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Abstract

The sexual Fus3 MAP kinase module of yeast is highly conserved in eukaryotes and transmits external signals from the
plasma membrane to the nucleus. We show here that the module of the filamentous fungus Aspergillus nidulans (An)
consists of the AnFus3 MAP kinase, the upstream kinases AnSte7 and AnSte11, and the AnSte50 adaptor. The fungal MAPK
module controls the coordination of fungal development and secondary metabolite production. It lacks the membrane
docking yeast Ste5 scaffold homolog; but, similar to yeast, the entire MAPK module’s proteins interact with each other at
the plasma membrane. AnFus3 is the only subunit with the potential to enter the nucleus from the nuclear envelope.
AnFus3 interacts with the conserved nuclear transcription factor AnSte12 to initiate sexual development and
phosphorylates VeA, which is a major regulatory protein required for sexual development and coordinated secondary
metabolite production. Our data suggest that not only Fus3, but even the entire MAPK module complex of four physically
interacting proteins, can migrate from plasma membrane to nuclear envelope.
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Introduction

Eukaryotic organisms communicate between cell surface and

nucleus to respond to environmental signals. The mitogen-

activated protein kinase (MAPK) module consisting of a cascade

of three protein kinases represents a highly conserved eukaryotic

signal transduction system present from yeast to man. MAP3K

phosphorylates a second kinase, MAP2K which itself phosphor-

ylates the MAPK. This final kinase phosphorylates nuclear target

proteins to activate appropriate gene expression [1,2].

The sexual pathway of the budding yeast Saccharomyces cerevisiae

represents a paradigm for signal transduction in eukaryotes [3–5].

This MAP kinase pathway responds to pheromones and induces

differentiation processes which trigger sexual mating of yeast [4,6].

The central complex of MAP3K Ste11, MAP2K Ste7 and MAPK

Fus3 is assembled on the scaffold protein Ste5 as a hub to keep

these kinases in a close proximity for enhanced relay of

phosphorylation and thereby controls the flow of information

[7]. Binding of pheromone to the transmembrane receptors Ste2

or Ste3, which are coupled to guanine nucleotide binding proteins

(G protein, G protein coupled receptor: GPCR), initiates signal

transduction. This induces the release of the Gbc subunit from the

trimeric Gabc protein. The Ste5 RING domain binds to activated

free Gbc complex and recruits the MAP kinase module Ste11-

Ste7-Fus3 to the membrane [8–10] in close distance to the p21

activated kinase (PAK) Ste20. Preactivated Ste20 is localized in the

membrane and initiates the kinase cascade system by phosphor-

ylating the MAP3K Ste11 [4].

Ste50 represents a second adaptor which binds to the Opy2

membrane anchor and provides membrane association of the

entire MAPK module. Ste50 mediated membrane localization is

required for Ste11 activation [11,12]. The information is

transmitted as phosphate signal from Ste11 via Ste7 to the MAPK

Fus3. According to the current model phosphorylated Fus3 is

released from the Ste5 scaffold complex and leaves the membrane

associated complex [13–15]. Phosphorylated Fus3 crosses the

cytoplasm and enters the nucleus where it phosphorylates target

transcription factors as Ste12. Ste12 is necessary to activate the

sexual pathway and also controls developmental processes [4,5].

Pheromone pathway genes have been studied in various fungi

and are not only involved in sexual reproduction but also in fungal

pathogenicity [16–21]. The Fus3 MAPK module is highly

conserved in filamentous fungi with the exception that homologs

for Ste5 are absent [22,23]. In the self-fertile model fungus

Aspergillus nidulans, the Ste11 MAP3K homolog SteC (AnSte11)

[24], the Fus3 MAPK homolog MpkB (AnFus3) [25], and the
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Ste12 homolog for the transcription factor SteA (AnSte12) [26] are

necessary for sexual fruiting body formation, suggesting that there

are similarities in the molecular function of the MAPK signal

transduction as in yeast. A. nidulans grows vegetatively as a

filament. When placed on a surface, after germination of the

spores at least 12 hours of growth is required to establish

developmental competence in response to external signals [27].

There are two developmental options: light supports the asexual

and inhibits the sexual developmental pathway (Figure 1A).

AnFus3 is not only required for sexual development but also for

the control of secondary metabolism which is a typical feature of

many filamentous fungi [28]. Sexual development of A. nidulans is

coordinated with the production of secondary metabolites,

including mycotoxins. This coordination requires velvet domain

proteins which are common for filamentous fungi but absent in

yeast [6]. The velvet heterodimers VeA-VelB and VosA-VelB

have different developmental functions. VeA-VelB heterodimer

promotes sexual development whereas VelB-VosA dimer inhibits

asexual differentiation. Association of the putative methyltransfer-

ase LaeA [29] with the VelB-VeA heterodimer, which makes the

VelB-VeA-LaeA trimeric complex, coordinates development and

secondary metabolism [6,30,31].

Comparison of the intracellular molecular mechanism of signal

transduction of Fus3 MAPK of yeast and A. nidulans revealed that

AnFus3 MAPK can reach the nuclear envelope in a complex with

other proteins of the MAPK module, including the adaptor

protein AnSte50. Only AnFus3 enters the nucleus and phosphor-

ylates VeA, which elucidates a novel link between MAPK and

velvet domain proteins that act as control elements at the interface

of fungal development and secondary metabolism.

Results

The A. nidulans Fus3 MAP kinase of the mating pathway
phosphorylates the velvet domain protein VeA, and VelB-
VeA complex formation is reduced in Anfus3 deletion

S. cerevisiae Fus3 interacts with transcription factor Ste12 that

activates the mating pathway. The A. nidulans MAP kinase AnFus3

[MpkB] also controls sexual development [25,28,32]. Tagged

AnFus3 recruited the transcription factor AnSte12 [SteA] by

tandem affinity purification (TAP) only when the fungus was

induced for sexual development but not during vegetative

filamentous growth or asexual development (Figure 1B, Table

S1). Endogenously expressed AnFus3::sGFP was functional (Figure

S1) and immunoprecipitation of the fusion protein was able to

enrich the SteA protein in a sexually induced culture (Table S1).

The AnFus3-SteA interaction was further verified by bimolecular

fluorescence complementation (BiFC) and was observed in fungal

nuclei (Figure 1C). This corroborates that the interaction between

kinase and transcription factor is conserved from yeast to

filamentous fungi.

Due to their similar roles in development and secondary

metabolism [28–30], we examined whether AnFus3 interacts with

the velvet domain proteins and LaeA. AnFus3 interacted in vivo in

a BiFC assay with LaeA and subsequently with VeA, but not with

VelB. In addition, AnFus3 interacted with VosA (Figure 1D).

VosA is part of the VosA-VelB heterodimer which represses

asexual development [31,33]. These results suggest that distinct

velvet domain proteins or LaeA may include targets of MAPK

phosporylation.

AnFus3 was immunoprecipitated from vegetatively grown

fungal cells as sGFP fusion protein (Figure 2A) to identify direct

substrates of AnFus3 in in vitro kinase assays. VeA expressed and

purified from E. coli was the only tested protein which could be

specifically phosphorylated by AnFus3, whereas bacterially pro-

duced VosA, LaeA or VelB were not phosphorylated. Further

phosphorylation experiments performed with phospho-specific

serine and threonine antibodies further supported that VeA was

phosphorylated by AnFus3 and treatment of phosphorylated

samples with lambda protein phosphatase (l-PP) resulted in loss of

phosphorylation signal (Figure 2B).

VeA bridges VelB and LaeA in the trimeric VelB-VeA-LaeA

complex. We addressed whether AnFus3 activity affects complex

formation. VeA protein levels (Figure 2C) were similar in wild type

and mpkB mutant strains. velB RNA was unchanged whereas laeA

transcripts were downregulated as previously reported (Figure

S2A) [28]. TAP purification of natively expressed VeA::cTAP

revealed that under conditions where sexual development was

normally promoted, only significantly reduced amounts of VelB

and LaeA proteins were enriched by tagged VeA in the absence of

MpkB (Figure 2D, Tables S2 and S3). The MAP kinase does not

affect VeA nuclear import, because the interaction of VeA with

the importin KapA was not significantly affected in mpkB mutant.

Consistently, nuclear import of the subunits of the trimeric VelB-

VeA-LaeA complex was not affected in a mkkB mutant lacking the

upstream MAP2K AnSte7 (Figure S2B). Lack of laeA normally

causes enhanced VeA and VelB expression as well as enhanced

complex formation [31]. This suggests that decreased VeA-VelB

association is not a result of the reduced levels of LaeA in mpkB

mutants.

These results suggest that AnFus3 phosphorylates VeA in vitro

and interacts with VeA in vivo. Furthermore, AnFus3 is required

for enhanced association of VeA with VelB which are components

of the VelB-VeA-LaeA velvet complex.

MAP2K AnSte7 is required for sexual development of A.
nidulans

MAPKKK (SteC) and MAPK (MpkB) are necessary for sexual

development in A. nidulans [24,25]. Yeast Fus3 receives the

phosphorylation signal from MAP2K Ste7. The corresponding

filamentous fungus homolog has not yet been described. The

ANID_03422 (mkkB) locus of A. nidulans encodes a protein, which is

Author Summary

Mitogen activated protein (MAP) kinase cascades are
conserved from yeast to man to transmit an external
signal to the nucleus and induce an appropriate cellular
response. The yeast Fus3 MAP kinase module represents a
textbook paradigm for signal transduction. The pathway is
activated by external sexual hormones triggering several
kinases that transmit the signal at the plasma membrane
to Fus3. Phosphorylated Fus3 is released from the
membrane-associated module, crosses the cytoplasm,
and enters the nucleus to activate transcription factors
for sexual development. We describe here the Fus3 MAPK
pathway of a filamentous fungus that controls sexual
development as well as secondary metabolism, which are
coordinated processes in filamentous fungi. Aspergillus
nidulans is able to release Fus3 as a complex from the
membrane. Complexes of Fus3 can include two additional
kinases and an adaptor protein, and these complexes can
migrate from the membrane to the nuclear envelope
where only A. nidulans Fus3 can enter the nucleus to
control nuclear regulators. Revealing specific functions of
cellular Aspergillus Fus3 complexes in signal transduction
to control fungal development and secondary metabolism
will be a fascinating future task.

Role of Pheromone Response Module in A. nidulans
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conserved in different Aspergilli (Figure S3) and has 25% identity

to yeast Ste7 [34]. AnSte7 [MkkB] is also related to N. crassa

MAP2K [35] and human MAP2K1 [36]. Overexpressing the

corresponding mkkB gene resulted in two fold increase in the

number of fruiting bodies and supported a role in sexual

development (Figure S4A–S4C). mkkB deletion mutants had a

slow growth phenotype and were blocked in early sexual

development, which resulted in nest-like structures containing

clumps of Hülle cells (yellow arrows, Figure 3A, 3B). Hülle cells

support sexual development as specialized nursing cells for the

growing fruiting body [31].

AnSte7 is required for hyphal fusion as one of the initial steps of

fruiting body formation. Hyphal fusion of wild type strains marked

with either synthetic cytoplasmic green fluorescent protein (sGFP)

or with nuclear monomeric red fluorescent protein (mRFP)

resulted in hyphae with green cytoplasm and red nuclei

(heterokaryon) (Figure 3C). In contrast, a mkkB deletion strain

was unable to fuse with the wild type strain. We found the same

hyphal fusion defect for the steCD strain as in the mkkB mutant

(Figure 3C, 3D). This further supports that AnSte11 and AnSte7

act in a common pathway.

The analysis of putative additional functions of AnSte7 in later

phases of sexual development required a by-pass of initial hyphal

fusions. Therefore, heterokaryons were artificially produced by

fusing protoplasts. An intact mkkB copy of the wild type strain

allowed the development of mature fruiting bodies (red arrows),

when wild type and mkkB mutant protoplasts were fused. In

contrast, two mkkB mutants forced to form heterokaryons were

impaired in fruiting body maturation and produced only early

structures of development (yellow arrow, Figure 3D). This suggests

several functions of MAP2K AnSte7 during sexual development

presumably in concert with AnFus3.

AnSte50-Ste11-Ste7-Fus3 form a physically interacting
module that is required for sexual development

We determined whether the A. nidulans kinases may replace

functions of its yeast counterparts. Plasmids containing Anste7

[mkkB] and Anfus3 [mpkB] genes expressed under yeast promoters

were transformed into ste7 and fus3 deletion strains. mkkB and mpkB

did not alleviate the defects in pheromone response of the yeast

mutants (Figure S4D). However, MpkB moderately suppressed the

defects in pheromone response of a fus3 kss1 double mutant,

showing that the MpkB is partially able to take over functions of

the MAP kinase pair Fus3/Kss1. This suggests a partial overlap of

the functions of the MAPK pathways of these two organisms.

The A. nidulans MAP kinase mating module was further

characterized by identifying interaction partners of AnSte7

[MkkB] by TAP purification from different developmental stages

(only vegetative is shown, Figure 4A, 4B, Figure S5, Tables S4,

S5). Tagged AnSte7 did not recruit AnFus3, but copurified

AnSte11 [SteC] and AnSte50 [SteD], a protein sharing homology

to S. cerevisiae Ste50.

Ste50 functions as an adaptor for membrane recruitment of

Ste11 in yeast [12]. Deletion of the corresponding steD in A.

nidulans caused a defect in fruiting body formation (Figure S1A).

Similar to the other MAPK mutants, steD mutant could not

produce heterokaryons in outcrossings (not shown). Thus, the

adaptor AnSte50 is as important for accurate fungal development

as the other components of the MAPK module. A. nidulans

AnSte50 was enriched by AnSte7::TAP in wild type, but not in the

steCD strain indicating that AnSte11 is required for the AnSte50-

Ste7 interaction (Figure 4A, 4B). These data suggest a physical

interaction of AnSte50 and two MAPK module components in a

AnSte50-Ste11-Ste7 complex.

Interaction partners of AnSte50 were identified to explore the

entire fungal MAPK mating module. A functional steD::ctap (Figure

S1A, S1B) recruited the MAP3K AnSte11 and the MAPK AnFus3

but not the MAP2K AnSte7 (Figure 4C, 4D and Table S6). This

further supports that AnSte50-Ste11-Ste7-Fus3 forms a module

similar to yeast Ste5-Ste50-Ste11-Ste7-Fus3 with the exception

that a counterpart for the yeast Ste5 scaffold is missing in A.

nidulans.

AnSte50-Ste11-Ste7-Fus3 represents an active MAP
kinase module required for sexual development and
secondary metabolite synthesis

We analysed whether AnSte11 and AnSte7 act upstream of

MAPK AnFus3. MAPK phosphorylation was monitored by a

phospho-specific antibody against the MAPK Thr182XTyr184

motif. Phosphorylated AnFus3 was permanently detectable in

vegetative wild type cultures (Figure 4E). In contrast, modified

AnFus3 was absent in mutants lacking AnSte11 or AnSte7,

whereas the absence of AnSte12 did not change levels of

phosphorylated AnFus3. In the absence of AnSte50, reduced

phosphorylation of AnFus3 indicates some residual activity of the

untethered AnSte11-Ste7 complex. This supports an active A.

nidulans MAPK module consisting of AnSte50-Ste11-Ste7-Fus3

which controls fungal sexual development.

The role of AnSte50-Ste11-Ste7-Fus3 for secondary metabolism

was examined. Impaired secondary metabolism had only been

described for the mpkB mutants [28]. The mycotoxin sterigmato-

cystin (ST) levels were drastically reduced in the sterile steC, steD,

mkkB, or mpkB mutants whereas ST levels in the sterile steAD
[AnSte12] were similar to wild type (Figure 4F–4G). Similarly, the

expression of the biosynthesis genes for ST (stcU) and terrequinone

(tdiA and tdiB), and the expression of laeA and the transcription

factor encoding aflR, both required for expression of secondary

metabolite genes, were distinctly reduced in each mutant of the

MAPK module (Figure 4H). These data corroborate that active

Figure 1. Identification of AnFus3 [MpkB] associated proteins and AnFus3 interactions with the velvet complex components. (A) Life
cycle of Aspergillus nidulans and developmental functions of AnSte12 [SteA], LaeA and velvet domain proteins. Germination of spores leads to tube-
like vegetative filaments (hyphae) which become competent for environmental signals after at least 12 hours of growth. Exposure of
developmentally competent hyphae to light (or aeration) leads to asexual development (conidiophores and asexual spores [conidia]) in 24 hours.
VosA-VelB inhibits asexual differentiation. Incubation in dark (96 hours) induces the sexual cycle with sexual fruiting bodies (cleistothecia) which are
nursed by globose Hülle cells. LaeA is required for Hülle cell formation. VelB-VeA supports sexual development together with AnSte12 [SteA]. The
VelB-VeA-LaeA trimeric complex coordinates development with secondary metabolism. Co; conidia, S; stalk, Cl; cleistothecium, Hc; Hülle cells. (B) A
silver stain treated 5–14% gradient SDS polyacrylamide gel of AnFus3 [MpkB]::cTAP from vegetatively, asexually (on plates, under light) and sexually
(on plates, in the dark) grown cultures at 30uC for 20 hours. Identified proteins from the excised lanes (Table S1). SA; SteA-AnSte12, MB; MpkB-
AnFus3. (C) AnFus3-AnSte12 interaction in vivo. N-EYFP::AnFus3 [MpkB] fusion interacts with C-EYFP fusion of AnSte12 [SteA] in the nuclei (arrow)
which were visualized by a monomeric red fluorescent protein histone 2A fusion (mRFP::Histone2A). (D) Interaction partners of AnFus3 [MpkB] in
BIFC. (+) indicates AnFus3 interactions with VosA and LaeA at very early stages after germination (10–12 hours) and with VeA after 24 hours of hyphal
growth. (2) indicates that VelB does not interact with AnFus3. Scale bars are 10 mm.
doi:10.1371/journal.pgen.1002816.g001
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Figure 2. Phosphorylation of VeA by the MAP kinase AnFus3 [MpkB] and influence of AnFus3 on the interactions of the velvet
complex. (A) In vitro phosphorylation of VeA by AnFus3 in a radioactive kinase assay. Left panels; autoradiograph of dried SDS gel run for
phosphorylation reactions (30 ml of total 45 ml reaction volume), Coomassie stain of the proteins from phosphorylation reaction (10 ml of total 45 ml
reaction). VeA protein in AnFus3 reaction tube is shown with red rectangle. Right panels; ponceau staining of the immunoprecipitated (immobilized
to the GFP trap sepharose) AnFus3::sGFP and only sGFP protein. Immunodetection of the fusion protein and free sGFP by the a-gfp. (B) Confirmation
of specific VeA phosphorylation by a non-radioactive method. All recombinant proteins (10 mg each) were treated with both AnFus3 and GFP. AnFus3
treated samples were additionaly incubated with the lambda protein phosphatase (l-PP). Proteins were immunodetected by a-Penta His, a-GST.
After AnFus3 treatment, VeA showed a 3–5 kDA molecular weight shift (red arrow) that disappeared after L-PP treatment. Only VeA treated with
MAPK was recognized by P-ser/thr specific antibody. (C) Protein levels of VeA in the wild type and mpkB mutant background. VeA::cTAP signals were
normalized to the internal actin levels. VeA protein levels did not change in the absence of MpkB. (D) Reduced velvet complex formation in the mpkB
mutant. The VeA-associated proteins from the cultures of the wild type and mpkBD strains grown in the darkness sexually at 30uC for 20 hours. Three
independent experiments were performed and the associated proteins were identified. The ratio of the peptides from VelB and LaeA to the VeA
protein drastically reduced in the MAPK mutant, whereas alpha importin KapA interaction slightly increased. Black bars represent the standard error.
*LaeA was only found in one of the three purifications in mpkBD strain, thus no error bar is assigned.
doi:10.1371/journal.pgen.1002816.g002
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AnSte50-Ste11-Ste7-Fus3 MAPK is not only required for sexual

development but also for secondary metabolite production.

The components of the fungal MAPK module exhibit
distinct localization patterns at hyphal tip, nuclear
envelope, and septa

The yeast mating MAPK module transmits a signal from the

plasma membrane to the nucleus by releasing MAPK Fus3 from the

Ste5 scaffold at the membrane [13,37]. We analysed how the signal is

transmitted through the filament of A. nidulans to nuclear factors as

AnSte12 or VeA. Time course immunoblotting (Figure S1C) showed

that AnFus3 was constantly expressed during development. The mkkB

mRNA for the upstream MAPKK was also present throughout all

stages (Figure S5C). The corresponding protein AnSte7::sGFP was

present in vegetative as well as in the initial phases of asexual and

sexual development, but decreased afterwards (Figure S5C). Simi-

larly, the AnSte50::sGFP (Figure S1C) seems to be degraded because

the protein disappeared during mid and late asexual development.

Confocal spinning disc microscopy revealed that functional

AnSte7::sGFP fusion protein expressed under native locus

promoter was localised during early phase of growth throughout

the cytoplasm, but never found in the nucleus (not shown). After

becoming competent for differentiation (16 hours after germina-

tion), AnSte7::sGFP accumulated not only at the hyphal tip but

also at the plasma membrane and at the septa of hyphae or spore

forming cells (white arrows in Figure 5A). The AnSte7 signal was

also present on the nuclear envelope. The AnSte7 localization

pattern did not change in the absence of the MAP3K AnSte11 (not

shown). Like AnSte7, a functional Ste50::sGFP fusion never

entered the nucleus. AnSte50 was cytoplasmic and accumulated at

Figure 3. Loss of sexual fruiting bodies and heterokaryon formation in mkkBD strain lacking AnSte7. (A) Sexual developments of a wild
type, mkkBD, mkkB complementation (comp+), steCD [lacking AnSte11] strains, which were point inoculated (16104) and grown on minimal medium
in dark conditions (5 days at 37uC). Small squares are the close-up stereomicroscopic images of the strains. Red arrows indicate the mature black
fruiting bodies of the wild type and complementation strains and yellow arrows denote the premature nests produced by mkkBD and steCD strains.
(B) Raster electron microscopy (REM) image of the strains from (A). The wild type fruiting body (cleistothecium: Cl) is surrounded by the globose Hülle
cells. steC and mkkB mutants produce only dispersed groups of Hülle cells (yellow arrows) instead of mature fruiting bodies. (C) Monitoring hyphal
fusions and heterokaryons via fluorescence microscopy. Strains bearing either cytoplasmic synthetic green fluorescent protein (sGFP) or nuclear red
fluorescent protein fused histone 2A (mRFP) were used in different combinations. Only two wild types form green and red fluorescent combinations
through hyphal fusions. (D) Isolated protoplasts from two wild types (yellow and green), steCD (green), mkkBD (yellow or green) were used for
protoplast fusions as shown in combinations and plated on selective medium. wt/wt, wt/steCD, wt/mkkBD combinations produce fruiting bodies after
7–8 days, whereas mkkBD/mkkBD combination only produces nests.
doi:10.1371/journal.pgen.1002816.g003
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later stages of vegetative growth at the hyphal tip, the septa of

spore forming cells, the plasma membrane and the nuclear

envelope (arrows in Figure 5B, 5D).

A functional AnFus3::sGFP expressed under the native

promoter accumulated at the hyphal tip and was as well present

in the cytoplasm as in the nucleus in vegetative and spore forming

cells (Figure 5C, 5D). This suggests a dynamic and complex

distribution of MAPK module subunits from the fungal membrane

to the nucleus. It also revealed that the MAPK AnFus3 is as yeast

Fus3 the only subunit with the potential to enter the nucleus.

The entire MAPK module colocalizes and interacts at
hyphal tip and nuclear envelope

AnFus3 [MpkB]::mRFP was expressed constitutively together

with AnSte7 [MkkB] and AnSte50 [SteD]::sGFP fusions to

validate whether all components of the MAPK module are

colocalized within the fungal filament (Figure 6). Most of the GFP

signals of AnSte7 and Ste50 merge with the RFP signal of MpkB

at the fungal tip, the plasma membrane and at the nuclear

envelope where they might form dynamic protein complexes.

Exclusively at hyphal tips we found two types of co-localizations of

kinase pairs. In addition to direct co-localizations, similar to

plasma membrane or nuclear envelope, there were extended co-

localization patterns at the hyphal tip. This could reflect that a

fraction of kinases is localized in vesicles at the hyphal tip.

Bimolecular fluorescence complementation (BiFC) [38,39] was

applied to examine whether there are direct transient in vivo

interactions between AnSte7 and Fus3, which could not be found

by TAP purification (Figure 7B). Similar to the yeast localization of

the Ste5-Ste11-Ste7-Fus3 MAPK module at the membrane,

Figure 4. Identification of AnSte7 [MkkB], and AnSte50 [SteD] associated proteins and role of MAPK pathway on secondary
metabolism. (A) A silver stained 5–14% gradient SDS polyacrylamide gel of AnSte7 [MkkB]::cTAP from the wild type and steCD [lacking AnSte11]
background grown for vegetatively at 30uC for 20 hours. (B) Identified peptides of the proteins from the excised lanes of the wild type and steCD
strains (Table S4 and S5). AnSte11 [SteC] (AN2269) and AnSte50 [SteD] (AN7252) were found as interactors of AnSte7 [MkkB]. (C) Interaction partners
of the AnSte50::cTAP fusion from vegetatively, asexually and sexually grown cultures at 30uC for 20 hours (Table S6) (M2B; MkkB, MB; MpkB, SD; SteD,
SC; SteC). (D) Identified polypeptides from the bands. (E) Monitoring of the phosphorylation status of the MpkB by phospho-p44/42 MAPK (Thr182/
Tyr184) antibody in the wild type as well as pheromone pathway mutants grown for 24, 48 and 72 hours vegetatively. VeA protein levels served as
loading control. 80 mg protein extract was loaded on each lane. (F) Production of secondary metabolite sterigmatocystin (ST) in the mutants of
pheromone pathway, Anste11 [steCD], Anste50 [steDD], Anste7 [mkkBD], Anfus3 [mpkBD], Anste12 [steAD], respectively. Developed TLC plates show
sterigmatocystin production. Sts; Sterigmatocystin standard. (G) Quantification of the ST production from the TLC plates. Wild type ST levels served as
100% standard. (H) Expression of the developmental, secondary metabolite genes in the pheromone pathway mutants. laeA, aflR, stcU for ST
production, tdiA and tdiB for terrequinone (TQ) production and veA, mkkB, steD, mpkB, steA for developmental purposes were monitored. Strains were
grown in the liquid medium for 24, 48 and 72 hours and total RNA was isolated and blotted (20 mg). Glycolytic gene gpdA expression and ethidium
bromide stained rRNA was used as loading control.
doi:10.1371/journal.pgen.1002816.g004
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Figure 5. Subcellular localizations of AnSte7 [MkkB], AnSte50 [SteD], and AnFus3 [MpkB]::sGFP fusions during the development of
the fungus. (A) Subcellular location of the AnSte7 [MkkB]::sGFP fusion protein in vegetatively and asexually growing hyphae. mRFP::Histone2A
fusion indicates the position of the nuclei and FM4-64 stains the plasma membrane and the septa of the hyphae. Arrows indicate the accumulation of
the fusion protein at hyphal tip, membrane and septa of the vegetative hyphae and metulae (M) of the conidiophores. (V) indicates the swollen
vesicle part of the conidiophore. (B) Localization of AnSte50 [SteD]::sGFP fusion in the hyphal cells. SteD protein is cytoplasmic and after competence
time (16 hours) it is enriched at the hyphal tip, membrane and nuclear envelope (indicated by arrows). (C) Nucleo-cytoplasmic and hyphal tip
distribution of endogenously expressed AnFus3 [MpkB]::sGFP kinase fusion protein in the fungal hyphae. AnFus3 is found in the cytoplasm and
nucleus, in late hours of vegetative growth (after 16 hours) accumulates at the plasma membrane and hyphal tips. (D) Presence of SteD protein at the
base of the metulae and in the septa between the metulae (M) and phialides (P). Nuclear and partial septal localization of the AnFus3 protein in the
asexual structures (arrows). Scale bars represent 10 mm.
doi:10.1371/journal.pgen.1002816.g005
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AnSte11-Ste7 and AnSte7-Fus3 interacted at the plasma mem-

brane and also at the hyphal tip (Figure 7). There was an

additional strong interaction of AnSte11-Ste7 at septa which

border cellular segments as well as at septa of spore forming cells

and spores (Figure 7C–7E). Quantification of the fluorescence

intensity from the bright enhanced yellow fluorescent protein

(EYFP) spots of AnSte11-Ste7, Ste7-Fus3 pairs revealed that they

emit upto 10 fold more yellow fluorescence than the single EYFP

molecules (Figure S6), suggesting that the kinase pairs form

multimeric complexes.

Consistently to the yeast situation, the transcription factor

AnSte12 as well as fungus specific factors VeA and LaeA

specifically interacted with the MAPK Fus3 in the nucleus

(Figure 1C, 1D). AnSte50 also interacted with the kinases at the

plasma membrane and hyphal tip (Figure 8). Only AnSte11-

Ste7 strongly interacted at the septa but there was hardly any

interaction between AnSte7-Fus3 or between the AnSte50 and

any of the kinases at the septa (Figure 7C and 7D, Figure 8D–

8F).

The entire MAPK module components migrate to the
nuclear envelope to deliver AnFus3 into the nucleus

Yeast Ste7-Ste5-Fus3 migrates to tips of mating projections in

pheromone treated cells. Only Fus3 travels to the nucleus upon

activation by Ste7 [13]. A. nidulans is a homothallic fungus, which

does not require a mating partner. Time lapse images revealed

that MAPK module components AnSte7 and Ste50::sGFP can

move within the fungal cell along the membrane. During the

cellular movements, these molecules shortly touched the mem-

brane then hit the nucleus. Sometimes, fusion protein moved back

after contacting the nucleus in the opposite direction. (Figure 9A

and 9B, Videos S1 and S2).

The dynamics of the protein interactions of the BiFC expressing

strains were further analysed by time lapse movies (Videos S3, S4,

Figure 6. Colocalizations of AnSte7 or AnSte50::sGFP with AnFus3::mRFP. (A) Colocalizations of AnSte7 and AnFus3 proteins within the
same fungal cell. White arrows indicate AnSte7::sGFP and AnFus3::mRFP colocalizations at the hyphal tip, membrane and on the nuclear envelope. (B)
Colocalizations of AnSte50 and AnFus3 proteins within the same cell at the hyphal tip, plasma membrane and perinuclear district. Scale bars are
10 mm.
doi:10.1371/journal.pgen.1002816.g006
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Figure 7. Confirmation of the subcellular interactions of the kinase complexes AnSte11-Ste7 and AnSte7-Fus3 by BIFC system. (A)
Interaction of N-EYFP::AnSte11 [SteC] and C-EYFP::AnSte7 [MkkB] proteins in the hyphal cells. AnSte11-Ste7 kinase complexes are located at the
plasma membrane, septal connections, the hyphal tip and partially nuclear envelope. The upper panel shows the localization of the YFP signal in
comparison to nuclear mRFP::Histone2A fluorescence. Lower panel displays the YFP signal emitting cells stained with membrane dye FM4-64. (B)
Physical interaction of N-EYFP::AnSte7 [MkkB] with C-EYFP::AnFus3 [MpkB] proteins in the fungal cells. (C) Quantification of the subcellular locations
of the AnSte11-Ste7 complexes that are often present at the hyphal tip, plasma membrane, septum and nuclear envelope. N:50 fungal cells were
counted in triplicate. Standard deviations are presented as vertical bars. (D) Subcellular locations of the AnSte7-Fus3 interactions. AnSte7-Fus3
complexes hardly localize to the septum and are found more on the nuclear envelope. (E) Assembly of the AnSte11-AnSte7 and AnSte7-AnFus3
complexes on the surface of vesicles of asexual conidiophores. Arrows indicate the growth directions of the metulae initials on the vesicles. V; vesicle,
S; stalk. Size of the scale bars is 10 mm.
doi:10.1371/journal.pgen.1002816.g007
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S5, S6). The AnSte7-Fus3 pair moved together along the plasma

membrane (Video S3, Figure S7A) towards the first nucleus, then

they advanced to the next nucleus while some other spots did not

move distinctly. Likewise, AnSte50-Fus3 complexes left one

nuclear envelope, touched the membrane and moved to the next

nucleus (Video S4, Figure S7B). Similar movements were also

observed for other complexes of the MAPK module (not shown).

AnSte11-Ste7 can dissociate from the plasma membrane, cross the

cytoplasm and reach the nuclear envelope (Videos S5 and S6,

Figure S7C, S7D).

The major difference to the yeast situation is that the MAPK

module of A. nidulans travels from the outer border of the fungal

cell through the cytoplasm to the nuclear envelope. The AnSte7-

Fus3 pair as well as pairs of AnSte50 with all three kinases

interacted at the nuclear envelope (Figure 7 and Figure 8). These

data suggest significant differences in the molecular mechanism

how a MAPK signal is transmitted in yeast in comparison to a

filamentous fungus.

AnSte50 is required for efficient membrane attachment
of MAPK complexes

The interactions of the AnSte11-Ste7 and AnSte7-Fus3

complexes were examined in steDD strain to examine AnSte50

function for cellular location of the module. The interaction of the

three kinases at the plasma membrane of wild type (Figure 7) was

abolished for AnSte11-Ste7 and drastically reduced for AnSte7-

Fus3 in the steD mutant (Figure 9C, 9D). Plasma membrane

localizations of the AnSte7 and Fus3::sGFP fusions were also

reduced in the steD mutant (not shown). Contrastingly, the

localization of the entire module at the hyphal tip or for the

partial module AnSte11-Ste7 at the septum seems to be mediated

by a mechanism which is largely independent of AnSte50.

These data suggest that AnSte50 supports association of the A.

nidulans MAPK module with the plasma membrane but it does not

affect the hyphal tip and septum localizations.

Discussion

We describe here the A. nidulans Fus3 MAPK module which is

involved in sexual development and the control of secondary

metabolism and releases AnFus3 into the nucleus. Our data

suggest a provocative additional hypothesis: AnFus3 is able to

travel along the membrane and to cross the cytoplasm to the

nuclear envelope in complexes with AnSte7 MAP2K, AnSte11

MAP3K and the adaptor protein AnSte50. In the nucleus AnFus3

interacts with transcription factor AnSte12 for sexual develop-

ment. The additional interaction of AnFus3 with VeA or yet

unidentifed targets may promote VeA-VelB formation which is

required for coordinated development and secondary metabolism

(Figure 9E). The A. nidulans Fus3 MAP kinase module is

preferentially assembled at distinct intracellular locations, such as

the hyphal tip, the septa, the plasma and nuclear membranes.

Membrane localisation of the module is presumably relevant to

perceive external signals as in yeast. Sexual development is

defective when membrane localization of the module is impaired

as in strains without intact AnSte50. Tip localisation could be

important for hyphal fusions and cell-cell contacts. MAPKK

AnSte7 and MAP3K AnSte11 but not other components interact

at septa suggesting additional phosphorylation functions at septa

independent of AnFus3. Corresponding mutants displayed strong

deformations in the septa between developing asexual spores and

spore forming cells but did not show any abnormal septation

pattern in vegetative hyphae (not shown). This suggests a possible

additional link between kinases of the module and regulators of

asexual development.

Intracellular distances in a filamentous fungus are significantly

larger than in yeast. Several steps can be distinguished for signal

transduction from surface to nucleus of A. nidulans. (i) From

hyphal tip to plasma membrane: AnSte50 is primarily required

for efficiently anchoring the MAPK module to membranes, but

not to hyphal tips. AnSte50 might also contribute like in yeast to

Ste11 MAP3K activation. The essential function of AnSte50 for

signal transduction is supported by the defect of sexual

development and lack of AnFus3 phosphorylation in a steD

mutant. The AnSte50 independent localization at the hyphal tip

suggests an additional yet unknown anchoring function for the

AnFus3 module at the hyphal tip. The anchoring mechanism

could include small membrane bound vesicles at the Spitzenkörper

which could explain some of our localization results (Figure 6B,

Figure 7, Figure 8).

The lack of AnSte11 did not cause any changes in the

subcellular localization of AnSte7, indicating that AnSte11 is not

required for proper AnSte7 localization. The lack of AnSte50 had

a drastic effect on the localization of MAPK module complexes.

AnSte50 interacts with all components of the MAPK module and

might provide a binding platform for the other MAPK compo-

nents which even works when AnSte11 is absent (Figure 8).

(ii) In yeast Fus3 dissociates from the Ste5 tethered pheromone

pathway module and enters into the nucleus [13]. Transport of the

AnFus3 in the AnSte50-Ste11-Ste7 complex (or subcomplexes) to

the nuclear envelope as additional signal transmission step in A.

nidulans might secure that AnFus3 can be kept active over larger

distances until it finally reaches the nucleus. It will be interesting to

analyse phosphorylation states of kinases at different cellular

locations during signal transduction.

(iii) Import of AnFus3 from nuclear envelope into nucleus:

AnFus3 presumably dissociates from the kinase module at the

nuclear envelope in a mechanism wihich is unknown. After entry

into the nucleus, AnFus3 interacts with AnSte12, and presumably

phosphorylates it. AnFus3 phosphorylates the velvet protein VeA,

which efficiently associates with VelB and LaeA. It is yet unclear

whether there are additional AnFus3 targets which support VelB-

VeA complex formation. VelB-VeA then contributes with

AnSte12 to sexual fruiting body development and the trimeric

VelB-VeA-LaeA concomitantly promotes expression of distinct

genes for secondary metabolites (Figure 9E). These include the

production of the mycotoxin sterigmatocystin or antitumor agent

terrequinone but not the antibiotic penicillin synthesis.

The MAPK module of A. nidulans is presumably involved in

integrating multiple signals and enabling an adequate cellular

response. Oxylipins represent currently the only known phero-

mones of Aspergilli but the receptors are unknown [40]. In yeast

Figure 8. Subcellular locations of the AnSte50-Ste11, AnSte50-Ste7, and AnSte50-Fus3 complexes in vivo. (A) Interactions of N-
EYFP::AnSte11 [SteC] and C-EYFP::AnSte50 [SteD] proteins in the fungal cells. Upper panel shows the nuclear mRFP signal and lower panel FM4-64 in
comparison to the split YFP signal. (B) Interactions of AnSte50 [SteD] protein with AnSte7 [MkkB]. (C) Interactions of AnSte50 protein with AnFus3
[MpkB]. (D–F) Measurement of the subcellular locations of the AnSte50-Ste11, -Ste7, and Fus3 complexes that are frequently found in the nuclear
envelope, plasma membrane, at the hypal tip and less often in the septal locations. Quantification was performed and analyzed as described in
Figure 7. (G) Detection of the AnSte50-Ste11, AnSte50-Ste7, and AnSte50-Fus3 complexes on the vesicle (V) of the asexual conidiophore structures. S;
stalk. Scale bars represent 10 mm.
doi:10.1371/journal.pgen.1002816.g008
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nitrogen starvation induces the same kinase module as phero-

mones, and part of the components are also involved in response

to osmotic stress. It is likely that the AnSte50-Ste11-Ste7-Fus3 and

the septal AnSte11-Ste7 modules have additional targets other

than AnSte12 and VeA, which remain to be identified.

An interesting open question is whether other organisms also

transport their Fus3 MAPK counterpart together with the entire

module from surface to nuclear envelope. This results in questions

about transport control points and module attachment sites on the

nuclear envelope where future work in A. nidulans could deepen

Figure 9. Cellular movements of AnSte7 and AnSte50::sGFP fusions and interactions of the AnSte11-Ste7, AnSte7-Fus3 complexes
in the steDD mutant lacking AnSte50. (A) Cellular movements of the AnSte7::sGFP fusion. Single focal plane pictures of a time-lapse study for the
AnSte7 fusion (in minutes) (Video S1). The MAPKK protein (white arrow) leaves the first nucleus; shortly after touching the membrane it reaches the
second nucleus (visualized by RFP). The yellow arrow indicates movement direction. (B) AnSte50::sGFP cellular movement in both directions (Video
S2). AnSte50 (white arrow) moves within the filament back to the nucleus (yellow arrow), and bounces back in the opposite direction after touching
the nucleus. (C) Interactions of AnSte11-Ste7 complex occur at the hyphal tip, plasma membrane and the septa in wild type (see arrows). Membrane
localization of AnSte11-Ste7 kinases drastically decreases in Anste50 [steDD] strain. Hyphal tip and septa localizations are unaffected. AnSte7-Fus3
interact at the hyphal tip, membrane and partially nuclear envelope. (D) Quantification of the locations of the AnSte11-Ste7 and AnSte7-Fus3
complexes in steDD strain. N:50 fungal cells were counted in triplicates. Standard deviations were given as vertical lines. Scale bar, 10 mm. (E) A
comparative depiction of the MAPK modules and their action in the single-cell yeast and filamentous fungus. In the yeast system, (MAP3K)Ste11-
(MAP2K)Ste7-(MAPK)Fus3 kinase complex assembles on the scaffold protein Ste5 which tethers the complex close to the plasma membrane. Ste50 is
additionally required for membrane recruitment of the Ste11. Activation of Fus3 by Ste7 phosphorylation results in entry of the active Fus3 into the
nucleus where it phosphorylates Ste12 transcription factor for mating responses. In the filamentous fungus, AnSte50 is partly responsible for the
membrane attachment of the AnSte11-Ste7-Fus3 complex, which migrates to the nuclear envelope presumably to keep the AnFus3 active. Finally,
AnFus3 (MpkB) is released into the nucleus where it interacts with SteA (Ste12) for hyphal fusions and sexual development. It also phosphorylates the
velvet A protein, which in turn leads to activation of secondary metabolism with development.
doi:10.1371/journal.pgen.1002816.g009
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insights into the molecular mechanism of information transfer

through the cell.

Materials and Methods

Strains, media, transformation, and cultivation of the
microorganisms

Fungal strains created and used in the course of this study are

given in Table S7. Aspergillus nidulans strains; FGSCA4 (veA+),

TNO2A3 (veA1) [41], AGB152 (veA+) [42], AGB154 (veA+),

AGB506 (veA+) [31], AGB551 (veA+), AGB552 (veA+) served as

wild type transformation hosts for the knock-out, epitope tagging,

BIFC, and overexpression experiments. Further details for the

strains transformed with various plasmids are given in Table S8.

Culturing fungal strains were described in detail elsewhere [43].

DH5a and MACH-1 (INVITROGEN) Escherichia coli strains were

applied for recombinant plasmid DNA. Aspergillus and E. coli

strains were cultured as described previously [30]. Fungal and

bacterial transformations were carried out as given in detail [30].

Manipulation of nucleic acids
Circular and linear DNA molecules were created based on the

standard recombinant DNA technology protocols in detail [30].

Plasmids and oligonucleotides applied and constructed in this

study are given in Table S8 and Table S9. During polymerase

chain reaction (PCR) different kind of DNA polymerase combi-

nations including Pfu (MBI FERMENTAS), Phusion (FINNZYMES),

Platinum-Taq (INVITROGEN) and Taq (FERMENTAS) were used. Linear

and circular DNA constructs were created as given below.

Creation of Anste7 [mkkB] deletion cassette and
complementation plasmid

For construction of Anste7 [mkkB] deletion fragment, 1.1 kb 5

UTR and 0.6 kb 3 UTR flanking regions of AN3422 locus were

amplified with 3422-A/C and 3422-D/F, respectively. These two

fragments were fused with ptrA marker (amplified from pPTRII) by

fusion PCR (3422-B/E), creating 3.6 kb deletion fragment which

was transformed into TNO2A3 (veA1), AGB154 (veA+), creating

AGB586, AGB587 strains, respectively. Complementation plas-

mid pME3854 was constructed by amplifying 4.2 kb genomic

Anste7 [mkkB] locus (Comp-A/B) and subsequent cloning into StuI

site of pAN8-1 [44] plasmid carrying the phleomycin resistance

marker. Deletion and complementation events were verified by the

Southern hybridization (Figure S8A–S8B).

Overexpression of Anste7 [mkkB]
Primers OZG302/303 amplified the 1.6 kb cDNA of Anste7

[mkkB] from sexual cDNA library [45]. T4 Polynucleotide kinase

(PNK) treated phosporylated amplicons were inserted into PmeI

site of pME3160 [30] under nitrogen source inducible niiA

promoter leading to pME3855 that was transformed into

AGB152, which resulted in AGB662.

Generation of endogenous Anste7 [mkkB]::gfp and ctap
gene replacement modules

For the purpose of substitution of the orinigal Anste7 [mkkB]

locus by mkkB::gfp and ctap, mkkB promoter including mkkB ORF

(2.85 kb) and terminator regions (0.6 kb) were PCR-amplified

from genomic DNA (3422-A/OZG380 for gfp, 3422-A/OZG382

for ctap, and OZG314/3422-F). Finally, the fragments 3422-A/

OZG380 and OZG314/3422-F were fused to sgfp::natR module

(with oligos 3422-B/3422E) creating 5.4 kb mkkB::sgfp::natR fusion

construct. Likewise, 3422-A/OZG382 and OZG314/3422-F, and

ctap::natR were joined by fusion PCR (3422-B/3422E) resulting in

mkkB::ctap::natR cassette for gene replacement. mkkB::sgfp::natR

construct (5.2 kb) was transformed into TNO2A3 and SWH51

[24], which yielded AGB590 and 592, respectively (Figure S8D–

S8E). Similarly, mkkB::ctap::natR was introduced into AGB551 and

SWH51 resulting in AGB597 and 598.

Construction of Bimolecular Fluorescence
Complementation (BIFC) plasmids

Anste11 [steC] ORF was amplified from gDNA (OZG389/

OZG392) and fused to nyfp (OZG73/387) leading to nyfp::Anste11

[steC] fusion fragment which was cloned in PmeI site of pME3160

plasmid yielding pME3859 (nyfp::steC). Anste7 [mkkB] ORF was

PCR-amplified (for nyfp, OZG389/303, for cyfp OZG390/303)

from genomic DNA followed by fusion to nyfp and cyfp, which

produced nyfp::Anste7 [mkkB] and cyfp::Anste7 [mkkB] fusions.

Similar to Anste11 [steC] cloning, nyfp::mkkB fragment was inserted

in PmeI site of pME3160 generating pME3861 plasmid.

To test AnSte11/AnSte7 interaction, cyfp::mkkB was cloned in

SwaI site of pME3859 leading to pME3860 that was brought in

AGB506, which generated AGB599. For AnSte7/AnFus3 inter-

actions, Anfus3 [mpkB] cDNA was amplified from cDNA library

(OZG404/403 for nyfp, OZG405/403 for cyfp). OZG404/403 and

OZG405/403 were fused to nyfp (OZG73/387) and cyfp (OZG75/

388) fragments yielding nyfp::mpkB and cyfp::mpkB. nyfp::mpkB

fragment was inserted in PmeI site of pME3160, which led to

pME3864 and cyfp::mpkB was cloned in SwaI site of pME3861

generating pME3862 (nyfp::Anste7 [mkkB]/cyfp::Anfus3 [mpkB]). The

BIFC plasmid pME3862 was introduced in AGB506 in order to

generate AGB600. Anste12 [steA] gDNA was amplified with oligos

OZG400/401 and fused to cyfp by fusion PCR (OZG75/400).

cyfp::veA, cyfp::velB, cyfp::vosA and cyfp::laeA were produced as

described in detail [31]. Insertion of cyfp::steA, cyfp::veA, cyfp::velB,

cyfp::vosA and cyfp::laeA in SwaI site of pME3864 yielded following

plasmids pME3865 (mpkB/steA, AGB601), pME3866 (mpkB/veA,

AGB623), pME3867 (mpkB/velB, AGB625), pME3868 (mpkB/vosA,

AGB624), pME3869 (mpkB/laeA, AGB622).

Anste50 [steD] cDNA was amplified from cDNA library

(OZG500/501) and joined to cyfp fragment with oligos OZG75/

OZG500. Finally, this fragment was cloned in SwaI sites of

pME3859, 3861, 3864, leading to plasmids pME3870, 3871 and

3927, respectively.

Generation of Anste50 [steD] deletion, endogenous
steD::sgfp, and steD::ctap replacement fragments

steD deletion, steD::sgfp and steD::ctap linear fragments were

created in an identical manner to mpkB constructs. steD deletion;

OZG470/472, ptrA, OZG473/475 were fused by using oligos

OZG471/474 in a fusion PCR. steD::sgfp::natR (5.1 kb); OZG470/

564, sgfp::natR, OZG566/475 were joined by oligos OZG471/474.

steD::ctap::natR (4.9 kb); OZG470/565, ctap::natR, OZG566/475

were joined by oligos OZG471/474. steD deletion cassette was

brought into AGB552 and 551 generating, AGB576 and 650,

respectively. steD::sgfp and steD::ctap were used for gene replace-

ment in AGB551, giving rise to AGB657 and 659, respectively

(Figure S9A–S9C).

Construction of Anfus3 [mpkB] deletion, sgfp, ctap, and
mrfp fusions

mpkBD::ptrA deletion fragment was constructed by amplifica-

tion of 1.2 kb 5 and 3 flanking regions of mpkB with primers (for 5

UTR, OZG443/445, for 3 UTR OZG446/448). OZG443/445,

ptrA marker, and OZG446/448 were fused by oligos OZG444/
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447 creating 3.9 kb mpkBD::ptrA construct. Consequently,

mpkBD::ptrA fragment was transformed into AGB552, which

generated AGB611. To create Anfus3 [mpkB]::sgfp and ctap linear

fragments, mpkB promoter as well as ORF was amplified by

(OZG443/560 for gfp fusion and OZG443/561 for ctap fusion).

OZG443/560, gfp::natR, and OZG562/448 were co-fused by

oligos OZG444/447 creating 5.3 kb mpkB::sgfp::natR fragment.

OZ443/561, ctap::natR, and OZG562/448 linear DNAs were

fused to make mpkB::ctap::natR gene replacement fragment

(5.1 kb). mpkB::sgfp and mpkB::ctap were transformed into the

AGB551 strain, which yielded AGB654 and 659, respectively

(Figure S9D–S9G). For creation of constitutively expressed

mpkB::mrfp fusion, gpdA promoter (OZG735/736), mpkB cDNA

(OZG737/738), and mRFP::H2A terminator (OZG739/740)

were amplified and fused together (OZG735/740). The fusion

was cloned in the SwaI site of a pyrG marker bearing plasmid. The

final plasmid pME3966 was introduced into AGB590 and

AGB657 for co-localization studies.

Construction of the yeast complementation plasmids
Promoter and terminator regions of STE7 (promoter

OZG679/680, terminator OZG683/684) and FUS3 (promoter

OZG685/686, terminator OZG689/690) were amplified from

the wild type yeast genomic DNA. These regions were either

fused to the gDNA or cDNAs of Anste7 [mkkB] (681/682) and

Anfus3 [mpkB] (687/688) genes. Resulting fusions proSTE7::mkkB

gDNA::STE7ter, proSTE7::mkkB cDNA::STE7ter, proFUS3::mpkB

gDNA::FUS3ter and proFUS3:: mpkB cDNA::FUS3ter were cloned

in SmaI site of yeast centromeric plasmid pRS316 (URA3) [46]

yielding pME3958, 3959, 3960 and 3961, respectively. STE7

(OZG679/684), FUS3 (OZG685/690), and KSS1 (OZG691/692)

genomic loci were amplified and similarly cloned into SmaI site of

pRS316 resulting in pME3962, 3963, and 3964 plasmids,

respectively. These control and chimeric constructs were trans-

formed into the appropriate ste7, fus3, and fus3/kss1 [47] deletion

strains.

Hybridization techniques and analysis of nucleic acids
Southern and Northern hybridizations were carried out as

explained in detail [30,43] according to protocols [48,49].

Immunoblotting
Immunoblotting experiments for recognition of GFP, TAP

fusion, VeA, and actin in protein extracts was performed

according to described protocols [31]. a-phospho 44/42 (4377,

CELL SIGNALING TECHNOLOGY INC) was used for detection of the

phosphorylated AnFus3 [MpkB]. For the detection of the

phosphorylated proteins, a-phosphoserine/threonine (ab17464,

ABCAM) was employed. Manufacturers protocols were followed for

incubation times and buffer applications of phosphospecific

antibodies.

Expression of recombinant proteins
Proteins were expressed in Rosetta 2 (DE3) using ZYM5052

[50] media supplemented with 30 mg/ml Chloramphenicol and

100 mg/ml Ampicillin (GST-LaeA91) or 30 mg/ml Kanamycin

(Velvet proteins) at 16uC. Cells were harvested by centrifugation,

resuspended in lysis buffer (30 mM HEPES pH 7.4, 400 mM

NaCl, 30 mM Imidazol) and lysed by passing through a

Microfluidics Fluidizer at 0.55 MPa. The lysate was cleared by

centrifugation at 300006g for 30 minutes. His-tagged proteins

were purified with a 5 ml NiNTA-Sepharose (GE HEALTHCARE)

and GST-tagged LaeA91 with a 5 ml GSH-Sepharose (GE

HEALTHCARE) column connected to an ÄKTA Prime chromatog-

raphy system. After washing with 10 column volumes with lysis

buffer, proteins were eluted with elution buffer plus 400 mM

Imidazol or 30 mM reduced Glutathione. Velvet proteins were

desalted with a HiPrep Desalting 26/10 column (GE HEALTHCARE)

into storage buffer (10 mM HEPES pH 7.4, 400 mM NaCl).

GST-LaeA91 was cleaved with PreScission Protease at 4uC for

16 h and further purified by gel-filtration using a Superdex 200

26/60 and a final 5 ml GSH-Sepharose column both equilibrated

in gelfiltration buffer (10 mM HEPES pH 7.4, 150 mM NaCl). All

proteins were shock-frozen in liquid nitrogen and stored at 280uC
until further use.

Protein immunoprecipitation
In order to immunoprecipitate GFP fusion proteins, protein

crude extracts were prepared from vegetatively grown cultures.

100 ml GFP-Trap sepharose (CHROMOTEK) was washed twice

with 1 ml protein extraction buffer (50 mM Tris pH 7.5,

100 mM KCl, 10 mM MgCl2, 0.1% NP40, 10% Glycerol,

20 mM b-glycerophosphate, 2 mM Na3VO4, 5 mM NaF,

0.5 mM PMSF, 1 mM benzamidine, 1 mM EGTA, 1 mM

DTT). 20 ml (150 mg total) protein crude extract was incubated

with 100 ml GFP-Trap sepharose (CHROMOTEK) at 4uC for

2 hours on a rotating platform. Afterwards, sepharose-extract

mixture was centrifuged at 4000 rpm at 4uC for 1 min. Crude

extract was removed with a 5 ml pipette. The sepharose was

washed twice with 20 ml of protein buffer and centrifuged at

4000 rpm at 4uC for 1 min. This step was repeated one more

time. Finally, 1 ml of protein buffer was added and the sepharose

was resuspended. Each of the 200 ml sepharose buffer mixture

was transferred into 1.5 ml eppendorf cups and centrifuged at

4000 rpm at 4uC for 1 min and supernatant was removed.

Immunoprecipitated proteins were washed three times with 1 ml

kinase reaction buffer (KRB; 20 mM Tris pH 7.5, 10 mM

MgCl2, 1 mM DTT, 1 mM benzamidine, 1 mM Na3VO4,

5 mM NaF, 0.1 mCi [32P]-ATP).

In vitro phosphorylation and dephosphorylation assay
In vitro phosporylation assay was performed with modifications

according to protocol given in [51]. For in vitro phosphorylation

experiment, 30 ml KRB, containing 0.1 mCi [32P]-ATP and

10 mg recombinant protein were added to the sepharose beads

and incubated at 30uC for 35 minutes with the periodic

resuspensions in every five minutes. Afterwards, reaction tubes

were centrifuged at 4000 rpm at R/T for 1 min and superna-

tants containing phosphorylated proteins were transferred into

new eppendorf cups. Supernatans and sepharose containing

immunoprecipitated proteins were mixed with 36 protein

loading dye (30 ml supernatant and 15 ml loading dye) and

incubated at 95uC for 10 min. 30 ml of the supernatant fraction

was run on 4–15% gradient SDS gel that was dried for 2 h and

exposed to Kodak X-omat film for 5 hours. 10 ml of the reaction

was used for visualization of the proteins with coomassie

staining. 2 ml of sepharose was used for immunoblotting and

ponceau staing for validation of equal immunoprecipitated target

protein (MpkB or GFP). For non-radioactive kinase experiments,

same KRB buffer containing 5 mM ATP was used. Supernatants

were treated with 1000 units lambda protein phosphatase (NEW

ENGLAND BIOLABS) in the presence of 1 mM MnCl2 at 30uC for

1 hour. Samples were added with 36 loading dye and boiled at

95uC for 10 min. 3 ml of the samples were used for immuno-

blotting.
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Tandem Affinity Purification (TAP) protocol and LC-MS/
MS protein identification

For the TAP purification of the MkkB, MpkB, SteD, and VeA

interacting proteins and further LC-MS/MS identification previ-

ously published protocols were applied [30].

Confocal spinning disc and fluorescence microscopy
A. nidulans strains expressing various fluorescence proteins

(EYFP/sGFP/mRFP) were inoculated in the 8-well borosilicate

coverglass system (NUNC) containing the liquid minimal medium.

Widefield fluorescence photographs were taken with an AXIOVERT

OBSERVER. Z1 (ZEISS) microscope equipped with a COOLSNAP

ES2 (PHOTOMETRICS) digital camera. CSU-X1 A1 confocal

scanner unit (YOKOGAWA) connected with QUANTEM:512SC

(PHOTOMETRICS) digital camera was used for laser microscopy.

The SLIDEBOOK 5.0 software package (INTELLIGENT IMAGING

INNOVATIONS) was used for fluorescence and laser confocal image

and movie recording as well as productions. We defined signals as

plasma-membrane localized if we found the signals that are at the

border of the silhouette of the fungal cell or even surmount the

fungal cell; similarly, we defined signals as nucleus-associated when

we found multiple signals at the border of the nuclear silhouette.

Quantification of the YFP fluorescence
The EYFP protein was purified by using GFP-Trap as described

for GFP protein. EYFP molecules were allowed to attach to poly-

L-lysine coated coverslips for 10 minutes, in PBS buffer. Fungal

cultures were grown as described above. The preparations were

imaged using a SP5 TCS STED microscope (LEICA MICROSYS-

TEMS), under 514 nm excitation (provided by an Argon laser),

using a 1006oil-immersion objective (1.4 NA, LEICA). The images

were processed by a custom-written routine in Matlab (THE

MATHWORKS INC.). Briefly, the spots were identified by the

application of an automatic threshold based on the intensity of

the background. We then used Gaussian fits to the spots to

determine their intensity, and to correct for the background

intensity, which provided the baseline of the fits.

Analysis of secondary metabolites
Extraction of sterigmatocystin (ST) and thin layer chromatog-

raphy (TLC) was carried out as given in detail [43]. Penicillin

levels were determined as published previously [52].

Supporting Information

Figure S1 Functionality of AnFus3 [MpkB] and AnSte50

[SteD]::sGFP and TAP fusions for fungal growth, sexual

development. (A) Phenotypes of the wild type, Anfus3 [mpkBD],

Anste50 [steDD], Anfus3 [mpkB]::sgfp, Anfus3 [mpkB]::ctap, Anste50

[steD]::sgfp, Anste50 [steD]::ctap strains incubated under dark and

light conditions for 5 days at 37uC. Black frames are the

stereomicroscopic images of the colonies on the plates. Mature

fruiting bodies are indicated by yellow arrows. Anfus3 [mpkBD] and

Anste50 [steDD] strains cannot produce mature cleistotheica

(indicated by red arrows) instead form nest-like structures. (B)

Quantification of the asexual conidiations of the strains from (A).

Reduced asexual sporulation seen in Anfus3 [mpkB] and Anste50

[steD] mutants. Replacement strains sporulate more efficient than

the deletion strains. (C) Expression of AnSte50 [SteD] and AnFus3

[MpkB]::sGFP proteins during different developmental stages

(vegetative, asexual and sexual, respectively). 68 kDA AnFus3

[MpkB] and 81 kDA AnSte50 [SteD]::sGFP fusion proteins were

detected by a-gfp. Constitutive transcript levels of the mpkB and

steD genes from the same experiments. Actin levels served as

loading control for immunoblotting (80 mg in each lane), and

internal gpdA expression was used as control for Northern

hybridizations. 20 mg RNA was loadeded in each sample.

(TIF)

Figure S2 Transcript levels of velB and laeA and cellular

localizations of the velvet complex components in the wild type

and Anste7 [mkkBD] strain. (A) Transcript levels of velB and laeA in

the wild type and mpkB mutant background. RNA levels of velB

and laeA from two different time points (24 and 72 hours) were

quantified and normalized to the internal control gene expression

gpdA. velB levels do not change significantly, but laeA transcript is

drastically downregulated. Black bars represent standard devia-

tions. (B) Localization patterns of VeA, VelB and LaeA::sGFP

fusions in the wild type and mpkB mutant background. Fungal

strains were grown in the darkness for 24 hours at 30uC and

pictures were taken in a fluorescence microscope. Scale bars

represent 10 mm.

(TIF)

Figure S3 Global alignment of the AnSte7 [MkkB] of Aspergillus

nidulans with other eukaryotic MAPK Kinase homologs. A. nidulans

AnSte7 [MkkB] (ANID_03422) was aligned with the amino acid

sequences from Aspergillus fumigatus Afu3g05900, Neurospora crassa

MAPK Kinase (NCU04612), Magnaporthe oryzae (EHA48601.1),

Podospora anserina (XP_001910826.1), Trichoderma atroviride

(EHK42325.1), Coccidioides immitis (XP_001246770.1), Saccharomyces

cerevisiae Ste7p, and Homo sapiens MAPK2K1. Conserved protein

kinase domains and the central part showing higher similarity are

indicated with red rectangle. N- and C-terminal sequences of the

kinase proteins show less similarity. S. cerevisiae and H. sapiens

proteins often break the alignment. Filamentous fungus kinases

show higher similarity to the AnSte7 protein.

(TIF)

Figure S4 Increased sexual development caused by overexpres-

sion of Anste7 [mkkB] gene and functional complementation assays

in yeast. (A) Growth of the control (empty plasmid carrying strain)

and Anste7 [mkkB] OE (under niiA promoter) strains under white

light (90 mWm2) and dark conditions on repressing (NH4
+) and

inducing (NO3
2) media. Lower panel shows the plate pictures,

upper squares are the stereomicroscopic images taken from the

plates. 16104 spores were point-inoculated and grown at 37uC for

5 days. (B) Validation of Anste7 [mkkB] overexpression by Northern

blot. gpdA transcript levels and rRNA were used as equal loading

controls. Total 20 mg RNA was applied in each lane. (C)

Quantification of cleistothecia production from (A). Increased

cleistotheica production in Anste7 [mkkB] OE strain in the dark on

nitrate containing inducing medium. Vertical lines are the

standard errors originating from different counts. L; light, D;

dark. Rep; repressed, Ind; induced. (D) Either cDNA or ORF of

Anste7 [mkkB] and Anfus3 [mpkB] expressed under yeast STE7 or

FUS3 promoters in a centromeric self-replicating plasmid. These

constructs were expressed in the respective fus3, ste7 and fus3/kss1

double mutants. Strains were grown in the presence of 15 mg alpha

factor given on the paper discs at 30uC for 3 days. Alpha factor in

wild type (empty plasmid) and complementation strains (STE7 in

ste7 mutant, FUS3 in fus3 mutant, FUS3 in fus3/kss1 mutant)

results in a strong growth inhibition (halo). ste7 and fus3/kss1

mutants do not show any response to the pheromone treatment.

fus3 mutant exhibits a reduced response (cloudy halo). AnSte7 and

Fus3 do not remediate the halo phenotype of the ste7 and fus3

mutants. mpkB cDNA partially restores the pheromone response of

the fus3/kss1 double mutant.

(TIF)
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Figure S5 Functionality of the AnSte7 [MkkB]::sGFP and cTAP

tag fusions for fungal growth and sexual development. (A)

Development of the wild type, Anste7 [mkkB]::sgfp, Anste7

[mkkB]::ctap, Anste7 [mkkBD] strains on plates incubated under

white light (90 mWm2). Anste7 [mkkB]::sgfp and ctap look like the

wild type strain. (B) Conidia production capacities of the strains

from (A). Strains carrying Anste7 [mkkB]::sgfp and ctap constructs

produce similar levels of conidia of the wild type levels. Vertical

bars are the standard deviations of quantifications. Same spore

number was used for inoculation as in Figure S4. (C) AnSte7

[MkkB] protein levels under native promoter during different

developmental stages of A. nidulans. Strains were grown vegeta-

tively 20 h, and transferred on plates and incubated under light

conditions (2, 6, 12, 24 hours) for asexual development and dark

for sexual development. Protein undergoes degradation during

24 h asexual and sexual time points. Anste7 [mkkB] transcripts are

expressed constitutively during different stages. Actin levels and

ethidium bromide stained ribosomal RNA served as loading

controls.

(TIF)

Figure S6 Quantification of the EYFP fluorescence intensities

from single EYFP and AnSte11-Ste7 and AnSte7-Fus3 BIFC

complexes. (A) The intensity of the spots produced by the

AnSte11-Ste7 and AnSte7-Ste3 complexes were measured (see

Figure 7 for examples). The intensities are comparable, although

the values tend to be higher for AnSte11-Ste7 (blue) than for

AnSte7-Fus3 (red). To obtain an estimate of the number of

molecules in the complexes, these values were compared to the

intensity of single EYFP molecules attached to coverglasses (green).

(B) The bar graphs indicate the average values for the intensities

(obtained from the same datasets as in A). The intensity of the

complexes is ,9-fold (AnSte7-Fus3) or ,10-fold (AnSte11-Ste7)

higher than that of single EYFP molecules, suggesting the presence

of 9 to 10 molecules in a complex. The bars show the mean and

standard error; 50–300 spots were analyzed for each condition.

(TIF)

Figure S7 Spatial movements of the AnSte7-AnFus3, AnSte50-

AnFus3, AnSte11-AnSte7 binary complexes within the fungal

cells. (A) Movement of the AnSte7 [MkkB]-AnFus3 [MpkB]

complex (white arrow) that touches the nucleus during intracel-

lular translocations (17 min) (Video S3). Yellow arrows indicate

the direction of the movements. (B) A movement of the AnSte50-

AnFus3 complexes between two nuclei. Complex leaves the first

nucleus, and slightly touches the membrane (a small deviation to

upper side) reaches to the second nucleus (Video S4). (C) A

horizontal backwards movement of the AnSte11 [SteC]-AnSte7

[MkkB] complexes from hyphal tip. Complexes touch the nucleus

during bypass (Video S5). (D) A vertical movement of the

AnSte11-AnSte7 complexes from membrane to the nuclear

envelope (Video S6). White arrows indicate the YFP spots

representing the binary complexes moving to the nucleus.

(TIF)

Figure S8 Southern hybridizations for the gene replacement

experiments involving Anste7 [mkkB] locus. (A) A comparative

depiction of the genomic Anste7 [mkkB] (AN3422) and the deletion

of the locus by the selection marker pyrithiamine resistance gene,

ptrA. Blue bar represents the Southern probe used in hybridiza-

tions. (B–C) Southern hybridization results of the mkkB deletion

and complementation strains. Sizes of the restriction bands

confirm the gene replacement and ectopic complementation of

the knock-out strain by the complementation plasmid. Sizes of the

restriction fragments are given in base pairs. (D) Schematic

drawings of the Anste7 [mkkB] locus gene replacements by Anste7

[mkkB]::sgfp::natR and Anste7 [mkkB]::ctap::natR. The cutting sites of

the common restriction enzymes are indicated in the theoretical

maps. (E–F) Southern results of the Anste7 [mkkB]::sgfp::natR and

Anste7 [mkkB]::ctap::natR strains in comparison to the wild type

locus. Bands released by restriction digests are in agreement with

the theoretical maps of the replaced loci.

(TIF)

Figure S9 Verification of the gene replacements for Anste50

[steD] and Anfus3 [mpkB] loci. (A) Common restriction enzyme

cutting maps of the wild type Anste50 [steD] (AN7252) locus,

steDD::ptrA, Anste50 [steD]::sgfp::natR, and Anste50 [steD]::ctap::natR

gene replacements. Blue lines show the probe binding sites during

Southern hybridizations. (B–C) Southern hybridizations of gene

replacements in comparison to the wild type Anste50 [steD] locus.

Restriction enzymes used during Southern hybridizations are

shown at the top of the blot. Lengths of the restriction fragments

are given in base pairs. (D) Restriction map of the Anfus3 [mpkB]

(AN3719) locus and corresponding gene replacements for deletion,

sgfp and ctap epitope taggings. (E–G) Southern results for Anfus3

[mpkB] gene replacements for sgfp, ctap and deletion. Bands

produced by the restriction enzymes are compatible with the

theoretical map of the Anfus3 [mpkB] locus. Blue bars indicate the

regions where the Southern probes bind.

(TIF)

Table S1 SEQUEST Multiple Consensus Report of AnFus3

[MpkB]::cTAP tag and sGFP identifications after nano-LC-ESI-

MS2.

(XLS)

Table S2 SEQUEST Multiple Consensus Report of VeA::cTAP

tag identifications in wild type after nano-LC-ESI-MS2.

(XLS)

Table S3 SEQUEST Multiple Consensus Report of VeA::cTAP

tag identifications in mpkBD strain after nano-LC-ESI-MS2.

(XLS)

Table S4 SEQUEST Multiple Consensus Report of AnSte7

[MkkB]::cTAP tag identifications after nano-LC-ESI-MS2.

(XLS)

Table S5 SEQUEST Multiple Consensus Report of AnSte7

[MkkB]::cTAP tag identifications in steCD strain after nano-LC-

ESI-MS2.

(XLS)

Table S6 SEQUEST Multiple Consensus Report of AnSte50

[SteD]::cTAP tag identifications after nano-LC-ESI-MS2.

(XLS)

Table S7 Fungal strains used in this study.

(DOC)

Table S8 Plasmids employed in this study.

(DOC)

Table S9 Oligonucleotides utilized for plasmid constructions

and northern hybridizations.

(DOC)

Video S1 Time-lapse analysis of the subcellular movements of

the AnSte7-GFP fusion along the fungal cells. Individual focal

planes were captured with a spinning disc confocal microscope at

2 min intervals (total 26 min). AnSte7 protein moves in an

internuclear manner. The nuclei were visualized by mRFP::His-

tone2A fusion protein. Green spot leaves the first nucleus and

shortly touches the plasma membrane (zigzag movement) and

sticks to the envelope of the next nucleus. Some spots of the
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AnSte7 are static (immobile dot at the hyphal tip). The video is

presented at a rate of 5 frames/second.

(MOV)

Video S2 Time-lapse capture of the subcellular movements of

the AnSte50-GFP fusion within the fungal cell. Single focal

planes were captured at 2 min intervals (total 22 min). AnSte50

protein moves to the nucleus (red), hits the nuclear envelope or

nucleus and moves in a retrograde direction. Due to the single

focal plane, spot disappears at 6 min. After 6 min, spot

movement can be tracked again. The video speed is 5 frames/

second.

(MOV)

Video S3 Time-lapse analysis of the subcellular movements of

the AnSte7-AnFus3 complexes (yellow dot) along the fungal

hypha. AnSte7-Fus3 complexes move in a retro and anterograde

direction in comparison to the hyphal tip (upper left). These

complexes move between the nuclei, which were visualized by

mRFP::Histone2A fusion. Single focal layer images were captured

at 1 min intervals (total 17 min). The video was produced at a

setting 5 frames/second.

(MOV)

Video S4 Time-lapse analysis of the subcellular dynamics of the

AnSte50-AnFus3 complexes (yellow dot) in the fungal hypha.

Single focal pictures were taken at 2 min intervals (total 58 min,

48 min is shown). This movie shows the movement of the

AnSte50-AnFus3 complexes between two nuclei. Protein com-

plexes (yellow dot) leave the first nucleus (visualized by

mRFP::Histone2A fusion) and move to the second one. While

moving to the second one, the complexes slightly touch the plasma

membrane. Video is presented by using the setting 5 frames/

second.

(MOV)

Video S5 Retrograde translocation of the AnSte11-Ste7 protein

complexes along the fungal hypha. AnSte11-Ste7 complexes move

backwards from the hyphal tip. They leave the membrane and

touch the nucleus. They also accumulate at septa (faint immobile

yellow dot). Single focal planes were captured at 2 min interval

(total 54 min, 28 min is shown). The video is presented at the

speed of 5 frames/second.

(MOV)

Video S6 Time-lapse analysis of the migration of AnSte11-Ste7

complexes from the plasma membrane to the nucleus. Membrane-

tethered complexes (yellow spots) slowly move to the nucleus (red).

The movie was captured at 1 min interval (total 39 min). 5

frames/second.

(MOV)
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the putative pheromone sequences, Bruce L. Miller (University of Idaho)

for the steA, and Reinhard Fischer (KIT Karlsruhe) for the steC mutant.

Author Contributions

Conceived and designed the experiments: ÖB. Performed the experiments:
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