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ABSTRACT
In this paper we report on our experiences of using the
Dagstuhl Middle Metamodel as a basis for defining a set
of software metrics. This approach involves expressing the
metrics as Object Constraint Language queries over the meta-
model. We provide details of a system for specifying Java-
based software metrics through a tool that instantiates the
metamodel from Java class files and a tool that automati-
cally generates a program to calculate the expressed metrics.
We present details of an exploratory data analysis of some
cohesion metrics to illustrate the use of our approach.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.7 [Distribution,
Maintenance, and Enhancement]: [Restructuring, re-
verse engineering, and re-engineering]

General Terms
Design, Measurement, Standardization

1. INTRODUCTION
Software plays a pivotal role in many important aspects of

modern daily life. In many cases, if software fails it can have
catastrophic consequences such as economic damage or loss
of human life. Therefore, it is important to be able to assess
the quality of software. Software metrics have been proposed
as a means of determining software quality. For example,
studies have demonstrated a correlation between software
metrics and quality attributes such as fault-proneness [2]
and maintenance effort [12].

Many software metrics have been proposed in the litera-
ture [5, 13, 9]. In order for these metrics to be widely ac-
cepted, empirical studies of the use of these metrics as qual-
ity indicators are required. However, there is no standard
terminology or formalism for defining software metrics and
consequently many of the metrics proposed are incomplete,
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ambiguous and open to a variety of different interpretations
[4]. For example, Churcher and Shepperd have identified
ambiguities in the suite of metrics proposed by Chidamber
and Kemerer [5, 6]. This makes it difficult for researchers
to replicate experiments and compare existing experimen-
tal results and it hampers the empirical validation of these
metrics.

Several authors have proposed various approaches for spec-
ifying software metrics. Briand et al. propose two extensive
frameworks for software measurement, one for measuring
coupling and the other for measuring cohesion in object ori-
ented systems [3, 4]. Other approaches include the proposal
of formal models on which to base metric definitions and the
proposal of existing languages such as XQuery and SQL as
metric definition languages [16, 8, 18]. Baroni et al. propose
the use of the Object Constraint Language (OCL) and the
Unified Modelling Language (UML) metamodel as a mech-
anism for defining UML-based metrics [1].

In this paper we present details of an approach for spec-
ifying Java-based software metrics. This approach is based
on one previously proposed by Baroni et al. and involves
expressing the metrics as OCL queries over a Java meta-
model. We have chosen the Dagstuhl Middle Metamodel
as our Java metamodel, and we describe the specification
of software metrics over this model using OCL. We have
implemented a system that supports this approach which
provides a flexible and reusable environment for the speci-
fication and calculation of software metrics. The system is
capable of automatically generating a program to calculate
the specified metrics. We have performed a study of several
cohesion measures to demonstrate its use.

The remainder of this paper is organised as follows. Sec-
tion 2 gives details of the approach for specifying software
metrics. Details of a system that implements this approach
are presented in Section 3. In Section 4, we present an ex-
ploratory data analysis of some cohesion metrics. Section 5
gives conclusions and discusses future work.

2. DEFINING METRICS
In this section, we give details of an approach for specify-

ing Java based software metrics that is based on the use of
metamodels and the OCL.

As the name suggests, a metamodel is a model that de-
scribes other models. Typically, we think of a model of a
software system as being a design model, such as UML class
or sequence diagrams, or an implementation model, such
as an actual program. A metamodel then would describe



-- Returns the RFC value for the Class c
context ckmetricset::RFC(c:DMM::Class) : Real
body: self.implementedMethods(c)->union(self.methodsDirectlyInvoked(c))->asSet()->size()

-- Returns a set containing all methods directly invoked by all the implemented methods of Class c
def: methodsDirectlyInvoked(c:DMM::Class) : Set(DMM::Method)

= self.implementedMethods(c)->collect(m:DMM::Method | self.methodsDirectlyInvoked(m))
->flatten()->asSet()

-- Returns a set containing all methods directly invoked by the Method m
def: methodsDirectlyInvoked(m:DMM::Method) : Set(DMM::Method)

= m.invokes->select(be:DMM::BehaviouralElement | self.isKindOfMethod(be))
->collect(belem:DMM::BehaviouralElement | belem.oclAsType(DMM::Method))->asSet()

Figure 1: RFC Metric Definition using the DMM. This OCL specification defines an operation to calculate the
RFC metric for a class, as well as two auxiliary operations. The entities used in the definition are from the
DMM.

the allowable constructs in these models and the allowable
relationships between these constructs.

OCL is a standard language that allows constraints and
queries over object oriented models to be written in a clear
and unambiguous manner [17]. It offers the ability to nav-
igate over instances of object oriented models, allowing for
the collection of information about the navigated model.
Baroni et al. propose expressing design metrics as OCL
queries over the UML 1.3 metamodel [1]. Their approach
involves modifying the metamodel by creating the metrics
as additional operations in the metamodel and expressing
them as OCL conditions.

We have already extended the approach of Baroni et al.
to the UML 2.0 metamodel in a manner specifically designed
to be reusable for other metamodels [14]. Our extension in-
volves decoupling the metric definitions from the metamodel
by creating a metrics package at the meta level. Defining a
new metrics set is then a three step process. First a class is
created in the metrics package corresponding to the metric
set. Then, for each metric, an operation in the class is de-
clared, parameterised by the appropriate elements from the
metamodel. Finally the metrics are defined by expressing
them as OCL queries using the OCL body expression.

2.1 Selecting a metamodel
In order to adapt this approach to specify Java based met-

rics, it is necessary to have a model of Java programs i.e.
a Java metamodel. There is no standardised Java meta-
model, but a number of task-specific metamodels have been
proposed for various purposes. In order to maximise the re-
usability of our metrics, we have chosen to use the Dagstuhl
Middle Metamodel (DMM) as a basis for defining our met-
rics [11]. The DMM was designed as a schema for reverse en-
gineering that would facilitate interoperability between tools
as an agreed exchange format. It is a “middle” metamodel
in so far as it seeks to be more abstract than a syntax graph,
but less abstract than a high-level architectural description.

The DMM itself is language independent, but contains
many features commonly found in languages such as C,
C++, Java and Fortran. We do not have space here to repro-
duce the elements of the model, necessary for a full under-
standing of our metrics, but details can be found in [11]. We
have used the Chidamber and Kemerer (CK) metrics suite
[5] to illustrate the approach outlined in this paper. We have
successfully expressed the CK metrics as OCL queries over

classes from the ModelObject hierarchy of version 0.007 of
the DMM. This required approximately 29 OCL queries in
total.

As an example of a metric definition, Figure 1 presents the
definition of the response set for a class (RFC) metric. The
response set for a class is the set of all implemented methods
of this class and all methods invoked by this class. The defi-
nition is parameterised by a single Class from the DMM hi-
erarchy, and the body of the definition returns the size of the
response set for this class. The auxiliary operation methods-

DirectlyInvoked(DMM::Class c) gathers all methods in-
voked by each of the implemented methods in the class.
The operation methodsDirectlyInvoked (DMM::Method m)

traverses the invokes association in the DMM to gather all
BehaviouralElements invoked by the method m and then
selects all elements from this set that are Methods.

3. IMPLEMENTATION
In this section we describe the implementation of our sys-

tem to calculate metrics for Java programs based on the
DMM. This was a three step process:

Step 1: Create a representation of the classes and associa-
tions of the DMM in Java

Step 2: Develop a tool to convert Java programs to in-
stances of the DMM

Step 3: Develop a tool that can apply metrics defined in
OCL to the instance of the DMM produced in step 2.

Step 1 is easily achieved by depicting the DMM as a UML
class diagram, and then using the Octopus [10] tool to gen-
erate the corresponding Java classes. We implemented the
19 classes from the DMM ModelObject hierarchy directly,
and chose to implement the relationships using attributes
of these classes, rather than association classes. This im-
plementation decision was made as the explicit relationship
classes were not required by our tool. For similar reasons,
we did not implement the classes in the SourceObject hier-
archy that represent details about the code as it appears in
the original program. This does not preclude these classes
being added later.

The combination of the tools used in our approach is
shown in Figure 2. The figure is divided into two layers: the
upper layer represents the metric definition process, which



BCEL

Java 
.class

files

Instance
of 

DMM

Metric

Values

Middle
Metamodel

Metric

Octopus
Eclipse

Definition
Metric

Definitions

to

Calculator
Metrics

Calculation
Metric

in OCL

DMM
Java

dMML
Dagstuhl

Figure 2: The use of dMML to define and calculate
metrics for Java programs. dMML is part of a tool-
chain that calcuates metric values from Java .class
files.

is done once for each metric set. The lower layer represents
the metric calculation process, where the metrics are applied
to a set of Java programs. The main tools we developed are
shown as green ovals: dMML for metric definitions, and Java
to DMM for converting class files to instances of the DMM.
The Metrics Calculator, also shown as a green oval, is a
Java program automatically generated by dMML for each
metric set. The third-party software used in our metric def-
inition system is shown by yellow boxes in Figure 2. BCEL
is used by the Java to DMM tool, and the Octopus plug-in
for Eclipse is used in defining the metrics, as described in
the following two sub-sections. The definition of the DMM is
represented as a UML class diagram, and the corresponding
Java representation is forward-engineered using Octopus.

The blue dashed line in Figure 2 delimits the system, and
shows that its inputs are a set of metric definitions in OCL
and a set of Java programs. The output of the system is
the set of metric values calculated by applying the metrics
to the Java programs.

3.1 Converting Java programs to an instance
of the DMM

In order to complete Step 2, it is necessary to read in Java
programs and to instantiate the DMM classes produced in
Step 1. We chose to process a compiled .class file directly
as the contents of the .class file most closely resembled
the information needed to instantiate the DMM implemen-
tation. In particular, access relationships between classes
arising from the use of fields and variables in a method are
easy to identify at the bytecode level, since they are trans-
lated into a single bytecode instruction.

Our implementation uses the Apache Bytecode Engineer-
ing Library (BCEL) to read in and traverse the contents of
the .class file. The BCEL API provides classes represent-
ing the contents of the .class file, and methods to access
classes, fields, methods and bytecode instructions. Using the
BCEL it was relatively easy to traverse these structures and
instantiate the DMM, and required less than 600 (non-blank,
non-comment) lines of Java code. It should be noted that
using BCEL would not be suitable for a more detailed rep-
resentation than the DMM ModelObject hierarchy. Source
level details such as Java statements (e.g. while and for

loops) are not represented in the bytecode, and tables giv-
ing local variable names and mappings to lines of Java code
are optional at the .class file level.

3.2 Implementing the metric definitions
To complete step 3, we extended a prototype tool dMML

(for Defining Metrics at the Meta Level) that was first ap-
plied to the UML 2.0 metamodel [14]. Our tool is imple-
mented as a plug-in for the integrated development environ-
ment Eclipse.

In step 3, a set of metrics are created and defined for
the language under consideration which in this case is Java.
To achieve this, the language metamodel, DMM is provided
along with the metric definitions expressed as OCL queries
over this metamodel. dMML uses the Octopus plug-in to
perform syntactic and semantic checks on these OCL ex-
pressions.

The dMML tool uses the Octopus plug-in to translate the
OCL metric definitions into Java code. A Java program,
Metrics Calculator, is automatically generated by dMML
that will calculate the defined metrics for any instance of
the Java metamodel (i.e. Java programs). To perform the
metric calculations dMML uses the Java to DMM tool devel-
oped in step 2 to convert the Java programs to an instance
of the DMM. The Java code corresponding to the metric
definitions is executed and the results from the metric cal-
culations are exported in text format.

The parameterisation of the dMML tool by both the lan-
guage metamodel and the definition of the metrics set is an
important feature of our approach. To extend our system
to work with other language metamodels only step 2 of this
process needs to be changed. That is, a new tool would
need to be developed to create instances of the language
metamodel.

4. EXPLORATORY DATA ANALYSIS
In this section we present an exploratory data analysis of

cohesion measures in order to demonstrate the feasibility of
our approach to defining and implementing software metrics.

Using the procedure described in previous sections we
have implemented several cohesion measures from [3] and
applied them to programs from the DaCapo benchmark
suite, version beta051009 [7]. This benchmark suite is de-
signed for memory management research, and consists of 10
open-source real-world programs.

In order to provide a meaningful comparison, we have
chosen the four cohesion metrics that do not involve in-
direct comparisons, namely LCOM1, LCOM2, LCOM5
and ICH [3]. We have included constructors, finalisers
and accessor methods as ordinary methods, but excluded
attributes and methods that are inherited but not defined
in a class. Since metric LCOM5 involves division, we have
excluded those classes that cause a divide-by-zero error,
namely classes that contain no attributes, or classes that
contain exactly one method definition. A total of 4836
classes in the DaCapo benchmark suite meet these condi-
tions.

Table 1 gives a summary of the values of the four metrics
over these 4836 classes. The values of LCOM1 and LCOM2
are all positive integers, whereas LCOM5 is normalised to
a real number between 0.0 and 2.0. The measure ICH has
been negated to facilitate comparison since it measures the
degree of cohesion, rather than the lack of cohesion measured



LCOM1 LCOM2 LCOM5 ICH
Min. 0.0 0.0 0.0000 -3887.0
1st Qu. 2.0 0.0 0.5000 -10.0
Median 11.0 6.0 0.8000 -2.0
Mean 185.5 135.5 0.7063 -20.5
3rd Qu. 52.0 34.0 0.9444 0.0
Max. 110902.0 94039.0 2.0000 0.0

Table 1: Summary of the values for the metrics ap-
plied to 4836 of the classes from the DaCapo suite.
This table shows the minimum, maximum and mean
data values, as well as those at the first, second (me-
dian) and third quartiles.

LCOM1 LCOM2 LCOM5 ICH
LCOM1 1.0 0.8597 0.5305 -0.7439
LCOM2 0.8597 1.0 0.6453 -0.6463
LCOM5 0.5305 0.6453 1.0 -0.3739

ICH -0.7439 -0.6463 -0.3739 1.0

Table 2: Spearman’s ρ statistic for each pairing of
the four metrics. This statistic compares data sets on
a rank basis, with values near 1.0 or -1.0 indicating
a strong positive or negative correlation.

by the LCOM metrics. The values of ICH are thus all
negative integers. That the values shown in Table 1 all fall
within these theoretical bounds provides a coarse-grained
validation of our implementation.

Figure 3 shows a histogram of the distribution of values
for each of the four metrics. In this figure, we have removed
the last 5% of data values, including some extreme outliers,
in order to better visualise the distribution. The values for
LCOM1, LCOM2 and ICH are all heavily skewed towards
zero, while the normalised values for LCOM5 reflect a some-
what more even distribution. The distribution of the metric
values is consistent with previous work, which showed a sim-
ilar preponderance of low values for the SPEC JVM98 and
JavaGrande benchmark suite [15], and reflects known lim-
itations of these cohesion metrics [2]. The percentage of
classes giving a value of zero was 16% for LCOM1, 31% for
LCOM2, 11% for LCOM5, and 39% for ICH.

In order to check for a relationship between the metric
values, the pairwise scatter plots were examined and Spear-
man’s ρ statistic was used to estimate the level of associa-
tion. We have omitted the scatter plots to save space, but
the results for Spearman’s ρ are shown in Table 2. This
statistic compares data sets on a rank basis: thus, values
close to 1.0 (or -1.0) indicate that the metrics are ranking
the classes in the same (or opposite) order. The results in
Table 2 confirm the most obvious relationships, i.e. that
there is a strong positive correlation between the measures
LCOM1 and LCOM2, which have similar definitions, and
that each of the LCOM measures have a negative corre-
lation with ICH, although this is weak for LCOM2 and
LCOM5. The strong (negative) association between the
values for LCOM1 and ICH is interesting, since these met-
rics are based on quite different definitions. Further investi-
gation would be required to see if this is a general property
of these metrics.

The results presented in this section are exploratory in
nature, and only provide a preliminary coarse-grained de-
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Figure 3: Histograms showing the distribution of
values for the four cohesion metrics. For clarity,
only the first 95% of the values are shown in order to
remove extreme outliers.



scription of the metric values. Nonetheless, we believe that
providing such data is important in order to demonstrate the
robustness of the metric calculation tool, and as a “smoke
test” to ensure that the values are within reasonable bound-
aries. The design of the dMML tool facilitates the definition
of multiple metrics suites, and we hope to exploit this in or-
der to assemble a substantial database of descriptive statis-
tics of object-oriented metrics for benchmark programs.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have harnessed the OCL as a language

to specify metric definitions over the Dagstuhl Middle Meta-
model . We have implemented a system that uses the Octo-
pus tool to translate OCL metric definitions into Java code
and then calculates the metrics for a Java program. To
demonstrate the feasibility of our approach, we have spec-
ified four of the alternative definitions of cohesion in OCL
and used our system to calculate the metrics for a suite of
10 real-world programs.

In previous work we have applied this approach to defining
outline metrics over class diagrams from the standardised
UML metamodel [14]. However, metrics defined at the class
diagram level cannot evaluate features internal to methods,
such as number of method calls etc. A key tenet of our ap-
proach is that the range and variance among metric defini-
tions requires a flexible and reusable definition environment.

While developing and implementing the metric definitions
and the associated dMML tool, a number of issues arose
which we hope to deal with in future work.

• First, despite the formal definition of metrics in [3],
there are still some ambiguities for trivial and extreme
cases of the metrics, such as when there are no at-
tributes or no methods in a class.

• Second, the correctness of the metric definitions hinges
on assumptions made while constructing the meta-
model. For example, our tool to translate a class file
to an instance of the DMM does not include inher-
ited methods in a class definition. Therefore, it is
important that such assumptions would be a known,
expressed feature of any metric definition framework.

• Third, the correctness of the program to translate classes
to instances of the DMM has not been verified. Errors
or omissions at this stage would have a fundamental
impact on the correctness of the calculated metrics.

We intend to continue our work by developing a full set of
coupling and cohesion metrics, applied to both a Java and
the UML metamodel, and to investigate the full potential of
modularity and re-usability associated with defining metrics
at the meta level.
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