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Abstract

The accurate measurement of the execution time of Java bytecode is one factor that is important in order
to estimate the total execution time of a Java application running on a Java Virtual Machine. In this paper
we document the difficulties and solutions for the accurate timing of Java bytecode. We also identify trends
across the execution times recorded for all imperative Java bytecodes. These trends would suggest that
knowing the execution times of a small subset of the Java bytecode instructions would be sufficient to model
the execution times of the remainder. We first review a statistical approach for achieving high precision
timing results for Java bytecode using low precision timers and then present a more suitable technique using
homogeneous bytecode sequences for recording such information. We finally compare instruction execution
times acquired using this platform independent technique against execution times recorded using the read
time stamp counter assembly instruction. In particular our results show the existence of a strong linear
correlation between both techniques.
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1 Introduction

The popularity and portability of the Java programming language has allowed
Java technology to take hold across a range of devices such as embedded systems,
smart card devices as well as the traditional role of Java on desktops and servers.
Benchmarking programs in such a variety of environments raises the new research
challenge of how to accurately and reliably measure Java programs in a platform-
independent manner.

There are a number of existing approaches to timing Java programs at the byte-
code level. Several special-purpose implementations of the Java Virtual Machine
(JVM) have been constructed for research purposes and provide an interface that
allows the extraction of profiling information [11,6,7]. More directly, using an open-
source JVM such as Kaffe [25] permits the researcher to directly instrument the
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dispatch loop associated with instruction execution. Both of these approaches may
be characterised as “white-box” in the context of the JVM, since they are tied to
a particular JVM implementation, and require some specialised knowledge of that
implementation.

An alternative approach is to treat the JVM as a “black-box”, and use a stan-
dard, off-the-shelf JVM where the researcher does not have direct access to the
underlying JVM source code. This has the advantage of permitting maximum flex-
ibility in terms of the choice of platform and the range of programs which can be
executed. It has the disadvantage that the researcher must rely on the standard
Java library timing methods which are quite coarse-grained.

This paper addresses the basic question: to what extent can we reliably predict the
execution timings for JVM bytecode instructions at this kind of platform-independent
level? Thus, in this paper we present a platform independent technique for achieving
reliable execution times for Java bytecode instructions running in an environment
where the JVM source code is not available and we measure the accuracy of this
technique.

The remainder of this paper is structured as follows. Section 2 documents back-
ground and related work undertaken in this field and Section 3 documents our
experimental design and methodology. Section 4 presents and analyses our plat-
form independent instruction timing results and Section 5 compares these results
against results acquired using the RDTSC assembly instruction. Finally, Section 6
concludes the paper and identifies some future areas of research on this topic.

2 Background and Related Work

In this section we present the background of the instruction execution model, we
introduce Java instructions into the model, and we discuss the tractability issues
associated with our technique. We also present a synopsis of related work.

2.1 A binomial model of instruction execution

The measurement of the execution time of an event is analogous to the process of
starting and stopping a stop watch. The event being timed is typically preceded by
a call to a timing function and followed by a final call to the timing function.

One factor that can affect the accuracy of a timing technique is the resolution of
the timing clock. The resolution of the clock used to time an event is defined as the
smallest possible value, other than zero, of the difference between two successive
observations of a clock’s value. Thus a clock’s resolution determines the shortest
event that can be accurately measured with the clock. For example, a clock whose
value changes every millisecond can only be used to time an event whose duration
is at least a millisecond in length. Using a clock with a resolution greater than the
duration of an event can result in one of two possible results depending on when
the clock’s values are observed with respect to the event being measured.

Figure 1 depicts the two possibilities of an event’s location with respect to a clock
advancing one time unit. Figure 1(a) shows an event whose duration Te straddles
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(a) Te straddles the edge of Tc (b) Te begins and ends within Tc

Fig. 1. A visualisation of two possible scenarios for the relative durations of the event to be timed Te and
the timing clock Tc where Te < Tc.

the periodic advancement of the clock. In this instance observing the clock at the
start and end of the event would show that one time unit had elapsed. In contrast,
Figure 1(b) shows an event whose (identical) duration Te falls entirely within the
periodic advancement of the clock. In this instance observing the clock at the start
and end of the event would return a difference of zero time units.

The timing of individual Java bytecode instructions is particularly susceptible
to the above mentioned quantisation errors. Our measurements have shown that
Java bytecode instructions execute within nanoseconds. Attempting to measure
these instructions with a high degree of precision using standard Java library tim-
ing methods such as System.currentTimeMillis or System.nanoTime results in the
quantisation errors masking their true execution times.

We can model this quantisation effect using standard statistical techniques to
achieve high resolution timing in the presence of low resolution clocks. Lilja doc-
uments the use of Bernoulli trials to achieve high resolution timing [18]. Beilner
presents a model of event timing and presents timing results using his technique
for the times taken to pass a message between two processes [4]. Danzig et al. use
the technique to develop a hardware micro-timer to time machine code executing
on Sun 3 and Sun 4 workstation [9].

Modelling the above mentioned quantisation errors statistically involves consid-
ering the timing of an event as a Bernoulli trial [18,14]. The duration of the event
being measured using a low resolution clock will either be 0 or 1 depending on
whether the clock advanced a time unit during the observation of the start and
finishing of the event. The outcome of this experiment is 1 with a probability of p

if the clock advances while measuring the event, otherwise the outcome is 0 with a
probability of (1− p). If this experiment is repeated n times, the resulting distribu-
tion will approximate the binomial distribution [14]. After performing the Bernoulli
trial n times, we find that the number of outcomes that produce 1 is m, then the
ratio m

n should approximate the ratio Te
Tc

of the duration of the event to the clock
period. Equating both ratios we can estimate the duration Te of the event as shown
in equation 1.

Te =
m

n
Tc(1)

We can then obtain a confidence interval for the average execution time p by
evaluating the statistic for the confidence interval of a proportion as shown in equa-
tion 2. Here z1−α

2
represents the value of a standard unit normal distribution with
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an area of 1 − α
2 falling to the left [18].

p ± z1−α
2

√
p(1 − p)

n
(2)

A natural question arises from the above calculations, namely, how many times
should the Bernoulli trial be performed? Equation 2 tells us that the true value p

is within the interval ((1− ε)p, (1 + ε)p). Equating this interval with Equation 2 we
get:

(1 − ε)p, (1 + ε)p = p ± z1−α
2

√
p(1 − p)

n
(3)

As ((1 − ε)p, (1 + ε)p) forms a symmetric interval about p we can choose either
bound to arrive at:

(1 + ε)p = p + z1−α
2

√
p(1 − p)

n
(4)

And finally solving for n gives

n =
(z1−α

2
)2 p q

(εp)2
(5)

Where n is the number of iterations required to measure a code segment of
duration δ within an error margin of ε using a clock of resolution Δ seconds. Here
p = δ

Δ and q = (1 − p).
From equation 5 we can calculate the number of Bernoulli experiments to be

performed when timing a segment of code using a low resolution timer.

2.2 Dealing with timer overhead

Applying the above technique to the domain of Java bytecode instruction timing
raises an important question: What event is being measured? Using the above
technique the event being approximated using the Binomial model is the timer
overhead plus the event’s duration represented by Te+o in equation 6. The execution
time of the event, Te, of interest is given by equation 6.

Te = Te+o − To(6)

The confidence in the recorded value Te is dependent on the number of significant
digits associated with the results Te+o and To. For example, consider timing an
event whose duration is approximately 10−3 seconds and the timing of this event
incurs an overhead penalty of approximately 10−1 seconds. To be confident with
the value Te we will need to estimate both Te+o and To to three significant digits.
Timing individual Java bytecode instructions whose duration is approximately in
the order of a couple of nanoseconds using a clock with an estimated overhead of
approximately 10 microseconds would require that we estimate both Te+o and To to
4 significant digits so as to be confident with the result Te. If we require the result,
Te, to a higher degree of precision then Te+o and To would have to be estimated to
more significant digits.

From equation 5, we see that the number of trials to be performed is dependent
on the square of ε. In particular, small changes in ε can result in an unacceptable
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α = 0.95 SD εp n Estimated Time

z95 = 1.96 1 10−5 3.8 × 102 .0038 seconds

δ = 10−5 2 10−6 3.8 × 104 .38 seconds

Δ = 10−3 3 10−7 3.8 × 106 38 seconds

p = δ
Δ

= 10−2 4 10−8 3.8 × 108 1.05 hours

q = 1 − p = 1 − 10−2 5 10−9 3.8 × 1010 4.4 days

6 10−10 3.8 × 1012 1.2 years

(a) Parameter settings (b) Predicted Timings

Table 1
The number of iterations n required to achieve a degree of precision of the timer overhead up to 5

significant digits (SD) based on equation 5 and the given parameter settings. Also shown is an estimate of
the time each experiment would take.

timing penalty. In the next section we discuss the tractability of the above technique
and a solution toward reducing the time required to undertake a timing analysis of
Java bytecode instructions.

2.3 Model tractability

In order for the above technique to be used, we require that the amount of time
involved in performing the experiment be within reasonable bounds. Table 1(b)
shows a number of possible experiment durations based on the constraints shown in
Table 1(a). For example, Table 1(a) represents an experiment at the 95% confidence
level, timing a code segment of length approximately 10−5 seconds using a clock
with a resolution of 10−3 seconds. From Table 1(b) we can see, for example, to
time a code segment to 4 significant digits would take approximately 1.05 hours,
whereas to time a code segment to 6 significant digits would require approximately
1.2 years.

In the previous subsection we discussed the timing of Java bytecode using our
technique. We note that the example given would only estimate the execution of
the instruction to 1 significant digit. If we require any further precision for example,
say 3 significant digits, then the experiment would take approximately 1.2 years.

From equation 5 we see that reducing the number of significant digits reduces the
overall time required to run the experiments. By increasing the bytecode sequence to
be timed by a factor of 10, the effect of which would reduce the overall execution time
considerably. In our experiments we choose a sequence length of 1000 instructions,
and estimate its duration to 4 significant digits.

2.4 Related work

There has been relatively little work documented in relation to Java bytecode in-
struction timings compared to other optimisation directed research. For example, a
considerable body of work has been carried out primarily dealing with quantitative
analysis as a way of generalizing possible optimisation opportunities for JVM per-
formance. Daly et al. undertook a study of dynamic Java instruction frequencies
for Java programs taken from the Java Grande benchmark suite and analyse local
variable array size, operand stack size as well as quantifying the number of Java
method parameters [5,8]. Gregg et al. perform a similar study of Java applications,
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although they concentrate on programs drawn from the SpecJVM98 benchmark
suite [12,24]. Horgan et al. quantify the dissimilarity between programs taken
from the Java Grande benchmark suite [15], while others focus on sequences of
instructions known as n-grams [19,23]. Radhakrishnan et al. perform an analy-
sis of instruction and data cache miss-rates within SpecJVM98 applications [21].
Dieckmann et al. present an empirical study of memory usage within SPECjvm98
applications [10]. Inoue et al. perform an analysis of the lifetime of objects within
a number of Java programs [16].

In contrast, work on bytecode timing is relatively sparse. Herder et al. present
the results for Java bytecode timing, although, the technique used to gather such
results is not documented [13]. Wong et al. present a technique for the measure-
ment of bytecode execution times, although, the final technique is not platform
independent and relies on native method invocations [26].

The analysis of machine level instruction execution timings has also been un-
dertaken. The work of Peuto et al. was directed toward the production of an
instruction timing model to model CPU performance measurements [20]. Architec-
ture manufacturers such as Intel and IBM also detail the execution time in clock
ticks of the machine instructions associated with their architectures.

Albert et al. propose a framework for the cost analysis of Java bytecode [1].
This technique involves transforming the iterative bytecode structure to a recursive
representation, and inferring cost relations from this representation. In [2], Albert
et al. apply their previously proposed framework to Java programs that include
operations such as: recursion, single loop methods, nested loops, list traversal as
well as dynamic dispatching.

3 Experimental Design and Methodology

Stark et al. presented a decomposition of the JVM into a number of sub-machines
[22]. Each sub-machine has the ability to execute particular subsets of the JVM
instruction set. We also adopt this approach, by concentrating on individual cores
of the JVM and their respective programming paradigms, and believe that a clearer
understanding of the interaction of a Java application and JVM can be gained. In
particular, we concentrate on reporting timing results of the 137 JVM instructions
that compose the imperative core of the JVM.

The platform independence of our technique is insured by using only standard
Java library timing methods. There are two timing methods available for consider-
ation: System.currentTimeMillis and System.nanoTime. Our choice was based on
timing precision and accuracy and as such the former of the two was chosen. This
choice was made as System.nanoTime cannot guarantee nanosecond accuracy. All
Java timing classes, containing the JVM byte code instruction to be timed, were
engineered using the byte code engineering library (BCEL) [3].

The experimental procedure first involved estimating the duration of the
timer overhead using the technique of Section 2.2. The timer overhead is the
time required to perform two successive calls of the Java timing method Sys-
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tem.currentTimeMillis.
All experiments conducted where carried out on a Rocks Linux cluster containing

100 nodes. Each node contained one 1.13GHz Intel Pentium III dual core processor
with 1Gb of RAM and a cache size of 512Kb running the Linux CentOS operating
system release 4.4 (kernel version 2.6.9) executing at run level 3 with no X-Server.

The Sun Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0.07-
b03) was used to run all Java classes and the JVM was run in interpretor mode.

3.1 Bytecode Sequence Generation

The estimation of the time required to execute individual Java bytecode instruc-
tions involved inserting sequences of the instruction of interest between two timing
method calls. For example, to estimate the time required to execute four iconst 0
instructions, these instructions were placed between two calls of the timing method
System.currentTimeMillis as shown in code segment 1.

One execution of the sequence of instructions depicted in code segment 1 rep-
resents one Bernoulli trial. To estimate the execution time of this sequence to a
number of significant digits and a certain confidence level, requires that the se-
quence be executed n times within a loop. JVM operand stack constraints require
that the operand stack height be the same upon entry and exit of a loop. As such
it is required that a stack balancing be performed after the final call to the timer
method as shown in code segment 1.

Code Segment 1 The insertion of four iconst 0 instructions between two timing
method invocations and relevant stack balancing instructions.

0: invokestatic #2; //Method System.currentTimeMillis:()J
3: lstore_1
4: iconst_0
5: iconst_0
6: iconst_0
7: iconst_0
8: invokestatic #2; //Method System.currentTimeMillis:()J
11: lstore_3
12: pop
13: pop
14: pop
15: pop

In some cases it was required that the Java local variable array be initialized
with values of the appropriate type which where required by bytecodes within the
instruction sequence to be timed. For example, code segment 2 shows a sequence
of four iload 0 instructions to timed. The Java instruction iload 0 requires that
the value stored in the local variable array indexed at position 0 be of type int. To
accommodate this precondition and to ensure that the state of the Java method be
consistent, local variable array types could be ensured by passing the appropriate
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type as an argument to the method. This technique also generalizes the timing
method, and the effect of changing the value can be controlled by the caller.

Code Segment 2 An instruction sequence containing four iload 0 instructions.
The local variable array at index 0 is guaranteed to contain an int value due to the
first method parameter type.
public static void timeILOAD_0(int);
Code:
0: invokestatic #2; //Method System.currentTimeMillis:()J
3: lstore_1
4: iload_0
5: iload_0
6: iload_0
7: iload_0
8: invokestatic #2; //Method System.currentTimeMillis:()J
11: lstore 4
12: return

We also note that in some particular cases a continuous sequence of a particular
instruction could not be generated. For example the i2d instruction requires one
operand of type int to be on top of the operand stack and leaves a value of type long
on the top of the operand stack. This value must be popped from the top of the
stack in order for the next i2d instruction to execute. Code segment 3 shows the
method bytecode for a sequence of two i2d instructions. This instruction sequence
also depicts the scenario where an instruction requires a particular value to be
present on top of the operand stack. In this case a value of type int is guaranteed
by the initial iconst 0 instruction sequence.

In the situation where the instruction of interest is immediately followed by a
pop or pop2 instruction, the time for this event would be adjusted by subtracting
the duration of the stack manipulating instruction.

4 Platform-Independent Timing Results

In this section, we present our results. First we present the timing overhead associ-
ated with our technique, secondly we present the execution times for all imperative
bytecode instructions, and finally we present the results of a cluster analysis per-
formed on the bytecode instruction timings.

4.1 Timer Overhead

As previously discussed, initial experiments have identified that timer overhead sig-
nificantly over-shadows the execution time of a single bytecode instruction. The
timing of bytecode sequences and the adjustment of the recorded times to elimi-
nate timer overhead requires that we estimate the timer overhead to a number of
significant digits.
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Code Segment 3 An instruction sequence containing two i2d instructions and
the operand stack balancing instructions pop2. Also depicted is the inclusion of
the instructions iconst 0, to insure that the JVM stack contains the appropriate
instruction operands.
public static void timeI2D();
Code:
0: iconst_0
1: iconst_0
2: invokestatic #2; //Method System.currentTimeMillis:()J
5: lstore_0
6: i2d
7: pop2
8: i2d
9: pop2
10: invokestatic #2; //Method System.currentTimeMillis:()J
13: lstore 3
14: return

SD Timer overhead (sec)

1
z}|{

0.01 u2u3u4u5u6u7u8 × 10−3

2
z }| {

0.013 u3u4u5u6u7u8 × 10−3

3
z }| {

0.0131 u4u5u6u7u8 × 10−3

4
z }| {

0.01318 u5u6u7u8 × 10−3

5
z }| {

0.013186 u6u7u8 × 10−3

Table 2
The timer overhead associated with two successive calls to the Java timer System.currentTimeMillis

correct to SD significant digits.

Table 2 shows the magnitude of the timer overhead, estimated up-to five signif-
icant digits. Column, SD, represents the number of significant digits representing
the timer overhead result shown in column timer overhead. For example, es-
timated to five significant digits the timer overhead is recorded as 1.3186 × 10−5

seconds.

4.2 Bytecode Execution Timings

Figure 2 summarises the timings for the 137 instructions using a box plot and the
corresponding six point statistical summary of the instruction execution ranges in
seconds. Note that in Figure 2 the Min and Max values represent the two whiskers
in the box plot, and bound the instructions not falling within the outlier set which
represent approximately 91% of the imperative instructions timed. 50% of those fall
within the first and third quartiles (by definition), 24% fall between the minimum
and first quartile while the remainder, 16% fall between the third quartile and the
maximum. Those instructions falling between the first quartile and third quartile
have execution times within a range of 4.488 × 10−9 seconds.
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Min. 1st Qu. Median 3rd Qu. Max. Mean

1.093 × 10−9 3.583 × 10−9 4.527 × 10−9 8.072 × 10−9 1.299 × 10−8 1.061 × 10−9

Fig. 2. A box plot and the six point summary for the 137 JVM instruction timing results measured using
a low resolution timer. The six point summary gives the minimum and maximum values for the whiskers
as well as the first and third quartiles, and the median and mean of the data set. All measurements are in
seconds.

From Figure 2 we can identify 13 instructions whose execution times deviate
significantly from the execution times of the remaining instructions. These outliers
are listed in Table 3 and can be characterised as falling into three broad categories.

The first category in the outlier set represents instructions that perform a primi-
tive type conversion. In particular, we can see that conversion from a floating-point
representation to either a long or an int value, and vice versa, takes a considerable
amount of time. Conversions from different number representations take approx-
imately 10 times as long as conversions from floating-point to floating-point and
integer to integer.

The second category of instructions forming the outlier set, represent instruc-
tions that perform a remainder operation. For example, irem, lrem, frem and drem.
These instructions are found within class files whose Java source code would include
modulo operations. These instructions take in general, 10 times longer to execute
compared to the other imperative instructions.

The third category identified within the outlier set, are the ldiv and idiv in-
structions. The outlier set would seem to suggest that computationally intensive
programs would take significantly longer to execute compared to other imperative
programs.

With the aim of characterising instruction execution times further, we have
performed a cluster analysis of the instruction execution times. We present the
results of the cluster analysis next.
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Inst Time (sec)

lrem 1.180681 × 10−7

ldiv 1.132759 × 10−7

d2i 8.976430 × 10−8

d2l 8.795759 × 10−8

Inst Time (sec)

f2l 8.267345 × 10−8

f2i 8.028337 × 10−8

drem 5.049472 × 10−8

frem 4.191904 × 10−8

idiv 3.449739 × 10−8

Inst Time (sec)

l2d 3.321960 × 10−8

irem 3.179264 × 10−8

i2d 2.635641 × 10−8

l2f 2.205176 × 10−8

Table 3
The 13 instructions in the outlier set along with their corresponding execution times in seconds.

Granularity (sec) Number of Groups

Min: 1.093 × 10−9 24

1st Qu: 3.584 × 10−9 14

Median: 4.527 × 10−9 11

3rd Qu: 8.072 × 10−9 9

Mean: 1.061 × 10−8 7

Max: 1.181 × 10−7 1

Table 4
The number of cluster groups resulting from using six different granularities for the cluster distance metric.

4.3 Instruction Cluster Analysis

The identification of a number of groups of instructions, where each instruction
within a group exhibits similar execution time, would help in reducing the dimen-
sionality of any timing model dependent on knowing the execution time of each
JVM instruction. In performing the cluster analysis we choose a granularity value
as a cut-off point, so that when the instructions in a cluster differ by less than the
granularity value we do not subdivide them further. Thus there is a trade-off: small
granularity values give better accuracy at the cost of a larger number of groupings.

As an example, we consider the possibility of setting the granularity value based
on six statistics: the minimum value, the 1st quartile, the median, the 3rd quartile,
the mean and the maximum value of all instruction durations. Table 4 shows how
the total number of clusters varies as we change the granularity. The first column
of Table 4 shows the relevant granularity and column two shows the number of
groupings for that level of granularity. For example, clustering instructions based
on the minimum instruction execution time produces 24 groups of instructions. By
definition, using the maximum value will always group all instructions into one
cluster.

The choice of a specific granularity will ultimately depend on the computational
task at hand. However, as an example, Table 5 shows the result of clustering all
137 instruction times based on the median value, producing 11 groups. In Table 6
we show the instructions that form each group. The groups are listed in increasing
order of instruction duration, with the instructions in group (a) executing the fastest
and those in group (k) having the slowest execution time.

In Table 7 we present three box-plots for the largest cluster groups (a, b and c),
which show the spread of the instructions times within each group. The instructions
in cluster groups (d) through (k) are all outliers whose timings have already been
presented in Table 3. Approximately 91% of all the instructions fall within the
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Table 5
A dendrogram showing 11 clusters of groups of instructions. These clusters are based on the instruction

timings where we ignore differences of less than the median of the whose data set.

Group Instructions in this group

(a) aconst null, iconst m1, iconst [0-5], lconst [0-1], fconst [0-1], bipush, sipush, iload [n-3], fload [n-3],
lload [0-3], fstore [n-3], istore [0-3], land, lor, lxor, iinc, d2f, fcmpl, dcmpg, goto, ladd, isub, lsub, imul,
ineg, lneg, fneg, dneg, iand, ior, ixor, i2l, l2i, i2b, i2c, i2s, lcmp, fcmpg, dcmpl, ifeq, ifne, iflt, ifge, ifgt,
ifle, ifieq, ifine, ifilt ifigt

(b) nop, fconst 2, dconst 0, dconst 1, lload n, dload [n-3], istore n, lstore n, dstore n, lstore [0-3], dstore [1-2]
dupx1, dupx2, dup2x1, fadd, fsub, lmul, ishl, ishr, iushr dstore 0, dstore 3, pop, pop2, dup, dup2, swap,
iadd

(c) dup2x2, dadd, dsub, fmul, dmul, fdiv, ddiv, lshl, lshr, lushr, i2f, f2d, ifige, ifile

(d) i2d, l2f

(e) idiv, irem, l2d

(f) frem

(g) drem

(h) f2i, f2l

(i) d2i, d2l

(j) ldiv

(k) lrem

Table 6
The instructions in each of the 11 cluster groups obtained using the median as the minimum granularity

for the cluster distance metric. The 11 groups are listed in order of increasing instruction time.

first three groups. As previously identified in Table 3, floating point operations
take considerably longer to execute compared to non integer instructions and this
coincides with our intuition that floating point operations take considerably longer
than ALU (arithmetic logic unit) bound instructions.
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Table 7
A box-plot showing the distribution of instruction times within the three largest cluster groups (a), (b)

and (c). These three groups account for 124 of the 137 instructions studied.

5 Platform independent timing vs RDTSC

In this section, we calibrate all instruction execution times recorded using our plat-
form independent timing technique against a set of instruction timings gathered
using the RDTSC (read time stamp counter) instruction of the Intel Pentium pro-
cessor [27].

The technique for capturing the duration of an instruction in clock ticks requires
that a specific register be accessed through an RDTSC assembly instruction call. As
Java does not directly support assembly code within class files, the timing method
had to be written in C and linked to the JVM on start-up. The registering of
the native timing method was done through the Java Virtual Machine Profiler
Interface (JVMPI) [17]. Using this technique the 137 imperative instructions were
timed. For comparison with the platform independent timing strategy, we also
timed instruction sequences containing 1000 instructions using the RDTSC assembly
instruction.

5.1 Linear correlation

In order to compare the results achieved using our platform independent technique
with the results using the RDTSC instruction we measured the linear correlation
using the Pearson correlation coefficient statistic. Equation 7 shows the Pearson
empirical correlation coefficient statistic. The variable xi ranges over the instruc-
tion times for each of the 137 instructions analysed using our platform independent
measure, x represents the mean value of this data set. Similarly yi and y repre-
sent the individual instruction times and their associated mean value for the times
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Table 8
A scatter-plot comparing the platform-independent and RDTSC instruction timings for each of the 137

instructions. The line predicted by the linear regression model is also shown.

recorded using the RDTSC assembly instruction.

r =
∑

(xi − x)(yi − y)√∑
(xi − x)2

∑
(yi − y)2

(7)

The Pearson correlation coefficient is a symmetric measure of the association
between two variables. It ranges from −1 to 1, where the extreme values indicate
a perfect correlation and 0 means no correlation. The result of this analysis is that
r is equal to 0.9887898, which indicates a very strong positive linear correlation
between the two data sets. In order to model this linear relationship we undertook
a linear regression analysis on both data sets.

5.2 Linear regression model

The linear regression model attempts to find the line that passes through the data
points so as to minimize the distance from the point (xi, yi) to the fitted line. The
regression model selects a value for α and β from equation 8 so that the sum of the
squares is minimized.

yi = α + βxi(8)

The parameters α and β are given in Table 8 as the intercept and slope respec-
tively. From these results we can see that the line of best fit intercepts the y-axis
at 9.344 × 10−10 and has a slope of 1.232. Thus according to this linear model
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our platform-independent measures under-predict the instruction execution times
recorded using the RDTSC method by approximately 23%. While this difference
merits further study, the strength of the linear relationship at least allows a once-off
platform-dependent calibration to be extended over all the instructions. The two
values with the largest residuals represent the frem and drem instructions, with
the linear model over-predicting these two instructions by 2.181×10−8 seconds and
1.6703 × 10−8 seconds respectively.

6 Conclusion and Future Work

In this paper we have presented a technique for the timing of Java bytecode in-
structions that is platform independent. We have investigated the effect of timer
overhead and the importance of subtracting this quantity from instruction timings.
We have characterised the execution times of all Java imperative instructions. We
have considered the clustering of instructions based on their execution times and
finally we have presented a comparison of our technique against instruction timings
acquired using the RDTSC assembly instruction.

The contributions of this paper are: First we have presented a technique that
statistically estimates the execution time of Java instructions within a particular
confidence level. In particular, we can quantify the error associated with each
instruction timing. We have characterised instruction execution times and have
identified a group of imperative instructions, primarily floating point conversion
instructions, that execute considerably slower than all other instructions. We have
presented a technique that clusters instruction timings within a predefined granu-
larity. Finally we have identified a strong positive linear relationship between in-
struction times acquired using our statistical method and those acquired using the
RDTSC assembly instruction. We have modeled this linear relationship and have
identified that platform independent instruction timing analysis under estimates
the execution times of instructions by approximately 23%. However, the strength
of the linear model still allows us to accurately calibrate the measurements.

For future work, we intend to quantify the effect of processor pipelines and cache
miss rates on instruction timings. We also intend to carry out our experiments on
different platforms and investigate the correlation of results acquired from different
JVM implementations. We also intend to extend our instruction timing model to
include instructions from within other cores of the JVM. As part of future work
we also intend on applying our results to existing JVM models. In particular, we
intend on using our instruction execution times, as part of a larger model to predict
the execution times of Java applications.
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