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Abstract. In this position paper we discuss a number of issues relating
to model metrics, with particular emphasis on metrics for UML models.
Our discussion is presented as a series of nine observations where we
examine some of the existing work on applying metrics to UML models,
present some of our own work in this area, and specify some topics for
future research that we regard as important. Furthermore, we identify
three categories of challeges for model metrics and describe how our nine
observations can be partitioned into these categories.
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1 Introduction

Many object-oriented metrics have been proposed specifically for the purpose
of assessing the design of a software system. However, most of the existing ap-
proaches to measuring these metrics involve the analysis of source code. As a
result, it is not always clear how to apply existing metrics at the early stages of
the software development process. With the increasing use of the Unified Mod-
elling Language (UML) to model object-oriented systems at the early stages of
the software development process, research is required to investigate how the
metrics can be measured from UML models and prior to the implementation of
the system.

Being able to measure the metrics accurately from both UML models and
source code is important for several reasons:

– The quality of the system can be assessed in the early stages of the software
life-cycle when it is still cost effective to make changes to the system.

– The implementation can be assessed to determine where it deviates from its
design. This can be achieved by applying metrics to both the UML and source
code and comparing the results. Variations in the metric values may help to
identify parts of the implementation that do not conform to its design.

– Evaluation of the correctness of round trip engineering tools can be per-
formed. Again, applying the same metrics to both the UML and source code
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may help in identifying parts of the system that have been incorrectly for-
ward or reverse engineered.

In this position paper we review some of the existing work on applying metrics
to UML models, present some of our own work in this area, and outline some
topics for future research that we regard as important. However, in order to
serve as a basis for discussion, we have chosen to present this position paper as
a series of nine observations.

2 General Observations

In this section we present three basic observations regarding the nature of metric
definitions and calculation at the model level. The observations themselves are
hardly contentious, but they serve as a framework for discussing related work in
the area.

Observation 1. Defining model metrics is a metamodelling activity.

Many metrics for object-oriented software have been proposed in the literature
[1,2]. However, one of the difficulties with comparing and evaluating these met-
rics is in interpreting and understanding their exact definition. For example,
when counting methods in a class, should constructors, finalisers/destructors
and accessor methods count as ordinary methods? Should methods that are in-
herited but not defined in a class be included? Should abstract methods count as
empty methods, or not at all? In order to answer these questions, it is necessary
to model the entities being measured, and to then define the metrics in terms
of this model. In standard terminology, metrics are defined on the metamodel of
the entities being measured.

Several attempts have been made to address the problem of ambiguous metric
definitions. Briand et al. propose an integrated measurement framework, based
on a model of object-oriented systems, for the definition, evaluation and compar-
ison of object-oriented coupling and cohesion metrics [3,4]. Harmer and Wilkie
have developed an extensible metrics analyser tool for object-oriented program-
ming languages based on a general object-oriented programming language meta-
model in the form of a relational database schema [5]. Reißing defines metrics
over a formal model called ODEM (Object-oriented DEsign Model) which con-
sists of an abstraction layer built upon the UML metamodel [6].

Our own work uses a middle level model to define metrics over Java programs
[7]. By defining metrics on this metamodel i.e. at the meta-level, we were able to
quickly specify and implement a number of different versions of cohesion within
a class, and evaluate the metrics over a number of large software systems.

Observation 2. Implementing metrics that are defined at the meta-level is (al-
most) free.

Using a clearly defined metamodel is important for facilitating unambiguous def-
initions of metrics, but it also has clear advantages in terms of implementation.
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Many metamodelling frameworks facilitate the implementation of correspond-
ing APIs that allow for the representation and traversal of model instances. The
canonical example is the XML Metadata Interchange (XMI) for OMG’s MetaOb-
ject Facility (MOF) [8], but closely related frameworks include the Eclipse Mod-
elling Framework (EMF)1 and the NetBeans Metadata Repository project
(MDR)2.

Previous research has exploited the implementation aspect of metamodels by
defining metrics as queries. El-Wakil et al. propose the use of XQuery as a metric
definition language to extract metric data from XMI design documents, specif-
ically UML designs [9]. Harmer and Wilkie, working from a relational schema,
express metric definitions as SQL queries over this schema [5]. Baroni et al. have
built a library called FLAME (Formal Library for Aiding Metrics Extraction)
that uses the Object Constraint Language (OCL) and the UML metamodel as a
mechanism for defining UML-based metrics [10]. Goulão et al. have utilised this
approach for defining component based metrics and used the UML 2.0 meta-
model as a basis for their definitions [11].

In our own work, we have specified outline metrics on UML class diagrams,
using OCL queries over the UML 2.0 metamodel [12]. The scope of such metrics
is somewhat limited, since many of the features they measure relate to method
internals, which are not available in class diagrams. Nonetheless, a prototype
tool, dMML, was developed as an Eclipse plug-in to implement and measure
these metrics [13].

However, some issues still exist. Assumptions have to be made when speci-
fying how to instantiate the metamodels, such assumptions will have an effect
on the metric definitions. In addition, the process of creating instances of the
metamodels must be verified. Errors or omissions in this process would have a
fundamental impact on the correctness of the calculated metrics.

Observation 3. Defining new metrics is (almost regrettably) easy.

One of the problems with software metrics is that they can be easy to define,
but difficult to justify or correlate with external quality attributes. For example,
Halstead’s metrics [14] are often cited, but almost equally often criticised. Work-
ing at the model level provides a whole new layer of elements and relationships
that can be grouped and counted. However, it is important to avoid the trap of
proposing metrics that count these elements without offering evidence that such
counts are really useful in evaluating the model. Much of the literature on the
proposal of metrics for UML models has concentrated on only one or a small
number of the different diagrams and views available in an overall UML spec-
ification of a software system. Furthermore, the majority of the UML metrics
proposed are primarily simple counting metrics (e.g. number of use-cases in a
model).

One of the earliest sets of metrics proposed for UML models are those de-
scribed by Marchesi who propose metrics that can be applied to class and use
1 http://www.eclipse.org/emf/
2 http://mdr.netbeans.org/

http://www.eclipse.org/emf/
http://mdr.netbeans.org/
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case diagrams [15]. Genero et al. have proposed a set of metrics for assessing the
structural complexity of class diagrams and have performed several experiments
to empirically validate these metrics [16,17]. Various other metrics have been
proposed for class diagrams and a comparison of these metrics can be found in
[18]. Genero et al. have also developed a set of metrics for measuring the size and
structural complexity of state-chart diagrams [19]. Kim and Boldyreff have de-
fined a set of 27 metrics to measure various characteristics of a UML model [20].
However, the metrics are described informally and for some of these measures it
is unclear which UML diagrams should be used to calculate the measures.

There has been relatively little work on measuring existing design metrics
from all of the available views and diagrams of a UML model and there is as yet
no convergence of opinion on the usefulness, or indeed the use, of these model
level metrics.

3 Relationship with Code

The area of software metrics is reasonably well developed, and a discussion of
model level metrics would be incomplete without considering what we can learn
from existing lower level metrics. In particular, the relationship between mod-
els of a software system and the corresponding code can be explored through
evaluation of similar metrics at each level of abstraction.

Observation 4. We can “lift” code metrics to the model level.

One of the most well known suites of object-oriented metrics is the one proposed
by Chidamber and Kemerer (CK) [1]. These metrics were proposed to capture
different aspects of an object-oriented design including complexity, coupling and
cohesion. Several studies have been conducted to validate these metrics and have
shown that they are useful quality indicators [21]. Baroni et al. have formalised
the CK metrics using the OCL and the UML 1.3 metamodel [22]. We have also
formalised the CK metrics using the OCL but have based our definitions on
the UML 2.0 metamodel [12,13]. These definitions specify how to obtain the CK
metrics from class diagrams but do not take any of the other UML diagrams into
consideration. Tang and Chen have also attempted to specify how the CK metrics
can be measured from UML diagrams [23]. They have developed an algorithm for
computing the metrics from UML class, activity and communication diagrams.

The CK metrics suite consists of six metrics: Weighted Methods Per Class
(WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Cou-
pling between Object Classes (CBO), Response For a Class (RFC), and Lack of
Cohesion in Methods (LCOM). Each of the metrics refer to the individual class
in the software system and not to the whole system. Figure 1 reviews each of
these metrics and briefly discusses which UML diagrams need to be examined
in order to gain accurate measures of the metrics.

In addition, it may be possible to obtain further information for the calcula-
tion of these metrics, e.g. method invocations and variable usages of methods
and classes, by inspecting OCL constraints of the system. Interpreting such in-
formation requires further research.
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Weighted methods per class
(WMC): This metric is concerned
with the complexity of the methods
within a given class. It is equal to the
sum of the complexities of each method
defined in a class. If we consider the
complexity of each method to be unity
then the WMC metric for a class is equal
to the number of methods defined within
that class, we refer to this as WMC1.
The WMC1 metric for a class can be
obtained from the class diagrams of a
UML model by identifying the class and
counting the number of methods in that
class. Alternatively, we can consider the
complexity of each method to be Mc-
Cabe’s Cyclomatic complexity [2], which
we refer to as WMCcc. The activity,
sequence and communication diagrams
clearly contain information relevant to
WMCcc, but it is equally plausible that
the state machine diagram could be used
to compute this value for the class as a
whole.
Number of children (NOC): This is
the number of immediate descendants
of a given class, that is the number of
classes which directly inherit from the
class. Again, this metric can be measured
for a class by taking the union of all the
class diagrams in a UML model and ex-
amining the inheritance relationships of
the class.
Response for a class (RFC): This is
a measure of the number of methods that
can potentially be invoked by an object
of a given class. The number of methods
for a class can be obtained from a class
diagram, but the number of methods of
other classes that are invoked by each of
the methods in the class requires informa-
tion about the behaviour of the class. This
information can be derived by inspecting
the various behavioural diagrams, such
as sequence and collaboration in order to
identify method invocations.

Coupling between object classes
(CBO): Two classes are coupled to each
other if a method of one class uses an in-
stance variable or method of the other
class. An estimate for this metric can
be obtained from the class diagrams by
counting all the classes to which the class
has a relationship with and counting all
the reference types of the attributes and
parameters of the methods of the class.
To obtain a more precise value, informa-
tion from the behavioural diagrams can
be taken into account in order to get
information about the usage of instance
variable and invocation of methods. For
example, a sequence diagram gives di-
rect information about the interactions
between methods in different classes.
Depth of inheritance tree (DIT):
This is a measure of the depth of a class
in the inheritance tree. It is equal to the
maximum length from the class to the
root of the inheritance tree. This metric
can be computed for a class by taking the
union of all the class diagrams in a UML
model and traversing the inheritance hi-
erarchy of the class.
Lack of cohesion in methods
(LCOM): Calcuating the LCOM for
a given class involves working out, for
each possible pair of methods, whether
the sets of instance variables accessed
by each method have a non-empty in-
tersection. In order, to compute a value
for this metric, information on the usage
of instance variables by the methods
of a class is required. This information
cannot be obtained from a class diagram.
However, an upper bound for this metric
can be computed using the number of
methods in the class. Diagrams that con-
tain information about variable usages,
e.g. sequence diagrams can be used to
compute this metric.

Fig. 1. An overview of applying the CK metrics to UML models. In this figure we review
the diagrams in a UML model that can contribute to calculating the CK metrics.
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Observation 5. Models can represent partial and/or overlapping information.

In the latest version of UML (2.0), there are 13 different basic diagrams that
can be used to specify a software system. Existing object-oriented metric suites,
such as the CK suite, are mainly relevant to class diagrams, since they measure
structural elements of the design. Source code provides this information in the
same format at the same level of abstraction but UML models can represent
many different kinds of information. For example

– A single class may appear in a number of different class diagrams, with
different degrees of elaboration of its attributes, methods and associations
in each. This information needs to be merged in a consistent way before
metric calculation.

– Some UML diagrams represent a view of a system, rather than a single
overview. For examples, sequence diagrams are typically used to provide
details of a usage scenario. It is not obvious how we should calculate met-
rics across such diagrams, and how we should merge the information from
different diagrams with the same elements.

Defining how to integrate these different sources of information is a significant
issue in model level metrics.

Observation 6. Differences between metric values are themselves metrics.

Ideally, following a Model Driven Architecture (MDA) approach to software
development, the design models and the implementation are synchronised, so
that changes in one are reflected in the other [24]. In practice, UML models can
represent a design stage of a project, used perhaps once to develop a prototype
implementation, and then not updated as the software develops. In this context,
differences between the values of similar metrics measured at the model and
source code level will reflect properties of the evolution of the system, rather
than its design.

Even when models and implementation are synchronised, there will be a dif-
ference between metric values. For example, internal complexity measures for
method bodies may not be available in the model, but can be calculated from
the code. In this context, the model could be used to specify boundary values for
the implementation, or the difference between metric values at the model and
implementation level can capture the level of additional complexity added by the
implementation process. For example, one might expect a prototype implemen-
tation to preserve many of the model level metric values, whereas the ultimate
“real” implementation might introduce significant changes in the metric values.

Identifying differences between the values of the same metric applied to the
same system could also have potential use in reverse engineering. It has already
been noted that a significant level of variation exists between existing tools that
reverse engineer class diagrams [25]. Software metrics, measured at the model
level and then compared, can be used to evaluate the correctness of reverse
engineering tools, or to quantify their perspective on the abstraction of high-
level concepts, such as aggregation and composition, from the source code.
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4 Some Future Directions

In this section we outline some directions for future research in the area of model
level metrics that we regard as important.

Observation 7. Metric definitions should be re-usable.

Standard concepts measured by metrics, such as DIT or NOC, apply equally
to models and code. Ideally, it should be possible to define these concepts once,
and then adapt them to each relevant metamodel in turn. This provides not only
for economy of expression, but also assurance that the same concepts are being
measured at each level. However, this is not as easy as it may appear. Even a
relatively simple metric, such as DIT, involves traversing relationships that may
be represented quite differently in different models.

The simplest approach might be to define a single model over which the
metrics are defined, and then apply transformations to map other models into
this canonical model. However, given the range of UML diagrams, and possible
contributions from language metamodels, a single canonical model may not be
realistic. Instead, we may need to examine the possibility of mapping the metric
definitions across different models.

Observation 8. The relationship between behavioural models and coverage
needs to be explored.

A number of the UML diagrams represent behavioural aspects of a system, for
example, use case, sequence and communication diagrams. Calculating metrics
for such diagrams involves measuring a particular usage of the system, rather
than its design as a whole. We have previously mentioned the difficulty of merg-
ing such partial information, but there are also unexplored issues regarding how
such information should be interpreted.

Previous work, including our own, has explored some of the issues relating to
defining and evaluating metrics at run-time [26,27]. Such metrics can be shown to
capture additional information about the program but are, of course, dependent
on the context in which the program is run. Indeed it is arguable that metrics
at this level represent coverage data, rather than metrics in the usual sense. The
use of such information, or its integration into testing strategies, is still relatively
undeveloped.

Observation 9. Standardisation is multi-faceted; interoperability is the key.

One of the benefits of metamodelling is that interoperability between models is
facilitated; metamodel Zoos 3 represent an important contribution here. How-
ever, there are other aspects that can contribute to comparing and evaluating
metric results; some of these include:

– Benchmark suites
The importance of benchmarks in software engineering in general, and in
evaluating fact extractors in particular, has been noted by Sim et al. [28].

3 For example, http://www.eclipse.org/gmt/am3/zoos/

http://www.eclipse.org/gmt/am3/zoos/
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They note the importance of benchmark suites, such as the SPEC suite, in
other areas of computer science, and argue for a similar approach to software
engineering research. Similarly, a call for benchmarks for software visualisa-
tion was issued in 2003 [29], but it is not clear what level of acceptance this
has gained. The selection of a number of common programs and models for
use in metric studies would greatly facilitate comparison between metrics
and evaluation of new metrics.

– Data sets
An interesting recent development towards standardisation and repeatabil-
ity of results is the Promise Software Engineering Repository [30]. This is
a collection of publicly available datasets “created to encourage repeatable,
verifiable, refutable, and/or improvable predictive models of software engi-
neering”. At the moment the repository is still in the early stages of de-
velopment and contains relatively specialised data sets, but it represents a
promising trend in software engineering research.

– Non-code artifacts
One of the difficulties in evaluating metrics at the UML level is the relatively
small supply of UML and other design level artifacts. Open source software
provides a rich source of information at the code level; it would be highly de-
sirable if design level documents could be made available in a similar fashion.
One initiative is the Repository for Model Driven Development (ReMoDD)
project [31]. The objective of this project is to develop a repository of ar-
tifacts for use by researchers and industry practioners in the area of Model
Driven Engineering of software systems. Also as an approximation, UML
diagrams can be reverse engineered from code, and the reverse engineer-
ing community has already provided for interoperability through formalisms
such as GXL [32] and our own g4re artifact repository [33]. However, reverse
engineering artifacts are fundamentally different from design artifacts, and
can at best only serve as an approximation for the real thing.

5 Summary

In this position paper we have discussed a number of issues relating to model
metrics, with particular emphasis on metrics for UML models. We have struc-
tured our discussion around nine observations, which we can also partition into
three levels of challenges for model metrics:

– The technical challenge of defining, comparing and reusing metrics over dif-
ferent descriptions of the same software system (Observations 1, 6, 7)

– The conceptual challenge of defining how to measure metrics from partial
descriptions of models, and of the change in metrics between different rep-
resentations of the software (Observations 3, 5, 8)

– The practical challenge of gathering, comparing and interpreting new and
existing metrics (Observations 2, 4, 9)

Our own work in this area, as cited above, is concentrated on addressing the
technical challenges of defining reusable metrics at the meta-level.
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