
Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

Towards the re-usability of software metric

definitions at the meta level

- Position Paper -

Jacqueline A. McQuillan? and James F. Power

Department of Computer Science, National University of Ireland, Maynooth,
Co. Kildare, Ireland

{jmcq,jpower}@cs.nuim.ie

Abstract. A large number of metrics for evaluating the quality of soft-
ware have been proposed in the literature. However, there is no standard
terminology or formalism for defining metrics and consequently many
of the metrics proposed have some ambiguity in their definitions. This
hampers the empirical validation of these metrics. To address this prob-
lem, we generalise an existing approach to defining metrics that is based
on the Object Constraint Language and the Unified Modelling Language
metamodel. We have developed a prototype tool called DMML (Defining
Metrics at the Meta Level) that supports this approach and we present
details of this tool. To illustrate the approach, we present formal defini-
tions for the Chidamber and Kemerer metrics suite.

1 Introduction

Software plays a pivotal role in many important aspects of modern daily life.
In many cases, if software fails it can have catastrophic consequences such as
economic damage or loss of human life. Therefore, it is important to be able to
assess the quality of software. Software metrics have been proposed as a means
of determining software quality. For example, studies have demonstrated a cor-
relation between software metrics and quality attributes such as fault-proneness
[1] and maintenance effort [2].

Many software metrics have been proposed in the literature [3–5]. In order
for these metrics to be widely accepted, empirical studies of the use of these
metrics as quality indicators are required. However, there is no standard ter-
minology or formalism for defining software metrics and consequently many of
the metrics proposed are incomplete, ambiguous and open to a variety of differ-
ent interpretations [6]. For example, Churcher and Shepperd [7] have identified
ambiguities in the suite of metrics proposed by Chidamber and Kemerer (CK)
[3]. This makes it difficult for researchers to replicate experiments and compare
existing experimental results and it hampers the empirical validation of these
metrics.

? Corresponding author

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

Several authors have attempted to address the problem of imprecise metric
definitions. Briand et al. propose two extensive frameworks for software mea-
surement, one for measuring coupling [6] and the other for measuring cohesion
[8] in object oriented systems. Other approaches include the proposal of formal
models on which to base metric definitions [9] and the proposal of existing lan-
guages such as XQuery [10] and SQL [11] as metric definition languages. Baroni
et al. propose the use of the Object Constraint Language (OCL) and the Unified
Modelling Language (UML) metamodel as a mechanism for defining UML-based
metrics [12, 13].

In this paper, we take the approach of Baroni et al. [13] and extend it in a
number of ways. We decouple the metric definitions from the metamodel and
thus develop a publicly available prototype tool which can be generalised to any
metamodel and any set of metrics. Also, in this paper we are the first authors
to provide the definitions of the CK metric suite using the OCL and the UML
2.0 metamodel.

The remainder of this paper is organised as follows. In section 2, a review of
relevant research is presented. In section 3, we give details of an approach that
allows for the unambiguos definition of software metrics. We have developed a
prototype tool that supports this approach and present details of this tool in
section 4. In section 5, we illustrate the application of the approach using the
CK metrics suite. Section 6 gives a summary and discussion of future work.

2 Related Work

Several attempts have been made to address the problem of ambiguous metric
definitions. Briand et al. propose an integrated measurement framework for the
definition, evaluation and comparison of object oriented coupling metrics [6].
They have also developed a similar framework for cohesion [8]. These frame-
works are specific to coupling and cohesion metrics and new frameworks must
be developed to apply the approach to other types of metrics.

Harmer and Wilkie have developed an extensible metrics analyser tool for
object oriented (OO) programming languages [11]. The tool is based on a gen-
eral OO programming language metamodel in the form of a relational database
schema. Metric definitions are expressed as SQL queries over this schema. The
tool is extensible as it has support for incorporating new metrics and new OO
programming languages. However, defining the metrics requires the additional
effort of the development of C code as well as supplying the SQL queries. In
addition, the tool is tied to the underlying metamodel and does not allow the
interchange of metamodels.

Another approach put forward by Reißing involved the proposal of a for-
mal model on which to base metric definitions [9]. This model is called ODEM
(Object-oriented DEsign Model) and consists of an abstraction layer built upon
the UML metamodel. However, this model can only be used for the definition
of design metrics and does not solve the ambiguity problem as the abstraction
layer consists of natural language expressions.

2

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

El-Wakil et al. propose the use of XQuery as a metric definition language [10].
They propose extracting metric data from XMI design documents, specifically
UML designs. XQuery is a language that can be used to extract information from
XMI documents. Again this approach has only been used to define metrics at
the design level, specifically for UML designs. There is no information available
on how it extends to other languages.

Baroni et al. propose the use of the OCL and the UML metamodel as a
mechanism for defining UML-based metrics [12]. They have built a library called
FLAME (Formal Library for Aiding Metrics Extraction) [14] which is a library of
metric definitions formulated as OCL expressions over the UML 1.3 metamodel
[15]. Goulão et al [16] have utilised this approach for defining component based
metrics and used the UML 2.0 metamodel [17] as a basis for their definitions. We
believe that this approach provides a useful mechanism for the precise definition
of software metrics and we build upon it in this paper.

3 Software Metrics at the Meta Level

As we are examining the use of metamodels and the OCL as a basis for the
definition of software metrics, we will begin by presenting a short explanation of
these concepts.

Fig. 1. The Four Layer Metamodel Architecture. This diagram shows the standard
four-layer hierarchy depicting the relationships between various levels of modelling and
is taken from [18].

3

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

3.1 Metamodels

A metamodel is a model of a model describing a software system [19]. It specifies
the elements that may be used in a model of a software system and the rela-
tionships between these elements. Thus, it defines the language used to model
a software system. Metamodels are important as they provide a way to unam-
biguously define languages.

When dealing with metamodels to define languages there are generally four
levels or layers to be taken into account. These four layers are depicted in Fig.
1. At the data layer or M0 layer the entities are run-time instances of model
elements. At the model layer also referred to as the M1 layer, the entities are
models describing a software system. In Fig. 1 the model at layer M1 is a user
model specified in UML. The metamodel or M2 layer is the next abstraction
layer and it defines the language that can be used to describe the entities at the
model layer. In Fig. 1 the UML metamodel is found at this layer. Finally, there
is the meta-metamodel or M3 layer defining the language for the metamodel.
We do not make further use of this layer here.

3.2 The Object Constraint Language

The Object Constraint Language (OCL) is a standard language that allows
constraints and queries over object oriented models to be written in a clear
and unambiguous manner [20]. It offers the ability to navigate over instances
of object oriented models, allowing for the collection of information about the
navigated model.

3.3 Extensions to the approach of Baroni et al.

Baroni et al. propose expressing design metrics as OCL queries over the UML 1.3
metamodel [15]. This approach involves modifying the metamodel by creating
the metrics as additional operations in the metamodel and expressing them as
OCL conditions [12]. We extend this approach in a number of ways. We decouple

Metrics

UMLCKMetrics

+MaxLCOM(c : UMLClass) : int
+MinLCOM(c : UMLClass) : int

+MaxCBO(c : UMLClass) : int

+MaxRFC(c : UMLClass) : int

+MinCBO(c : UMLClass) : int

+MinRFC(c : UMLClass) : int

+WMC(c : UMLClass) : int
+NOC(c : UMLClass) : int

+CBO(c : UMLClass) : int

+RFC(c : UMLClass) : int

+DIT(c : UMLClass) : int

Metrics

UMLMetamodel

UMLClass
+scope

*

Fig. 2. Extension to the UML 2.0 metamodel. This UML package diagram shows the
definition of the CK metrics as a separate package, with a dependency on classes from
the UML metamodel.

4

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

the metric definitions from the metamodel by extending the metamodel with
a seperate metrics package (see Fig. 2). This metrics package contains a single
class, Metrics. To define a metric set a class is created that extends the Metrics
class. For each metric, an operation in the class is declared, parameterised by the
appropriate elements from the metamodel. The metrics are defined by expressing
them as OCL queries using the OCL body expression. This approach has allowed
us to develop an easily extendible tool that can, in theory, be applied to any
language. Furthermore, these extensions will allow for interoperability between
software metrics and will allow metric definitions to be easily re-used.

4 The DMML Tool

To facilitate the use of our approach to defining metrics at the meta level, we
have developed a a prototype tool called DMML (Defining Metrics at the Meta
Level). Our tool is implemented as a plug-in for the integrated development
environment Eclipse [21] and operates in two stages: the metric definition stage
and the metric calculation stage. An overview of these two stages is depicted in
Fig. 3.

Fig. 3. DMML - An environment for the definition and calculation of software metrics.
This system overview diagram shows the main inputs to and outputs from the DMML
tool, which is implemented as an Eclipse plug-in.

At the metric definition stage a user can create and define a set of metrics
specific to a software modelling (e.g. UML) or programming language (e.g. Java).
To perform this task the user first loads the metamodel of the language and then
specifies the names of the metric sets and metrics. Using this information, DMML
creates an extension (i.e. a metrics package) to the metamodel. The user then
creates or loads a file containing the metric definitions, expressed as queries over
the language metamodel. DMML uses the Octopus [22] plug-in to syntactically
and semantically check these OCL expressions.

5

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

At the metric calculation stage DMML takes the loaded metamodel and its
metrics extension and uses Octopus to generate the corresponding Java classes.
A metrics evaluator is created as a Rich Client Platform (RCP) to calculate the
defined metrics for any instance of the loaded metamodel. When this metrics
evaluator runs it displays all the metrics that have been defined during the
metric definition stage. To calculate the metrics, an instance of the metamodel
is loaded and is used to instantiate the metamodel classes. If the instance of
the metamodel is created successfully, the methods corresponding to the metric
definitions are called and return the metric results. These results are displayed
in the RCP application window and exported in text format. Future versions
will provide options to export the results in text, XML and HTML format.

An outline of how DMML works for the UML 2.0 metamodel can be seen
in Fig. 4. The language metamodel here describes the domain over which the
metrics are to be applied. To extend DMML to work with other language meta-
models the user only needs to add the functionality to convert instances of the
metamodel to the format understood by DMML. In Fig. 4 we represent this as
an XSLT transformation from XMI to XML, though the user is free to use any
XML-generating tool. We emphasise that the DMML tool is parameterised by
both the language metamodel and the definition of the metrics set.

Fig. 4. An overview of using DMML with the UML 2.0 Metamodel. This diagram gives
a snapshot of some of the data involved in using the DMML tool.

6

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

5 The Chidamber and Kemerer Metrics Suite

In this section we use the Chidamber and Kemerer (CK) [3] metrics suite to
illustrate the use of the approach outlined in this paper. We express the CK
metrics as OCL queries over the part of the UML 2.0 metamodel [17] that
defines class diagrams. We are the first authors to provide such definitions using
the UML 2.0 metamodel.

The UML 2.0 metamodel is a model that is used to define the UML. It
specifies the constructs that may be used in a UML model and the relationships
between these constructs. For example, the part of the UML metamodel that is
specific to class diagrams defines the concepts of class, attribute, operation and
states that a class includes attributes and operations. The structure of a UML
model always conforms to the UML metamodel.

The metrics suite proposed by Chidamber and Kemerer is one of the most
well known suite of OO metrics. The suite consists of the following six metrics:

– Weighted methods per class (WMC)
– Depth of inheritance tree (DIT)
– Number of children (NOC)
– Coupling between object classes (CBO)
– Response for a class (RFC)
– Lack of cohesion in methods (LCOM)

The CK metrics were proposed to capture different aspects of an OO design.
However, not all of the CK metrics can be precisely measured from a UML
class diagram. Implementation details, such as the code in the bodies of method
definitions, are required to measure the CBO, RFC and LCOM metrics. However,
we were able to provide definitions to estimate the values for these metrics based
on the information in the UML diagrams. Such measures are useful as they can
provide upper and lower bounds for metrics calculated at later stages in the
design or implementation process.

With reference to Fig. 4, the Language Metamodel we used is the standard
metamodel for UML class diagrams [17]. A metamodel instance in this case is an
actual class diagram, represented in XMI, the standard output format for most
UML modelling tools. The DMML tool then reads a transformed version of the
class diagram, expressed in XML, and uses this to instantiate the generated Java
classes that are used to represent the elements of class diagrams.

As an example of the format of the CK metric definitions, Fig. 5 illustrates
how the NOC metric can be expressed as an OCL query over the UML 2.0
metamodel. Here, the definition is parameterised by a single UMLClass, and the
body of the definition returns the size of the set of all children of this class.
The auxiliary operation children traverses the elements and relationships in
the UML metamodel to assemble this set. Full details of this and other metric
definitions can be found in [23].

As a proof of concept, DMML has been used to calculate these metrics for an
open source project, Velocity which is part of the Apache Jakarta project [24].

7

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

-- Returns a count of all the immediate descendants of the Class c

context umlckmetricset::NOC(c:UMLMetamodel::Kernel::UMLClass):Integer

body: self.children(c)->size()

--Returns the set of all children of the Class c

context umlckmetricset

def: children(c:UMLMetamodel::Kernel::UMLClass)

: Set(UMLMetamodel::Kernel::UMLClass)

= self.scope->select(i:Kernel::UMLClass| i.parents()->includes(c))->asSet()

Fig. 5. NOC Metric Definition. This OCL code defines the NOC metrics from the CK
metrics set, and is part of a larger definition of the whole CK metric set which we have
implemented as part of DMML.

We chose to use version 1.2 of Velocity as this is the version used in the study
by Briand et al. [25]. We reverse engineered the system using Rational Rose
to obtain a UML model. Using our DMML tool we calculated the CK metrics
suite for the resulting UML model. Fig. 6 shows the results from the metric
calculations.

Fig. 6. Metric results for classes from the Apache Jakarta Velocity project. This screen-
shot of the DMML tool shows some of the results of evaluating the CK metrics set over
the classes from the Velocity project [24].

8

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

6 Summary and Future Work

In this paper, we have identified the need for a clear, unambiguous framework for
defining metrics. This framework should provide for the comparison on different
definitions of the same metrics, and for using a metric, or suite of metrics in dif-
ferent environments. To achieve this we exploit OCL as a specification language,
and harness the UML metamodel to provide a framework for metric definitions.
We have implemented a tool, DMML, as an initial demonstration of the feasi-
bility of our approach. A final contribution of this work is that it provides a first
ever definition of the Chidamber and Kemerer metrics suite using the UML 2.0
metamodel as a basis for these definitions.

While our approach to date is similar to other research in this area, particu-
larly that of Baroni et al., it differs in a number of key areas. Our approach de-
couples the metrics from the underlying metamodel. While this does not provide
any immediate benefit for the specification of metrics over UML class diagrams,
it is key to providing a foundation for our future work. First, our approach can
be generalised at the metamodel level, for example, to apply to other UML di-
agrams. Second, the metric definitions and their calculation procedure is highly
extensible, allowing for different versions to be implemented and compared. The
DMML tool is readily extendible and applicable to any metamodel and any set
of metrics.

We plan to build on this foundation by developing our research in three main
directions:

– We plan to extend metric definitions to other UML diagrams. While this
will allow us to add breadth to our metric set, it will also be important in
ensuring consistency across design documents for a single application, and
in tracking the impact of design decisions from different diagrams on the
application as a whole.

– We will extend the metrics to the implementation level, using programming
language metamodels. This will provide a single, coherent framework within
which the design and implementation process can be measured. This will
provide a clear, quantitative measure of the changes that take place between
design and implementation.

– We will investigate the variances between different definitions of the same
metrics over both design and implementation artifacts.

We have already tested the feasibility of our approach on the Jakarta Velocity

tool. We intend to analyse a suite of open-source software as part of our work,
in order to ensure the robustness and generalisability of our results.

References

1. Basili, V., Briand, L., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22 (1996) 751–761

2. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal of
Systems and Software 23 (1993) 111–122

9

Presented at the PhD Workshop of the 20th European Conference on Object-Oriented Programming
Nantes, France, July 3-7, 2006

1

3. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (1994) 476–493

4. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice Hall Object-
Oriented Series (1994)

5. Fenton, N., Lawrence Pfleeger, S.: Software Metrics: A Rigorous and Practical
Approach. International Thompson Computer Press (1996)

6. Briand, L.C., Daly, J.W., Wuest, J.K.: A unified framework for coupling measure-
ment in object-oriented systems. IEEE Transactions on Software Engineering 25

(1999) 91–121
7. Churcher, N., Shepperd, M.: Comments on ‘A metrics suite for object-oriented

design’. IEEE Transactions on Software Engineering 21 (1995) 263–265
8. Briand, L.C., Daly, J.W., Wuest, J.K.: A unified framework for cohesion measure-

ment in object-oriented systems. Empirical Software Engineering 3 (1998) 65–117
9. Reißing, R.: Towards a model for object-oriented design measurement. In: Proceed-

ings of ECOOP Workshop on Quantative Approaches in Object-Oriented Software
Engineering, Budapest, Hungary (2001)

10. El-Wakil, M., El-Bastawisi, A., Riad, M., Fahmy, A.: A novel approach to formalize
object-oriented design metrics. In: Proceedings of Evaluation and Assessment in
Software Engineering, Keele, UK (2005)

11. Wilkie, F., Harmer, T.: Tool support for measuring complexity in heterogeneous
object-oriented software. In: Proceedings of IEEE International Conference on
Software Maintenance, Montréal, Canada (2002)

12. Baroni, A.: Formal definition of object-oriented design metrics. Master’s thesis,
Vrije Universiteit Brussel - Belgium, in collaboration with Ecole des Mines de
Nantes - France and Universidade Nova de Lisboa - Portugal (2002)

13. Baroni, A., Braz, S., Brito e Abreu, F.: Using OCL to formalize object-oriented
design metrics definitions. In: Proceedings of ECOOP Workshop on Quantative
Approaches in Object-Oriented Software Engineering, Malaga, Spain (2002)

14. Baroni, A., Brito e Abreu, F.: A formal library for aiding metrics extraction.
In: Proceedings of ECOOP Workshop on Object-Oriented Re-Engineering, Darm-
stadt, Germany (2003)

15. The Object Management Group: UML 1.3 specification (1999)
16. Goulão, M., Brito e Abreu, F.: Formalizing metrics for COTS. In: Proceddings of

the ICSE Workshop on Models and Processes for the Evaluation of COTS Com-
ponents, Edinburgh, Scotland (2004)

17. The Object Management Group: UML 2.0 draft superstructure specification (2003)
18. The Object Management Group: UML 2.0 draft infrastructure specification (2003)
19. Warmer, J., Kleppe, A., Bast, W.: MDA Explained: The Model Driven Architec-

turePractice and Promise. Addison-Wesley (2003)
20. Warmer, J., Kleppe, A.: The Object Constraint Language. Addison-Wesley (2003)
21. Eclipse Open Source Community: Eclipse. http://www.eclipse.org/ (2006)
22. Klasse Objecten: Octopus: OCL tool for precise UML specifications. Available

from http://www.klasse.nl/octopus/ (2006)
23. McQuillan, J., Power, J.: A definition of the Chidamber and Kemerer metrics

suite for the Unified Modeling Language. Technical Report NUIM-CS-TR-2006-
04, Department of Computer Science, NUI Maynooth, Co. Kildare, Ireland (2006)

24. Jakarta: The Apache Jakarta Project. http://jakarta.apache.org/ (2003)
25. Arisholm, E., Briand, L., Fyen, A.: Dynamic coupling measurement for object-

oriented software. Technical Report 2003-05, Simula Research Laboratory, Norway
(2003)

10

