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Abstract

Given a sequence of bounded random variables that satisfies a well known

mixing condition, it is shown that empirical estimates of the rate-function for

the partial sums process satisfies the large deviation principle in the space of

convex functions equipped with the Attouch-Wets topology. As an application,

a large deviation principle for estimating the exponent in the tail of the queue-

length distribution at a single server queue with infinite waiting space is proved.

1. Introduction

Let {Xn, n ≥ 1} be a stationary process whose random variables take values in a

bounded subset of R. Define the partial sums process {Sn, n ≥ 1} by Sn := X1 + · · ·+

Xn and assume {Sn/n, n ≥ 1} satisfies the Large Deviation Principle (LDP) (on the

scale 1/n) with rate-function I that is the Legendre-Fenchel transform of the scaled

cumulant generating function (sCGF)

I(x) = sup
θ∈R

(θx − λ(θ)), where λ(θ) = lim
n→∞

1
n

log E[exp(θSn)]. (1)

If we are given an observation X1, X2, . . ., but the statistics of the process {Xn, n ≥ 1}

are unknown, how would we estimate the rate-function I? One way is to form an

estimate of λ and take its Legendre-Fenchel transform.
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A scheme for estimating λ was proposed by Amir Dembo in a private communication

to Neil O’Connell. The scheme is described by Duffield et al. [10] who used it for a

problem in ATM networks where, when combined with theorems of Glynn and Whitt

[15], it provided an online measurement-based mechanism for estimating the tail of

queue-length distributions. For the success of this approach see, for example, Crosby

et al. [6] and Lewis et al. [18].

Their scheme is this: select a block-length b sufficiently large that you believe the

blocked sequence {Yn, n ≥ 1}, where Yn := X(n−1)b+1 + · · · + Xnb, can be treated as

i.i.d; then use the empirical estimator:

λn(θ) =
1
b

log
1
n

n∑

i=1

exp(θYi). (2)

After estimating λ, we propose taking its Legendre-Fenchel transform to form an

estimate In of I. We will call both λn and In empirical estimates. The purpose of

this note is to consider the large deviations of estimating λ and I when the empirical

laws of {Yn, n ≥ 1} satisfy the LDP. A sufficient condition for our theorems to hold is

{Xn, n ≥ 1} satisfy the mixing condition (S) of Bryc and Dembo [5].

In section 2 the LDP is proved for empirical estimators. As the random variables

{Yn, n ≥ 1} are assumed to be bounded, for sCGF estimates the topology of uniform

convergence on compact subsets is natural, but it is not appropriate when one considers

estimates of a rate-function. For example, it is reasonable to desire that the rate-

functions In(x) := n|x| converge to I(x) which is 0 at x = 0 and +∞ otherwise. Clearly

this is not the case in the topology of uniform convergence on bounded subsets, but it

is in Attouch-Wets topology.

For rate-functions we consider the space of lower semi-continuous convex functions

equipped with the Attouch-Wets topology [1, 2], denoted τAW. A sequence {fn, n ≥ 1}

converges to f in τAW, τAW − lim fn = f , if given any bounded set A ∈ R×R and any

ε > 0, there exists Nε such that

sup
x∈A

|d(x, epi fn) − d(x, epi f)| < ε for all n > Nε,

where epi f = {(a, b) : b ≥ f(a)}, the epigraph of f , and d is the Euclidean distance.

A good reference for τAW is Beer [3]. Another reason for choosing τAW is that the
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Legendre-Fenchel transform is continuous and thus the LDP for {In, n ≥ 1} can be

deduced by contraction from the LDP for {λn, n ≥ 1}.

In section 3, as an application, the original motivation for the introduction of the

estimator λn is considered. We prove the LDP for estimating the exponent in the tail

of the queue-length distribution at a single server queue with infinite waiting space. In

the simplest model, for Bernoulli random variables, it gives a serious warning: on the

scale of large deviations, if one over-estimates the exponent, one is likely to extremely

over-estimate it.

2. The large deviations of estimating rate-functions

Let Σ be a closed, bounded subset of R . Let M1(Σ) denote the set of probability

measures on Σ equipped with the weak topology induced by Cb(Σ), the class of bounded

uniformly continuous functions from Σ to R. With this topology, M1(Σ) is Polish.

Let Conv(R) denote the set of R-valued lower semi-continuous convex functions over

R equipped with the topology of uniform convergence on bounded subsets and let

Conv(Σ) denote the set of R ∪ {+∞}-valued lower semi-continuous convex functions

over the smallest closed interval containing Σ equipped with τAW.

Given an element ν of M1(Σ) we define its sCGF by

λν(θ) :=
1
b

log E[exp(θx)]ν :=
1
b

log
∫

Σ
eθxdν, for θ ∈ R,

and its rate-function by

Iν(x) := sup
θ∈R

(θx − λν(θ)).

The following assumption is in force from here on.

Assumption 1. For fixed b the blocked random variables {Yn, n ≥ 1} take values in

Σ and the empirical laws {Ln, n ≥ 1} defined by

Ln :=
1
n

n∑

i=1

δYi for n ≥ 1

satisfy the LDP in M1(Σ) with good rate-function H.

For an empirical law Ln define the empirical estimates λn := λLn and In := ILn . Note

that λn thus defined agrees with estimator in equation (2).
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Paraphrasing the following theorem: the large deviations of observing an empirical

sCGF or rate-function is just the large deviations of observing the empirical law that

maps to them.

Theorem 1. (Empirical estimator LDP.) The empirical estimators {λn, n ≥ 1} satisfy

the LDP in Conv(R) with good rate-function

J(φ) =





H(ν) if φ = λν , where ν ∈ M1(Σ),

+∞ otherwise.

The empirical estimators {In, n ≥ 1} satisfy the LDP in Conv(Σ) with good rate-

function

K(φ) =





H(ν) if φ = Iν , where ν ∈ M1(Σ),

+∞ otherwise.

Proof. The first part follows applying the contraction principle (see Theorem 4.2.1

of [7]) and by the uniqueness of moment generating functions (see, for example, [4]).

Define the function f : M1(Σ) to Conv(R) by f(ν) := λν . Straightforward analysis

shows that f is continuous. Let νn → ν in M1(Σ). For fixed θ ∈ R the function

x (→ exp(θx) is an element of Cb(Σ). Thus νn(exp(θx)) → ν(exp(θx)) and as log

is continuous f(νn)(θ) → f(ν)(θ). But f(νn)(θ) is convex in θ so that pointwise

convergence implies uniform convergence on bounded subsets.

As f(ν)(θ) is real-valued, Lemma 7.1.2 of [3] ensures that f(νn) → f(ν) in Conv(R)

equipped with τAW. Thus the second part follows applying the contraction principle

as the Legendre-Fenchel transform from Conv(R) to Conv(Σ) is continuous (see Beer

[3]) and by the uniqueness of the Legendre-Fenchel transform.

Remark 1. A sufficient condition for Theorem 1 is that {Xn, n ≥ 1} satisfies the

mixing condition (S) of Bryc and Dembo [5]. This condition ensures that {Sn/n, n ≥ 1}

satisfies the LDP with good rate-function given in equation (1). Moreover, by inclusion

of σ-algebras, {Yn, n ≥ 1} also satisfies (S) so that Theorem 1 of [5] proves the LDP

for {Ln, n ≥ 1} in the τ topology. As the τ topology is finer than the weak topology

and the proof of Theorem 1 is by contraction, condition (S) suffices for it to hold.

If {Yn, n ≥ 1} is genuinely i.i.d with common law µ, then by Sanov’s theorem H(ν)

is the relative entropy H(ν|µ). As the relative entropy H(ν|µ) has unique zero at



Estimating rate-functions 5

ν = µ, Theorems 2.1 and 2.2 of Lewis et al. [17] ensure that the laws of λn converge

weakly to the Dirac measure at λµ = λ and the laws of In converge weakly to the Dirac

measure at Iµ = I.

If {Yn, n ≥ 1} is a Markov chain that satisfies the uniformity condition (U) of

Deuschel and Stroock [8], then by Theorem 4.1.43 and Lemma 4.1.45 of [8] the good

rate-function H has unique zero at the stationary distribution µ. Thus the laws of λn

converge weakly to the Dirac measure at λµ. This is obviously an issue if λµ and λ do

not coincide, as can be seen in the following example: let {Xn, n ≥ 1} be a Markov

chain taking values {−1, +1} with transition matrix

π =



 1 − α α

β 1 − β



 , where α,β ∈ (0, 1). (3)

Then λ can be calculated using techniques described in section 3.1 of Dembo and

Zeitouni [7]:

λ(θ) = log

(
(1 − α)e−θ + (1 − β)eθ +

√
4αβ + ((1 − α)e−θ − (1 − β)eθ)2)

2

)
. (4)

Choosing b = 1, {Ln, n ≥ 1} satisfies the LDP and the laws of λn converge weakly to

the Dirac measure at the sCGF of the stationary distribution:

log
(

β

α + β
e−θ +

α

α + β
eθ

)
. (5)

Note that equations (4) and (5) only agree if α + β = 1, in which case the Markov

chain is in fact Bernoulli.

For this Markov chain the rate-function H can be determined by simplifying the

expression given in equation (4.1.38) of [8]. It is finite if ν = (1− c)δ−1 + cδ1, in which

case

H(ν) =





−(1 − c) log(1 − α + αK) − c log(1 − β + β/K) if c ∈ [0, 1),

− log(1 − β) if c = 1,

where

K =
−αβ(1 − 2c) +

√
(αβ(1 − 2c))2 + 4αβc(1 − α)(1 − β)(1 − c)

2α(1 − β)(1 − c)
.

Thus J(φ) is finite and equals H(ν) if φ = λν where λν(θ) = log((1 − c) exp(−θ) +

c exp(θ)) and K(φ) is finite and equals H(ν) if φ = Iν where

Iν(x) =
(1 − x)

2
log

(
1 − x

2(1 − c)

)
+

x + 1
2

log
(

x + 1
2c

)
.
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3. An application in queueing theory

Let Xn denote the difference, at time n, between the amount of work that arrives

and the amount of work that can be processed at a discrete time single server queue

with infinite buffer. Denote by Qn the amount of work left to be processed by the server

(the queue-length) immediately after time n. The queue-length evolves according to

Lindley’s recursion:

Qn+1 = max{Qn + Xn+1, 0}, (6)

where the maximum is necessary as the queue-length cannot be negative. Assuming

{Xn, n ≥ 1} to be stationary, in famous work of Loynes [19] the existence of a stationary

solution to the recursion (6) is proved. The distribution of each individual random

variable in the solution is given by Q := max{0, supt≥1

∑t
i=1 Xi}. Alternatively Q can

be thought of as the supremum of a random walk starting at 0 with increments process

{Xn, n ≥ 1}. Under our assumptions on {Xn, n ≥ 1} the distribution of Q has has

logarithmic asymptotics (for example, see [15, 14, 11]):

lim
q→∞

1
q

log P[Q > q] = −δ,

where δ is determined by the large deviations rate-function

δ = sup{θ : λ(θ) ≤ 0} = inf
x>0

xI(1/x).

The great novelty of the approach of Duffield et al. [10] was to employ the following

estimator for δ based on λ estimates: δn := sup{θ : λn(θ) ≤ 0}. In [10] a central

limit theorem for {δn, n ≥ 1} is proved. Our aim is to prove the LDP. We do so by

contraction.

With a slightly more involved argument that is similar in spirit, the following Lemma

is also true when Conv(R) is equipped with τAW.

Lemma 1. The function g : Conv(R) → [0,∞) ∪ {+∞} defined by

g(φ) := sup{t ≥ 0 : φ(t) ≤ 0},

where the supremum over the empty set is defined to be zero, is continuous at all φ

such that φ(0) = 0 and there does not exist χ > 0 such that φ(x) = 0 for all x ∈ [0,χ].
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Proof. Let φn → φ in Conv(R). There are three cases to consider: g(φ) = +∞;

0 < g(φ) < ∞; and g(φ) = 0.

Assuming g(φ) = +∞, φ(t) < 0 for all t > 0. Given α > 0, let 0 < ε < −φ(α),

then as φn → φ uniformly on [0,α], there exists Nε such that for all n > Nε, φn(α) <

φ(α) + ε < 0. Thus given α > 0 there exists Nε such that g(φn) > α for all n > Nε.

Assume g(φ) ∈ (0,∞), let g(φ) > ε > 0 and let γ < min(φ(g(φ) + ε),−φ(g(φ) − ε)).

As φn → φ uniformly on [0, g(φ) + ε], there exists Nγ such that, for all n > Nγ ,

φn(g(φ) − ε) < φ(g(φ) − ε) + γ < 0 and φn(g(φ) + ε) > φ(g(φ) + ε) − γ > 0. Thus

g(φn) ∈ (g(φ) − ε, g(φ) + ε)) for all n > Nγ .

Assume g(φ) = 0. Given ε > 0, let φ(2ε) − φ(ε) > 2γ > 0. Then there exists Nγ

such that |φn(t) − φ(t)| < γ for all t ∈ [0, 2ε]. Thus φn(2ε) > φn(ε) > 0 for all n > Nγ

and hence g(φn) < ε.

Remark 2. The function g has a discontinuity at φ(t) = 0 for all t. This is an effect

due to the estimation scheme rather than an issue with our choice of topology. For

example, if λn(θ) = 0 for all θ, then Yk = 0 for k = 1, . . . , n, the queue appears perfectly

balanced and thus δn = +∞. However in the nearby situation where Yk = ε > 0 for

all k, the queue would appear overloaded with δn = 0.

In practice this suggests care must be taken with sCGF estimates around this

discontinuity. For the theory, we introduce an additional assumption to avoid this

discontinuity and deduce the LDP: a small open ball around 0 is not contained in Σ.

Theorem 2. (Decay-rate LDP.) If (−ε, ε) /∈ Σ for some ε > 0, the sequence {δn, n ≥

1} satisfies the LDP in [0,∞] with good rate-function:

N(x) = inf{H(ν) : sup{θ : λν(θ) ≤ 0} = x}.

Proof. By Puhalskii’s extension of the contraction principle (Theorem 3.1.14 of [20]),

it suffices to have continuity at φ such that J(φ) < ∞. As (−ε, ε) /∈ Σ, for ν ∈ M1(Σ),

J(λν) = +∞ if there exists χ > 0 such that λν(θ) = 0 for θ ∈ [0,χ]. Thus Lemma 1

ensures g is sufficiently continuous to invoke the extended contraction principle from

the LDP for {λn, n ≥ 1}.

In the case where {Xn, n ≥ 1} is a Bernoulli sequence taking values in {−1, +1}

with P[Xn = 1] = p ∈ (0, 1), the rate-function N in Theorem 2 can be calculated
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explicitly. For ν = (1 − c)δ−1 + cδ+1,

H(c) := H(ν|µ) = c log
c

p
+ (1 − c) log

1 − c

1 − p

and the rate-function for {δn, n ≥ 1} is

N(x) =






H (1/(1 + exp(x))) if x > 0,

H(1/2) if x = 0 and p ≤ 1/2,

0 if x = 0 and p > 1/2.

(7)

This gives a serious warning: although in [10] it was shown that {δn, n ≥ 1} obeys

a central limit theorem, equation (7) says that when there is an over-estimate of δ,

it is likely to be a large over-estimate. To see this, observe Figure 1 where the rate-

function for estimating δ for Bernoulli random variables with p = 1/4 is plotted.

Over-estimation of δ is a serious issue, as it corresponds to under-estimation of the

likelihood of long queues.

For correlated processes {Xn, n ≥ 1} the block-length b also causes problems.

Consider a Markov chain on {−1, +1} with transition matrix given in equation (3).

With α < β, δ = log((1 − α)/(1 − β)), but with block-length b = 1 the laws of

δn converge weakly to the Dirac measure at log(β/α). Matching with intuition, if

α + β < 1, the chain is positively correlated and the weak-law will be for an over-

estimate of δ; if α + β > 1, the chain is negatively correlated and the weak-law will be

for an under-estimate for δ.

4. Related work

In other analysis utilizing this estimator the existence of b such that {Yn, n ≥ 1} is

genuinely i.i.d. is usually assumed. See Györfi et al. [16] for distribution-free confidence

intervals for measurement of λ(θ) for fixed θ. For a related question, in the Bayesian

context, see Ganesh et al. [12], and Ganesh and O’Connell [13] and references therein.

For a large deviations analysis of a connection admission control algorithm based on

estimating sCGFs see Duffield [9].
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Figure 1: The rate-function N(x) for estimating the exponent in the tail of the queue-length

distribution. The arrivals less potential service is a Bernoulli process taking values in {−1, +1}

with mean −1/2. The rate-function is zero at the real value δ = log(3).
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