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Abstract—This paper presents the Ancestral Differential 
Evolution (AncDE) algorithm, which extends the standard 
Differential Evolution (DE) algorithm by adding an archive of 
recently discarded ancestors. AncDE adds the ability to 
occasionally compute difference vectors between current and 
archived solutions, using these inter-generational difference 
vectors in place of traditional difference vectors. Results for 
AncDE are presented for the CEC2015 Bound Constrained 
Single-Objective Computationally Expensive Numerical 
Optimization Problems using AncDE/best/1/bin. Summary results 
are included for standard DE for comparison purposes and these 
show that AncDE generally outperforms standard DE. These 
results suggest that the inter-generational difference vectors can 
help overcome some local optima, leading to faster convergence 
towards the global optimum. AncDE involves the very small 
overhead of storing and updating the ancestral cache. This paper 
introduces two empirically determined stochastic rates; one for 
updating the ancestral cache and the other for using an ancestral 
difference vector in place of the normal difference vector.  

Keywords—differential evolution; ancestror archive; inter-
generation difference vector 

I.  INTRODUCTION 
Evolutionary algorithms apply the general Darwinian 

strategy of "Survival of the Fittest" to the task of generating 
high-quality solutions for challenging and sometimes ill-
defined problems. Among the attractive features of 
evolutionary algorithms are their ability to generate solutions 
across a very wide range of problem types and their ability to 
generate solutions when alternative approaches fail.   

But an often overlooked aspect of evolutionary computing 
concerns the role played by the laws of Mendelian inheritance. 
In this paper we focus on Mendel’s Second law - “The Law of 
Independent Assortment”. This asserts that separate genes for 
separate traits are passed independently - and that this genetic 
information is reliably transferred from the parents directly to 
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the offspring. It is this second part of the “Law of Independent 
Assortment” that is challenged by our particular extension to 
the (otherwise) standard of Differential Evolution (DE) [1] 
algorithm. That is, we add an extra-Mendelian inheritance 
pathway that stochastically allows genetic information from a 
cache of recent ancestors to influence the current population. 
We can think of this as an infrequent “second chance” for some 
genetic information, helping broaden a search space that 
perhaps became stuck in a local optimum. 

Evolutionary algorithms that maintain not just the current 
population, but that also maintain a population of recent 
solutions have been called archive algorithms [2]. However, 
very few of these archive algorithms have been developed. One 
notable exception has been the Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II) [3]. NSGA-II combines the 
parent and offspring populations together forming a larger 
combined population from which solutions are selected – and 
from which the subsequent generation is generated. In contrast 
to NSGA-II, the cache of ancestors introduced in this paper 
allows significantly older ancestors to conference the current 
population. 

A few other algorithms have explored the use of old 
ancestral archives. References [4] [5] [6] explored the use of 
old ancestor archives to support a template-driven genetic 
repair process, used to generate solutions to combinatorial 
optimization problems. This work explored ancestors that were 
up to three generations older than the parent population – up to 
great-great-grandparents of a newly generated population of 
solutions.  

The use of a significantly older archive of solutions has also 
been explored [7] [8], using a stochastic process to update the 
ancestor archive - this work again focused on combinatorial 
optimization problems. Some of the surprising outcomes of this 
work were that best results were often produced using archives 
that were tens of generations older than the current population. 
While evolutionary algorithms can be slow to converge for 
large combinatorial optimization problems, producing the best 
results using such ancient archives was considered very 
surprising. 

This paper describes the AncDE algorithm that incorporates 
some of the lessons learned from [7] [8] and attempts to apply 
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these to the (otherwise standard) Differential Evolution (DE) 
algorithm [1]. The main modifications made to the DE 
algorithm concern firstly, the introduction and maintenance of 
an archive of recent solutions. The second modification 
allowed the (occasional) calculation of difference vectors 
between a solution from the population and the ancestral cache. 
It should be pointed out that much of the operation of AncDE 
is identical to DE – what we have introduced is an additional 
(supplemental) extension to the algorithm that is used to 
calculate a modified difference vector. The implementation of 
AncDE described in this paper was built on a standard DE 
implementation – introducing as few modifications to the 
algorithm as possible.  

II. DIFFERENTIAL EVOLUTION (DE) 
We first describe the DE algorithm itself, before we 

describe the modifications required for the ancestral extension 
required for the AncDE algorithm.  

A. Differential Evolution 
Differential evolution (DE) is an evolutionary based 

optimization algorithm that generates high-quality solutions to 
numeric optimization problems. DE begins by creating a 
population of random solutions (called agents) to the given 
problem. After this initialization step DE applies a series of 
update steps to help improve the quality of these solution 
agents, as measured by the objective function being optimized. 
In effect DE then moves these agents around the problem 
space, in such a way that their new positions result in an 
improvement in the objective function.  

For simplicity this paper will focus on the best/1/bin variant 
of DE, noting that this has been found to be a particularly 
effective version of the algorithm [9]. The algorithm begins by 
creating a population of random solutions (called agents) to the 
given problem. An agent is selected from the population, called 
the base. Then two other distinct vectors are selected from the 
population and a difference vector is calculated between them, 
with the result being called the difference vector. This 
difference vector is then multiplied by a scalar mutation factor 
F (parameter), allowing some tuning of the impact of these 
difference vectors upon the population. This difference vector 
represents the difference between two solution agents located 
within the problem space. The main novelty associated with 
AncDE is that the trial vector is stochastically generated from 
differential mutation and binomial crossover using the same 
one base vector from the ancestral cache – as shall be discussed 
in more detail below.  

The difference vector is next added to the base vector and 
the result is called the donor vector. The “best/1” allows for 
variation in the selection of the base vector and variation in the 
number of difference vectors used by variants of the DE 
algorithm.  

 The next step takes the existing agents and combines them 
with the donor vector to create a set of trial vectors for possible 
inclusion in the population. Binomial “/bin” crossover selects 
elements from the parents according to a probability CR, with 
elements being selected from one or other parent according to 
this CR value.  

The final step of DE is selection that determines whether a 
new trial vector will enter the population. Selection occurs by 
replacing a target vector with the corresponding trial vector if 
the trial vector has a lower objective-function value (for 
minimization problems). DE typically terminates when the 
algorithm converges to a solution, when a maximum number of 
function evaluations have been performed or when some 
known solution has been reached.    

We note that each of the different variations in the DE 
algorithm can, in principle, also make use of our ancestral 
archive of solutions. However, his paper focuses on extending 
and adapting the best/1/bin variant of the DE algorithm.  

III. RE-VISTING ANCIENT SOLUTIONS 
While ancestral solutions are not normally retained by 

evolutionary algorithms, we make a brief case for the potential 
benefits that ancestor might introduce. EA are a form of 
stochastic beam search, where the breadth of this beam is 
determined by the population size. However, for problems 
involving very large members of local optima, the breadth of 
this beam may be lower than required for reliable convergence 
to the global optimum. In some of these situations it might be 
considered beneficial to augment the search space using a 
cache of recent ancestors. We point out that while recent 
ancestors might introduce some much needed diversity, they do 
so without resorting to the potentially damaging impact of 
“true” randomness. 

When viewed from the perspective of the search space, it 
may appear less surprising that a cache of ancestor may have a 
beneficial impact on the final solution. We note that some other 
search procedures retain and re-use past solutions or return to 
previous search state. The process of backtracking used in 
depth-first search returns the search process to a previous state, 
while tabu search that maintains a finite list of recent states that 
cannot be revisited [10]. Backtracking and tabu search can also 
been seen as techniques to avoid local minima.  

This paper adds to the evolutionary algorithm a small 
population-sized cache of recent ancestors. This allows 
calculation of difference vectors that are derived from a longer 
temporal base-line – between a current vector and one that was 
generated and superseded in previous generations. That is, we 
suggest that in situations where AncDE provides improved 
results when compared to DE, that some of this improvement 
may originate from the fact that AncDE uses some ancestors 
that might overcome the current (perhaps local) optimum in the 
population and help AncDE to reach the global optimum. 
Careful tuning of the age of these ancestors might even allow 
the AncDE population to skip past some of the local optima 
and converge faster upon the global optimum.  

We briefly look at some other work in non-standard and 
non-Mendelian inheritance theories. Recent advances in 
biology have been exploring inheritance mechanisms beyond 
those covered by Mendel’s inheritance laws. Among those 
attracting most attention have been the Horizontal Gene 
Transfer (HGT) strategies, also called lateral gene transfer 
(LGT) associated with simple life forms such as viruses and the 
prokaryotes (such as bacteria). Several specific mechanisms for 
HGT have been proposed that transfer genetic information by 



means other than sexual reproduction. A HGT mechanism 
called conjugation, has previously been used to investigate 
how the cost and benefit affect evolutionary outcomes [11]. 
Other evolutionary schemes like Lamarckian evolution and the 
Baldwin effect have long been explored [12] [13].  

A more controversial proposal has been for the vertical, 
extra-Mendelian transfer of genetic information [14] [15]. This 
proposal states that genetic information appears to have been 
detected in the offspring – even though it has not been 
detectable (by traditional means) in either of the parents. 
However, there does appear to be a link in that the genetic 
information in the offspring has been detected in a grand-parent 
of that offspring. While this inheritance theory has been subject 
to some criticisms information [14] is also the top rated paper 
by the prestigious Faculty 1000. This paper was also the 
inspiration for AncDE. 

IV. ANCESTRAL DIFFERENTIAL EVOLUTION (ANCDE) 
As stated earlier, much of AncDE is identical to DE. The 

only modification involves the difference vector and the 
information that is used to form that vector. The major 
architectural change is the introduction of a second “ghost” 
population of recently “deceased” ancestors. This adjunct 
population is referred to as the ancestral cache. 

The ancestral cache is a repository of genetic information 
that is normally discarded from the current population when 
new trial vectors enter the population. This cache contains 
exact copies of agents that have been replaced in the original 
population. The contents of this ancestral cache do not undergo 
any form of modification or learning, but are stochastically 
replaced by newer solutions from the main population.  

As with DE the base vector is always selected from the 
current population. As stated previously, the main difference 
between DE and AncDE concerns calculation of the difference 
vectors. The difference is still calculated between two vectors 
(for AncDE/best/1/bin) – one vector being source from the 
current population. AncDE makes a stochastic choice for the 
origin of the second target vector that is used to calculate the 
difference vector, as controlled by the aup parameter discussed 
below. We refer to the result produced by this new strategy as 
an ancestral difference vector – to distinguish it from the 
normal DE difference vectors generated between two agents 
from the current population. Thus, AncDE extends DE by 
allowing this additional type of difference vector to be 
calculated. 

In the variant of AncDE presented in this paper, one of the 
two vectors used to calculate the difference vector is sourced 
from the current population – and additionally, this vector also 
used as the base vector.  

donor vector = base vector + F* (ancestral vector - base 
vector) 

We point out that AncDE retains the ability to calculate the 
normal difference vector (described in section II above), but 
adds the possibility of calculating this new difference vector. 
Figure 1 outlines the most significant changes to the DE 
algorithm, with the most significant new features highlighted 

by the dotted lines. AncDE adds two significant new 
parameters into the differential evolution algorithm.  

A. Additional Parameters for AncDE 
• arp ancestor replacement probability This parameter 

controls the relative age of the ancestor archive. A 
value of 1.0 will keep this archive as a duplicate of the 
current population. Lower values of arp (eg 10-2) will 
update the archive very infrequently, maintaining a 
large ancestral (and temporal) distance between the 
current population and the contents of the ancestor 
archive. We generally expect that lower arp values will 
result in greater distance between the ancestor cache 
and the current population.  

 

 

Fig. 1. Ancestral DE (AncDE) modifies DE by adding a cache of recent 
ancestors and the ability to derive  difference vector between an agent from 
the population and one from the cache. The main modifications are highlithed 
by the dotted lines above. New ancestrally-based features have obvious 
parallels in (non-ancestral) normal DE.  

 

In our most recently work, we have been experimenting 
with different ancestor replacement strategies. The results 
presented in this paper were produced with a strategy that only 
checks the ancestor replacement rate when some vector in the 
population is being replaced. (An alternate strategy we have 
explored is to replace the ancestor stochastically even when the 
current vector is not being replaced). The strategy presented in 
this paper tends to result in older ancestors, especially during 
late convergence.  

• aup ancestor usage probability This controls the 
frequency with which an ancestral difference vector is 
used in place of the traditional DE difference vector – 
between agents from the current population. Setting 
aup = 0 removes these ancestral difference vectors 
from consideration, while higher rates increase the 
impact that archived agents have on the current 
population.  
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These are the two parameters introduced by AncDE and 
suitable values for them will be discussed in sub-section C 
below.  

B. Initializing the Population 
No special efforts were made to initialize the population for 

the CEC 2015 problems. The standard initialization procedure 
for DE was adopted. Thus, the population was initialized using 
random values generated uniformly from within the valid 
range.  

The ancestral population was initialized by taking copy of 
the standard initial population. We don't give any special 
treatment to the ancestral population at this point. And this is 
the only point where there is a direct resemblance between 
current population and ancestral population. Typically the 
ancestor population is changed when new values enter the main 
population, moving the older less-it values into the ancestral 
cache.  

C. Setting Parameters  
Standard DE also offers a number of other parameters that 

are also used by AncDE. Many of these parameters were 
assigned values after performing preliminary ad hoc testing.  

Firstly, we look at the parameters that originate with the 
standard DE algorithm. These parameters were used to 
generate the results for the 10D and 30D problems presented in 
Table I and Table II below. For the 10D problems NP was set 
to 12, F=0.6, CR=0.75, Range =75. 

For the 30D problems CR the crossover probability was set 
to 0.6, NP the population size was set to 25. The differential 
weight F was set to 0.6. One parameter was introduced for the 
CEC 2015 competition itself, limiting the range of the input 
variable to -+75 and was used for all input parameters. These 
parameters we used to produce all results presented in this 
paper. 

The two remaining parameters relate specifically to the 
ancestor cache and its use. Firstly the ancestor replacement 
probability (arp) that controls the relative age of the ancestor 
cache was set to 0.15. In this paper this factor is significantly 
moderated by the fact that this stochastic parameter was only 
checked when a solution from the main population is begin 
superseded. (Note: we are currently refining the best strategy to 
use for ancestor replacement). Thus, during early evolution 
when solutions are regularly updated, the ancestors will also be 
updated frequently. However, during late convergence the 
ancestor will tend to become even more ancient due to the 
infrequent replacement of member of the population.  

Secondly the ancestor usage probability (aup) controls the 
probability that a standard difference vector will not be used, 
but that the ancestral difference vector strategy will be used to 
generate the trial vector instead. The results presented in Table 
1 were generated using aup = 0.3, indicating that 
approximately 30% of difference vectors are derived using an 
ancient ancestor.  

The best results produced for DE were generated with the 
following parameters (the parameter set described above 
produced weaker results). CR=0.95, NP the population size 

was set to 55, the differential weight F was set to 0.55 and 
range =75.  

D. Algorithmic Variants of DE and AncDE 
A number of standard algorithmic variants of standard DE 

can also be applied to AncDE. However for the purposes of 
this paper, only a small subset of these possibilities has been 
explored. All results presented herein were generated only 
using the following variants of DE/best/1/bin and 
DE/rand/1/bin.  

Firstly, two selection mechanisms were investigated, as 
indicated by the “Best” part of Best/1/bin. Best selection 
ensures that the best agent in the current population. An 
alternate selection strategy was also investigated. Random 
(rand) selection chooses agents with uniform probability from 
within the current population. The results presented in Table 1 
used only the “best” selection strategy.  

The number of difference vectors that are used during the 
mutation step provides one of the normal variations in the 
standard DE algorithm. DE often uses use either 1 or 2 
difference vectors to drive this mutation process. We note that 
a difference vector is derived from the difference between 2 
agents selected from the current population. The 
implementation of AncDE presented in this paper uses only 1 
difference vector for mutation. AncDE either uses the normal 
difference vector, or it uses a difference vector that takes one 
agent from the current population and one agent (only) from 
the ancestral population. It is interesting to note that we 
conducted a control experiment that selected both agents of a 
difference vector from the ancestral population, but this did not 
result in any measured improvement in performance or solution 
quality. All results presented in this paper used just 1 difference 
vector that involved either; a) both agents being selected from 
the current (main) population or b) one agent from the current 
population and one agent from the ancestral cache. 

Finally, we look at the recombination step that generates 
the new solution as a combination of the target vector and the 
mutant vector. Binomial (bin) crossover is used for all results 
presented in this paper. Because AncDE only changes the 
evaluation of the difference vector, the process of crossover 
remains unaffected – except for the influence that the ancestral 
difference vector may have on the donor vector and the trial 
vectors. 

 

V. RESULTS 
Numerical experiments were performed on a computer 

with Intel® Core™ i7-3520M CPU @ 2.90GHz × 4 and 16 GB 
RAM, under Ubuntu 14.04 LTS, 64-bit OS. The 
implementation of AncDE was done in Java, using JDK 1.7. 
Note that the results presented in this paper were generated 
using Java 1.7 and its native random number generator. 
Because of changes to the PRNG (pseudo-random number 
generator) algorithm in Java 1.8, the results generated using 
AncDE on newer versions of Java will be different (and 
generally not as good). Hence, the implementation of PRNG 
from Java 1.7 is explicitly included in AncDE.  



   

TABLE I.  RESULTS FOR 10D PROBLEMS 

 

 Standard DE AncDE 

Func Median Mean Best Worst Median Mean St.Dev. 

1 3.29E+08 4.33E+08 2.16E+06 8.87E+07 8.84E+06 1.78E+07 2.25E+07 

2 1.93E+04 2.82E+04 1.41E+04 5.91E+04 3.78E+04 3.53E+04 1.49E+04 

3 7.77E+00 7.64E+00 2.48E+00 1.06E+01 5.84E+00 5.73E+00 2.11E+00 

4 1.95E+03 1.99E+03 1.03E+03 2.12E+03 1.66E+03 1.63E+03 3.21E+02 

5 2.58E+00 2.75E+00 1.50E+00 4.05E+00 2.66E+00 2.60E+00 6.18E-01 

6 1.02E+00 9.93E-01 2.85E-01 8.20E-01 5.55E-01 5.50E-01 1.43E-01 

7 1.81E+00 2.27E+00 2.94E-01 1.29E+00 5.34E-01 6.35E-01 2.91E-01 

8 1.23E+01 5.25E+01 4.46E+00 9.02E+00 6.32E+00 6.26E+00 1.12E+00 

9 4.08E+00 4.05E+00 3.64E+00 4.35E+00 3.93E+00 3.97E+00 2.02E-01 

10 8.02E+04 1.94E+05 3.10E+04 6.99E+05 1.98E+05 2.62E+05 2.09E+05 

11 6.78E+00 7.76E+00 3.58E+00 1.05E+01 6.39E+00 6.65E+00 2.00E+00 

12 2.80E+02 2.79E+02 9.10E+01 4.44E+02 2.18E+02 2.24E+02 9.90E+01 

13 3.29E+02 3.32E+02 3.13E+02 3.39E+02 3.24E+02 3.25E+02 6.91E+00 

14 2.06E+02 2.07E+02 1.96E+02 2.15E+02 2.03E+02 2.04E+02 5.33E+00 

15 4.09E+02 3.68E+02 9.93E+00 5.03E+02 4.06E+02 3.59E+02 1.50E+02 

 

TABLE II.  RESULTS FOR 30D PROBLEMS 

 

 Standard DE AncDE 

Fnc. Median Mean Best Worst Median Mean St.Dev. 

1 1.11E+10 1.24E+10 1.12E+08 1.49E+09 4.45E+08 5.21E+08 3.54E+08 
2 6.25E+04 6.37E+04 7.64E+04 1.76E+05 1.15E+05 1.18E+05 2.49E+04 
3 2.74E+01 2.80E+01 2.05E+01 3.96E+01 2.59E+01 2.67E+01 4.48E+00 
4 7.68E+03 7.77E+03 5.90E+03 7.62E+03 6.81E+03 6.78E+03 4.94E+02 
5 4.27E+00 4.30E+00 3.18E+00 5.34E+00 4.27E+00 4.24E+00 5.91E-01 
6 2.78E+00 2.76E+00 3.30E-01 9.31E-01 5.58E-01 5.89E-01 1.39E-01 
7 2.21E+01 2.15E+01 3.31E-01 1.15E+00 5.43E-01 5.77E-01 2.08E-01 
8 3.32E+04 1.07E+05 3.93E+01 2.16E+03 2.43E+02 4.48E+02 5.51E+02 
9 1.38E+01 1.38E+01 1.33E+01 1.41E+01 1.38E+01 1.38E+01 2.03E-01 

10 1.44E+06 2.45E+06 6.97E+06 3.83E+07 1.83E+07 1.81E+07 7.95E+06 
11 3.84E+01 5.37E+01 2.79E+01 1.86E+02 3.42E+01 4.24E+01 3.44E+01 
12 1.23E+03 1.14E+03 1.09E+03 1.62E+03 1.33E+03 1.37E+03 1.51E+02 
13 4.51E+02 4.69E+02 3.53E+02 3.87E+02 3.66E+02 3.68E+02 9.11E+00 
14 2.45E+02 2.51E+02 2.42E+02 3.20E+02 2.66E+02 2.71E+02 2.24E+01 
15 1.05E+03 1.04E+03 7.80E+02 1.19E+03 9.53E+02 9.71E+02 1.23E+02 

 
 



Tables I and II details the results produced by the AncDE 
algorithm on the 15 problems of the IEEE CEC expensive 
Numeric Optimisation problem set. These were all produced 
using the same settings and parameters for all 15 problem sets, 
as discussed in Section IV C above. These tables also include a 
brief overview of results for the standard DE algorithm, 
detailing the mean and median results for comparison 
purposes. Other tests not shown in this paper suggest that the 
AncDE/best/1/bin variant produced better results than 
AncDE/Rand/1/bin. However, this conclusion was reached 
after preliminary ad hoc testing. 

Numbers displayed in boldface in Tables I and II indicate a 
victory for one of the two strategies: DE and AncDE. AncDE 
outperformed DE on 13 of the 15 10D problems as measured 
by the mean results of each. This is echoed by the median 
results, where AncDE outperforms DE on 12 of the 15 
problems. Thus we conclude that AncDE performs better 
overall than standard DE on these problems.  

AncDE also produces better results on the more 
challenging 30D problems. AncDE outperforms DE on 11 of 
the 15 30D problems as measured by the mean results of each. 
This is echoed by the median results, where AncDE 
outperforms DE on 10 of the 15 problems. We again highlight 
that this performance improvement was achieved without 
additional computation, but merely involved re-visiting some 
recently discarded solutions form the main population. 

 

A. AncDE Run times  
 The run times for AncDE should not differ significantly 
from those of DE itself. The first overhead associated with 
AncDE is storage of the ancestral population, which could in 
theory become exceptionally large. However, in our work we 
have limited the size of this ancestral population to be the same 
size as the main population. This small ancestral population 
contains a sample of the ancestors of the solutions contained in 
the current population. Thus, the additional memory footprint 
of AncDE is quite small. 

 The most notable overhead associated with performance of 
AncDE is the act of occasionally storing an ancestor, by 
copying it from the current population into the ancestor cache. 
Because updating the cache is stochastically controlled, this 
can be a very infrequent operation.  

Another overhead of AncDE concerns the two stochastic 
parameters, controlling the update and use of the ancestral 
vectors. Calculating and checking these stochastic values is an 
overhead for AncDE. Computing the inter-generational 
difference vector itself should not involve an additional 
overhead, compared with the standard intra-generation 
difference vectors.  

The recorded runtimes for the 10D and 30D problems are 
listed in Table III, with the times measured in milliseconds. 
The runtime for the CEC 2015 test function T0 (involving a for 
loop containing a simple function evaluation) on our test 
machine was 71.  

 

TABLE III.  RUN TMES FOR THE ANCDE ALGORITHM ON THE 10D AND 
30D PROBLEMS 

 

 10D Problems 30D Problems 

Func Runtime T1/T0 Runtime T1/T0 

1 48 0.676056338 149.5 2.105633803 

2 48 0.676056338 141.5 1.992957746 

3 105 0.676056338 581 1.992957746 

4 48.5 0.683098592 153 2.154929577 

5 68 0.957746479 239.5 3.373239437 

6 48 0.676056338 146.5 2.063380282 

7 48.5 0.683098592 140.5 1.978873239 

8 50.5 0.711267606 155.5 2.190140845 

9 48.5 0.683098592 145.5 2.049295775 

10 51 0.718309859 163 2.295774648 

11 74 1.042253521 252 3.549295775 

12 64 0.901408451 200 2.816901408 

13 105.5 1.485915493 272 3.830985915 

14 88 1.23943662 245.5 3.457746479 

15 166 2.338028169 718.5 10.11971831 
 

VI. FUTURE WORK 
The results presented in this paper suggest that any 
performance advantage conferred by AncDE is more 
noticeable on more complex problems. One investigation that 
arises from this is to compare DE and AncDE on larger 
problems.  

 One extension to AncDE is a newer variant currently being 
investigated (called 2AndDE) that uses two related caches 
containing two chronologically related ancestors for each 
solution in the current population. These caches contain an 
older ancestor and a newer ancestor. The presence of two 
ancestors may allow even better performance to be achieved, 
where the ancestors serve to scale the difference vector sourced 
from within the current population.  

 

VII. CONCLUSION 
This paper presented an ancestral extension to the DE 

algorithm (called AncDE) that added an archive of solutions 
discarded from the main population, stochastically updated 
from the main population. AncDE added to DE the ability to 
calculate difference vectors between a current and an ancient 
solution. The resulting inter-generational difference vectors are 
controlled stochastically in terms of both their relative age and 
the frequency that they impact on the current population.  

Results were presented for the “CEC 2015 Special Session 
& Competition on Real-Parameter Single Objective 
Optimization”. Summary results are included for standard DE 
and these show that AncDE outperforms standard DE on most 
of these problems. Thus, the performance of DE has 
(surprisingly) been improved using a cache of solutions that 



were discarded from the main population. We see this ancestral 
information as an extension to Mendel’s Law of Inheritance, 
acting as an additional inheritance pathway. As an explanation 
for these results we suggest that AncDE’s occasional use of the 
difference vectors originating from a long-temporal baseline – 
leads to difference vectors of larger magnitude and 
occasionally large jumps across the solutions space that avoid 
some local minima.  
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