl(,l)) -, (Sl(,l)) = a5, (§)—0,, (S) , the existence of ngy is guaranteed
in the same way as for n;.

Defining u; := max {nga, 2n1 }, remove ro — |n4 ay, | elements of S from the interval [u; +
1,2n5]. This is clearly possible if ny > 2n; as there is no overlap in this case between the
intervals [n1,2n;] and [u; 4+ 1,2ns]. But this is also possible if ny < ny < 2n; : indeed, if the
interval Ju; 4+ 1,2n5] = [2n1 + 1, 2n2] was to contain strictly less than ro — [n} «,, | elements,

one would have :

ra 1= ban, (S) = b, (sy)) = Oo, (3,51)) — Gany (SV) + 8o, () = 0, (S)
s (8) = Gny (S) + Gzny () = 0 (8)
(aSS(l N{n>2n;+1} = Sﬁ{n>2n1+1}>
) —

< D2y (S) = D2y () + Gz, (SV) = 0, (S

<72 — \_ng an2J + LnT anlj

<ry

since the sequence (n”ay), . is increasing. This contradiction shows that one can find a subset
S c 8 such that :

o S and S coincide on the intervals [1,n2] and N\[1, 2ns],
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o Oany (87) =0y (S57) = Ln ana .
By induction, one can thus construct a decreasing sequence (S,Sk)) of subsets of S and
E>1
a strictly increasing sequence of natural integers (ny),~, such that, for all k > 2,
o SV and 8 coincide on [1,n%] and N\[1,2n.],

e for all n € [1,ng], d2, (Sl(,k)) —0p (Sl(,k)> < nYay,

e Jop, (Sl(,k)> — O, (Sl(,k)) = [nfan,].

By construction, the set S, := ﬂgilS,Sk) satisfies the conclusions of the proposition. Q.E.D.

4.2.2 Steps to the construction of a Cantor set

Theorem 4.1.1 will be proved by exhibiting nice Cantor sets contained in the liminf set under
consideration. To this end, a few auxiliary results are gathered in this subsection. They are

preceded by two definitions which will be used throughout the rest of this chapter.

Definition 4.2.3. A vector p = (p1,...,pn) € Z" is g—primitive (where ¢ € N*) if at least
one of the components p; of p is coprime to q. The vector p is absolutely ¢—primitive if all its

components are coprime to q.

Definition 4.2.4. Given 7 > 1, pg € Z"™ and qy € N*, a hypercube of new generation in
C’T(’;—S) is a hypercube of the form C’T(§> contained in C’T<€—;’) such that p € Z™ is absolutely
q-primitive (@ € N*) and such that for any g1 € [go + 1,q — 1] and any p1 € Z",

CT(’”> N Of<p) — 0.
q1 q

Thus, the concept of a hypercube of new generation renders the idea that such a polytope
covers a volume inside a given hypercube which has been covered by no other. The next
proposition counts the number of such hypercubes and constitutes a problem specific to the
liminf setup in Diophantine approximation. It is preceded by a well-known lemma on the

repartition of integers coprime to a given natural number.

Lemma 4.2.5. Let g be a positive integer and n be any positive real number. Denote by ¢, (q)

the number of integers less than ng and coprime to q. Then, for any € > 0,

o) = ¢(q) (n+o0(q7 7)),

where ¢ denotes Euler’s totient function.

In particular, if € € (0,1), n > ¢~ '€ and q is large enough, then for any vy >0,

#{pelva,(v+n)d : gedlp,q) =1} =< ne(q),
where the implicit constants depend only on €.
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Proof. This follows easily from the inclusion—exclusion principle and some standard estimates
of arithmetical functions. See, e.g., [83, Lemma III] for details. Q.E.D.

Proposition 4.2.6. Let 7 > 2+1/n, po € Z" and qy € N*. Assume that CT(%’> C (0,1)™ and

that q > q53 has been chosen large enough. Denote furthermore by N (q, %,T) the cardinality

of the set of hypercubes of new generation in Cr(%fj) of the form C’T(%) for somep e Z™.
Then, provided that qo is larger than some constant (independent of q),

(o) - o(z)

qo 2n+1

Proof. Set 5T<§—§> = CT<%§> \C’T(%) If ¢ > qq is large enough, the number of absolutely

g—primitive vectors p € Z™ such that C %) - éT(%’> is certainly bigger than

on (1 - 21T>n ‘P(;L)n An <CT<§;))> (51) %)\n (CT(Z(?)) (4.9)

(this follows for instance from Lemma 4.2.5).

Assume now that there exist an integer g1 > gg and p; € Z" such that éT(%c?) I’WC’T<%> £ (.
In particular, p1/q1 # Po/qo, whence

2

q%

1

qoq1 ~ | Qo q1

This means that, when computing the number of hypercubes CT(g) of new generation in
57(%)) (p € Z™), it suffices to consider those hypercubes of this form which have no overlap
with any hypercube of the form C’T(’q’—ll), where p; € Z™ and ¢q; > q8_1/2.

Given this, let us now count the number of integer vectors p € Z™ such that CT<§) has a

non—empty intersection with a hypercube CT(%) contained in CT(I[I’—;’), where p; € Z™ and

T—1

q
02 <q <q.

T—1 T
First case : q°2 <q < qTO. Fix an integer ¢; in this range. Then there exists at most one

integer vector p; € Z" such that C’T(p—l) N C’T(%’) # (. Indeed, should there exist another

q1
one pj € Z", one would have

1

<‘ Po _Pi

q0 q1

1 Pi
q1 q1

P1 _ Po
q1 qo

<
q1

4
%7
contradicting the assumption on ¢;.
Suppose now that there does exist p1 = (p1,i),<,<,, € Z" satisfying CT(%) N C’T(%g) # 0.
If, furthermore, p = (p1,...,pn) € Z™ is an absolutely g—primitive vector such that CT(§> N
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CT(%) # (), then, for any i € [1,n],

P1i
q1

2
<A
q1

pi — (4.10)

Under the assumption that ¢ > qgs and 1 < ¢f/4, it follows from Lemma 4.2.5 that, if g is

chosen large enough, the number of such absolutely g—primitive vectors p € Z™ is less than

Kw(q)"

nTtT

q1

for some constant K > 0 depending on n.

Summing over all the possible values of g1, the number of hypercubes C’T(g) with p € Z"

absolutely g—primitive having a non—empty intersection with a hypercube of the form CT(%)

is seen to be less that

n —nr n —nr pla)"
K¢(q) Yo @ < Ke(@" Y @' < ayeey (4.11)
a5t /2<a1<qg /4 a>q5 /2 o

for some ¢; > 0 depending on 7 and n.

Second case : % < q1 < q. Fix an integer ¢ in this range and assume that C’T(%) ﬂC’T(g) #*
() for some p € Z™ absolutely g—primitive and some p; € Z™. Then

1

2
— < < —, whence g¢; ~ <2q. (4.12)
4y

qq1

1 ‘p D1
q q1

Furthermore, inequality (4.10) still holds.

Given € > 0 and ¢ € [1,n], it follows from Lemma 4.2.5 that the number of solutions in p;

to (4.10) is
4 1 6y (q)
—+o I P RYZ B 4.13
#(@) (qf (qle)) (a12) {7717 (1.13)

for qo (and so ¢; and q) large enough depending on the choice of € > 0 (note that the error

term in Lemma 4.2.5 is independent of n > 0). Now, if there is an overlap between CT(’q’—ll>

and CT(ZT?)’ it is easily seen that p;; can assume at most 8¢ )\(IT(%)) values (where

Po = (Po,i)1<;<,)- Therefore, the number of solutions to (4.10) in p € Z" absolutely ¢-
6y (q) ' ( (m))
" ——F— ] M| C| —
(qg‘r—l)(l—e)—l Qo

Summing over all the possible values for ¢;, the number of hypercubes C’T<§) with p € Z™

primitive is at most

for qg large enough.

absolutely g—primitive having a non—empty intersection with a hypercube of the form CT(%)
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is seen to be less that

48" (q)" Ay (CT<I"’)> S (D=9

QO q5 /4<q1 <(29)V/ (=1

C2<P(Q)n )\n (Cr(m)>
Do —n((t—1)(1—e)—1) q0
< 48"¢p(q)" An (Cr<>> E G = qT(n((771)(176)71)71) (4.14)
0

qo -
q1>q5 /4

for qo large enough depending on the choice of an arbitrarily small ¢ > 0 and for some ¢z > 0

depending on 7 and n.

Conclusion. Taking into account (4.9), (4.11) and (4.14), for ¢ > qga large enough,

Po ¢(q)" Po ndo” 1 2"¢cy
N <q’ qo ’T> 2 2n An (OT( qo >) |} -2 an q(()T—l)(YLT—l) N qg(n((T—l)(l—e)—l)—l)

(we used the fact that A, (CT(Z—S)> = 2"/q¢7). This holds provided that gy satisfies the
assumptions of (4.9), (4.11) and (4.14).

Now, if ¢ > 0 has been chosen small enough, this last quantity is bigger than
(@)™ An (CT(%E)) /2" for gy large enough if 7 > 1+ (1 + 1/n)/(1 — €). The result fol-
lows on letting € tend to zero. Q.E.D.

The last result of this subsection contains the main feature of the proof of Theorem 4.1.1

and should be compared with [48, Lemma 4].

Lemma 4.2.7. Let 7 > 2+ 1/n, po € Z" and qo € N such that C; Z—g C (0,1)™ and such
that Proposition 4.2.6 applies. Assume furthermore that v (S) > 0 and that d21, (S) — 0 (S) =
5 (S)
0 ((loglog k)") '
Then for any k > qo sufficiently large, there exists a set ET(@) of rational vectors contained

n C’T(p—o) such that : "

q0

i) for any % € ST<Z—(‘)’), p € Z"™ is absolutely q—primitive, ¢ € S and k < q < 2k ;
1) for any two distinct elements % and Z—; in &(’;—(‘)’) such that ¢1 < qa,

1

P1 P2 ]
P =  1+4v(S)/n’
0

q1 q2

iii) for any % € &(’q’—g), C’T(%> is a hypercube of new generation in CT(%S) ;
iv) the following inequalities hold :
M (C%)) .
po) . AR , Po\\ K" (626 (S) — 34 (S))
#57-((10> > T ontz Z QO((]) > A, <CT<)> ,

haon Qo (loglog k)

qES
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where the implicit constant depends only on n.

Proof. For the sake of simplicity of notation, let C' denote the hypercube C’T(’;—[‘)’) in this proof
only. Let F (C) be the set of rational vectors & such that :

1) ge S and k < g < 2k;
2) p € Z™ is absolutely g—primitive;

3) C’T(g) is a hypercube of new generation in C.

If % and 5—,/ are two rational vectors satisfying 1) and 2), and if furthermore CT(p) ﬂCT(%:) # 0,

q
then
1

e P N

/
1 <’p p/
g q

which cannot happen if 7 > 2 and k > q¢ is chosen large enough. This shows together with
Proposition 4.2.6 that for such an integer k,

#F(C) = ont1 Z ola)™ (4.15)
k<q<2k
qES
Let € (C) denote the subset of F (C) from which one excludes all the rational vectors 2 for
which there exists an integer ¢; € [k + 1,q — 1] and an element % € F (C) satistying

pp_P 1

a1 q ‘ (ql)lJru(S)/n

It should be clear that £ (C) defined this way satisfies the conclusions 7) to i) of the lemma.

It remains to evaluate its cardinality.

Let ¢1,9 € S, k < ¢1 < ¢ < 2k. When ¢ is fixed, denote by N;(¢,¢q1) (1 < i < n) the

number of integers p; such that there exists an integer p; ; satisfying
PLig — pig| < — (4.16)
5T 1 q§(s)/n .

Let furthermore N(g) be the number of rational vectors in F (C')\& (C) with denominator ¢ :
it should be clear that

N < > [INi@a).

k<qi1<qi=1
qeS

From a familiar argument in elementary number theory (see, e.g., [83, Lemma I]), the number
—v(S)/n

of solutions N; (¢,¢1) in p; to (4.16) is bounded above by 2¢ - ¢, , whence
N(q) < 2"q Z WSQQW'
k<q1<q
qES
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Using the well-known result

m—00 m

lim inf (smmglogm) — e, (4.17)

where v is the Euler-Mascheroni constant, this also leads to the following estimate valid for k

large enough :
N(g) < 2"e"2%p(q)" (loglog k) %
Now, by the assumption made on the sequence (dax (S) — dx (S)) k>1» for k large enough,

27e™ (loglog k)™ (dax (S) — 61 (S)) k=S < A\, (C) /22712, so that

N(g) < £@(O),

< o (4.18)

For such an integer k, from (4.15) and (4.18),

#HE(C)=#F (C) = #(F(C)\E(C) = >
k<q<2k

An(C "
> 3E Y el
k<q<2k
qES

k/,n
A (C) ———
(4%7) ( )(loglog k)

(B )

(02k (S) = 61 (S5)) -

Q.E.D.

4.3 The Jarnik—Besicovitch type Theorem

Theorem 4.1.1 will now be proved for a given infinite set of positive integers Q. As should be
clear, it is enough to establish the result for the set W7, (Q) N [0,1]" which, for the sake of
simplicity, will still be denoted by W*, (Q) in what follows. The same convention of notation

will be applied to the limsup set W ,,(Q) when needed.

4.3.1 The upper bound

Proving that dim W}, (Q) < (1 +v(Q)) /7 is almost trivial : for any N > 1,

U, U e(f)

q=N pe0,q]

q€Q
is a cover for the limsup set W ,,(Q), and consequently in particular for the liminf set W, (Q).
Consequently, for any N > 1, the s-dimensional Hausdorff measure #?* (W;‘n(Q)) of the set
W, (Q) satisfies

W) < 3 WDt
oy
qeEQ
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The right-hand side of this inequality is finite as soon as s > (n+ v (Q))/7, which implies that
dimW>,(Q) < (n+v(Q))/7 for any 7 > 1 +v(Q) /n.

4.3.2 The lower bound

The core of the proof of Theorem 4.1.1 consists of establishing the correct lower bound for
dim W7, (Q). The ideas developed here are inspired by [95, Chap. 1 & 4] and by [48] (which is
based itself on the pioneering work of Jarnik [126]).

Recall first the construction of a level set E in [0,1]™ : let
[0,1]"2E03E1 DEyD ...

be a decreasing sequence of sets such that each Ej is a finite union of disjoint and closed
hypercubes. Assume furthermore that each hypercube of E} contains m; > 2 hypercubes from
Ej+1 and that the maximal diameter of the hypercubes of level k (i.e. in Ey) tends to 0 as k
goes to infinity. Then

oo
E:= () Ex (4.19)
k=0

is a totally disconnected subset of [0,1]™ — a Cantor set — referred to as a level set.

It is possible to equip such a level set F with a measure p supported on it in the following
way : let po be the uniform distribution on Ey = [0,1]™. If pr—1 is a measure supported on
Ex_1, let py be the measure supported on Ej, assigning a mass of (m; ... mk)f1 to each of the
my ... my hypercubes of Fy, the distribution of uy on each of these hypercubes being uniform.
Denote by £ the set of hypercubes of all levels used to construct E. For any U € £ of level k,
let p(U) := pu (U) = (mq ... mg)"". If one sets, for a given subset A C R",

/J(A):Zinf{zu(Ul) : AﬂECUUlandUlEE}, (4.20)
=0 =0

then p defines a probability measure supported on E (see [95, Chap. 1] for details).
Such a measure often turns out to be useful when establishing a lower bound for dim E by
virtue of the well-known Mass Distribution Principle which is now recalled (cf., e.g., [95] for a

proof).

Theorem 4.3.1 (Mass Distribution Principle). Let E be a level set as described above sup-
porting a probability measure . Assume furthermore that for some s > 0, there exist numbers
¢,k > 0 such that

W) < eluf (4.21)

for all hypercubes U € R™ satisfying |U| < & (recall that |U| denotes the diameter of U).
Then
dim FE > s.

This principle will now be used to determine the Hausdorff dimension of sufficiently large

level sets contained in W}, (Q).
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4.3.2.1 The case v(Q) >0

Assume first that v (Q) > 0 and let § € (0,v(Q) /2).
Since the sequence (TL”(Q)"S / log n)n>2 is increasing for n large enough, Proposition 4.2.2

guarantees the existence of a subset Q5 C Q for which one can find a strictly increasing sequence

of natural integers (n),~, satisfying

n:(Qs)

52nk (Q5) - 6nk (95) ~

k—oo logny

where v(Qs) = v(Q) — 4.
In the general construction of a level set, let Ey :=[0,1]™ and, for ¢g; € Qs, ¢1 > 2,

e U el2)

p1€[l,q1—-1]"

If Ex_1 (k > 2) has been defined, let C’T(’; :j) be one of its connected components contained

in (0,1)™. From Lemma 4.2.7, there exists an element g, > gr—1 in the sequence (ny),~, and

Dr—1 CIZ+V(Q6)
my > Ap (CT( — )) g e(@" > — = (4.22)
W-1/)) Lo ;7 (log gx) (loglog gi.)
q€Q5

hypercubes of new generation in CT(I;:;l) of the form C’T<§) with gr < ¢ < 2q; and ¢ € Q.

Furthermore, the distance between these hypercubes is at least

- 1 (4.23)

€k n
2 (qk)lJrl'(Qa)/

(by convention, ¢y := 1).

Let then Ej be defined as the union of all these hypercubes over all the connected compo-
nents of Fj_; and let E be as in (4.19). By construction, £ C W}, (Qs) C W}, (Q) and E
supports a probability measure u as defined in (4.20).

Remark 4.3.2. The connected components of Ej (k > 1) are of the form C‘r(%) for some
p € Z" and ¢ € Q and therefore are not closed as in the definition of a level set. This
difficulty can easily be overcome by redefining them as the closure of the same hypercubes
whose side lengths are shrunk by a factor 1 — 5 for some n < 1/2. It is then readily checked
that Proposition 4.2.6 and Lemma 4.2.7 remain true up to an additional multiplicative constant
which will not cause any trouble at all in the rest of the proof. For the sake of simplicity of

notation, such detail will be omitted in what follows.

Letting
n+v(Qs)—0 _ n+v(Q)—20

)

T T
it will now be shown by induction on k& > 0 that the sequence (qx);~, may be chosen in such a
way that, for any hypercube U C R", (4.21) holds with s = p for some real ¢ > 0 to be defined
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later. The following simplifies a great deal the method of [48].

Let U be a hypercube in R™ and let & > 0 be such that €1 < |U| < €, (this comes down to
taking k = €9 = 1 in Theorem 4.3.1). Then U intersects at most one connected component of
E}, and, since the measure p is supported on F, there is no loss of generality in assuming that it
is actually contained in this connected component. Furthermore, it may also be assumed that
U intersects Ej11 (otherwise u(U) = 0 again from (4.20) and the result to prove is trivial).
Thus, under these conditions, it follows from (4.20) that

pU) < pryr (U),

where g1 is the uniform distribution supported by Ejy1.
All this shows that it is enough to prove by induction on k£ > 0 the following statement :
(Hg) : For any hypercube U contained in a connected component of Ey, having a non—empty

intersection with Ey.q and satisfying furthermore the inequalities ex11 < |U| < €,

pr+1 (U)
o =
Note that for any hypercube U C [0,1]",

Ho (U) — )‘n(U)
Lofle U

< U™ <1

Therefore, it will be assumed that ¢ > 1.

Consider now an integer k£ > 0 and a hypercube U satisfying the assumptions of (Hj). Let
CY be the connected component of Ej containing U and let Ny denote the number of connected
components of Fy,1 having a non—empty intersection with U. By assumption, Ny > 1. The
conclusion of (Hy) is proved by distinguishing two subcases.

First subcase : |U| > (qk+1)_1/2. Under this assumption, if ¢; is chosen large enough so
that Lemma 4.2.5 applies with e = 1/2, then, for all & > 0,

No < [U" Y el (4.24)

Ak+1<9<2qk+1
qEQs

hence

pe (U) i (Cp) _ i (Ck) 1 (Cr) Nu

wi” = U me (U T meg U
1
e (Cr) 1U]" n n
< p - > el |- > e
(4.22) & (4.24) |U| ‘Ck| Qr+1<9<2¢qk+1 Qr+1<9<2Gqk+1
qEQs qEQs
i) (1Y
|CrI” \|Ck]
ik (Ci)
(e
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If £ = 0, this means that there exists a constant K > 1 such that

p (U) to (Co)
<K ,
ul” = 1Col”

where Cy = [0, 1]™. Choosing ¢ bigger than this last quantity proves the result in this case.

If £ > 1, then, denoting by Cj_1 the connected component of E;_; containing Cl,

pe (C) _ pi—1 (C—1) < Mo (Cr—1) q;74 (log qr) (loglog qi)"
|Crl” my, |Cr” @

7

the last inequality following from (4.22) and the fact that |C| < ¢, 7. Choosing g, large enough

in the previous step, this quantity can be made arbitrarily small.

Second subcase : |U| < (qk‘+1)71/2. By assumption, €x41 < |U|. Since two connected com-

ponents of Fjy; are distant by at least €x41, inequality (4.23) implies that

Ny < |U\n(Qk+1)n+%Qé)-

Therefore, denoting by Cy1 any connected component of Eyyq,

i1 (U) _ pier (Crein) Nu < M (Ck)qn-i-I/(Qa)q—(n—P)/?

122 /— lesis Mpy FHE
< Pk (Ck) q.” (log Qk+1) (log log Qk+1)n
(4.22) q(n*P)/2
k+1

(for the second inequality, we used the fact that Cy41 C C). Choosing gr41 large enough, this

quantity can be made arbitrarily small.

Conclusion : From the Mass Distribution Principle (Theorem 4.3.1), for any 6 € (0,v(Q) /2),

n+v(Q) —26

T

dimW;,(Q) > dimE >

Letting 6 tend to zero completes the proof of Theorem 4.1.1 in the case v(Q) > 0.

4.3.2.2 The case v(Q) =0

The proof in the case v(Q) = 0 is a simplified version of the previous one. We just mention
hereafter the changes to make in the latter : in the construction of the level set E, assume that
E;_1 (k > 2) has been defined and let CT(p’“_l) be one of its connected components. For

qrk—1
qr > qr—1 large enough, q; € Q, Proposition 4.2.6 guarantees the existence of at least

my > o (qe)" M (C’T<pk_1>) > Ik

Q-1 @1n) ¢~ (loglog qr)"
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hypercubes of new generation in CT(]; ::11) of the form OT(%) (p € Z™) which are furthermore

evidently at least
1

€ = @
apart. The set Fj is then defined as the union of all these hypercubes over all the connected
components of Ej_1.

The level set E obtained this way may again be equipped with a probability measure sup-
ported on it. Given ¢ > 0, the same reasoning as in the case v(Q) > 0 shows that the sequence
(qr)p>o may be chosen in such a way that the Mass Distribution Principle (Theorem 4.3.1)

leads to the estimate
n— 20

T

dimFE > p:=

(4.25)

It should however be mentioned that inequality (4.24) must now be replaced with the following
one :
Ny < |U" ¢ (gr1)" -

Letting ¢ tend to zero in (4.25) completes the proof of Theorem 4.1.1 in this case also.

4.4 Notes for the chapter

e Proposition 4.2.6 imposes the constraint 7 > 2+ 1/n in the statement of Theorem 4.1.1.
The nature of this constraint appears to be twofold : on the one hand, one could expect
to improve inequalities (4.11) by restricting the summation over only those integers ¢; for
which there exists, in the first case of the proof, an overlap between CT<%‘]’) and CT<’;—11)
for some py € Z™. On the other hand, in the second case of the proof, Lemma 4.2.5 does
not give enough information about the distribution of integers coprime to ¢ in very short

intervals, so that estimate (4.13) leads to some loss of accuracy.

It is not clear however whether improvements on these inequalities will extend the result
of Theorem 4.1.1 to the case of any 7 lying in the interval (1 + v (Q) /n, 2+ 1/n). Indeed,
depending on the choice of Q, one could also expect the Hausdorff dimension of liminf
sets such as those under consideration to admit a “phase of transition” at a critical value
70 € (14+v(Q) /n, 2+ 1/n]; that is, the value of this dimension will be given by different
expressions depending on whether 7 is bigger or smaller than 7y. Such a phenomenon has

been conjectured in other situations — see, e.g., [53, Conjecture 1].

e Restricting to the case n = 1 for the sake of simplicity, denote for all integers g > 1
by &,(q) the intersection with the unit interval of the union over all p of the intervals
I, %). The main difficulty underlying the proof of Theorem 4.1.1 turns out to be the
control of the intersection between &;(q) and £;(¢1) (see the proof of Proposition 4.2.6).
This is also the notorious issue in proving the Duffin—Schaeffer conjecture : as pointed
out (and explained in more detail) in [25], this happens to be not just a deficiency in our
knowledge but a real problem in the sense that the intersection £;(¢) () E-(g1) may well
have a measure much bigger than the expected value A\(E:(q)) x A(E7(¢1)) depending on

the values taken by ¢ and g;. The problem is actually even more specific in the proof of
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Proposition 4.2.6 as one wishes to control the intersection between IT<§) and a suitable
subset of intervals in £, (q1) for fixed integers p and ¢ and some ¢; > ¢. It is likely that
any substantial improvement on the bound for 7 > 1+v (Q) /n in Proposition 4.2.6 would

require ideas very closely related to the problem of Duffin and Schaeffer.

The Theorem of Borosh and Fraenkel as mentioned in (4.2) together with equation (3.8)
in [Chap. 3, p.85] show that dim W} (Q) = (n + 1)/7 for any 7 > 1+ 1/n whenever
v (N*\Q) < 1. On the other hand, when Q is an N*\ Q—free set as defined in Chapter 3,
the result of B. Wang, Z. Wen and J. Wu [197] mentioned in [Chap. 3, p.94] shows that
dim W} (Q) = 2/7 in dimension one (7 > 2), even in the case when v (N*\Q) = 1. Their

proof however strongly rests on the property defining an N*\ Q—free set Q.

These considerations could lead one to conjecture that the Hausdorff dimension of the
liminf set W, (Q) (n > 1) might depend, for 7 smaller than a critical value 79 < 2+41/n,
not only on the “size” of the set Q measured by its exponent of convergence, but also on

some of its arithmetical properties.

An intriguing problem would be to establish under which conditions on the infinite subset
Q C N* the one-dimensional liminf set W ,(Q) is non-empty when 7 is less than the
Dirichlet bound (i.e. when 7 < 2). The case 7 = 2 is already interesting in its own right

as it is covered by none of the results seen in Chapter 3 or in this one.
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Chapter 5

Rational Approximation and arithmetic

Progressions

Abstract

A reasonably complete theory of the approximation of an irrational by rational fractions
whose numerators and denominators lie in prescribed arithmetic progressions is developed
in this chapter. Results are both, on the one hand, from a metrical and a non—metrical
point of view and, on the other, from an asymptotic and also a uniform point of view. The
principal novelty is a Khintchine type theorem for uniform approximation in this context.

Some applications of this theory are also discussed.

5.1 Introduction

Let & denote an irrational number.
The celebrated theorem of Dirichlet in Diophantine approximation asserts that, for any real

number ) > 1, there exist integers p, ¢ € Z such that
’g p‘< ! d 1<¢<Q (5.1)
—=| < — an <qg<Q. .
al — 9@
This uniform version implies in particular an asymptotic one, namely the fact that there exist

arbitrarily large integer values of ¢ such that the inequality |¢ — p/q| < ¢~2 holds for some
integer p depending on ¢. Hurwitz [120] has shown that the stronger inequality

_p 1
‘g q’ = V5¢2
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happens infinitely often and that the constant 1/+/5 in the right-hand side could not be chosen
any smaller for the result to hold true for all irrationals.

In general, establishing a result concerning asymptotic approximation (and, a fortiori, uni-
form approximation) when the numerators and/or the denominators of the rational approxi-
mants lie in given infinite sets turns out to be difficult (see [113, Chap. 4] or [103] and the
references therein for some examples). For more details about the concepts of uniform and
asymptotic approximations, the reader is referred to [Prolegomena, subsection 0.2.1]. This
chapter is concerned with the case when both the numerators and the denominators belong
to prescribed arithmetic progressions. The results known so far in this context (which will be
recalled), whether they are metrical, non—metrical, uniform or asymptotic, are very incomplete.

First some notation is fixed : throughout this chapter, a,b,r and s will refer to integers

satisfying the constraints

a>1, b>1, 0<r<a—1 and 0<s<b-1. (5.2)

7

The problem under consideration amounts to finding rational approximations to an irrational
¢ with numerators (resp. denominators) of the form am + r (resp. bn + s) for integers n and
m. Note that the case r = s = 0 is settled in a straightforward manner : applying Dirichlet’s
and Hurwitz’s theorems to the irrational b/a, it is easy to see that, on the one hand, for any

integer (Q > b, there exist integers m and n such that

ab

(bn)@

and that, on the other, there exist infinitely many integers m and n such that the inequality

‘5_% < and 1<in<@ (5-3)

am ab

~ < 7\/5“)”)2 (5.4)

¢

holds true infinitely often, the constant (ab)/v/5 being optimal uniformly in & € R\Q. As
will be apparent from the various results stated below, the fact that the constant ab in the
right-hand side of (5.3) may be chosen uniformly in £ € R\Q is typical of the “homogeneous”
case r = s = 0.

It is stressed that not all the theorems in this introduction are stated in full generality in

order to keep the discourse coherent with respect to the problem under consideration.

5.1.1 The theory of asymptotic approximation

The first result deals with non—metrical asymptotic approximation.

Theorem 5.1.1. Given an irrational £, there exist infinitely many integers m and n such that

ab
= 4(bn + s)?

am +r
bn+s

‘5 (5.5)

provided that (r,s) # (0,0).
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This theorem has already been proved in some particular cases, for example with the ad-
ditional constraint a = b (cf. [187]) or with a constant weaker than (ab)/4 on the right-hand
side of (5.5) (cf. [114]). See also [89] and the references therein for further details and partial

results in this direction.

Remark 5.1.2. Given the trivial relation |u/v —p/q| > 1/(vq) satisfied by any two distinct
rationals u/v and p/q, an inequality as in (5.5) can be satisfied by a rational £ = u/v infinitely
often if, and only if, there exists & € Z (and hence infinitely many of those) such that au = r
(mod a) and av = s (mod b); that is, from Lemma 5.3.2 in subsection 5.3.1 below, if, and only
if, the three conditions ged(bu, av) | (us — vr), ged(u, a) | r and ged(v,b) | s are simultaneously

met.

The next theorem deals with asymptotic approximation from a metrical point of view : it
provides a Khintchine type result in the setup under consideration. In what follows, A denotes
the one—dimensional Lebesgue measure. As usual, a set is said to be of full measure if the

measure of its complement is null.
Theorem 5.1.3. Let U :[1,00) — (0,00) be a non—increasing continuous function. Set

am—+r
bn+s

K (U) := {geR : ‘g—

< ¥U(bn+s) i.o.} ,

where “1.0.” stands for “infinitely often”.
Then,

ZERO if > n¥(bn+ s) < oo,
AK()) =
FULL if > 0" n¥(bn+ s) = cc.

Furthermore, the result still holds if the additional condition gcd(am+r,bn+s) = ged(a, b, r, s)
is also imposed in the definition of the set IC (V).

In the case that congruential constraints are imposed only on the denominators of the appro-
ximants (which corresponds to the case a = 1 and r = 0 in our setup), Theorem 5.1.3 follows
without much difficulty from the theorem of Duffin and Schaeffer in Diophantine approxima-
tion (cf. [Prolegomena, Theorem 0.2.6, p.17]) as noticed by S. Hartman and Sziisz in [116].
On the other hand, in the case that both the numerators and the denominators belong to
pre—assigned arithmetic progressions, the question was studied by G. Harman in [109] from
the perspective of counting the number of solutions to Diophantine inequalities. Therefore,
the main novelty in Theorem 5.1.3 is the fact that the result holds with the extra condition
ged(am+r,bn+s) = ged(a, b, r, s), which was a question left unanswered in [109]. It should be
noted that the main feature of the proof of Theorem 5.1.3 consists of establishing the optimal
regularity of the set {(am +1)/(bn + )}, .z in R. While this is a result interesting in its
own right that can be used to simplify a great deal of G. Harman’s proof, it does not follow
in the same way as the optimal regularity of the rationals in R as soon as r # 0 or s # 0 (see

subsection 5.2.2 for definitions and details).
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An application of the Mass Transference Principle (see [Prolegomena, Theorem 0.1.10, p.12])
allows one to translate Theorem 5.1.3 into a result on the Hausdorff measures and dimension
of the set K (¥). Here, H' stands for the t-dimensional Hausdorff measure and dim for the

Hausdorff dimension.

Corollary 5.1.4. Lett € (0,1). Then, under the assumptions of Theorem 5.1.3,

0 if Yoo, n¥(bn+s) < oo,
H (K (D)) =
oo if Yool n¥(bn+s)t = oo

In particular, dim (K (¥)) =inf {t >0 : > 07 n¥(bn+s)" < co}.
This result still holds with the additional condition ged(am + r,bn + s) = ged(a, b, r,s) in
the definition of the set K ().

5.1.2 The theory of uniform approximation

Even though the introduction of the concept of hat exponent (see [Prolegomena, subsec-
tion 0.2.1]) has made the distinction between uniform problems and asymptotic problems more
systematic in Diophantine approximation, results on uniform approximation under constraints
remain quite rare in the literature : one can for instance mention the recent work of Chan in [60]
on uniform approximation by sums of two rationals or the work of Dodson, Rynne and Vickers
showing in [79] that if M C R¥ (k > 3) belongs to a general class of smooth manifolds then,
for almost all points lying on M (with respect to the induced measure), Dirichlet’s Theorem
cannot be infinitely improved in some sense made precise in the paper.

However, in the case that the numerators and the denominators of the approximants are
subject to congruential constraints as those under consideration so far, a reasonably complete
theory of uniform approximation can be established, both from a metrical and a non—metrical
point of view. This is the subject of this subsection. To this end, a few definitions are first

introduced.

Definition 5.1.5. Given a function ¥ : [1,00) — (0,00), a real number & is said to admit a
P-—uniform (a, b, r, s)-approximation if there exists Qo > 1 such that, for any integer Q@ > Qo,

there are integers m and n such that

am—+r
bn+s

v(Q)

S thts and 1<bn+s<Q.

:

The set of real numbers admitting a V-uniform (a,b,r, s)-approzrimation will be denoted by
Uw).

Furthermore, £ € R will be said to admit a uniform (a,b,r, s)-approximation with exponent
w € [0,1] if there exists ¢ > 0 such that £ € U (Q — Q™).

From a non—metrical point of view, a necessary and sufficient condition, explicit in terms of
the continued fraction expansion, can be given for an irrational £ to be uniformly approximable

at order ¥ up to an explicit constant depending on £ (that is, for there to exist ¢ := ¢(§)
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such that £ € U(c¥P)). In what follows, the sequence of the partial quotients of & (resp. of its
convergents) will be denoted by (ax(€))r>0 or by (ax)r>o for the sake of simplicity (resp. by
(Px(€)/a1(€)) k>0 or by (Pr/qk)r>0), With ag € Z and ap > 1 for k > 1. The necessary and
sufficient condition is technical by nature and is concerned with the indices k£ > 1 for which the

relations

ged(pe-1,a) [r, ged(qe-1,0)[s and  ged(bpr—1,aqr—1) | (sPk—1 — rqr-1) (5.6)
are not simultaneously satisfied.

Theorem 5.1.6. Let & be an irrational number given by its continued fraction expansion & =

[ap; a1,...]. Let U :[1,00) — (0,00) be a continuous non—increasing function. Set
U Qe [l,00) — QU(Q) € (0,00) (5.7)
and assume that there exist v > 0, k > 1 and n > 1 satisfying

fW(Q) >, U(Q) < wU2Q) and Q) < ¥(ab(@Q+1)  forall Q > 1. (58)
Then there exists a constant ¢ := ¢(€) > 0 such that & € U(cT) if, and only if, there exists an
integer M > 1 such that for all indices k > 1 for which conditions (5.6) are not met, one has
Ak S M\If(qk)

Furthermore,
c(&) = 8(ab)’kmmax{4M,~v '} and Qo = ab (5.9)
are admissible values, where Qq is the parameter introduced in Definition 5.1.5.
Remark 5.1.7.

e The existence of k together with the assumption of the monotonicity of ¥ actually implies
the existence of 1 in (5.8). However, the explicit presence of these two constants makes
the definition of ¢(§) in (5.9) more effective.

e Conditions (5.8) should be seen as an attempt to remove any assumption of monotonicity
on the function ¥ : indeed, it is easily checked that they are automatically satisfied if v

is assumed to be non—decreasing (with v = ¥(1) and x =7 = 1).

e The existence of the constants x and n (which is ensured for a fairly large class of functions
— for instance any function rational in log @ and @)) means that the function ¥ does not
admit abrupt variations. It is a weaker assumption than the usual one when trying to
remove the assumption of monotonicity : transposed in this context, the latter would ask
that, for every ¢ > 1, U(cQ) < c¥(Q) for all Q > 1 (see, e.g., [57] and [71, §4.1]).

e The existence of the constant 7 is a relatively mild restriction. Indeed, it is well-known

that if a real number «a satisfies Dirichlet’s theorem with (2Q)~! as the approximating
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function instead of Q! (that is, if the right—hand side of the first inequality in (5.1) is re-
placed with (2¢Q)~!), then a has to be rational (see the discussion held after [Prolegome-
na, Theorem 0.0.1, p.2]). This implies in particular that the function ¥ in Theorem 5.1.6

cannot tend to zero.

e Condition (5.6) obviously holds in the “homogeneous case” r = s = 0, in which case one
finds again the aforementioned result on uniform approximation with exponent 1 where
the constant ¢(£) = ab was proved to be admissible for all £ € R\Q.

e Any badly approximable number has uniformly bounded partial quotients regardless of
whether condition (5.6) is met or not. Therefore, all badly approximable numbers admit
a uniform (a, b, r, s)-approximation with exponent 1. This shows in particular that the
set of real numbers for which Dirichlet’s theorem holds up to a constant in the context of
(a,b,r, s)—approximation has full Hausdorff dimension. In the case of badly approximable
numbers, the existence of a uniform (a,b,r, s)-approximation with exponent 1 will be

shown to be a direct consequence of the Three Distance Theorem in subsection 5.3.2.

e It will be clear that the proof of Theorem 5.1.6 can be adapted to show that, given
any p € (0,1], there always exists an irrational £ such that £ does not admit a uniform

(a,b,r, s)-approximation with exponent p as soon as r # 0 or s # 0.

From a metrical point of view, the only known result in the context of uniform (a,b,r,s)—
approximation seems to be that of S. Hartman who proved in [115] that almost no real number
satisfies Dirichlet’s theorem if the denominators of the approximants are prescribed to be odd.
The following corollary of Theorem 5.1.6, which is very much the main result of this chapter,
provides a reasonably complete answer to this problem. It constitutes the first example of a
Khintchine type result in the context of uniform approximation. The reader should note the

differences with respect to a standard Khintchine type result such as Theorem 5.1.3.

Corollary 5.1.8. Let U :[1,00) — (0,00) be a continuous non—increasing function such that
the function T as defined by (5.7) is non—decreasing.
Ifr #0 or s # 0, then
ZERO if Y54 m =00
AU (W) =

FULL if 355, graggy < o°-

Thus, as soon as r # 0 or s # 0, almost no real number admits a uniform (a,b,r,s)-
approximation with exponent 1. This also holds true if one takes ¥(Q) = logQ/Q as

the approximating function. On the other hand, almost all real numbers belong to the set

Moz U (Q = (log QF1/"Q ™).

The chapter is organized as follows : the results on asymptotic approximation (Theo-
rems 5.1.1 and 5.1.3 and Corollary 5.1.4) will first be proved in section 5.2. Then proofs
for Theorem 5.1.6 and Corollary 5.1.8, dealing with uniform approximation, will be provided

in section 5.3. Finally, various applications of Diophantine approximation with congruential
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constraints on both the numerator and the denominator of the approximants will be mentioned
in section 5.4. In particular, applications to the estimate of some trigonometrical functions and

to so—called visibility problems in geometry will be considered.

5.2 Proofs of the results related to asymptotic approximation

Theorem 5.1.1, Theorem 5.1.3 and Corollary 5.1.4 are proved in this section.

5.2.1 Non—metrical point of view

We first begin with a proof of Theorem 5.1.1. This can actually be seen as a consequence of

Minkowski’s theorem on the product of two linear forms (see, e.g., [57, Theorem 1 p.46]).

Proof of Theorem 5.1.1. Let £ € R\Q. Consider the linear forms L;(x,y) = by and La(z,y) =
bfy — ax with determinant A = —ab and set 1 := s and v := s§ —r. From Minkowski’s theorem
on the product of two linear forms, there exist integers m and n such that

ab

[L1(m, n) + 0] |L2(m,n) +v| = [bn+ s]. |§(bn + s) — (am +7)] < -

As € is irrational, given € > 0, one can furthermore add the constraint that
|[La(m,n) +v| = |(b§n —am) + (s§ —7)| < €

(see, e.g., [57, Theorem 1, p.46] for details). Since v := s — r & bZ + aZ, one gets infinitely
many pairs of integers (m,n) € Z? satisfying (5.5) by letting € tend to zero. Q.E.D.

Remark 5.2.1. Theorem 5.1.1 can be generalized to the case of inhomogeneous approximation
in the following way : for any £ € R\Q and any o € R, there exist infinitely many pairs
(m,n) € Z* such that the inequality

ab

b - <Y
on +5) — (am +7) + 0] < e

holds if s§ + r + « & bEZ + aZ (this follows readily from the previous proof). If, however,
s€+r+a € b§Z+ aZ, the situation is essentially the same as the “homogeneous” case r = s =0
and it is easily seen, using for instance (5.4), that the result still holds upon choosing some

constant bigger than ab/4 depending on « in the right—hand side of the inequality.

5.2.2 Metrical point of view

A proof is now provided for Theorem 5.1.3. The notation from this theorem is kept in this
subsection. Since the set K (W) is clearly invariant by translation by a multiple of the integer
a, it suffices to establish the Khintchine type result for the set K (¥)N (0, a) which, for the sake
of simplicity of notation, will still be denoted by IC (¥) in what follows.

The convergence part of Theorem 5.1.3 can be obtained in a classical way as a consequence

of the Borel-Cantelli lemma : details are left to the reader (see, e.g., [51, p.13]). In order to
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prove the divergence part, the concept of an optimal regular system is introduced. Recall that

A denotes the one—dimensional Lebesgue measure.

Definition 5.2.2. Let E C R be a bounded open interval and let S = (aj)j>1 denote a
sequence of distinct real numbers.

The sequence S is an optimal regular system of points in E if there exist positive constants
c1 and co depending only on S and, for any interval I contained in E, a number Ky depending
on S and I such that the following property holds : for any K > Ky, there exist integers
1<d <+ <4y <K with o, €1 for h=1,...,t satisfying

|, — | > % for 1<h#£1<t and t > cxAI)K.

The next theorem, due to Beresnevich in [13, 14] (see also [51, Chap. 6]), shows that the
set of real numbers close to infinitely many points in an optimal regular system satisfies the

divergent part of a Khintchine type statement.

Theorem 5.2.3 (Beresnevich). Let E be a bounded interval and let S := (a;);>1 denote an
optimal regular system in E. Given a non—increasing continuous function ¥ : [1,00) — (0, 00),
define the set Ks (¥) as

Ks (¥) :=limsup{{ € E : [ —a;] < ¥())}.

j—o0
Then the set K's (V) has full Lebesque measure if the sum 3, ¥(j) diverges.

Remark 5.2.4. This divergence statement holds even if the set S is reqular without being
optimal. See [20] for further details!.

Let

am —+r
= . 1
S:=(0,a)N { o }mmzo (5.10)

The goal is to prove that S is an optimal regular system in the interval E := (0,a). Here, the
elements of S are ordered by increasing denominator and, for two elements of S with the same
denominator, by increasing numerator in such a way that the divergence part of Theorem 5.1.3
will follow at once from Theorem 5.2.3.

It does not seem to be straightforward that the optimal regularity of S in E can be obtained
in the same way as the optimal regularity of the rationals in the unit interval as established by
Bugeaud in [51, Proposition 5.3] : indeed, Bugeaud’s argument strongly rests on considerations
of length combined with Dirichlet’s theorem applied to each irrational in the unit interval. In
this case however, it follows from Corollary 5.1.8 that a Dirichlet type result is satisfied by
almost no irrational if  # 0 or s # 0.

In order to establish the optimal regularity of S with respect to E, two preliminary lemmata
are first required. For the classical results related to some arithmetical functions mentioned in

the proofs, see, e.g., [108].

IThis remark is due to an anonymous referee who gave valuable comments on the paper [A5] referenced in
the List of Publications p.xi.
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Lemma 5.2.5. Let ¢ > 1 be an integer such that ged(a,r,q) = 1.

Z 1= gcdéz,a) (p(g(jd(qq’a)) +0 <QW(Q)) ,

0<am+r<z
ged(am+r,q)=1

Then

where ¢ denotes Euler’s totient function and w(q) the number of distinct prime divisors of q

and where the implicit constant depends only on a.

Proof. Let u(.) denote the Mobius function. Since for any integer n > 1, > din p(d) equals 1

if n =1 and 0 otherwise, one gets, for > a, denoting by | . | the floor function,

> 1= > )

0<am+r<z 0<am+r<z d|gcd(am-+r,q)
ged(am+r,q)=1
5 STCIED SRS SITT I DR
d|q 0<m<(z—r)/a d|q 0<m<(z—r)/a

am=—r (mod d) ged(d,a)|r am=—r (mod d)

= > ud (:z V ; TJ ged(d, a) + O (ged(d, a)))

dlg
ged(d,a)|r

T p(d) ged(d, a)
== > T H0 | Y w(d)ged(d,a)
dlq dlq
ged(d,a)|r ged(d,a)|r

Now, on the one hand,

Y uld)ged(d.a)| < a)|u(d)] = a2@,

dlq dlq
ged(d,a)|r
which provides the error term in the conclusion of the lemma. On the other, any integer d
dividing ¢ can be written in a unique way in the form d = kl with kz|m and | ged(q, a)
with ged(k, 1) = 1. Therefore, from the multiplicativity of the Mébius function,

s udgedda) 5 pu0sedlo
d

kl
dla k| seataay
ged(d,a)|r 1] ged(q,a), U|r
S k) | 5 p(l) ged(l,a)
k I
k| eataay U] ged(q,a)

lr

o (gt

= ——7—| > w0 = W( ) :
2ed(e:0)  \1|ged(g.am) ged(g; a) q
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where the second last equation follows from the well-known fact that

e uik ql (5.11)

klq’

for all ¢ > 1 and the last equation from the assumption that ged(q, a,7) = 1. This completes
the proof. Q.E.D.

The second lemma generalizes the classical estimate

Q 2
> k) = Q) 0(Qlog Q),

k=1

a proof of which can for instance be found in [108, Theorem 330].

Lemma 5.2.6. Let u > 1 and v > 0 be integers and let Q > u be a real number.
Then
Y. eluk+v) = C(u,v)Q* +0(QlogQ),

1<uk+v<Q
where the implicit constant depends only on u and v and where

-1

cd(u,v 1
ot = £ @ 11 (%)
wlu

Proof. Assume that @Q = uk + v for some integer k > 1. It is clearly sufficient to establish the
result in this case. Then, if v # 0,

k k

Yo plul+v) = pul +v) Zul+v > @- (5.12)

1<ul+v<Q 1=0 1=0 d|(ul+v)

If v = 0, the last two sums should start with [ = 1. To avoid cumbersome notation, the proof
will be given in the case v # 0 and the reader can easily check that it remains valid if v = 0
with very little modification.

The relation d|(ul + v) means that there exists d’ € Z such that dd’ — ul = v. This last
Diophantine equation is solvable in (d’,1) € Z? if, and only if, § := ged(d, u)|v, in which case

any solution is of the form
u d
(d,l) = (dg + gt, —ly + 5t) ;

where t € Z and (d{,, —lp) is a particular solution. Then the constraint 0 < [ < k amounts to
the following one : 2lp < ¢ < (k+lp)3. Thus, (5.12) becomes :

k
Z o(ul +v) = Z d' u(d)
1=0

1<dd’ <uk+v
dd’=v (mod u)
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- Y Y Y (4 )ua

6| ged(u,v) 1<d<uk+v %gtg(kﬂo)

o

ged(d,u)=35
ut
/!
- Y Y @ (d5+%)
9| ged(u,v) 1<d<uk+v 2o <y< (ko) S
ged(d,u)=6 d ="= d

ud (k\? kS

=2 2 M <2 <d> +O(d>>
6| ged(u,v) 1<d<uk+v
ged(d,u)=6

d dk? 1
= > “éz) “T+O >k Y <] (613)
6| ged(u,v) \ 1<d<uk+v 6| ged(u,v) 1<d<uk+v
ged(d,u)=6 ged(d,u)=46

where the error term in this last equation is clearly O (klogk). Now, on the one hand,
p(d) o L(d) o Kd)
PO D Dl D Dl
1<d<uk+wv d=1 d=uk+v+1

ged(d,u)=6 ged(d,u)=8 ged(d,u)=6

and, on the other,

£l £ 1o

d=uk+v+1 d=uk+v+1
ged(d,u)=6
hence, from (5.13),
y I+v) = ) | R ok 14
Z<P(U +v) = Z = | 2 T (klogk). (5.14)
=0 6| ged(u,v) ng?id:ul):5

Since £ 5;‘? ) is a multiplicative function, the series appearing on the right—hand side of this

equation can be simplified. Indeed, assume first that 6 = 1. Then the expansion in the Euler

)

I8 [e ()

7T prime T prime
ged(m,u)=1 |

product of the series under consideration gives

= ) = ()
S (B
d= 7 prime =1
ged(d,u)=1 ged(m,u)=1

-1

If, now, § > 2 is a divisor of ged(u,v), let d be a square—free integer such that ged(d,u) = 4.
Write d = 0d’ in such a way that d’ is a square—free integer satisfying ged(d’,d) = 1 and
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therefore ged(d’,u) = 1. Then,

-1

(oo} oo [ee]
p(d) p(od’) — p(é) p(d) — p(d) 1
a2 Z (6d')2 ~ 52 Z (d)? ~ 52 ¢(2) H 1- )
d=1 d'=1 d’'=1 7 prime
ged(d,u)=48 ged(d! ,u)=1 ged(d! ,u)=1 |
Setting p(1) = 1 and combining this with (5.14), one gets, in the case that @ = uk + v for some
k>1,

-1

> et =@ |2 I (1-%)| X “P o).

2
™
0<ul+v<Q 7 prime 6| ged(u,v)

ol

which completes the proof from (5.11). Q.E.D.

Completion of the proof of Theorem 5.1.3. The optimal regularity of the subset S’ of S (defined
by (5.10)) made up of fractions of the form (am + r)/(bn + s) satisfying ged(am + r,bn + s) =
ged(a, b, r, s) will now be established. It should be clear that it may be assumed, without loss

of generality, that ged(a,b,r,s) = 1.

Let us first prove the existence of a subsequence of the sequence (bn + s),>0 of the form
(un+v)n>0 (u,v > 0 integers) such that ged(un+v,a,r) =1 for alln > 1if § := ged(a,r) > 1.
Under the assumption that ged(d,b,s) = 1, a prime divisor 7 of ¢ cannot divide both b and
s. It is therefore possible to fix an integer n, defined modulo 7 such that bn, + s # 0
(mod ) (set for example n, = (1 — s)b=! (mod 7) if ged(m,b) = 1 and n, = 1 (mod )
otherwise). From the Chinese remainder theorem, there exists an integer ng, defined uniquely
modulo Hﬂ|5 7 (the product is taken over prime numbers), such that ng = n, (mod 7) for all

primes 7 dividing 6. Then, set u :=b Hﬂlé m and v := bng + s in such a way that (uk 4+ v)g>0

(b (no +k Hﬂ_la 7r) + s)k . It is then clear that for any element N of the sequence (uk+v)x>0,
>0 >
ged (N, §) = 1 since for all prime divisor 7 of 4,

N=bng+s=bn,+s#0 (modm).

Let I = (o, 8) (with o < 8) denote an open interval contained in (0,a). Consider the set of
all elements of the sequence (un + v),>o which lie in the interval [Q/2, Q], where Q > u is a
real number. It follows from Lemma 5.2.5 that, for a fixed n > 1, the number of integers m > 0
such that ged(am + r,un+v) =1 and (am +7r)/(un+v) € I is

1= A(I)gcd(q,a)w(ngq >+O(2w(q))’

a a
ag<am+r<fBq (CL )
ged(am+r,q)=1

where ¢ := un + v. From the well-known estimate 2¢(?) = o (¢¢) valid for all € > 0, for @ (and

therefore for ¢ > @Q/2) large enough depending only on a, r and A(I), this last quantity is such
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that

. = /\(1)@ (5.15)

2a '
ag<am+r<fq
ged(am+r,q)=1

where we used the fact that ¢ (gcdgq’a)) > gcﬁgg?a).
Define now 8’g(I) as the subset of S’ made up of all those irreducible fractions in I of the
form (am + r)/(un + v) and such that Q/2 < un + v < @ : the distance between two distinct

elements (am + r)/(un +v) and (am’ +r)/(un’ + v) of &' (I) satisfies the inequality

1 > L.
~ (un+ov)(un’ +v) T Q3

am+r am' +r

un + v un’ +v

Moreover, it follows from (5.15) that the cardinality #S'g(I) of the set S’q(I) satisfies the
estimate )
!/
#S' Q1) = a Z p(un +v).

Q/2<un+v<Q

Therefore, from Lemma 5.2.6, for @) large enough depending only on a, u, v and A(J),

#S8'q(I) >

Up to constants, A(I)Q? elements of &’'g(I) C &' have been found in I such that the gap
between any two of them is Q~2. Furthermore, from the indexing adopted for S (which is also
used for &), it should be clear that the largest index of an element of 8’ (1) is at most aQ?.
Since this holds for all @ large enough (depending only on &’ and I), it is easy to see that
Definition 5.2.2 applies.

This completes the proof of the optimal regularity of the subset of S’ and therefore of
Theorem 5.1.3. Q.E.D.

The Mass Transference Principle, due to S. Velani and V. Beresnevich, allows one to deduce
Corollary 5.1.4 from Theorem 5.1.3 without much difficulty. Here, the result of [Prolegomena,
Theorem 0.1.10, p.12] is not given in full generality but adapted to our purpose.

Theorem 5.2.7 (Mass Transference Principle). Let Q be a compact interval in R with non—
empty interior and let t € (0,1). Denote by (Ji);5, a sequence of intervals in Q whose lengths
tend to zero as i tends to infinity. For any interval J centered at x € Q0 with half-length r,

denote by J* the interval centered at x with half-length r'. Assume furthermore that
A (lim sup Jf) =A(Q). (5.16)
1i—00

Then
H' (Hmsup Ji) = H'(Q) = .
11— 00
Deduction of Corollary 5.1.4 from Theorem 5.2.7. Let t € (0,1). If the sum > >, n¥(bn+s)*
converges, a standard covering argument shows that H? (K (¥)) = 0 : here again, details are
left to the reader.
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Assume now that the sum > -, n¥(bn+s)" diverges and recall that the set K (¥) has been
restricted without loss of generality to the interval (0,a). Set Q@ = [0,a] in the assumptions
of Theorem 5.2.7 and chose (J;);>0 as being the sequence of all those intervals contained in 2
of length 2W(bn + s) and centered at rationals of the form (am + r)/(bn + s) with ged(am +
r,bn + s) = ged(a,b,r,s). These intervals are indexed in the usual way (see after (5.10)).
Then, condition (5.16) is met from the divergence part of Theorem 5.1.3 so that applying
Theorem 5.2.7 completes the proof. Q.E.D.

5.3 Proofs of the results related to uniform approximation

This section is devoted to the proofs of Theorem 5.1.6 and Corollary 5.1.8. Throughout,
conditions (5.2) will be strengthened in assuming, without loss of generality from the discussion
held in the introduction, that

r#0 or s#0. (5.17)

First, some auxiliary results, dealing mainly with properties of continued fraction expansions,

are recalled.

5.3.1 Some properties of the continued fraction expansion of an irrational

The next lemma collects some well-known properties of the continued fraction expansion of an

irrational.

Lemma 5.3.1. Let £ be an irrational number with partial quotients (ar)k>0 and convergents
(Pk/qr)k>0. Set conventionally p—1 =1, q_1 =0, po = ap and qo = 1.
Then :

1. For any k > 0.
GPr—1 — Prqr—1 = (—1)*. (5.18)

In particular, pr and qi are coprime.

2. The numerators and the denominators of the convergents of & satisfy the recurrence rela-

tions

Pk = QgPr—1 +Pr—2 and qr = arQr—1 + qr—2 (5.19)
valid for all k > 1.
3. For any k > 0,
1 qk 1
< = 0;ak4+1, kt2,...] < . 5.20
ag+1+1 Qr+1 (0; k41, a2, ] Gk+1 (5.20)
4. For any k > 1, set
 qk€ —
Gy = ISP
qk—1§ — Pr—1
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Then, ¢, <0,

1
14 apt10k = Prdpp+1  and  |op| < —- (5.21)
Ak+1

5. For any integer k > —1, set
= (=1)" (g€ — pr) -

Then, the sequence (n)k>—1 s positive and decreasing and, furthermore,

1 Qk+1
5SS ———— < Mm@+ <1 5.22
2 S g S (5.22)
forall k> —1.
6. Let k > 1, ap € Z and ay,...,ar > 1 be integers. Let furthermore E(ag,aq,...,ax)
denote the set of real numbers whose k+1 first partial quotients are ag, a1, ...,a,. Then,
[&, 7”’“1”*1) if k s even
E(ag,a1,...,a) = Z]k +Zk Tkt
k+Prk—1 pr . .
(‘Ik"l‘Qk—l ’ ‘1k:| if k is odd,
where pp—1/qk—1 = [ao; a1, ..., ax—1] and pr/qr = [ao;a,...,ax). In particular,
L ) ! <2 (5.23)
— < ag,ai,...,ay)) = ————————— < —- )
2q; IR ar(qr +qe-1) ~ 4}
7. For any k> 1,
k k
Te <o < [[a;+1) < 2°[] a5 (5.24)
j=1 j=1 j=1
k k k
(1+aoar) [Ja; <pe < (1+aoar) [J(a; +1) < 287" (1 +agar) [J ;. (5:25)
j=2 j=2 j=2

8. Letd,t,u > 1 be integers and let k € (N*)d. Denote by E,(:) the set of all those irrationals
& in the interval [t,t + 1] such that (ag(§),a1(§),...,aq(€)) = (t, k). Let E,(:) denote the

u

subset of E,(:) made up of all those irrationals & such that ag41(§) = u. Then

ANED
o < A%EZ))) <5 (5.26)

Ift =0, the set E,(:) (resp. E,(:L) will be more conveniently denoted by Ey, (resp. by Ex ).

Proof. Inequalities (5.24) and (5.25) can easily be obtained by induction from relations (5.19).
All the other results are standard. See, e.g., [51, Chap. 1] for proofs or [57, Chap. 1]. Q.E.D.

The following generalizes a result well-known in the case a; = as = 1. The proof, which is

elementary, is left to the reader.
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Lemma 5.3.2. Fori=1,2, let a; > 0,b; > 0 and m; > 1 denote natural integers. Then, the
system of equations
a1z =by (mod my)
{ asx = by (mod mo)

admits a solution x € Z if, and only if,

ged(my,ay)| by,  ged(ma,az)|ba  and  ged(ayma, agmi) |arby — agb;.

5.3.2 Non—metrical point of view

It is remarkable that, in the case where ¢ is a badly approximable irrational number, the result
of Theorem 5.1.6 can be generalized by proving that £ admits an inhomogeneous uniform
(a,b,r, s)—approximation with exponent 1. In what follows, Bad denotes the set of badly

approximable irrationals.

Proposition 5.3.3. Let £ € Bad and a € R.
Then, there exists a constant c(§) > 0 such that, for all real numbers Q > 2b, there are
integers m and n satisfying

|(bn+8)€ — (am+ 1)+ a| < Cg) and 0<bn+s<Q.

Furthermore, ¢(§) = 2ab(M + 2) is an admissible value, where M is an upper bound for the
partial quotients of b/a.

Proposition 5.3.3 will follow without much difficulty from the Three Distance Theorem, also
referred to in the literature as the Steinhaus Theorem, the Three Length, Three Gap or Three
Step Theorem. The latter states that, for any positive integer @) and for any irrational &, the
points ({i€})y<;< partition the unit interval into @ + 1 subintervals, the lengths of which take
at most three values, one being the sum of the other two (here, {x} denotes the fractional part
of a real number z). The reader is referred to [2] for a complete survey on the topic and to
the references therein for various proofs of the precise statement of the result given below. The
latter uses the fact that, for any integer () > 1, there exist unique integers k£ > 1, p and w such
that

Q=pqe-1+aqr—2+w with 1<p<aqr and 0<w<gg_, (5.27)

where (gx)r>0 is the sequence of the denominators of the convergents of a given irrational &.
Such a decomposition can be obtained thanks to the greedy algorithm. The notation introduced
in Lemma 5.3.1 is kept in the statement of the Three Distance Theorem, in particular see (5.22)

for the definition of 7.

Theorem 5.3.4 (The Three Distance Theorem). Let £ be an irrational and let Q@ > 1 be a
positive integer given in the form (5.27).
Then, the unit interval is divided by the points 0, {&}, {28}, ..., {QE} into Q+1 subintervals

which satisfy the following conditions :
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o Q+1—qx_1 of them have length ni_1,
o w+ 1 have length ng—_o — png—1,
e gp—1— (w+1) have length ng_o — (p — D)ng—1.

Remark 5.3.5. As ¢ is irrational, the three lengths are distinct. The third length, which is
the largest since it is the sum of the other two, does not always appear. The other two do

always appear.

Proof of Proposition 5.3.3 from Theorem 5.3.4. In this proof, (ax)rk>o (resp. (pr/qr)k>0) refers
to the sequence of the partial quotients (resp. of the convergents) of the irrational b¢/a, where
& € Bad. The integer M denotes an upper bound for the sequence (ag)r>o.

Let @ > 1 be an integer and let & > 1, p and w be integers as given by (5.27). From
Theorem 5.3.4, the unit interval is partitioned by the numbers ({ib{/a})j<,<o into @ + 1
subintervals of lengths at most 7;_2. Modulo a this is saying that the point s§ — r 4+ « lies
within a distance ang_o/2 from bén for some integer n in the interval [0, Q]. In other words,
there exist m € Z and n € [0, Q] such that

ank—2
2

|(bén —am) + (s§€ —r + a)| < and 0 <bn+s <bQ+s < 200,

whence

Q& (bn+5) — (am + 1) +af < Q-

< Zla+2)
(5.22)&(5.27) 2

< %(M+2).

Assume now that @ > 2b is a real number and set Q' = [Q/(2b)| > 1 : from what precedes,
there exist integers m and n such that 0 < bn + s < 2bQ" < Q and

1
QlE(n+s)—(am+71)+a| < %g(M—i—Q) < (1—1—@) ab(M +2) < 2ab(M + 2).
This completes the proof of Proposition 5.3.3. Q.E.D.

The rest of this subsection is devoted to the proof of Theorem 5.1.6, where the notation
introduced in Lemma 5.3.1 will be systematically used with respect to a fixed £ € R\Q. To
this end, first note that, given m,n € Z and k > 1, it follows from (5.18) that there exists a

unique pair (u,v) € Z2, given by

w = (=1)"""[(am +r)gr—1 — (bn + 8)p1] (5.28)
and

v = (=1 (b + $)px_s — (am + r)ai_a], (5.29)
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such that

am—+r1r = upg_9 + Upp_1, (5.30)
and

bn+s = uqr—2 + vqi_1. (5.31)

Furthermore, in this case, on noticing that

E(bn+s) —(am+7)] 1 [§(ugp_o+vqe—1) — (upp—2 +vpp—1)| 1
= : = [u +vor_1],
Qe—1|qr—2§ — Pr—2| qr—1 |qr—28 — Pr—2| qr—1
where ¢_1 has been defined in (5.21), inequalities (5.22) imply that
1
lu+vop_1| < [E(bn+8) — (am +7)] < — |u+ vop_1]. (5.32)
2qk-1 qr—1

Proof of the necessary part of Theorem 5.1.6. Assume that there exists a strictly increasing se-
quence (k;);>o of natural integers such that conditions (5.6) are not met for the index k; and

such that
akl

lim =
I=o0 U (qkl)

= 0. (5.33)

For a contradiction, assume that there is a Qg > 1 such that for each integer @ > @, there

exist m,n € Z satisfying
0<bn+s<Q and U(Q) Ebn+s)— (am+r)| < c(€) (5.34)

for some constant ¢(§) > 0. Assuming without loss of generality that ko has been chosen in

such a way that gx,/2 > Qo, set furthermore, for all [ > 0,

where [.] denotes the ceiling function. Let I > 0 and m and n be integers verifying (5.34) for
the integer Qg,. It then follows from (5.29) that

P, —2

[v] = qg,—2 |(am + 1) — (bn + s)
qk;—2

< qr—2[§(bn+s) — (am + )|
(5.34)

Pk, —2
+q}€1—2 57 li

- Qk,
= C(g)le—Q\I/<[qﬁ-D + |—le/2—|

(5.22)&(5.34) 2 Q-1

2+1
< C(f)qh—z\l’(&) + /241
(¥ decreases) 2 k-1

le—Q’“(QkL) 1
< ¢ U + S (a, +1) +
(5.20) €>Clkl/Q 2 2( M ) Qky—1

= 0 (@) + 5 o).
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Therefore,

0 (¥ () +a, /240 (1)

v 1| < = 1/2+40(1).
0P, 1 = o 53 /2T

On the other hand, the integer u cannot equal zero in the representations (5.30) and (5.31) :
indeed, this would otherwise contradict the fact that conditions (5.6) are not met for the index

k; from Lemma 5.3.2.

Thus, since |u| > 1, one gets :

Qe

1) e(om+ 5) ~ (am -+ 7)

U(Qu) et s) — (@mtr)] =

(v dec_reases)

~ (g, \ "1 /2
> (% 2l oo
(5.32) 2) 21 (Ju] = [vor,—1])

which, from (5.33), contradicts (5.34) for [ large enough and completes the proof. Q.E.D.

The proof of the sufficiency of the conditions attached to (5.6) in Theorem 5.1.6 is more

involved.

Proof of the sufficient part of Theorem 5.1.6. Assume that Q > 1 is an integer written in the
form (5.27) for some integers &k > 1, p and w. From (5.30), (5.31) and (5.32), the problem
comes down to proving the existence of integers u and v (and therefore m and n) such that an

upper bound depending only on a,b, £ and ¥ might be found for the quantity

V(Q) ™ — |u+ vor_1
qr—1

under the constraint 0 < bn + s < Q.

To this end, set d := ged(bpg—1,aqr—1) and consider the unique integer u lying in the
interval [0, d — 1] which satisfies the congruence

u= (=11 (rpr_1 — sqp_1) (mod d). (5.35)
Since pi_1 and gr_1 are coprime, one has in fact
0 <u < ab. (5.36)
Furthermore, under these assumptions, the equation

w— (=1 (rpr—1 = sqr—1) = (=) (age—1m — bpg—1n) (5.37)
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is solvable in (m,n) € Z? and the set of all solutions can be written in the form

bpr— -
<mo — () B g — (-1 1h) ,

where h € Z and (mg,ng) € Z? is a particular solution. This implies that there exists a unique
pair (m,n) € Z? satisfying (5.37) with the additional constraint 0 < n < agy_1/d. For such a
pair, it should be clear that

0<bn+s < bagp_1+s min{ab@, 2abqy_1}. (5.38)

<
(5.27)

On the other hand, eliminating am + r in equations (5.28) and (5.29) gives

qk—2 dk—1 qr—1
whence
dr—2 Pk—2  Pk—
lu +vdp_1| < u|.‘1—¢k1 +|bn+ s|. |dk—1]- B Qr—2-
qr—1 qr—2 qrk—1

Taking into account (5.18), (5.21), (5.36) and (5.38), this leads to the inequality
|u+ vor—1| < 2ab+ 2ab = 4abd. (5.39)

Since the function ¥ is non—increasing and since @ < qr + gx—1 < 2¢x from (5.27), for such a

choice of the integers u and v (and therefore, of the integers m and n), one has :

T(Q) 1 En +s) — (am +7)| < ¥(2q) "t |E(bn + 5) — (am + 1)
= 2,9 (2q1) " E(bn + 5) — (am + 7))
< 2q;,
(5.32) qk—1

< 2(a + 1) U(2q) " u + vgp_1]
(5-20)

< 16abap¥(2q,)"" < 16kaba,¥(gp) " (5.40)
(5.39) (5.8)

U (2gx) " Ju+ vop—|

Now, if conditions (5.6) are not satisfied, this last quantity is less than 16xkabM for some
integer M > 1. If, however, conditions (5.6) are met, instead of choosing u according to the
constraints (5.35) and (5.36), set u = 0. Then, from Lemma 5.3.2, there exist v € [0, ab] and
(m,n) € Z? such that

vpg—1 =am—+r and vqr_1 =bn+s,

in which case 0 < bn + s < ab@ and, repeating the above calculations,

W(Q) " ebn + ) — (am +1)] < 2 ( + q:) B(200) " [vdp_s]

< drabap¥(gr) " |pr_1]
(5:8)
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< 4/£ab7_1.
(5.8)&(5.21)

Thus, it has been proved that for all integers Q > 1, there exists (m,n) € Z? such that
U(Q)~LE(bn + s) — (am +1)| < 4kabmax{4M,y~1} under the constraint 0 < bn + s < abQ.

Assume now that @@ > ab is any real number and set Q' := [@Q/(ab)] > 1. Then there exist
integers m and n such that 0 < bn + s < abQ’ < Q and

U(Q) T E(bn + s) — (am +1r)| < dkabmax{4M,y~ '} \I\;}((%/))
(¥ degeases) Anabmax{4M,y }\IJ(ab(Ql 4 1))

= 2m X -1 1) ﬂ

= 4x(ab)® max{4M,y~ "} <1 + 7) T 1)
< 8unm(ab)? max{4M,y'}.

(5.8)

This completes the proof of Theorem 5.1.6. Q.E.D.

Remark 5.3.6. If there exist integers M > 1 and kg > 1 such that, for all k& > kg, the
inequality a; < MU(qy) holds whenever conditions (5.6) are not met, then the conclusion of
Theorem 5.1.6 remains true upon choosing Qo = ab(qr,—1 + qk,—2) (which quantity equals ab
when ko = 1).

Indeed, the previous proof applies with the exception that the upper bound 16xabM used for
the right—hand side of (5.40) when conditions (5.6) are not satisfied is only valid when k > ko.
From the uniqueness of the decomposition (5.27), this imposes the condition Q > qry—1 4 qie—2-
Therefore, in the last step of the proof, the integer Q' := |Q/(ab)] will be asked to be bigger
than gg,—1 + gr,—2, hence the choice of )y in this case.

5.3.3 Metrical point of view

This subsection is devoted to the proof of Corollary 5.1.8. Throughout, the result will be
established in the case when s # 0 : it is not difficult to verify that the reasoning below can
easily be modified to obtain the same result in the case when s = 0 and r # 0 working with
the numerators of the convergents rather than with the denominators.

Consider a function ¥ satisfying the assumptions of Corollary 5.1.8. Since ¥ is non—
decreasing, it is clear that conditions (5.8) are satisfied, so that the conclusions of Theorem 5.1.6
hold. In what follows, the metrical result of Corollary 5.1.8 will be proved for the set &(¥)NI0, a]
which, for the sake of simplicity, will still be denoted by U(¥) : it should be clear that this
suffices to establish Corollary 5.1.8 in full generality.

More precisely, it will be shown that :

a) if the sum -, W(Q) converges, then, for almost all ¢ € [0, a]\Q, there exists an integer
ko(€) > 1 such that, for all k > ko(€), ax(€) < 79 (gx(€)). The fact that A (U (¥)) = a will
then follow from Theorem 5.1.6 and Remark 5.3.6 for a suitable choice of the parameter

7> 0.
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b) if the sum > 55, m diverges, then the set of ¢ € [0,1]\Q such that, for all in-
tegers M > 1, there exist infinitely many indices k& > 1 such that b|gx—1(§) and
ap(€) > MV (qi(€)) has strictly positive measure. By virtue of (5.9) in Theorem 5.1.6,
an element ¢ belonging to the latter set cannot belong to the set

V(0) = JUu(cv) (5.41)

c>1

whose complement has therefore strictly positive measure. Showing that V (¥) has either

zero or full measure will then complete the proof in this case also.

The proof of Corollary 5.1.8 requires a Borel-Berstein type technical lemma on continued

fractions.

5.3.3.1 A Borel-Berstein type technical lemma on continued fractions

The classical theorem of Borel-Bernstein on continued fractions states that, given a se-
quence (ug),~; of positive integers, if the sum ), ., u,;l diverges, then, for almost all
¢ = [O;al,ag_,...] in [0,1), there exist infinitely man;f integers k > 1 such that ar > uy.
Further, if the sum converges, then, for almost all & := [0;a1,as,...] in [0,1), there exist
only a finite number of integers k& > 1 such that a, > uy (see, e.g., [51, Theorem 1.11] for a
proof). The following generalizes the Borel-Bernstein Theorem and is the key step in proving
Corollary 5.1.8.

Lemma 5.3.7. Let A > 1 and d > 1 be integers. Denote by f := (fk)k21 a sequence of

functions such that, for every k > 1, the function

fe :€€[0,1\Q — fr(§) € 1, A]”

is measurable. Assume furthermore that ¢ := (‘Pk)kz1 is a sequence of positive integers for
which there exists an integer ¢ > d+1 such that the two series >y ¢k and Y peq Pek CONVETgE

(resp. diverge) simultaneously. For any k > 1, define the sets

Bl (frvon) == {£€0,1\Q : (g, ahs1s- .- ahra—1) = fr (&) and arsa > or}

and
S (f,¢) = limsup E{ (fr, ox) -

k—o0

Then
=0 if Yoaeoer! < oo,

log 2 : -1
4(2(32)«1)ZI if Ypeo P = o©.

A (ST (f.9)

v

Remark 5.3.8. The assumption of the existence of the constant c is a restriction of a technical
nature : as will be clear from the proof, it plays no role but to ensure that for an element x
lying in the intersection E% (fur, 0ck) N EY4 (for, ¢er), where k and [ are two distinct positive

integers, the two blocks (ack(z), ..., ackt+a(x)) and (aq(x),. .., aqs+a(z)) do not overlap.
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Notation. In order to prove Lemma 5.3.7, the notation introduced in the statement of the
result is kept. Two additional sets are defined as follows : given positive integers k, d and (3,
given a € (N*)?, let

Ef (o, 8) == {£€[0,1\Q : (ak,aki1,-- . arta-1) = o and ajiq > B}

and
Ed(a,B) := {£€[0,1\Q : (ak,aks1,---,a5+d—1) = @ and ajrq = B}.

Proof of the convergent part of Lemma 5.3.7. The convergent part of Lemma 5.3.7 follows in
the same way as the convergent part of the theorem of Borel-Bernstein, which in turn is
nothing but a consequence of the Borel-Cantelli Lemma. Details are provided here for the sake
of completeness.

Suppose Y pe,¢r - < oo and let E (pr) = {€ € [0,1\Q : aj > ¢} (k > 1). From the
uniqueness of the continued fraction expansion of an irrational, one gets for all £ > 1, using
point (5.26) from Lemma 5.3.1,

AE@a) = Y Y M) < Y Y D= Y S

5.26
ac(N*)k uzppq1 (5.26) ac(N*)k uZppq1 UZPpi1

Thus, the series >, -, A (E (o)) converges. Since S4(f,¢) C limsupys, E (¢r), the result
follows from the Borel-Cantelli lemma. Q.E.D.

Remark 5.3.9. The proof of the convergent part of Lemma 5.3.7 is also valid if d = 0 (the
only condition defining the set EY (fx, px) is then that a; > ¢y), in which case the integer ¢ in

the assumptions can be taken as equal to 1.

The proof of the divergence half of Lemma 5.3.7 is more involved. The use of the Gauss

measure p will make it simpler. The latter is defined for any element F of the Borel o—algebra

Bo,1) of [0,1] by the formula
1 dz
p(B) = s [ T
log2 Jpl+z

<p< :
2log2 log 2

It should be clear that

(5.42)

In particular, the Lebesgue measure A restricted to [0, 1] and the Gauss measure p are mutually
absolutely continuous and therefore have the same sets of full and null measures. Define

furthermore the Gauss map 7' as follows :
1
T :z=1[0;a1,a2,...] € [0,1\Q — {x} = [0;az,as,...] € [0,1\Q,

where {z} denotes the fractional part of a real number . It is a well-known fact (see, e.g., [87,
Theorem 3.7]) that the system (T, 1L 8[071]) is ergodic in [0, 1] and hence that p is T' invariant.
Two classical lemmata, which will be used in the proof of the divergent part of Lemma 5.3.7,

are now introduced. The first one is essentially due to Khintchine (see, e.g., [134] or [135]).
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Lemma 5.3.10. Let o € (N*)?, where d > 1. Denote by Eo the set
Eq:={¢€]0,1) : (a1,...,aq) = a}.

Let F be a u—measurable set in [0,1].
Then, there exists an absolute constant 8 € (0,1) such that for any k > 0,

p(EBa VT~ F4(F)) = pu(Eq) p(F) (1 i) (0@)) .
The implicit constant in this last equation is also absolute.
Proof. See [159] for an explicit proof. Q.E.D.
The second lemma provides a partial converse to the Borel-Cantelli lemma.

Lemma 5.3.11. Let (E;);5, be a sequence of p-measurable sets in [0,1] such that
Z?io,u(Ei):oo'

Then,
. 2
(1' E> o (ZL:M(EIC))
i [ limsup E; | > limsup
i—00 i—00 E1§k’l§il~t(Ek NK)
Proof. See, e.g., [51, p.125]. Q.E.D.

Proof of the divergent part of Lemma 5.5.7. Suppose Y po <p,;1 = 00. The result will be es-
tablished in four steps.

Step 1. Given k > 0, the first step consists of finding a lower and an upper bound for
1 (Eg (a, gak)) independently of a € [[1, A]?. To this end, first notice that, from the uniqueness

of the continued fraction expansion of an irrational,

oo

(B () = > (B (evaan).

QAd4+1=Pk

Now, it follows from (5.42) that, given ag41 > @k,

A (Eg;l‘z:é;ﬂ)) < (Eg (a,ad+1)) . A (Eg (Ot,Oéd+1))'

log 2
Furthermore, denoting a € [1, A]¢ by & = (v, - . ., @q), (5.23) and (5.24) imply that

1 1 -~ 1 1
< <A (Ed (e, ad+1)> < < 7
2(24)%ag,, ~ 241 T¢H 2 0 a2 T iy,

hence, on the one hand,

oo

1 1 1
d
1 (E§ (o, 01)) < > <
log 2 oo O‘¢21+1 (log 2) @i,
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and, on the other,

oo

1 1 1
Ed P — > .
(B (e 0x)) = 1(24)2 log 2 D 0%, = 12427 log2 (px + 1)

QAd4+1=Pk

Thus, it has been proved that, for any k£ > 0 and any « € [1, A]¢,

1
4(24)24 log2 (5, + 1)

1
(log2) &

< p (B (o, 01)) < (5.43)

Step 2. The second step consists of finding a lower bound for p (Eg,c (fek, cpck)) for k large
enough depending on a fixed parameter € € (0, 1).
Let &k > 1 : it should be clear that

12 (Egk (.fcka ‘Pck)) = Z 12 (Egk (.fcka rok) N fc_kl ({OL}))

ac[l,A]d

= Z 1 (ES (o, 006) N F7! ({})),

ac(1,A]4

whence, using the T invariance of the measure y and Lemma 5.3.10,

H (E::ik (.fckv ‘Pck)) = Z o (E(()i (a, ‘Pck) N7~ (f;lgl ({a}))>

ac[1,A]d
= > n(E(apw) (5! (ad) (140 (6VF7)).
ac[1,A]d

Let € € (0,1). Choose ko > 1 large enough so that for all k& > ko, (1 +0 (Gvck_d)) >1—e
It then follows from (5.43) that

1—¢ _
b (B (Fots o)) 2 4(24)%? log2 (¢ex + 1) ae%:Aﬂd (fa ({e)
1—c¢

T 4(24)% log2 (per + 1) (5.44)

Step 3. The third step consists of finding an upper bound for (Egk (feks Pek) N Egl (fel, (pcl))
for k and [ large enough depending on a fixed parameter € € (0, 1).
Let [ > k > 1 : it should be clear that

1 (Ede (Fer oer) N EG (for, #et))
= S w (B (Ferer) N ESG (fr0a) 0 F5 (o)) 0 £ ({az)))

aq,02€[1,A]¢

= S p(B (ax, ) NES (a2,00) N FL (o) 0 £ ({az)))
aq,a2€[1,A]¢

whence, using the T invariance of the measure p and Lemma 5.3.10,

1 (B (Fers k) NVES (Fer,pe1))
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= Z Jz (ES’ (a1, pex) N T~ (Egl (a2, 00) N o {aa}) N ({az})))

ag,az2€[1,A]4

(1 +0 (am)) x

S n(E (n,00)) 1 (B (a2, 00) N ! {an}) N ot ({az))

ay,a2€[1,A]4
- (1 +0 (am)) X

S u(E (a, ) 1 (ES (a2, 00) VT (£ {ar}) N £ ({a2})))

aq,o2€[1,A]4

(1+0(0VF1)) - (1+0 (V7)) x

Yo n(E (e pa)) 1 (Ef (@2 pa)) 1 (fz! Haad) N fyt {ez)))

ay,a2€[1,A]¢

Given € € (0,1), choose kg > 1 large enough so that for all k > ko, (1 +0 (9Vck_d)) <l+e.
It then follows from (5.43) that, for all I > k > ko,

d d (1+ 6)2. 1 1 .
H (Eck (feksper) N EG (fea, @cz)) < 7(1og 2)2 fck%l QLQZF[LAW Jz (fck ({aa}) N £ ({0‘2}))

(1+¢)?
(log 2)2 PckPel

(5.45)

Step 4. Let € € (0,1). Choose ky > 1 large enough so that the conclusions of steps 2 and
3 hold for all I > k > kg. By assumption on the integer ¢ > d + 1 in Lemma 5.3.7 and
from (5.44), the series 3~ p (E%, (fer, por)) diverges. Therefore, Lemma 5.3.11 applies and,
on using (5.44) and (5.45) and on noticing that limsupy_, o B4 (fek, k) C S%(F, ), one gets

. 2
I L (S (2 + 1)
I ,©)) > limsup -
i—00 4(24)% log2(1+¢€) ) 3y <pi<i(Perper)
( 1 e) 2
Z 2
) (seap)
The result then follows from (5.42) on letting € tend to 0. Q.E.D.

5.3.3.2 Completion of the proof of Corollary 5.1.8

The completion of the proof of Corollary 5.1.8 requires the introduction of a final two lemmata.

The first one is well-known and the second one is elementary.
Lemma 5.3.12. Let [ > 2 and q > 0 be integers. Consider the map

T :2 (moda) — lz+ > (moda).

I
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Let A C [0,a) be such that T(A) C A.
Then A(A) € {0,a}.

Proof. See, e.g., [183, Lemma 7]. Q.E.D.

Lemma 5.3.13. Let o, 8 € Z/VZ.
Then, there exist i1(«, ) and is(a, §) in Z/bZ such that, defining

u_1 =0, ug=7p, u=i(o,fuo+u_1 and wup=ix(a,)us + uo,

one has ug = 0 in Z/bZ.
Proof. All equations in this proof must be read in Z/bZ.

If &« = 0 (resp. S = 0), the choices i1(0,3) = 1 and (0, ) = —1 (resp. i1(a,0) = iz(a,0) =
0) independently of 8 € Z/bZ (resp. of a € Z/bZ) are easily seen to satisfy the conclusion of

the lemma.
Assume therefore that « # 0 and 8 # 0. Viewing a and S as integers in the interval [0, b—1],
one can then write u; = ged(a, B)vg for k = —1,...,2, where the finite sequence (”k)qgkgzv

well-defined in Z/ ged(a, 8,b)Z, satisfies in this ring a recurrence relation similar to that of
(Uk)_1<p<o in Z/bZ. Even if it means proving the result for the lift to Z/bZ of the sequence
(Uk)q;k;z which satisfies the conditions v_1 = «/ ged(«, 8) (mod b) and vy = 8/ ged(a, 5)
(mod 67), it may be assumed without loss of generality that ged(a, 8) = 1.

From Dirichlet’s theorem on arithmetic progressions, the sequence of integers (a +if3),+
contains infinitely many primes. Therefore, there exists i € Z/bZ such that « +if is invertible
in Z/bZ. Setting i1(a, ) =i and is(a, ) = —upu; " yields the result. Q.E.D.

Completion of the proof of Corollary 5.1.8. It is well-known that, for almost all £ € [0, 1]\Q,

I € = .
Jim Vi (&) = exp <12 log 2)

This follows for instance from Birkhoff’s pointwise ergodic theorem applied to the ergodic

system (T, b 3[0,1]) introduced in the preceding subsection — see [87, Corollary 3.8] for details.
In particular, there exist two positive constants B and B’ such that, for almost all £ €

[0,1]\Q, there exists an integer kg depending on B, B’ and £ such that, for all k > ko,

exp (B'k) < g1 (§) < exp (Bk).

~ -1
Set 7 = (8(ab)? max{4, \Il(l)’l}) , which corresponds to the inverse of the constant given
in (5.9) (with M = 1) for natural choices of the parameters x,n and - under the assumption
of the monotonicity of 0. Then, by virtue of Theorem 5.1.6 and Remark 5.3.6, one gets on the

one hand that, almost surely,

{g € [0,1\Q : ko (B,€) >0, Yk > ko (B,€), ay (€) < 7F (eB/k>} CUD).  (5.46)
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On the other, from (5.9), it should be clear that, almost surely,

o0

ﬂ {f €[0,1\Q : ax (£) > MU (eBk) and blgg—1 (§) i.o.}
ﬁ 0,1\U (cT)) = [0,1]\V (¥), (5.47)

where V (¥) has been defined in (5.41).

_ -1 _
Notice also that for any C' > 0, the two series >, (\I/ (eCQ)> and 37554 (Q*¥(Q)) !

converge (resp. diverge) simultaneously. This follows from the change of variable y = ¢ in

under the assumption of the monotonicity of 0.

the corresponding integral T (07

Assume first that the series Y5, (Q*¥(Q)) ~! converges. It then follows from Lemma 5.3.7
and Remark 5.3.9 that, for almost all £ € [0, 1]\Q, there exist only finitely many indices k > 0
such that ag (€) > 70 (eB/k>. Therefore, the set in the left-hand side of (5.46) has full measure.
The same holds true for any of its translates by an integer k € [0,a — 1] by the invariance of
the Lebesgue measure and by elementary properties of the continued fraction expansion of an

irrational. This completes the proof in this case.

Assume now that the series » o, (622\11(62))_1 diverges. From Lemma 5.3.13 and formu-
lae (5.19), for any pair (o, 3) € [1,b]? and any integer k > 4 , there exists (ag_g,a5_1) =
(i1 (o, B) ,ia (o, ) € [1,b]? such that, if gp_4 = o (mod b) and qx_3 = B (mod b), then
gk—1 = 0 (mod b). Apply then Lemma 5.3.7 with A =0,d =2, ¢=3, p = (\I' (eBk))
and, for k > 4,

k>0

fr 1€€[0,1\Q = (i1 (o, 8) iz (@, 8)) € [1,0]* if (qr—1(€) a3 (§) = (@, f) (mod b).

For such a choice of ¢ and of f := (fi),~,, consider the sequence of sets (82 (f, M@))M>1 as
defined in Lemma 5.3.7. It should be clear that this is a sequence decreasing for inclusion and

that, for any M > 1,

S%(f,My) C {5 €[0,1\Q : ay (&) > MU (eP*) and blge_1 (€) i.o.}. (5.48)

Furthermore, from the Monotone Convergence Theorem and Lemma 5.3.7,

o0 M
A ( ns (f,Mcp)> = lim ) <MQ - <f,M'so>> =l A(S*(£,Mp)) > o2
Combining this last inequality with (5.47) and (5.48) shows that the complement of the set
V () has strictly positive measure. Now, it should be clear from its definition in (5.41) that
the set V (¥) is invariant under the map  (mod a) — tz (mod a), where ¢t > a is any integer
congruent to 1 modulo a. From Lemma 5.3.12, this implies that the complement of V (¥) in
[0, a] has full measure, that is, that



This completes the proof of Corollary 5.1.8. Q.E.D.

5.4 Some applications

Some of the applications of the theory developed in this chapter are mentioned in this section.

A Dirichlet type result can always be used to obtain bounds for certain types of exponential
sums. In this respect, Theorem 5.1.6 may help to improve or specify some exponential sums
when the numerators and the denominators of the rational approximants are restricted to
prescribed arithmetic progressions — see, e.g., [93] or [186, p.172]. On the other hand, Walfisz
proved in [195] a very particular case of the Khintchine type result stated in Theorem 5.1.3 in

order to study the behaviour of the elliptic function

400 )
Hz) = Z 2"

n=—oo

near its circle of convergence : indeed, he established that, for almost all a € R,

2ima _ 4 1 1
19(7’6 )TMQ<\/1_Tlog<1_T>>.

This complements a result of Hardy and Littlewood who had previously proved in [106] that,

if a is badly approximable, then the very accurate estimates

21T _ 4 1 21T _ 4 1
19(7’6 )T_>—10< 1—7") and 19(7“6 )T_;Q< 1_T>

hold.

Two specific applications of Theorem 5.1.1 and Corollary 5.1.8 will now be developed. The
first one is mainly due to S. Hartman who was the first to notice in [114] that a result such
as Theorem 5.1.1 enables one to determine the value of liminf, , (sinn)”. This can be

generalized thanks to the inhomogeneous version of Theorem 5.1.1 mentioned in Remark 5.2.1.

Proposition 5.4.1. Let £ be an irrational which is not a rational multiple of w. Let also o € R.
Then,

liminf (sin(né + «))" = lim inf (cos(né + a))" = —1
n—oo n—00

and
lim sup (sin(n€ + )" = limsup (cos(né + a))" = 1.
n— oo n—00
Proof. 1t will be proved that liminf,,_, (sin(n€ + a))” = —1. All the other equations can be
established in a similar fashion.
From Remark 5.2.1, there exist two sequences of integers (c,),,~; and (d,),~; with d,, > 1

and lim,, .., d,, = oo such that, for all n > 1,

2
< — 5.49
< (5.9




d, =3 (mod 4), (5.50)

and

cn =1 (mod 2). (5.51)
Therefore, for all n > 1,
U o 1 1
g5 =0(a) & 0(a)

With the help of a Taylor expansion, this implies that

w 1 1
. — . - i = —1 Gy
sin(c,& + o) = sin <d" 2 +0 (%)) (5.50) O (0121) ,

1 s,
(sin(ca + )™ = (‘“"(» ot
Cp, n— o0

whence

Q.E.D.

The second application is of a geometrical nature and exploits the link between approxi-
mation by rationals with numerators and denominators in given arithmetic progressions and
pseudo-lattices in dimension 2. More precisely, a natural analogue of Pdlya’s orchard problem

is now discussed. The latter is formulated in [161, Problem 239] in this form :

Problem 5.4.2 (Pélya’s orchard problem). “How thick must be the trunks of the trees in a

reqularly spaced circular forest grow if they are to block completely the view from the center?”

Assume that the forest (or the orchard) is situated in a disk of integer radius N > ab and
that each point of the lattice bZ x aZ different from the origin and lying in this disk is the
center of a tree of radius r > 0 (here, a,b > 1). Minkowski’s Convex Body Theorem can then
be used to solve the visibility problem above and to obtain that the choice of = ab/N blocks
the view from the center (see, e.g., [146, Lemma 3]). Allen in [3] computed the infimum of
all radii of trees preventing an observer situated at the origin from seeing a point outside the
forest and Kruskal generalized this result to more general configurations of trees (see [146]).

In what follows, the horizon will be said to be visible from the origin in the direction given by
a line A passing through the origin if, given a forest of a prescribed type lying in the half-plane
{z > 0}, the line A does not intersect any of the trees in the forest.

For the forests under consideration, the latter will be planted in a subset of A N {z > 0},
where A is the pseudo-lattice A = (bZ + s) x (aZ + r), with a,b,r and s satisfying (5.2) and
r#0ors#0.

The connection between Diophantine approximation and the problem of visibility is then
given by this simple fact : an inequality of the type |(bn + s)€ — (am + 7)| < ¢, where ¢ > 0 is
real, ¢ is irrational and (m,n) € Z2, precisely means that the vertical segment joining the point

(bn+s,am+7r) € A to the line A : y = x has a length less than c. Therefore, the intersection
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Figure 5.1: Geometric interpretation of
Theorem 5.1.1 in the case of the pseudo—
lattice A = (2Z + 1)2. Each tree centered
at (2n + 1,2m + 1) has radius r(2n + 1) =
1/12n +1].

=

Figure 5.2: Geometric interpretation of
Corollary 5.1.8 in the case of the pseudo—
lattice A = (2Z+1)2. The orchard has depth
@ and all the trees have the same radius

r(Q) > 0.

between A and the closed ball centered at (bn + s, am + r) with radius ¢ is non—empty : if the
latter ball represents a tree in a forest, the horizon is not visible in the direction given by A.
For the sake of simplicity, the results will be stated from a qualitative point of view :

although possible, none of the constants mentioned below will be made effective.

Geometrical interpretation of Theorem 5.1.1. The forest is defined this way : a tree of
radius (ab)/(4(bn + s)) is planted at each point (bn + s,am +r) € AN {x > 0}. The observer
is situated at the origin in a glade of any shape but with bounded diameter (cf. Figure 5.1).
From Theorem 5.1.1, for any line of sight with irrational slope, the observer will never see
the horizon, no matter how big the glade is. From Remark 5.1.2, it is however possible to see the
horizon along a direction given by a line with rational slope if, for instance, the glade contains
a disk centered at the origin with sufficiently large radius. On the other hand, if the constant
ab/4 appearing in Theorem 5.1.1 was to be optimal uniformly in £ € R\Q (see Conjecture 5.5.1
in section 5.5 below), this would imply that there exist angles of sight with irrational slope if
the constant ab/4 were to be replaced by another one small enough in the value of the radii of

the trees (again, provided that the glade at the origin is big enough).

Geometrical interpretation of Corollary 5.1.8. Given § > 0 and @Q > 1, the forest —

which will more conveniently be referred to as an orchard — is defined this way (see also
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Figure 5.2) : a tree of radius r(Q) > 0 is planted at each element of the set AN L, where
L= {(x,y)€R2 :0<2<Q and —Hajgyg@x}.

From Corollary 5.1.8, if the radius of the trees is chosen in such a way that r(Q) = log Q/Q,
then, for almost all £ € (—0,0), there exist arbitrarily large values of @ such that the horizon
is visible in the direction y = £z. On the other hand, if 7(Q) = (log Q)**¢/Q for some € > 0,
then, provided that the depth @ of the orchard is large enough (depending on ¢), the horizon

is never visible in the direction y = {x for almost all £ € (—6,0).

5.5 Notes for the chapter

e A natural question related to Theorem 5.1.1 is whether the constant (ab)/4 appearing
on the right—hand side of (5.5) is optimal. This has been proved by Eggan in [86, The-
orem 3.2] (following ideas due to Cassels — see the proof of [57, Theorem II B p.49]) in
the case when the parity of the numerators and the denominators of the rational appro-
ximants are prescribed in a non—trivial way (that is, when a = b =2 and r # 0 or s # 0).

It is therefore tempting to set the following conjecture :

Conjecture 5.5.1. If r # 0 or s # 0, the constant (ab)/4 appearing on the right-hand
side of (5.5) cannot be improved uniformly in & € R\Q.

e A question related to Theorem 5.1.6 is the study of the size of the set of well-
approximable numbers admitting a Dirichlet type approximation in the context of

(a,b,r, s)—approximation. In this respect, the following conjecture seems of relevance.

Conjecture 5.5.2. The set of real numbers which are not in Bad and which admit a

uniform (a,b,r, s)—approzimation with exponent 1 has full Hausdorff dimension.

This conjecture is trivially true if » = s = 0 from the discussion held in the introduction.
On the other hand, the construction of a Cantor set to prove the conjecture seems easier
in the case when ged(a,b) =1 : this is because, if one can ensure that the denominators
qr (resp. the numerators py) of the convergents of an irrational £ are all coprime to b
(resp. to a), then conditions (5.6) always hold true. However, if gcd(a,b) > 1, the third
condition in (5.6) turns out to be more delicate to deal with.

e The geometrical interpretations of Theorem 5.1.1 and Corollary 5.1.8 fall within the
category of obstruction (or view) problems about which the literature is abundant —
see [3, 146] and the references therein. They are made simpler by the fact that the
pseudo-lattices under consideration are obtained from standard lattices by rational shifts
(that is, the vectors of translation have rational coordinates). As pointed out by Professor
Barak Weiss, a much more general formulation of the problem has been given by C. Bishop

in [46] and reads as follows :

Problem 5.5.3. Suppose we stand in a forest with tree trunks of radius € > 0 and no

two trees centered closer than unit distance apart. Can the trees be arranged so that we
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can never see further than some distance L < 0o, no matter where we stand and what

direction we look in? What is the size of L in terms of €?

It is not difficult to see that in a forest such as the one described above, the estimate
L = o(e') can never hold. In the other direction, Y. Peres proved in [46] that it
is possible to construct a forest with L = O (6_4). In ongoing work, we are able to
prove that one can obtain L = O (¢~3%/11) unconditionally (note that 32/11 = 2.90) and
L=0 (6*2”) for any § > 0 under the exponent pair conjecture. The methods involved
are from analytic number theory as they rely on Fourier analysis and very sharp estimates
for exponential sums. A natural extension of this work is to construct “forests” in higher

dimensions with minimal visibility.

It should also be noted that the ideas in this problem of Diophantine geometry are related
to the Danzer problem, which asks for the existence of a subset S C R™ (n > 1) with
finite density which has the property that every closed convex body of volume one in R™
contains a point of S. This question remains open — see [181] and the references therein

for further details.
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