
An Ancestor based Extension to Differential
Evolution (AncDE) for Single-Objective

Computationally Expensive Numerical Optimization
Rushikesh Sawant, Donagh Hatton, Diarmuid P. O’Donoghue

Department of Computer Science,
Maynooth University,
Co. Kildare, Ireland.

diarmuid.odonoghue@nuim.ie

Abstract—This paper presents the Ancestral Differential
Evolution (AncDE) algorithm, which extends the standard
Differential Evolution (DE) algorithm by adding an archive of
recently discarded ancestors. AncDE adds the ability to
occasionally compute difference vectors between current and
archived solutions, using these inter-generational difference
vectors in place of traditional difference vectors. Results for
AncDE are presented for the CEC2015 Bound Constrained
Single-Objective Computationally Expensive Numerical
Optimization Problems using AncDE/best/1/bin. Summary results
are included for standard DE for comparison purposes and these
show that AncDE generally outperforms standard DE. These
results suggest that the inter-generational difference vectors can
help overcome some local optima, leading to faster convergence
towards the global optimum. AncDE involves the very small
overhead of storing and updating the ancestral cache. This paper
introduces two empirically determined stochastic rates; one for
updating the ancestral cache and the other for using an ancestral
difference vector in place of the normal difference vector.

Keywords—differential evolution; ancestror archive; inter-
generation difference vector

I. INTRODUCTION
Evolutionary algorithms apply the general Darwinian

strategy of "Survival of the Fittest" to the task of generating
high-quality solutions for challenging and sometimes ill-
defined problems. Among the attractive features of
evolutionary algorithms are their ability to generate solutions
across a very wide range of problem types and their ability to
generate solutions when alternative approaches fail.

But an often overlooked aspect of evolutionary computing
concerns the role played by the laws of Mendelian inheritance.
In this paper we focus on Mendel’s Second law - “The Law of
Independent Assortment”. This asserts that separate genes for
separate traits are passed independently - and that this genetic
information is reliably transferred from the parents directly to

 The authors would like to thank the Irish Research Council
for Science, Engineering and Technology (IRCSET), the John
Pat Hume scholarship and the Erasmus Mundus DESEM
program for part funding this project and R. Storn and K Price
for the DE code, extended to create AncDE.

the offspring. It is this second part of the “Law of Independent
Assortment” that is challenged by our particular extension to
the (otherwise) standard of Differential Evolution (DE) [1]
algorithm. That is, we add an extra-Mendelian inheritance
pathway that stochastically allows genetic information from a
cache of recent ancestors to influence the current population.
We can think of this as an infrequent “second chance” for some
genetic information, helping broaden a search space that
perhaps became stuck in a local optimum.

Evolutionary algorithms that maintain not just the current
population, but that also maintain a population of recent
solutions have been called archive algorithms [2]. However,
very few of these archive algorithms have been developed. One
notable exception has been the Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) [3]. NSGA-II combines the
parent and offspring populations together forming a larger
combined population from which solutions are selected – and
from which the subsequent generation is generated. In contrast
to NSGA-II, the cache of ancestors introduced in this paper
allows significantly older ancestors to conference the current
population.

A few other algorithms have explored the use of old
ancestral archives. References [4] [5] [6] explored the use of
old ancestor archives to support a template-driven genetic
repair process, used to generate solutions to combinatorial
optimization problems. This work explored ancestors that were
up to three generations older than the parent population – up to
great-great-grandparents of a newly generated population of
solutions.

The use of a significantly older archive of solutions has also
been explored [7] [8], using a stochastic process to update the
ancestor archive - this work again focused on combinatorial
optimization problems. Some of the surprising outcomes of this
work were that best results were often produced using archives
that were tens of generations older than the current population.
While evolutionary algorithms can be slow to converge for
large combinatorial optimization problems, producing the best
results using such ancient archives was considered very
surprising.

This paper describes the AncDE algorithm that incorporates
some of the lessons learned from [7] [8] and attempts to apply

978-1-4799-7492-4/15/$31.00 ©2015 IEEE

these to the (otherwise standard) Differential Evolution (DE)
algorithm [1]. The main modifications made to the DE
algorithm concern firstly, the introduction and maintenance of
an archive of recent solutions. The second modification
allowed the (occasional) calculation of difference vectors
between a solution from the population and the ancestral cache.
It should be pointed out that much of the operation of AncDE
is identical to DE – what we have introduced is an additional
(supplemental) extension to the algorithm that is used to
calculate a modified difference vector. The implementation of
AncDE described in this paper was built on a standard DE
implementation – introducing as few modifications to the
algorithm as possible.

II. DIFFERENTIAL EVOLUTION (DE)
We first describe the DE algorithm itself, before we

describe the modifications required for the ancestral extension
required for the AncDE algorithm.

A. Differential Evolution
Differential evolution (DE) is an evolutionary based

optimization algorithm that generates high-quality solutions to
numeric optimization problems. DE begins by creating a
population of random solutions (called agents) to the given
problem. After this initialization step DE applies a series of
update steps to help improve the quality of these solution
agents, as measured by the objective function being optimized.
In effect DE then moves these agents around the problem
space, in such a way that their new positions result in an
improvement in the objective function.

For simplicity this paper will focus on the best/1/bin variant
of DE, noting that this has been found to be a particularly
effective version of the algorithm [9]. The algorithm begins by
creating a population of random solutions (called agents) to the
given problem. An agent is selected from the population, called
the base. Then two other distinct vectors are selected from the
population and a difference vector is calculated between them,
with the result being called the difference vector. This
difference vector is then multiplied by a scalar mutation factor
F (parameter), allowing some tuning of the impact of these
difference vectors upon the population. This difference vector
represents the difference between two solution agents located
within the problem space. The main novelty associated with
AncDE is that the trial vector is stochastically generated from
differential mutation and binomial crossover using the same
one base vector from the ancestral cache – as shall be discussed
in more detail below.

The difference vector is next added to the base vector and
the result is called the donor vector. The “best/1” allows for
variation in the selection of the base vector and variation in the
number of difference vectors used by variants of the DE
algorithm.

 The next step takes the existing agents and combines them
with the donor vector to create a set of trial vectors for possible
inclusion in the population. Binomial “/bin” crossover selects
elements from the parents according to a probability CR, with
elements being selected from one or other parent according to
this CR value.

The final step of DE is selection that determines whether a
new trial vector will enter the population. Selection occurs by
replacing a target vector with the corresponding trial vector if
the trial vector has a lower objective-function value (for
minimization problems). DE typically terminates when the
algorithm converges to a solution, when a maximum number of
function evaluations have been performed or when some
known solution has been reached.

We note that each of the different variations in the DE
algorithm can, in principle, also make use of our ancestral
archive of solutions. However, his paper focuses on extending
and adapting the best/1/bin variant of the DE algorithm.

III. RE-VISTING ANCIENT SOLUTIONS
While ancestral solutions are not normally retained by

evolutionary algorithms, we make a brief case for the potential
benefits that ancestor might introduce. EA are a form of
stochastic beam search, where the breadth of this beam is
determined by the population size. However, for problems
involving very large members of local optima, the breadth of
this beam may be lower than required for reliable convergence
to the global optimum. In some of these situations it might be
considered beneficial to augment the search space using a
cache of recent ancestors. We point out that while recent
ancestors might introduce some much needed diversity, they do
so without resorting to the potentially damaging impact of
“true” randomness.

When viewed from the perspective of the search space, it
may appear less surprising that a cache of ancestor may have a
beneficial impact on the final solution. We note that some other
search procedures retain and re-use past solutions or return to
previous search state. The process of backtracking used in
depth-first search returns the search process to a previous state,
while tabu search that maintains a finite list of recent states that
cannot be revisited [10]. Backtracking and tabu search can also
been seen as techniques to avoid local minima.

This paper adds to the evolutionary algorithm a small
population-sized cache of recent ancestors. This allows
calculation of difference vectors that are derived from a longer
temporal base-line – between a current vector and one that was
generated and superseded in previous generations. That is, we
suggest that in situations where AncDE provides improved
results when compared to DE, that some of this improvement
may originate from the fact that AncDE uses some ancestors
that might overcome the current (perhaps local) optimum in the
population and help AncDE to reach the global optimum.
Careful tuning of the age of these ancestors might even allow
the AncDE population to skip past some of the local optima
and converge faster upon the global optimum.

We briefly look at some other work in non-standard and
non-Mendelian inheritance theories. Recent advances in
biology have been exploring inheritance mechanisms beyond
those covered by Mendel’s inheritance laws. Among those
attracting most attention have been the Horizontal Gene
Transfer (HGT) strategies, also called lateral gene transfer
(LGT) associated with simple life forms such as viruses and the
prokaryotes (such as bacteria). Several specific mechanisms for
HGT have been proposed that transfer genetic information by

means other than sexual reproduction. A HGT mechanism
called conjugation, has previously been used to investigate
how the cost and benefit affect evolutionary outcomes [11].
Other evolutionary schemes like Lamarckian evolution and the
Baldwin effect have long been explored [12] [13].

A more controversial proposal has been for the vertical,
extra-Mendelian transfer of genetic information [14] [15]. This
proposal states that genetic information appears to have been
detected in the offspring – even though it has not been
detectable (by traditional means) in either of the parents.
However, there does appear to be a link in that the genetic
information in the offspring has been detected in a grand-parent
of that offspring. While this inheritance theory has been subject
to some criticisms information [14] is also the top rated paper
by the prestigious Faculty 1000. This paper was also the
inspiration for AncDE.

IV. ANCESTRAL DIFFERENTIAL EVOLUTION (ANCDE)
As stated earlier, much of AncDE is identical to DE. The

only modification involves the difference vector and the
information that is used to form that vector. The major
architectural change is the introduction of a second “ghost”
population of recently “deceased” ancestors. This adjunct
population is referred to as the ancestral cache.

The ancestral cache is a repository of genetic information
that is normally discarded from the current population when
new trial vectors enter the population. This cache contains
exact copies of agents that have been replaced in the original
population. The contents of this ancestral cache do not undergo
any form of modification or learning, but are stochastically
replaced by newer solutions from the main population.

As with DE the base vector is always selected from the
current population. As stated previously, the main difference
between DE and AncDE concerns calculation of the difference
vectors. The difference is still calculated between two vectors
(for AncDE/best/1/bin) – one vector being source from the
current population. AncDE makes a stochastic choice for the
origin of the second target vector that is used to calculate the
difference vector, as controlled by the aup parameter discussed
below. We refer to the result produced by this new strategy as
an ancestral difference vector – to distinguish it from the
normal DE difference vectors generated between two agents
from the current population. Thus, AncDE extends DE by
allowing this additional type of difference vector to be
calculated.

In the variant of AncDE presented in this paper, one of the
two vectors used to calculate the difference vector is sourced
from the current population – and additionally, this vector also
used as the base vector.

donor vector = base vector + F* (ancestral vector - base
vector)

We point out that AncDE retains the ability to calculate the
normal difference vector (described in section II above), but
adds the possibility of calculating this new difference vector.
Figure 1 outlines the most significant changes to the DE
algorithm, with the most significant new features highlighted

by the dotted lines. AncDE adds two significant new
parameters into the differential evolution algorithm.

A. Additional Parameters for AncDE
• arp ancestor replacement probability This parameter

controls the relative age of the ancestor archive. A
value of 1.0 will keep this archive as a duplicate of the
current population. Lower values of arp (eg 10-2) will
update the archive very infrequently, maintaining a
large ancestral (and temporal) distance between the
current population and the contents of the ancestor
archive. We generally expect that lower arp values will
result in greater distance between the ancestor cache
and the current population.

Fig. 1. Ancestral DE (AncDE) modifies DE by adding a cache of recent
ancestors and the ability to derive difference vector between an agent from
the population and one from the cache. The main modifications are highlithed
by the dotted lines above. New ancestrally-based features have obvious
parallels in (non-ancestral) normal DE.

In our most recently work, we have been experimenting
with different ancestor replacement strategies. The results
presented in this paper were produced with a strategy that only
checks the ancestor replacement rate when some vector in the
population is being replaced. (An alternate strategy we have
explored is to replace the ancestor stochastically even when the
current vector is not being replaced). The strategy presented in
this paper tends to result in older ancestors, especially during
late convergence.

• aup ancestor usage probability This controls the
frequency with which an ancestral difference vector is
used in place of the traditional DE difference vector –
between agents from the current population. Setting
aup = 0 removes these ancestral difference vectors
from consideration, while higher rates increase the
impact that archived agents have on the current
population.

stochastic
ancestor

usage

Current

Population

Ancestral

Cache

stochastic
ancestor

replacement

Ancestral difference vector Difference vector

Donor vector

These are the two parameters introduced by AncDE and
suitable values for them will be discussed in sub-section C
below.

B. Initializing the Population
No special efforts were made to initialize the population for

the CEC 2015 problems. The standard initialization procedure
for DE was adopted. Thus, the population was initialized using
random values generated uniformly from within the valid
range.

The ancestral population was initialized by taking copy of
the standard initial population. We don't give any special
treatment to the ancestral population at this point. And this is
the only point where there is a direct resemblance between
current population and ancestral population. Typically the
ancestor population is changed when new values enter the main
population, moving the older less-it values into the ancestral
cache.

C. Setting Parameters
Standard DE also offers a number of other parameters that

are also used by AncDE. Many of these parameters were
assigned values after performing preliminary ad hoc testing.

Firstly, we look at the parameters that originate with the
standard DE algorithm. These parameters were used to
generate the results for the 10D and 30D problems presented in
Table I and Table II below. For the 10D problems NP was set
to 12, F=0.6, CR=0.75, Range =75.

For the 30D problems CR the crossover probability was set
to 0.6, NP the population size was set to 25. The differential
weight F was set to 0.6. One parameter was introduced for the
CEC 2015 competition itself, limiting the range of the input
variable to -+75 and was used for all input parameters. These
parameters we used to produce all results presented in this
paper.

The two remaining parameters relate specifically to the
ancestor cache and its use. Firstly the ancestor replacement
probability (arp) that controls the relative age of the ancestor
cache was set to 0.15. In this paper this factor is significantly
moderated by the fact that this stochastic parameter was only
checked when a solution from the main population is begin
superseded. (Note: we are currently refining the best strategy to
use for ancestor replacement). Thus, during early evolution
when solutions are regularly updated, the ancestors will also be
updated frequently. However, during late convergence the
ancestor will tend to become even more ancient due to the
infrequent replacement of member of the population.

Secondly the ancestor usage probability (aup) controls the
probability that a standard difference vector will not be used,
but that the ancestral difference vector strategy will be used to
generate the trial vector instead. The results presented in Table
1 were generated using aup = 0.3, indicating that
approximately 30% of difference vectors are derived using an
ancient ancestor.

The best results produced for DE were generated with the
following parameters (the parameter set described above
produced weaker results). CR=0.95, NP the population size

was set to 55, the differential weight F was set to 0.55 and
range =75.

D. Algorithmic Variants of DE and AncDE
A number of standard algorithmic variants of standard DE

can also be applied to AncDE. However for the purposes of
this paper, only a small subset of these possibilities has been
explored. All results presented herein were generated only
using the following variants of DE/best/1/bin and
DE/rand/1/bin.

Firstly, two selection mechanisms were investigated, as
indicated by the “Best” part of Best/1/bin. Best selection
ensures that the best agent in the current population. An
alternate selection strategy was also investigated. Random
(rand) selection chooses agents with uniform probability from
within the current population. The results presented in Table 1
used only the “best” selection strategy.

The number of difference vectors that are used during the
mutation step provides one of the normal variations in the
standard DE algorithm. DE often uses use either 1 or 2
difference vectors to drive this mutation process. We note that
a difference vector is derived from the difference between 2
agents selected from the current population. The
implementation of AncDE presented in this paper uses only 1
difference vector for mutation. AncDE either uses the normal
difference vector, or it uses a difference vector that takes one
agent from the current population and one agent (only) from
the ancestral population. It is interesting to note that we
conducted a control experiment that selected both agents of a
difference vector from the ancestral population, but this did not
result in any measured improvement in performance or solution
quality. All results presented in this paper used just 1 difference
vector that involved either; a) both agents being selected from
the current (main) population or b) one agent from the current
population and one agent from the ancestral cache.

Finally, we look at the recombination step that generates
the new solution as a combination of the target vector and the
mutant vector. Binomial (bin) crossover is used for all results
presented in this paper. Because AncDE only changes the
evaluation of the difference vector, the process of crossover
remains unaffected – except for the influence that the ancestral
difference vector may have on the donor vector and the trial
vectors.

V. RESULTS
Numerical experiments were performed on a computer

with Intel® Core™ i7-3520M CPU @ 2.90GHz × 4 and 16 GB
RAM, under Ubuntu 14.04 LTS, 64-bit OS. The
implementation of AncDE was done in Java, using JDK 1.7.
Note that the results presented in this paper were generated
using Java 1.7 and its native random number generator.
Because of changes to the PRNG (pseudo-random number
generator) algorithm in Java 1.8, the results generated using
AncDE on newer versions of Java will be different (and
generally not as good). Hence, the implementation of PRNG
from Java 1.7 is explicitly included in AncDE.

TABLE I. RESULTS FOR 10D PROBLEMS

 Standard DE AncDE

Func Median Mean Best Worst Median Mean St.Dev.

1 3.29E+08 4.33E+08 2.16E+06 8.87E+07 8.84E+06 1.78E+07 2.25E+07

2 1.93E+04 2.82E+04 1.41E+04 5.91E+04 3.78E+04 3.53E+04 1.49E+04

3 7.77E+00 7.64E+00 2.48E+00 1.06E+01 5.84E+00 5.73E+00 2.11E+00

4 1.95E+03 1.99E+03 1.03E+03 2.12E+03 1.66E+03 1.63E+03 3.21E+02

5 2.58E+00 2.75E+00 1.50E+00 4.05E+00 2.66E+00 2.60E+00 6.18E-01

6 1.02E+00 9.93E-01 2.85E-01 8.20E-01 5.55E-01 5.50E-01 1.43E-01

7 1.81E+00 2.27E+00 2.94E-01 1.29E+00 5.34E-01 6.35E-01 2.91E-01

8 1.23E+01 5.25E+01 4.46E+00 9.02E+00 6.32E+00 6.26E+00 1.12E+00

9 4.08E+00 4.05E+00 3.64E+00 4.35E+00 3.93E+00 3.97E+00 2.02E-01

10 8.02E+04 1.94E+05 3.10E+04 6.99E+05 1.98E+05 2.62E+05 2.09E+05

11 6.78E+00 7.76E+00 3.58E+00 1.05E+01 6.39E+00 6.65E+00 2.00E+00

12 2.80E+02 2.79E+02 9.10E+01 4.44E+02 2.18E+02 2.24E+02 9.90E+01

13 3.29E+02 3.32E+02 3.13E+02 3.39E+02 3.24E+02 3.25E+02 6.91E+00

14 2.06E+02 2.07E+02 1.96E+02 2.15E+02 2.03E+02 2.04E+02 5.33E+00

15 4.09E+02 3.68E+02 9.93E+00 5.03E+02 4.06E+02 3.59E+02 1.50E+02

TABLE II. RESULTS FOR 30D PROBLEMS

 Standard DE AncDE

Fnc. Median Mean Best Worst Median Mean St.Dev.

1 1.11E+10 1.24E+10 1.12E+08 1.49E+09 4.45E+08 5.21E+08 3.54E+08
2 6.25E+04 6.37E+04 7.64E+04 1.76E+05 1.15E+05 1.18E+05 2.49E+04
3 2.74E+01 2.80E+01 2.05E+01 3.96E+01 2.59E+01 2.67E+01 4.48E+00
4 7.68E+03 7.77E+03 5.90E+03 7.62E+03 6.81E+03 6.78E+03 4.94E+02
5 4.27E+00 4.30E+00 3.18E+00 5.34E+00 4.27E+00 4.24E+00 5.91E-01
6 2.78E+00 2.76E+00 3.30E-01 9.31E-01 5.58E-01 5.89E-01 1.39E-01
7 2.21E+01 2.15E+01 3.31E-01 1.15E+00 5.43E-01 5.77E-01 2.08E-01
8 3.32E+04 1.07E+05 3.93E+01 2.16E+03 2.43E+02 4.48E+02 5.51E+02
9 1.38E+01 1.38E+01 1.33E+01 1.41E+01 1.38E+01 1.38E+01 2.03E-01

10 1.44E+06 2.45E+06 6.97E+06 3.83E+07 1.83E+07 1.81E+07 7.95E+06
11 3.84E+01 5.37E+01 2.79E+01 1.86E+02 3.42E+01 4.24E+01 3.44E+01
12 1.23E+03 1.14E+03 1.09E+03 1.62E+03 1.33E+03 1.37E+03 1.51E+02
13 4.51E+02 4.69E+02 3.53E+02 3.87E+02 3.66E+02 3.68E+02 9.11E+00
14 2.45E+02 2.51E+02 2.42E+02 3.20E+02 2.66E+02 2.71E+02 2.24E+01
15 1.05E+03 1.04E+03 7.80E+02 1.19E+03 9.53E+02 9.71E+02 1.23E+02

Tables I and II details the results produced by the AncDE
algorithm on the 15 problems of the IEEE CEC expensive
Numeric Optimisation problem set. These were all produced
using the same settings and parameters for all 15 problem sets,
as discussed in Section IV C above. These tables also include a
brief overview of results for the standard DE algorithm,
detailing the mean and median results for comparison
purposes. Other tests not shown in this paper suggest that the
AncDE/best/1/bin variant produced better results than
AncDE/Rand/1/bin. However, this conclusion was reached
after preliminary ad hoc testing.

Numbers displayed in boldface in Tables I and II indicate a
victory for one of the two strategies: DE and AncDE. AncDE
outperformed DE on 13 of the 15 10D problems as measured
by the mean results of each. This is echoed by the median
results, where AncDE outperforms DE on 12 of the 15
problems. Thus we conclude that AncDE performs better
overall than standard DE on these problems.

AncDE also produces better results on the more
challenging 30D problems. AncDE outperforms DE on 11 of
the 15 30D problems as measured by the mean results of each.
This is echoed by the median results, where AncDE
outperforms DE on 10 of the 15 problems. We again highlight
that this performance improvement was achieved without
additional computation, but merely involved re-visiting some
recently discarded solutions form the main population.

A. AncDE Run times
 The run times for AncDE should not differ significantly
from those of DE itself. The first overhead associated with
AncDE is storage of the ancestral population, which could in
theory become exceptionally large. However, in our work we
have limited the size of this ancestral population to be the same
size as the main population. This small ancestral population
contains a sample of the ancestors of the solutions contained in
the current population. Thus, the additional memory footprint
of AncDE is quite small.

 The most notable overhead associated with performance of
AncDE is the act of occasionally storing an ancestor, by
copying it from the current population into the ancestor cache.
Because updating the cache is stochastically controlled, this
can be a very infrequent operation.

Another overhead of AncDE concerns the two stochastic
parameters, controlling the update and use of the ancestral
vectors. Calculating and checking these stochastic values is an
overhead for AncDE. Computing the inter-generational
difference vector itself should not involve an additional
overhead, compared with the standard intra-generation
difference vectors.

The recorded runtimes for the 10D and 30D problems are
listed in Table III, with the times measured in milliseconds.
The runtime for the CEC 2015 test function T0 (involving a for
loop containing a simple function evaluation) on our test
machine was 71.

TABLE III. RUN TMES FOR THE ANCDE ALGORITHM ON THE 10D AND
30D PROBLEMS

 10D Problems 30D Problems

Func Runtime T1/T0 Runtime T1/T0

1 48 0.676056338 149.5 2.105633803

2 48 0.676056338 141.5 1.992957746

3 105 0.676056338 581 1.992957746

4 48.5 0.683098592 153 2.154929577

5 68 0.957746479 239.5 3.373239437

6 48 0.676056338 146.5 2.063380282

7 48.5 0.683098592 140.5 1.978873239

8 50.5 0.711267606 155.5 2.190140845

9 48.5 0.683098592 145.5 2.049295775

10 51 0.718309859 163 2.295774648

11 74 1.042253521 252 3.549295775

12 64 0.901408451 200 2.816901408

13 105.5 1.485915493 272 3.830985915

14 88 1.23943662 245.5 3.457746479

15 166 2.338028169 718.5 10.11971831

VI. FUTURE WORK
The results presented in this paper suggest that any
performance advantage conferred by AncDE is more
noticeable on more complex problems. One investigation that
arises from this is to compare DE and AncDE on larger
problems.

 One extension to AncDE is a newer variant currently being
investigated (called 2AndDE) that uses two related caches
containing two chronologically related ancestors for each
solution in the current population. These caches contain an
older ancestor and a newer ancestor. The presence of two
ancestors may allow even better performance to be achieved,
where the ancestors serve to scale the difference vector sourced
from within the current population.

VII. CONCLUSION
This paper presented an ancestral extension to the DE

algorithm (called AncDE) that added an archive of solutions
discarded from the main population, stochastically updated
from the main population. AncDE added to DE the ability to
calculate difference vectors between a current and an ancient
solution. The resulting inter-generational difference vectors are
controlled stochastically in terms of both their relative age and
the frequency that they impact on the current population.

Results were presented for the “CEC 2015 Special Session
& Competition on Real-Parameter Single Objective
Optimization”. Summary results are included for standard DE
and these show that AncDE outperforms standard DE on most
of these problems. Thus, the performance of DE has
(surprisingly) been improved using a cache of solutions that

were discarded from the main population. We see this ancestral
information as an extension to Mendel’s Law of Inheritance,
acting as an additional inheritance pathway. As an explanation
for these results we suggest that AncDE’s occasional use of the
difference vectors originating from a long-temporal baseline –
leads to difference vectors of larger magnitude and
occasionally large jumps across the solutions space that avoid
some local minima.

ACKNOWLEDGMENT
The authors would like to thank the Irish Research Council

for Science, Engineering and Technology (IRCSET) for part
funding this project. We would also like to thank the John and
Pat Hume scholarship for part funding this project. The authors
would also like to thank the Erasmus Mundus DESEM
program for part funding this project. We would also like to
thank R. Storn and K. Price for the DE code, which was
extended to create the Ancestral DE (AncDE) implementation.

REFERENCES

[1] R. Storn and K. Price, "Differential Evolution - a Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces," Journal of Global Optimization, vol. 11, pp. 341-359,
1996.

[2] S. Luke, Essentials of Metaheuristics, 2nd ed.: Lulu, 2013.
[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and

Elitist Multiobjective Genetic Algorithm: NSGA-II," IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182-197, 2002.

[4] A. FitzGerald and D.P. O'Donoghue, "Genetic Repair for
Optimization under Constraints inspired by Arabidopsis
thaliana," in Parallel Problem Solving from Nature (PPSN),
2008, pp. 399-408.

[5] A. FitzGerald and O'Donoghue D.P., "Biologically Inspired
Non-Mendelian Repair for Constraint Handling in Evolutionary
Algorithms," in The Genetic and Evolutionary Computation
Conference (GECCO) - Constraint Handling Workshop,

Portland, Oregon, 2010, pp. 7-11.
[6] A. FitzGerald, D. P. O'Donoghue, and X. Liu, "Genetic Repair

Strategies inspired by Arabidopsis thaliana," in Lecture Notes in
Artificial Intelligence (LNAI 6206)., 2010, pp. pp 61-71.

[7] D. Hatton and D.P. O'Donoghue, "Explorations on Template-
Directed Genetic Repair Using Ancient Ancestors and Other
Templates," in The Genetic and Evolutionary Computation
Conference (GECCO) - Constraint Handling Workshop, 2011.

[8] D. Hatton and D.P. O'Donoghue, "Arabidopsis thaliana Inspired
Genetic Restoration Strategies," International Journal of
Biometrics and Bioinformatics, vol. 7, no. 1, pp. 35-48, 2013.

[9] E. Mezura-Montes, J. Velazquez-Reyes, and C. A. Coello
Coello, "A comparative study of differential evolution variants
for global," in Proc. Genet. Evol. Comput. Conf., 2006, pp. 485–
492.

[10] S. Russell and P. Norvig, AI: A Modern Approach.: Prentice
Hall, 2009.

[11] B. D. Connelly, L. Zaman, P.K. McKinley, and C. Ofria,
"Modeling the Evolutionary Dynamics of Plasmids in Spatial
Populations," in Proceedings ACM GECCO Conference,
Dublin, Irealnd., 2011.

[12] Darrell Whitley, V. Scott Gordon, and Keith Mathias,
"Lamarckian Evolution, The Baldwin Effect and Function
Optimization," in PPSN, Jerusalem, Israel, 1994, pp. 6--15.

[13] A.E. Qin, Ke Tang, Hong Pan, and Siyu Xia, "Self-adaptive
Differential Evolution with Local Search Chains for Real-
Parameter Single-Objective Optimization," in IEEE Congress on
Evolutionary Computation (CEC), Beijing , China, 2014, pp.
467 - 474.

[14] S.J. Lolle, J.L. Victor, J.M. Young, and R.E. Pruitt, "Genome-
wide non-mendelian inheritance of extra-genomic information in
Arabidopsis," Nature, vol. 434, no. 7032, pp. 505-509, March
2005.

[15] M.T. Hopkins et al., "De novo genetic variation revealed in
somatic sectors of single Arabidopsis plants (v2)," F1000
Research, vol. 2, no. 5, July 2013.

