
Using ATL in a tool-chain to calculate
coverage data for UML class diagrams

- Short Paper -

Hao Wu?, Rosemary Monahan, and James F. Power

Department of Computer Science, National University of Ireland, Maynooth
{haowu,rosemary,jpower}@cs.nuim.ie

Abstract. In this paper we describe the use of ATL as part of a tool
chain that calculates coverage measures for UML class diagrams. The
tool chains uses the USE tool as a parser and validator for UML dia-
grams, and represents the diagrams internally using the EMF framework.

1 Introduction and Related Work

Typically, test suites for source code can be measured in terms of their coverage
of code features, such as statement, condition or decision coverage. In the context
of Model Driven Engineering (MDE), a considerable body of research exists in
the area of model-based testing [1, 2], and a number of coverage criteria have
been proposed for UML diagrams [3–7]. Such criteria can be used not only in
the evaluation of an existing test suite but also to guide the automatic generation
of test cases [5].

In this paper we restrict our attention to structural specification, in partic-
ular UML class diagrams. These have the unusual feature that their instances,
namely object diagrams, are explicitly available in UML, making it possible to
calculate coverage data entirely within the UML framework. In this context, cov-
erage calculation becomes a matter of quantifying these diagrams, and is thus
closely related to deriving metrics for models. While there have been a number
of different approaches to this problem, we limit ourselves to those based entirely
in an MDE framework, and distinguish three main types of approach:

I. Define the metrics directly as queries over the UML diagram [8].
II. Define a transformation from the UML diagram to a measurement meta-

model [9, 10]
III. Define a transformation from the UML diagram to a “measurable entities”

metamodel, and define the metrics as queries over this metamodel [11].
Of course many other variations are possible. A further elaboration of ap-

proach III, not considered here, would be to represent the metric specifications
themselves explicitly as a metamodel, following the UML22Measure approach
[12].

? This work is supported by a John & Pat Hume Scholarship from NUI Maynooth.



Fig. 1. This UML activity diagram shows how the three tools, USE, EMF and ATL are
used to calculate coverage measures for UML class diagrams. The measurable entities
are captured within the ATL coverage calculation module.

As a trivial example to distinguish approaches I-III, consider the task of
counting the number of classes in a UML class diagram. Following approach
I we would simply define an OCL query on the class diagram metamodel to
count and return the number of classes. Following approach II, we would define
a transformation that would count the classes, and its target metamodel would
be instantiated with the relevant name-value pair to represent the result. Finally,
following approach III, we would first define a transformation to project the rel-
evant classes to a metamodel of measurable entities, and the metrics themselves
would be defined as queries over that metamodel.

We believe the third approach has a number of advantages. First, it clearly
separates the three steps of the measurement process, which, following Kühne
[13], we identify as a projection of the relevant details, an abstraction on the ele-
ments, and finally a translation to the numeric metric values. A second advantage
is that it separates the process of metric specification from the application of
the metrics tool, so that specification can be done independently, by mining the
metric definitions and constructing an appropriate metamodel. A third advan-
tage is pragmatic: by assembling the measurable entities as a separate model,
comprehension and debugging of the measurement process is greatly facilitated.

In this paper we describe the use of ATL (ATLAS Transformation Language)
in extending our previous work [14], based on approach III, to calculating cover-
age data from UML class and object diagrams. We apply the same approach of
explicitly representing the measurable entities, and then calculating the coverage
data from this. As well as the advantages listed above, this is of even greater im-
portance for coverage measurement, since identifying which model entities have
been covered would be considered a vital part of any coverage report.

2 Implementation

As a first step to implement a coverage tool for UML class diagrams we have
implemented a tool-chain to calculate Generalisation (GN) coverage [3], for any



Fig. 2. UML class diagrams showing the coverage metamodel and an example input

class diagram and its corresponding object diagrams. The tool-chain ties together
three tools:

USE (a UML-Based Specification Environment) is a tool that used for mod-
elling and validating designs, and allows the user to create class and object
diagrams (as well as other UML diagrams), and can also evaluate OCL con-
straints and expressions [15].

EMF (Eclipse Modeling Framework) is framework within the Eclipse IDE that
provides code generation and tool support for modelling and metamodelling.

ATL is a model transformation language that transforms models based on OCL-
like rules [16].

Figure 1 shows how USE, EMF and ATL are linked together in a tool-chain
to perform coverage calculations. The inputs to the tool chain are a class diagram
and one or more corresponding object diagrams, specified using the USE syntax.
The output is an XML file representing an instance of our coverage metamodel.

Our tool-chain essentially uses the USE tool as a parser and validator for the
class and object diagrams. This seemed more efficient than using other UML
tools since USE is open-source, provides a good GUI to allow viewing of object
and class diagrams, and provides many more facilities than shown here, which
we hope to exploit in the future.

We have modified the USE tool in two ways. First we have annotated the
USE Java source code that represents a UML metamodel, and used this as
input to EMF to generate a UML metamodel in ECore format. Second we have
implemented a visitor that walks an object diagram and generates the Java code
that, when compiled and run, instantiates our EMF metamodel.

As shown in Figure 1, the output of the USE layer in our tool chain is a class
diagram and a corresponding object diagram, both represented as instances of
a corresponding ECore metamodel in EMF.



<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:org.nuim.lunar="http:///org/nuim/lunar.ecore">
<instantiatedClass name="Dolphin">

<generalisation src="Dolphin" dst="Aquatic" name="Dolphin"/>
<generalisation src="Aquatic" dst="Animal" name="Dolphin"/>
<generalisation src="Dolphin" dst="Mammal" name="Dolphin"/>
<generalisation src="Mammal" dst="Animal" name="Dolphin"/>
<GN Coverage count="4" maximum="10" value="0.4" accValue="0.4"/>

</instantiatedClass>
<instantiatedClass name="Pig">

<generalisation src="Pig" dst="Terrestrial" name="Pig"/>
<generalisation src="Terrestrial" dst="Animal" name="Pig"/>
<generalisation src="Pig" dst="Mammal" name="Pig"/>
<generalisation src="Mammal" dst="Animal" name="Pig"/>
<GN Coverage count="4" maximum="10" value="0.4" accValue="0.8"/>

</instantiatedClass>
<instantiatedClass name="Trout">

<generalisation src="Trout" dst="Aquatic" name="Trout"/>
<generalisation src="Aquatic" dst="Animal" name="Trout"/>
<generalisation src="Trout" dst="Fish" name="Trout"/>
<generalisation src="Fish" dst="Animal" name="Trout"/>
<GN Coverage count="4" maximum="10" value="0.4" accValue="1.0"/>

</instantiatedClass>
</xmi:XMI>

Fig. 3. An example of the XML output of our tool-chain, showing the GN coverage
data for a simple object diagram corresponding to the class diagram in Figure 2(b).

2.1 Coverage Metamodel

In order to calculate the class model coverage data, a coverage metamodel shown
in Figure 2(a) has been designed and used as the target model for an ATL
transformation. The coverage metamodel contains a list of instantiated classes,
each of which may have zero or multiple generalisation links. Each instantiated
class stores relevant values in one GN Coverage. Then the ATL transformation
takes in the necessary data from the class and object diagrams, projects out the
countable entities, in this case generalisation links, abstracts to record instances
of these from the object diagram, and uses ATL rules to transform this to the
relevant coverage data.

Figure 2(b) shows a UML class diagram, taken from an introductory text on
UML [17, pg 226]. This class diagram has 8 classes in total, with 10 generalisation
links between these classes. Thus, by the generalisation criterion proposed by
Andrews et al. [3], a test set ought to cover all 10 generalisation relationships.

In fact, to calculate GN Coverage it is only necessary to consider whether
or not a given class has been instantiated at least once. For example, knowing
that the class Pig from Figure 2(b) has been instantiated allows us to conclude
that the four generalisation links between Pig and Animal have been covered.
Figure 3 shows an example of the XML coverage file that is output for an object
diagram containing at least one instantiation of Dolphin, Pig and Trout.



3 Future Work

At present our tool chain is limited in functionality as it only calculates gen-
eralisation coverage and a restricted version of association coverage. However,
we believe that as a prototype it demonstrates the feasibility of the approach.
We are currently working on an extension of the tool to handle other features
of UML class and object diagrams, and hope eventually to harness the OCL
constraints to assist in completing the coverage measures for class diagrams.

References

1. Pilskalnsa, O., Andrews, A., Knight, A., Ghosh, S., France, R.: Testing UML
designs. Information and Software Technology 49(8) (2007) 892–912

2. Utting, M., Legeard, B., eds.: Practical Model-Based Testing. Elsevier (2007)
3. Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy criteria for UML

design models. Soft. Test. Verif. & Reliability 13(2) (2003) 95–127
4. McQuillan, J., Power, J.: A survey of UML-based coverage criteria for software

testing. Technical Report NUIM-CS-TR-2005-08, NUI Maynooth (2005)
5. Dinh-Trong, T.T., Ghosh, S., France, R.B.: A systematic approach to generate

inputs to test UML design models. In: 17th International Symposium on Software
Reliability Engineering, Raleigh, NC (2006) 95–104

6. Mahdian, A., Andrews, A.A., Pilskalns, O.: Regression testing with UML software
designs: a survey. J. of Software Maintenance and Evolution: Research and Practice
21(4) (2009) 253–286

7. Briand, L., Labiche, Y., Lin, Q.: Improving the coverage criteria of UML state
machines using data flow analysis. Soft. Test. Verif. & Reliability 20 (2010)

8. Baroni, A., Braz, S., Abreu, F.: Using OCL to formalize object-oriented design
metrics definitions. In: ECOOP Workshop on Quantative Approaches in Object-
Oriented Software Engineering, Malaga, Spain (2002)

9. Vépa, E., Bézivin, J., Brunelière, H., Jouault, F.: Measuring model repositories.
In: Model Size Metrics Workshop at the MoDELS/UML, Genoa, Italy (2006)

10. OMG: Architecture-driven modernization (ADM): Software metrics meta-model
(SMM). Beta Specification ptc/2009-03-03, Object Management Group (2009)

11. Mens, T., Lanza, M.: A graph-based metamodel for object-oriented software met-
rics. Electronic Notes in Theoretical Computer Science 72(2) (2002) 57–68

12. Vépa, E.: ATL transformation example: UML2 to Measure. Available on-line as
http://www.eclipse.org/m2m/atl/atlTransformations/#UML22Measure (2007)

13. Kühne, T.: Matters of (meta-)modeling. Software and System Modeling 5(4)
(2006) 369–385

14. McQuillan, J.A., Power, J.F.: A metamodel for the measurement of object-oriented
systems: An analysis using Alloy. In: IEEE International Conference on Software
Testing Verification and Validation, Lillehammer, Norway (2008) 288–297

15. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comp. Prog. 69(1-3) (2007) 27–34

16. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comp. Prog. 72(1-2) (2008) 31–39

17. Oestereich, B.: Developing Software with UML: Object-oriented analysis and de-
sign in practice. Addison-Wesley Professional (1997)


