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On global convergence of consensus with nonlinear
feedback, the Lure problem, and some applications

Mingming Liu, Fabian Wirth, Martin Corless, and Robert Shorten

Abstract—We give a rigorous proof of convergence of a recently
proposed consensus algorithm with output constraint. Examples
are presented to illustrate the efficacy and utility of the algorithm.

I. INTRODUCTION

We consider nonlinear systems described by

x(k + 1) = P (k)x(k) + µ
(
r − g(x(k))

)
e (1)

where x(k) ∈ Rn, P (k) is a n × n row stochastic matrix,
e = [1 1 . . . 1]T , µ and r are scalars while g is a scalar valued
function. Equation (1) describes a consensus problem subject
to an output constraint. It basically says that if consensus
is achieved, it must be achieved subject to the equilibrium
constraint g(x∗) = r. That is, at equilibrium

g(x∗) = r, (2)

with x∗i = x∗j for all i, j ∈ {1, 2, ..., n}. Equation (1) is of in-
terest as it arises in many situations in the study of the internet
of things (IOT). For example, in some situations a group of
agents are asked to achieve a fair allocation of a constrained
resource; TCP is an algorithm that strives to achieve this
objective in internet congestion control. Recently, similar ideas
have been applied in the context of the charging of electric
vehicles, smart grid applications, and in the regulation of pol-
lution in an urban context [1]–[3]. A second application arises
when one wishes to optimise an objective function subject to
certain privacy constraints. For example, collaborative cruise
control systems are emerging in which a group of vehicles on
a stretch of road share information to determine an advised
speed limit that minimises fuel consumption of the swarm
subject to some constraint (traffic flow, pollution constraints)
[4]. Since each car is individually optimised for a potentially
different speed, the technical challenge is for the group of cars
to agree on a common speed without an individual revealing
any of its inner workings to other vehicles. Another example in
this direction arises in the context of deploying services from
parked cars as part of an IBM Research project. Here, privacy
preserving algorithms of the form of (1) have been deployed
and demonstrated to show great promise in the context of load
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balancing across batteries from a fleet of parked vehicles [5].
Other examples of this nature abound. For example, in many
applications a number of sensing devices are asked to agree on
a common value (a consensus problem). Each device is subject
to some sensing error. The objective is then to find the common
value that is most likely; namely, minimises some group-
wide uncertainty without the individual uncertainty functions
being revealed to other agents. The proliferation of such
applications is a direct consequence of large scale connectivity
of both devices and people. This connectivity has given rise
to a new wave of research focussed on addressing societal
inefficiencies in a manner that has hitherto been impossible
[6], [7]. At the heart of these engineering applications is the
idea that individual things (agents) orchestrate their behaviour
to achieve a common goal. Typically, these problems have a
common property in that one tries either implicitly or explicitly
to solve a consensus problem with an input. As we have
mentioned, for reasons of privacy, usually one does not attempt
to solve such problems in a fully distributed manner. Neither,
for reasons of robustness, scale, and communication overhead,
does one attempt to solve them in a centralised manner.
Rather, one uses a mix of local communication, and limited
broadcast information, to solve these problem in a manner
that conceals the private information of each of the individual
agents. Implicit and explicit consensus algorithms that exploit
local and global communication strategies are proposed and
studied in [8]. Equation (1) is perhaps the simplest algorithm
of the explicit consensus algorithm with inputs, admitting a
very simple intuitive understanding, which can be explained
as follows. It is well known that a row stochastic matrix P
operates on a vector x ∈ Rn such that max(x) − min(x) ≥
max(Px)−min(Px) where max(x) and min(x) are defined as
the maximum and minimum component in vector x, respec-
tively. Since the addition of

(
r − g(x(k))

)
e does not affect

this contraction, intuition suggests that xi(k) − xj(k) → 0
as k increases and eventually, the dynamics of (1) will be
governed by the following scalar Lure system:

y(k + 1) = y(k) + µ(r−g(y(k)e)), (3)

with xi(k) ≈ y(k) asymptotically for all i. Intuition further
suggests, as long as (3) is stable, then so is (1). A plausibility
argument along these lines, in support of (1), is given in [8].
However, no formal stability proof is given in that paper.
Our objective in this brief note is to address this and to
establish conditions on the function g for which global uniform
asymptotic stability is assured, thereby giving a rigorous proof
of convergence in the process. The general setup we study
can be formulated as a special case of the systems studied in
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[9]. In this reference the authors prove local synchronization
results for a general class of nonlinear time-varying systems.
In contrast to the assumptions of that paper we require fewer
differentiability assumptions and state conditions which ensure
global convergence. Another contribution of the present paper
is to illustrate several generic situations from practical IOT
based optimisation problems where this algorithm applies.

II. NOTATION, CONVENTIONS AND PRELIMINARY
RESULTS

1. Notation. We denote the standard basis in Rn by the vec-
tors e1, . . . , en. Note that e =

∑n
i=1 ei. A matrix P ∈ Rn×n

is called row stochastic, if all its entries are nonnegative
and if all its row sums equal one. The row sum condition
is equivalent to Pe = e, that is, e is an eigenvector of P
corresponding to the eigenvalue 1. Hence there is a single
transformation which achieves upper block triangularisation
of all row stochastic matrices. Let {v2, . . . , vn} be a basis for
the n− 1 dimensional subspace e⊥ := {x ∈ Rn : eTx = 0}.
Then {e, v2, . . . , vn} is a basis of Rn. Consider now the trans-
formation matrix T :=

[
e v2 . . . vn

]
which represents a

change of basis from the standard basis to the new basis. Under
this transformation, a row stochastic matrix P is transformed
as follows:

T−1PT =

[
1 c
0 Q

]
. (4)

2. Facts about consensus. Given a sequence of row stochas-
tic matrices {P (k)}k∈N, consider the time-varying linear sys-
tem

x(k + 1) = P (k)x(k) . (5)

A solution of (5) is represented by the left products of the
matrix sequence in the following sense: a sequence {x(k)}k∈N
is a solution of (5) corresponding to the initial condition
x(0) = x0 if and only if for all k ∈ N,

x(k) = Φ(k)x0 (6)

where
Φ(k) := P (k − 1) · · ·P (0) , ∀k ∈ N . (7)

The sequence {P (k)}k∈N is called weakly ergodic if the
difference between each pair or rows converges to zero, i.e. if
for all i, j we have

lim
k→∞

(
eTj − eTi

)
Φ(k) = 0 . (8)

This is equivalent to system (5) being a consensus system,
that is, every solution {x(k)}k∈Rn of (5) satisfies

lim
k→∞

xj(k)− xi(k) = 0 (9)

for all i, j. The sequence {P (k)}k∈N is strongly ergodic if
it is weakly ergodic and, in addition, the limit limk→∞ Φ(k)
exists. By a result of Chatterjee and Seneta [10] weak and
strong ergodicity are equivalent for left products of row
stochastic matrices. This is equivalent to every solution of (5)
satisfying

lim
k→∞

x(k) ∈ E . (10)

or, equivalently,
lim
k→∞

Φ(k)x0 ∈ E (11)

for all x0 ∈ Rn where E := span{e} is the space of consensus
vectors.

We call the sequence {P (k)}k∈N uniformly strongly er-
godic, if all tail sequences {P (k)}∞k=k0 are strongly ergodic
for all k0 ∈ N. Note that a sequence can be strongly ergodic
and not uniformly strongly ergodic. For instance, if one of the
matrices in the sequence has rank 1 and all the subsequent
matrices are the identity matrix.

Using the transformation (4) a system equivalent to (5) is
given by

z(k + 1) = T−1P (k)Tz(k)

T−1P (k)T :=

[
1 c(k)
0 Q(k)

]
.

(12)

It is then clear that {P (k)} is strongly ergodic if and only if

lim
k→∞

Q(k) . . . Q(0) = 0 . (13)

A useful property in the study of products of row stochastic
matrices is the observation that for any row stochastic matrix
P we have

min(x) ≤ min(Px) ≤ max(Px) ≤ max(x) (14)

for all x ∈ Rn, where for any vector y ∈ Rn,

min(y) := min{y1 . . . , yn} , max(y) := max{y1 . . . , yn} .

As the associated difference of maximum and minimum plays
the role of a Lyapunov function we introduce the notation

V (x) := max(x)−min(x) . (15)

Clearly, (14) implies that V (Px) ≤ V (x). Also, the sequence
{P (k)}k∈N is strongly ergodic, if and only if

lim
k→∞

V
(
Φ(k)x0

)
= 0 (16)

for all x0 ∈ Rn where Φ(k) is given by (7).
In this note the standard norm used is the Euclidean norm

‖x‖ =
√
xTx. Note that any vector x ∈ Rn can be uniquely

decomposed as
x = xe+ x⊥

where
x := (1/n)eTx (17)

is the mean of the components of x and

x⊥ := x− xe ∈ e⊥ , (18)

i.e. eTx⊥ = 0. Hence

dist(x,E) = ‖x⊥‖ (19)

where dist(x,E) := inf{‖x − z‖ : z ∈ E} is the distance
of a vector x ∈ Rn to the consensus set E. Note also that
V (x) = V (x⊥) and ‖x⊥‖∞ ≤ V (x⊥) ≤ 2‖x⊥‖∞ where, for
any vector z ∈ Rn, ‖z‖∞ = maxi |zi| .
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III. CONSENSUS UNDER FEEDBACK

Consider a sequence of row stochastic matrices {P (k)}k∈N
and a continuous function G : Rn → R. Then, the system,

x(k + 1) = F (k, x(k))
F (k, x) := P (k)x+G(x)e

(20)

can be regarded as consensus system under feedback. In
later statements, further differentiability assumptions will be
imposed on G as required. Associated with (20) we consider
the one-dimensional system

y(k + 1) = h(y(k))
h(y) := y +G(ye) .

(21)

This is the aforementioned Lure system and, as we shall see,
the dynamics of the consensus system (20) is strongly related
to the dynamics of (21). Unless stated otherwise we consider
the systems (20) and (21) with initial time k0 = 0. A few
comments on results that hold uniformly with respect to all
initial times are made where appropriate.

A. Local Stability Results

We begin with the following elementary observations.

Lemma 1 Let {P (k)}k∈N be a sequence of row stochastic
matrices and G : Rn → R. If {y(k)}k∈N is a solution of (21)
then {y(k)e}k∈N is a solution of (20).

Proof: This follows from P (k)e = e.
The next result tells us that the consensus system under
feedback (20) is also a consensus system.

Lemma 2 Let {P (k)}k∈N be a sequence of row stochastic
matrices which is strongly ergodic. Then for every solution
{x(k)}k∈N of (20) we have

lim
k→∞

dist (x(k), E) = 0 . (22)

Proof: Consider any solution {x(k)}k∈N of (20) and let
x0 = x(0). Since {P (k)}k∈N is strongly ergodic we have
limk→∞ V (Φ(k)x0) = 0, where Φ(k) is given by (7). On
the other hand,

V (x(k + 1)) = V (P (k)x(k) +G(x(k))e)

= V (P (k)x(k)) .

This shows by induction that for all k ∈ N we have
V (x(k)) = V (Φ(k)x0) . Hence, limk→∞ V (x(k)) = 0,
which is equivalent to limk→∞ xj(k)− xi(k) = 0 for all i, j.
This is the same as the desired result (22).

We now consider the local stability of (20) and see that it is
determined by the stability of the induced system (21) on the
consensus space. As we have no global concerns no Lipschitz
property of G is required. Initially, it is sufficient that G be
continuous.

Theorem 3 Let {P (k)}k∈N be a strongly ergodic sequence
of row stochastic matrices and G : Rn → R be continuous.
Suppose that y∗ is a locally asymptotically stable fixed point

of the one dimensional system (21). Then y∗e is a locally
asymptotically stable fixed point at time k0 = 0 for (20).

If the sequence {P (k)}k∈N is uniformly strongly ergodic,
then y∗e is asymptotically stable for all initial times k0 ∈ N.

Proof: Suppose that y∗ is a locally asymptotically stable
fixed point for system (21). Let W be a local Lyapunov
function which guarantees this stability property. That is,
W (y∗) = 0 and there is an open neighborhood U of y∗ such
that W (y) > 0 and W (h(y)) < W (y) for all y ∈ U \ {y∗}.
Without loss of generality we may assume U to be a forward
invariant set of (21). Define the arithmetic mean of the entries
of x ∈ Rn by

x̄ := (1/n)eTx . (23)

For ε > 0 such that W−1([0, ε]) ⊂ U is a compact set we
may choose δ > 0 sufficiently small, so that

W (h(y) + d) < ε for W (y) < ε and |d| ≤ δ .

This is possible by continuity of all the functions involved and
by the decay property of the Lyapunov function W .

Now note that for any x ∈ Rn, Px = P (xe + x⊥) =
xe+ Px⊥. Hence

Px− x = Px⊥ = (1/n)eTPx⊥ . (24)

Given a sufficiently small ε > 0 and an appropriate δ as above,
choose η > 0 such that V (x) ≤ η and W (x̄) ≤ ε implies for
any row stochastic matrix P that

|Px− x|+ |G(x)−G(xe)| < δ .

This is possible by uniform continuity of G on a bounded
neighborhood of y∗e. Consider now the neighborhood of y∗e
given by

Nε := {x ∈ Rn : x ∈ U, W (x) < ε, V (x) < η} .

We claim that Nε is forward invariant at all times k ∈ N.
Indeed, if x(k) ∈ Nε, then we obtain

x(k + 1) = P (k)x(k) +G(x(k))

= x(k) +G(x(k)e) + d

= h(x(k)) + d

where d = P (k)x(k) − x(k) + G(x(k)) − G(x(k)e). Hence
|d| < δ from which it follows that W (x(k+1)) < ε. Referring
to the argument in the proof of Lemma 2

V (x(k + 1)) = V (P (k)x(k)) ≤ V (x(k)) < η.

As ε, η were arbitrary, this shows stability of y∗e. To show
local attractivity, let x0 ∈ Nε for ε > 0 sufficiently small so
that stability holds. Note that by Lemma 2 and by stability we
have that ω(x0) ⊂ Ue ⊂ E where ω(x0) is the ω-limit set
of the solution corresponding to x0. Suppose that ye ∈ ω(x0)
and y 6= y∗ . Then as the trajectory starting in ye converges
to y∗e it follows that y∗e ∈ ω(x0). However, the assumption
that y∗e and ye are in the ω-limit set contradicts the stability
of y∗e. Hence {x(k)}k∈N converges to y∗e.

We now extend the previous result to local exponential
stability. To this end we call a sequence of row stochastic
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matrices {P (k)}k∈N exponentially ergodic if it is strongly
ergodic and there exist scalars M ≥ 1, 0 < r < 1 such that
for all k ∈ N

‖Φ(k)− Φ∞‖ ≤Mrk .

The sequence is called uniformly exponentially ergodic, if it
is uniformly strongly ergodic and the constants M , r can be
chosen such that for all k, k0 ∈ N with k ≥ k0 there exists a
matrix Φ∞ such that ‖Φ̃(k, k0)− Φ∞‖ ≤Mr(k−k0); where

Φ̃(k, k0) := P (k − 1) · · ·P (k0) .

Theorem 4 Let {P (k)}k∈N be an exponentially ergodic. se-
quence of row stochastic matrices and G : Rn → R be contin-
uously differentiable. Suppose that y∗ is a locally exponentially
stable fixed point of the one dimensional system (21). Then,
y∗e is a locally exponentially stable fixed point at time k0 = 0
for (20). If the sequence {P (k)}k∈N is uniformly exponentially
ergodic, then y∗e is locally uniformly exponentially stable.

Proof: Consider the linearisation of the one-dimensional
map defining (21). By the assumption of exponential stability
its modulus must satisfy

|h′(y∗)| < 1 (25)

where h′(y∗) = 1 + DG(y∗e)e and DG is the derivative of
G, which we interpret as a row vector. We now compute the
derivative of F with respect to x at x = y∗e and time k to
obtain

∂F

∂x
(k, y∗e) = P (k) + eDG(y∗e). (26)

If we now consider the transformation T which results in
in (12) and using T−1e = e1 we see that

T−1
∂F

∂x
(k, y∗e)T =

[
1 c(k)
0 Q(k)

]
+ e1DG(y∗e)T . (27)

Two things are noticeable when considering this equation. First
the resulting transformed matrix is of the form[

λ c̃(k)
0 Q(k)

]
, (28)

where only the first row is affected by G and λ is independent
of k. Secondly,

λ = 1 +DG(y∗e)e = h′(y∗) . (29)

Hence |λ| < 1. By assumption ‖Q(k)Q(k − 1) . . . Q(0)‖ ≤
Mrk for suitable constants M ≥ 1, r ∈ (0, 1). It now
follows that the linearised system of (20) at the fixed point
y∗e is exponentially stable. It follows by standard linearisation
theory, that the nonlinear system is locally exponentially stable
at y∗e. If the sequence Q(k)Q(k − 1) . . . Q(0) converges
to zero uniformly exponentially, this shows local uniform
exponential stability of y∗e for the nonlinear system.

B. Global Stability Results

To obtain global stability results we first need the following
boundedness result.

Lemma 5 Let {P (k)}k∈N be a strongly ergodic sequence of
row stochastic matrices and suppose that G : Rn → R is
continuous and satisfies the following conditions.

(i) There exists an ε > 0 such that G satisfies a Lipschitz
condition with constant L > 0 on the set

Bε(E) := {x ∈ Rn : dist(x,E) ≤ ε} .

(ii) There exists constants β, γ > 0 such that

|h(y)| ≤ |y| − γ when |y| ≥ β

where h(y) = y +G(ye).
Then every trajectory of (20) is bounded.

Proof: Consider any solution {x(k)}k∈N of (20) with
x(0) = x0. By Lemma 2 there exists a k0 ∈ N such that
x(k) ∈ Bε(E) for all k ≥ k0. We can express x(k) as x(k) =
x(k)e + x⊥(k) where x(k) = (1/n)eTx(k) and x⊥(k) :=
x(k) − x̄(k)e. It follows from (22) that limk→∞ ‖x⊥(k)‖ =
0. Hence boundedness of the sequence {x̄(k)}k∈N implies
boundedness of {x(k)}k∈N. Considering the evolution of x(k)
we obtain that, for k ≥ k0,

|x(k + 1)| = |P (k)x(k) +G
(
x(k)e+ x⊥(k)

)
|

≤ |x(k) +G(x(k)e)|
+ |P (k)x(k)− x(k)|
+ |G

(
x(k)e+ x⊥(k)

)
−G(x(k)e)|

≤ |h(x(k))|+ |(1/n)eTP (k)x⊥(k)|+ L‖x⊥(k)‖
≤ |h(x(k))|+ L̃‖x⊥(k)‖

where l := supk∈N(1/n)‖eTP (k)‖ and L̃ := l + L. Hence

|x(k + 1)| ≤ |h(x(k))|+ L̃‖x⊥(k)‖ .

It now follows from hypothesis (ii) that whenever |x̄(k)| ≥ β,
we must have

|x̄(k + 1)| ≤ |x̄(k)| − γ + L̃‖x⊥(k)‖.

Since limk→∞ ‖x⊥(k)‖ = 0, there exists a k∗ ≥ k0 such that
L̃‖x⊥(k)‖ ≤ γ for all k > k∗. Thus,

|x̄(k + 1)| ≤ |x̄(k)| when k ≥ k∗ and |x̄(k)| ≥ β.

This implies boundedness of {x̄(k)}k∈N and completes the
proof.
Comment: As an example of a general class of functions
which satisfy hypothesis (ii) of Lemma 5, consider any strict
contraction mapping h on R, i.e., for a suitable constant c ∈
(0, 1),

|h(x)− h(y)| ≤ c|x− y| , ∀x, y ∈ R.

By the Banach contraction theorem, there is a unique fixed
point y∗ such that h(y∗) = y∗. Hence,

|h(y)| ≤ |h(y)− y∗|+ |y∗| ≤ c|y − y∗|+ |y∗|
≤ c|y|+ (1 + c)|y∗| = |y| − (1− c)|y|+ (1 + c)|y∗|.

and hypothesis (ii) is assured with β = 1+c
1−c |y

∗|.
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Finally, we state a global result on asymptotic or exponential
stability. In spirit, the following two results are closely related
to [9, Theorem 1]. Note that we obtain a global result and are
only concerned with fixed points, not general attractors. Also
no assumption on the invertibility of the Jacobian is required.

Theorem 6 Let {P (k)}k∈N ⊂ Rn×n be a strongly ergodic
sequence of row stochastic matrices and and suppose that
G satisfies all conditions of Lemma 5. If y∗ is a globally
asymptotically stable fixed point of (21) then, y∗e is a globally
asymptotically stable fixed point for system (20).

Proof: The assumptions of Theorem 3 are met and
so it only remains to show global attractivity. Note that, by
Lemma 5 all solutions of (20) are bounded. By Lemma 2 the
ω-limit sets corresponding to all initial conditions lie in E. So
consider an ω-limit set ω(x0) and assume that ye ∈ ω(x0)
but y 6= y∗. Let U be a neighborhood of y∗e on which
local stability holds according to Theorem 3. We may assume
dist(ye, U) > 0. As ye ∈ E it follows from Lemma 1 that
all solutions x(·; k0, ye) with the initial condition x(k0) = ye
satisfy limk→∞ x(k; k0, ye) = y∗e . Note that on E the system
is time-invariant, so that there exists a time K, such that for
all k0 we have x(k0 + K; k0, ye) ∈ U . By assumption (i)
the maps x 7→ P (k)x+G(x)e are equicontinuous on Bε(E).
Choose η > 0 such that

Bη,∞(E) := {x ∈ Rn ; dist∞(x,E) = min
r∈R
‖x− re‖∞ < η}

is contained in Bε(E). The set Bη,∞(E) is forward invariant
under all F (k, ·), because if dist∞(x,E) = ‖x− rxe‖∞ < η,
then as ‖P‖∞ = 1 for all row stochastic matrices

dist∞(P (k)x + G(x)e, E) ≤ ‖P (k)(x − rxe)‖∞ < η .

Thus there exists a sufficiently small neighborhood U2 of ye
such that for all k0 ∈ N the solution corresponding to the ini-
tial condition x(k0) ∈ U2 satisfies x(k0 +K; k0, x(k0)) ∈ U .
But then by local stability, it follows that x(k; k0, x(k0)) ∈ U
for all k ≥ k0 + K. We thus arrive at a contradiction,
if ye ∈ ω(x0), then there exists a sequence k` → ∞ so
that limx(k`; 0, x0) = ye. But then x(k`; 0, x0) ∈ U2 for
a sufficiently large ` and hence x(k; 0, x0) ∈ U for all
k ≥ k` + K. Hence no subsequence of {x(k)} converges
to ye. This contradiction completes the proof.

The previous result can be sharpened, if we assume expo-
nential stability of the fixed point of (21). We omit the proof,
which uses the same arguments as the proof of Theorem 6.

Theorem 7 Let {P (k)}k∈N ⊂ Rn×n be a uniformly exponen-
tially ergodic sequence of row stochastic matrices and suppose
that G : Rn → R is differentiable and satisfies conditions
(i) and (ii) of Lemma 5. Then y∗e is globally uniformly
exponentially stable for system (20).

C. Switched Systems

Given a compact set of row stochastic matrices P ⊂ Rn×n,
we may consider the switched system

x(k + 1) = P (k)x(k) +G(x(k))e , (30)

where P (k) ∈ P . The results obtained so far have some im-
mediate consequences for consensus under feedback with arbi-
trary switching. It is well-known that all sequences {Pk}k∈N ∈
PN are strongly ergodic if and only if all sequences in PN are
uniformly exponentially ergodic [9]. In this case we call P
uniformly ergodic. The rate of convergence towards E is in
fact given by the projected joint spectral radius [9].

With this in mind the results obtained so far have immediate
consequences for switched systems of the form (30). We note
one of these consequences.

Corollary 8 Let P be a compact set of row stochastic matri-
ces that is uniformly ergodic and suppose that G : Rn → R
is differentiable and satisfies conditions (i) and (ii) of Lemma
5. Then y∗e is globally uniformly exponentially stable for the
switched system (30) under arbitrary switching.

IV. APPLICATIONS

In this section, we show how to apply the results of the
previous sections to solve the optimisation problems. The
following set-up resembles that in [8], [11]. The significant
extension here is the application of (20) to solve optimised
consensus problems, rather than the regulation problems with
fairness constraints that were considered in those papers.
Specifically, we consider a scenario in which there are N
agents connected in a network through communication links.
Let N denote the set {1, 2, ..., N} for indexing the agents. We
assume that each communication link between the agents is
directional and time-varying. Associated with each agent is a
utility function f that has a different meaning depending on
the application at hand. Finally, we assume that each agent
has access to a simple broadcast signal; and so there is no
significant constraint on the communication topology. This
setting is depicted in Fig.1 [11].

Fig. 1. Schematic diagram of the optimisation framework [11]

The problem we wish to solve is to find an optimal
consensus point satisfying x∗ = y∗e such that the following
optimisation problem is solved:

minimise
x∈RN

N∑
i=1

fi(xi)

subject to: xi = xj , ∀i, j ∈ N .

(31)
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We wish to use an iterative feedback scheme of the form
(20) to solve the optimisation problem. We will require that
(31) has a unique solution and derive the specific form for G
in (20) from first order optimality conditions. To this end, it
follows from elementary optimisation theory that when the fi’s
are strictly convex, the optimisation problem will be solved if
and only if there exists a unique y∗ ∈ R satisfying

N∑
i=1

f ′i(y
∗) = 0, (32)

where f ′ denotes the first derivative of the utility function
f . With this in mind we apply a feedback signal G(x) =
−µ
∑N
i=1 f

′
i(xi) where µ ∈ R is a parameter to be determined.

This gives rise to the following dynamical system

x(k + 1) = P (k)x(k)− µ
N∑
i=1

f ′i(xi(k))e (33)

where we assume that the sequence {P (k)}k∈N satisfies the
conditions of uniform strong ergodicity specified in Section II.
As we assume that the fi are strictly convex, their derivatives
are strictly increasing. We assume that each f ′i has a strictly
positive and bounded growth, i.e., there exist constants d(i)min

and d(i)max; such that for any a 6= b

0 < d
(i)
min ≤

f ′i(a)− f ′i(b)
a− b

≤ d(i)max ∀i ∈ N. (34)

We claim that provided µ is chosen according to

0 < µ < 2

(
N∑
i=1

d(i)max

)−1
(35)

then (33) is uniformly globally asymptotically stable at the
unique optimal point x∗e of the optimisation problem (31).
First, we consider the scalar system of (33) which is given by

y(k + 1) = y(k)− µ
N∑
i=1

f ′i(y(k)). (36)

Note first that the fixed point condition for (36) is∑N
i=1 f

′
i(y
∗) = 0. So that a fixed point y∗ of (36), gives

rise, by Lemma 1 to a fixed point of (33), which satisfies
the necessary and sufficient conditions for optimality (32).
Now, we wish to use Theorem 6 to show global asymptotic
stability. To this end, we need to verify the system (33) satisfies
all the conditions required in Theorem 6. The condition (35)
ensures in fact that the right hand side of (36) is in fact a strict
contraction on R. It follows from our comments after Lemma
5 that the assumption (ii) of Lemma 5 is satisfied. To show
the Lipschitz condition (i) note that by (34) each f ′i is globally
Lipschitz. As the coordinate functions are globally Lipschitz
and sums of globally Lipschitz functions retain that property
we obtain condition (ii).

To illustrate this application we consider an application with
20 agents with fi(xi) = ai ·x2i +bi ·xi+ci where ai, bi and ci
are constant parameters chosen in the range (0,1). In addition,
the time-varying topology of the network is designed such

that the uniform strongly connectivity of agents is guaranteed.
µ is chosen to be 0.01. This is accordance with (33). The
simulation results are presented in Figure 2.
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Fig. 2. Dynamics of the state variables x(k) with η = 0.01 and µ = 0.01

V. CONCLUSION

In this note we present a rigorous proof of stability and
convergence of a recently proposed consensus system with
feedback. Examples are given to illustrate the usefulness of
the algorithm. For other smart grid applications see [3].
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