
Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

A method-level comparison
of the Java Grande and
SPEC JVM98 benchmark
suites

David Gregg1, James Power2,∗and John Waldron1

1 Dept. of Computer Science, Trinity College, Dublin 2, Ireland.
2 Dept. of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland.

SUMMARY

In this paper we seek to provide a foundation for the study of the level of use of object-
oriented techniques in Java programs in general, and scientific applications in particular.
In particular we investigate the profiles of Java programs from a number of perspectives,
including the use of class library methods, the size of methods called, the mode of invoke
instruction used and the polymorphicity of call sites. We also present a categorisation of
the nature of small-sized methods used in Java programs. We compare the Java Grande
and SPEC JVM98 benchmark suites, and note a significant difference in the nature and
composition of these suites, with the programs from the Java Grande suite demonstrating
a less object-oriented approach.

key words: Benchmark suites, Java Virtual Machine, dynamic profiling

1. Introduction

The Java programming language [15] has become established as a general-purpose
programming language, with applications in most aspects of computer science and software
engineering. Despite its relatively poor speed performance compared to C and C++, it is also
becoming increasingly popular in the domain of scientific computing, since it facilitates the
construction of portable, robust and reliable applications.

In attempting to improve the performance of Java programs, there has been much
concentration on compiler design techniques to increase the speed and efficiency of the
Java Virtual Machine (JVM) [19]. As well as the standard range of compiler optimisations,

∗Correspondence to: james.power@may.ie.
This version prepared on September 1, 2003 at 15:19.



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 1

JVM optimisation techniques also deal with object-oriented issues such as class hierarchy
analysis, stack-based object allocation, wrapping basic types as objects, and speeding
up or eliminating dynamically-bound virtual method calls. Since many JVMs implement
optimisations dynamically, as the program executes, the choice of the exact nature and level
of optimisation is crucial to improving program performance. Many JVMs apply an adaptive
strategy, profiling the application as it runs, and choosing suitable optimisations.

Since choosing and applying the correct optimisations is so important for the performance of
Java applications, it is reasonable to ask whether the same techniques that apply to standard
object-oriented applications also apply to scientific applications. It is arguable that many
scientific applications may not be written in an object-oriented style, or may not fully exploit
all the features of Java, and thus may not be amenable to the same kind of optimisation.

In this paper we seek to provide a foundation for the study of the level of use of object-
oriented techniques in Java programs in general, and scientific applications in particular. In
particular we investigate the profiles of Java programs from a number of perspectives, including
the use of class library methods, the size of methods called, the mode of invoke instruction used
and the polymorphicity of call sites. We also present a novel categorisation of small methods
used in Java programs, and describe their composition and level of use.

Unlike many existing techniques which are based on static analysis and static metrics, we
study the behaviour of Java programs dynamically, as they execute on the virtual machine.
This allows us to build a picture of the behaviour, rather than the architecture of the programs
and directly parallels modern run-time optimisation techniques.

In order to measure examples of Java programs we compare the results from the analysis
of two benchmark suites. We use the Java Grande benchmark suite to provide an example
of larger, scientific applications, and the SPEC JVM98 benchmark suite to represent more
standard Java applications. It is not entirely obvious what constitutes a “standard” scientific
Java application, and we hope that the results presented here can be used to calibrate the
Java Grande and SPEC JVM98 suites, and measure the degree to which they are in fact
representative of such applications.

In Section 2 we introduce the two benchmark suites, and briefly give an overview of some
of the existing work using these suites. In Section 3 we compare the Java Grande and SPEC
JVM98 suites by analysing the method-call frequency, in particular the number of class library
methods called, and the nature of the method calls. In section 4 we present a static and dynamic
analysis of the sizes of methods called in both suites, highlighting the differences between Java
Grande and SPEC JVM98 programs. Section 5 concludes the paper.

2. Background and Related Work
In this section we give an overview of the two benchmarks suites used in this study, and we
review some of the background to method-level analyses of Java programs.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

2 D. GREGG, J. POWER AND J. WALDRON

Table I. The benchmark suites compared in this analysis. Five of the programs were taken from section
3 of the Java Grande Benchmark suite, and seven from the SPEC JVM98 benchmark suite.

The Java Grande Forum Benchmark Suite Section 3: Large Scale Applications
eul Computational Fluid Dynamics
mol Molecular Dynamics simulation
mon Monte Carlo simulation
ray 3D Ray Tracer
sea Alpha-beta pruned search

Standard Performance Evaluation Corporation (SPEC) JVM98 Benchmarks
cmprs Modified Lempel-Ziv method (LZW)
db Performs multiple database functions on memory resident database
jack A Java parser generator that is based on PCCTS
javac This is the Java compiler from the JDK 1.0.2.
jess Java Expert Shell System is based on NASA’s CLIPS expert shell system
mpeg Decompresses ISO MPEG Layer-3 audio files
mtrt A raytracer with two threads each rendering a scene

2.1. The Benchmark Suites

For the purposes of our study, we have used programs from two Java benchmark suites: the
SPEC JVM98 benchmark suite [26] and the Java Grande Forum Benchmark Suite [8]. The
first set of programs is taken from section 3 of the Java Grande suite version 2.0, and contains
five large-scale applications, designed as examples of real-world applications. The second set,
consisting of seven programs, is from the SPEC JVM98 suite. The SPEC JVM98 suite was
designed as an industry-standard benchmark suite for measuring the performance of client-
side Java applications. The benchmarks included in this work are shown in Table I; in the
remainder of this paper we shall refer to these as the Grande and SPEC suites respectively.

Studies of the Grande and SPEC suites have typically concentrated on performance issues for
various JVMs. Studies of the Grande suite include performance-related measures [8, 7] as well
as dynamic byte-code level views [11]. The SPEC JVM98 suite is perhaps more commonly used
to measure the speed and effectiveness of Java compilers and virtual machines [5, 6, 23, 27, 31].
Other views include those discussing lower-level architectural issues relating to the SPEC
programs [20, 24], allocation and heap behaviour [12], as well as measuring the performance
of various Java microarchitectures [22] .

2.2. Technical Details

The Java Grande Forum Benchmark suite is distributed in source code format and was
compiled using the Java compiler from SUN’s JDK, version 1.3. The SPEC suite is distributed
in bytecode format, and the maximum size, s100 was used in the results presented here. None
of the programs were optimised in any way. The Kaffe Virtual Machine [32], version 1.0.6, was

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 3

used to collect data on the dynamic operation of all the programs. Each application was run
without modification on the instrumented Kaffe VM. It is important to note for this study
that the Kaffe VM used here was run in interpretive mode. That is, in order to measure the
scope for optimisation, no method inlining or method compilation was performed during the
running of the programs.

It should also be noted that all measurements in this chapter were made with the Kaffe
class library. This library is not 100% compliant with SUN’s JDK, and may, of course, differ
from other Java class libraries. In subsequent sections we will distinguish between Library
code from the Kaffe class library, and Application code, consisting of those bytecodes from the
benchmark suites themselves.

2.3. Related Work
Ishizaki et al. notes that typical object-oriented programs have smaller methods, and method
calls occur frequently [18]. Their JIT inlines static calls to small methods, and uses class
hierarchy analysis [17] to devirtualise dynamic calls. The test suite they use includes the
SPEC benchmarks as well as some more GUI-based programs, and Ishizaki et al. report good
scope for devirtualisation across the suite, in particular for mtrt which makes extensive use of
small methods.

Both the Hotspot [28] and Jalapeño [1] virtual machines include method inlining as part of
their repertoire of adaptive optimisations. Indeed, the Hotspot White Paper [28] notes that
method inlining is important not just because it eliminates the overhead of a method call, but
also because it produces larger blocks of code to which further optimisations can be applied.
Arnold et al. describe an approach to optimisation in Jalapeño based on statistical sampling,
and notes a good performance improvement through most of the programs in the SPEC suite
[4].

Sundaresan et al. compare a number of call-graph analysis techniques for the purposes of
method call resolution, showing a good performance improvement for the SPEC programs [29].
These optimisations, among others, have been implemented in the Soot tool [30]. Arnold et
al. present a cost-benefit analysis of three inlining techniques, using programs from the SPEC
suite to compare their performance [3].

The trade-offs involved in deciding whether a method should be inlined are discussed by
Scheifler [25] as well as Chang et al. [9] in the context of procedural languages, and applied
to Java by Arnold et al. [3]. While a number of techniques can be employed to estimate the
cost-benefit ratio for a given inlining, in this paper we take the simplest approach to both.
Following both Scheifler and Arnold et al. we estimate the cost in terms of the method size,
and we take the node-based approach of Arnold et al. in estimating benefit by counting the
number of calling sites.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

4 D. GREGG, J. POWER AND J. WALDRON

Table II. Measurements of the number of methods invoked by Java Grande and SPEC JVM98
applications. These figures refer to the number of dynamic method calls whose source was in the

application part of the benchmark suites.

Java Grande Methods Calls from the Application
invoke invoke invoke invoke total
virtual special static interface invokes

eul 22.8 39.6 37.6 0.0 32.9e+6
mol 78.9 0.8 20.3 0.0 0.5e+6
mon 35.3 0.7 64.0 0.0 31.3e+6
ray 48.3 2.6 49.2 0.0 457.7e+6
sea 100.0 0.0 0.0 0.0 71.2e+6
ave 57.1 8.7 34.2 0.0 119e+06

SPEC JVM98 Methods Calls from the Application
invoke invoke invoke invoke total
virtual special static interface invokes

cmprs 91.3 8.7 0.0 0.0 225.9e+6
db 83.1 0.2 0.1 16.5 90.2e+6
jack 62.5 10.9 11.8 14.8 28.9e+6
javac 78.5 15.2 2.1 4.2 80.1e+6
jess 85.0 9.2 5.1 0.7 107.4e+6
mpeg 72.1 26.6 1.2 0.2 109.7e+6
mtrt 94.5 5.4 0.1 0.0 284.7e+6
ave 81.0 10.9 2.9 5.2 132e+06

3. Method Calls

In this section we describe the distribution of method calls in the programs studied. The results
presented here are more coarse-grained than those presented in the next section, but even here
important differences emerge between the two benchmark suites.

3.1. Method call sites

Table II gives a summary of the nature of method call sites in the programs from the Grande
and SPEC suites. Here we have counted each method call that took place in application code
when the program was run. In Table II we have partitioned the method calls that take place in
the application code between virtual, special, static and interface methods. Calls to application
and library methods are included here, but only calls from application methods are counted,
since the nature of the application cannot directly determine method calls internal to the class
library.

For example, from the first row of Table II we can see that of the 32.9× 106 method calls in
application code when the eul program was run, 22.8% were the result of an invokevirtual
instruction, 39.6% were the result of an invokespecial instruction, 37.6% resulted from an
invokestatic instruction, and 0.0% resulted from an invokeinterface instruction. The

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 5

Table III. Measurements of total number of dynamic methods called in the Grande and SPEC suites.
Also shown is the percentage of the methods called whose target was in the Class Library, and percentage

of total calls targeted at native methods in the Class Library.

Java Grande Methods Called Dynamically
Program Total Library Library &

methods % native %
eul 33.4e+06 58.0 12.6
mol 0.5e+06 22.7 19.8
mon 80.7e+06 98.8 37.3
ray 457.7e+06 3.1 1.6
sea 71.2e+06 0.0 0.0
ave 129e+06 36.5 14.3

SPEC JVM98 Methods Called Dynamically
Program Total Library Library &

methods % native %
cmprs 226.0e+06 0.0 0.0
db 123.6e+06 98.7 0.1
jack 115.8e+06 93.6 1.1
javac 152.5e+06 63.0 1.4
jess 134.9e+06 32.5 0.0
mpeg 109.7e+06 1.3 0.0
mtrt 288.4e+06 3.2 0.1
ave 164e+06 41.8 0.4

invokespecial instruction is typically used in a constructor to call a constructor from a
super class.

From the percentages in Table II we can see a sharp difference between the benchmark
suites. The calls to virtual, interface and “special” methods could be considered the hallmark
of an object-oriented program, and form the predominant part of the method calls in SPEC.
The Grande programs, in contrast have a much higher average of calls to static methods, apart
from the sea application.

Since many JVM optimisations are directed toward devirtualisation and eliminating the
overhead of dynamically-bound method calls, it is reasonable to suggest that such optimisations
will have a reduced impact on the programs from the Grande suite when compared to the SPEC
suite.

3.2. Method call targets

In Table III we take the symmetric view to Table II, and look instead at the target of method
calls. While a certain degree of usage of the Java class library is unavoidable in Java programs,
intensive use of the library suggests a better fit between the application and the methods
provided by that library. Thus Table III summarises the distribution of methods called between
application code, library code and native methods. The totals and percentages in Table III

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

6 D. GREGG, J. POWER AND J. WALDRON

are dynamic counts, where each method called has been counted during the running of the
program. Since there are no native methods in the applications themselves, all native methods
called come from the class library. Method calls emanating from native methods have not been
included in these totals.

For example, from the first row of Table III we can see that 33.4× 106 methods were called
when the eul program was run. Of these, 58.0% were directed at methods in the class library,
with 12.6% of the total methods called being directed at native methods in the class library.

As can be seen from Table III there is considerable variance across the programs with
regard to the number of library methods called. While the programs from the SPEC suite
have a slightly higher average number of library methods called, this is clearly not uniform
across the applications. However, it is notable that the Grande programs with a high number
of library methods called also have a high proportion of native methods called, particularly
in the case of mon, where almost all library methods called are of this type. In this context,
it is fair to suggest that the number of Java methods called in the class library is greater on
average for the SPEC suite.

Radhakrishnan et al. note a consistent distribution in the dynamic sizes of methods called in
the SPEC suite, and attributes this to the influence of methods from the class library [24] (both
Sun’s JDK and Kaffe seem to have been used in the study). Table III appears to contradict
this view, since at least three SPEC applications direct a very small number of method calls
to the class library, whereas only two make significant use of the library. This cannot be the
determining factor across all SPEC applications.

3.3. Polymorphicity of virtual method calls

We have presented results measuring the proportion of methods calls directed at virtual
methods in Table II, since these are considered typical of the object-oriented programming
style. However, it is possible to program in a “pseudo” object oriented style, where methods
are defined as virtual, but are not actually overridden in the program code. Such method call
sites are prime targets for optimisation, since the target of most, if not all their calls can be
calculated statically [29, 17].

In the context of our discussion then, it is important to address the issue of the degree to
which the virtual method calls in a program are targeted at different methods at run-time. To
do this, we have tracked the target of the invokevirtual instruction for the Grande and SPEC
suites and noted, for each call site, the number of different methods called at run-time. We
would expect that in programs written in an object-oriented style, invokevirtual instructions
will often have many targets. Conversely, if the program is written in a procedural style with
little use of inheritance, we would expect that these instructions would usually have only a
single target.

Table IV shows the percentage of executed invokevirtual instructions with varying
number of targets. For each program in each suite we show the percentage of invokevirtual
instructions directed at 1,2,...,10 and >10 different methods. For example, from the first data
line of the table we see that 98.77% of the invokevirtual instructions in the eul program
were instructions that were directed at a single method. This percentage is a proportion of
the total number of dynamically-executed invokevirtual instructions for eul. It should thus

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 7

Table IV. Different method call targets for Grande and SPEC programs - totals. For each program,
these figures show the percentage of dynamically-executed invokevirtual instructions directed to

1,2,...10 different virtual methods.

Java Grande virtual method calls directed at multiple targets (all virtual method calls)
Program 1 2 3 4 5 6 7 8 9 10 > 10
eul 98.77 0.04 0.05 0.00 0.54 0.59 0.00 0.00 0.00 0.00 0.01
mol 99.67 0.04 0.11 0.05 0.00 0.00 0.02 0.00 0.01 0.00 0.10
mon 99.28 0.18 0.00 0.24 0.09 0.21 0.00 0.00 0.00 0.00 0.00
ray 50.23 0.00 0.00 0.00 0.00 0.00 2.60 0.00 0.00 0.00 47.18
sea 46.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 53.50

SPEC JVM98 virtual method calls directed at multiple targets (all virtual method calls)
Program 1 2 3 4 5 6 7 8 9 10 > 10
cmprs 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
db 40.84 58.58 0.00 0.05 0.00 0.05 0.03 0.00 0.36 0.00 0.09
jack 8.80 0.10 0.07 0.10 0.10 0.10 0.10 0.02 0.34 0.01 90.36
javac 30.17 0.04 0.10 0.08 0.52 0.01 0.19 0.25 0.00 4.54 64.09
jess 55.71 2.08 0.06 0.00 0.00 0.06 0.01 0.20 0.00 0.00 41.88
mpeg 65.69 4.57 0.02 12.84 0.00 0.00 0.00 0.00 0.00 0.00 16.88
mtrt 0.31 0.57 4.22 3.07 1.25 0.37 42.86 0.00 0.36 0.00 47.00

Table V. Different method call targets for Grande and SPEC programs - application only. For
each program, these figures show the percentage of dynamically-executed invokevirtual instructions

directed to 1,2,...10 different virtual methods in the application part of the programs.

Java Grande virtual method calls directed at multiple targets (application only)
Program 1 2 3 4 5 6 7 8 9 10 > 10
eul 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mol 99.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mon 97.64 0.73 0.00 1.09 0.00 0.54 0.00 0.00 0.00 0.00 0.00
ray 50.23 0.00 0.00 0.00 0.00 0.00 2.60 0.00 0.00 0.00 47.18
sea 46.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 53.50

SPEC JVM98 virtual method calls directed at multiple targets (application only)
Program 1 2 3 4 5 6 7 8 9 10 > 10
cmprs 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
db 39.89 60.04 0.00 0.00 0.00 0.05 0.03 0.00 0.00 0.00 0.00
jack 15.49 0.19 0.16 0.23 0.23 0.23 0.04 0.04 0.77 0.02 82.61
javac 40.07 0.05 0.15 0.13 0.76 0.02 0.01 0.39 0.00 0.01 58.42
jess 63.24 2.36 0.07 0.00 0.00 0.07 0.00 0.03 0.00 0.01 34.23
mpeg 65.71 4.57 0.00 12.84 0.00 0.00 0.00 0.00 0.00 0.00 16.88
mtrt 0.04 0.57 4.26 3.10 1.26 0.38 43.21 0.00 0.36 0.00 46.84

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

8 D. GREGG, J. POWER AND J. WALDRON

Table VI. Different method call targets for Grande and SPEC programs - library only. For each
program, these figures show the percentage of dynamically-executed invokevirtual instructions

directed to 1,2,...10 different virtual methods in the Class Library.

Java Grande virtual method calls directed at multiple targets (class library only)
Program 1 2 3 4 5 6 7 8 9 10 > 10
eul 32.82 2.18 2.72 0.15 29.60 32.13 0.05 0.01 0.04 0.00 0.32
mol 80.84 2.24 6.39 2.69 0.10 0.00 1.01 0.14 0.54 0.00 6.05
mon 99.75 0.03 0.00 0.00 0.12 0.11 0.00 0.00 0.00 0.00 0.00
ray 75.51 4.07 7.83 0.33 0.23 3.60 0.00 0.16 0.00 0.22 8.06
sea 80.22 4.72 5.45 1.40 0.00 1.21 0.00 0.17 0.50 0.24 6.10

SPEC JVM98 virtual method calls directed at multiple targets (class library only)
Program 1 2 3 4 5 6 7 8 9 10 > 10
cmprs 49.72 2.19 12.13 0.18 0.74 0.07 10.56 0.09 0.00 0.12 24.20
db 78.88 0.01 0.03 2.18 0.03 0.01 0.03 0.00 14.98 0.04 3.82
jack 3.67 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 96.29
javac 11.13 0.02 0.00 0.00 0.07 0.00 0.53 0.00 0.00 13.24 75.01
jess 0.16 0.00 0.01 0.01 0.00 0.00 0.06 1.40 0.00 0.00 98.36
mpeg 16.04 0.88 52.86 0.07 0.33 0.03 2.31 0.03 0.00 0.05 27.41
mtrt 33.39 0.01 0.04 0.01 0.01 0.12 0.03 0.00 0.26 0.00 63.44

be borne in mind that, as shown earlier in Table II, this is of variable importance in each
program, particularly for those in the Grande suite.

Interestingly, the number of invokevirtuals with only a single target is very large. However,
there is a large difference in behaviour between SPEC and Grande applications. On average
45% of SPEC invokevirtuals have only a single target, whereas the corresponding figure
for Grande is 78%. Clearly, the cmprs benchmark from the SPEC suite does not exhibit this
feature of object-oriented programs, but all others have large numbers of highly polymorphic
invokevirtuals. In contrast, three of the five Grande programs tend toward a single target,
and the other two use a large number of single target invokevirtuals. Clearly, on this measure,
SPEC programs are significantly more object-oriented than Grande ones.

Table V shows the percentage of executed invokevirtual instructions with varying number
of targets for just the application part of the benchmark programs, with call targets in the
Class Library excluded. For the Grande benchmarks the figures are almost identical to the
total figures, because only a tiny percentage of executed invokevirtual instructions are in
the Class Library. In the case of the SPEC programs, the difference is larger, especially for jack
and jess. The corresponding figures for the invokevirtual instructions in the Class Library
only are shown in Table VI. The Class Library uses much more inheritance than the programs
in the benchmark suite, many of which contain less than five classes, so the invokevirtual
instructions tend to be much more polymorphic.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 9

4. Size of Methods Called

In this section we consider the size of the methods called in each of the suites. This is significant
for two reasons. First, small methods are a prime target for code inlining, an important
optimisation technique in many JVMs. Second, small methods are regarded as standard in
object-oriented programs [18], and a desirable result of code refactoring [14].

Henderson-Sellers [16, §6.3.1] suggests that method size can be indicative of the “object-
orientedness” of code. He notes that object-oriented code tends towards smaller method sizes,
and ascribes larger method sizes to a “traditional” (as opposed to object-oriented) mind-set.
Lorenz and Kidd [21] point out a tendency toward shorter methods on average in object-
oriented programs, and suggest that longer methods indicate a higher likelihood that “function-
oriented” code is being written.

In this section we present average figures for each of the Grande and SPEC suites, rather
than results for each program. It should be noted that the data in this section are not average
counts, but rather average frequencies, expressed as a percentage for each program. Thus,
differences in program size will not cause one program to unduly effect the overall results for
a benchmark suite.

4.1. Method Size Distribution

The size of a method is a common metric used in the estimation of the cost of method inlining,
since repeated inlining of a large method can lead to “code bloat”, and produces the familiar
size versus speed trade-off. In particular, a significant increase in code size due to inlining may
prove prohibitive in the case of Java applications running in constrained environments.

There are a number of ways of measuring the size of a method, including simple lines-of-
code, cyclomatic complexity and volume metrics - see Fenton and Pfleeger [13] for a survey. In
this study we use the simplest metric, namely the number of bytecode instructions the method
contains. Antonioli and Pilz describe an extensive study of the static composition of Java
source file where it is noted that the average size of a bytecode instruction, i.e. the operator
plus the operands, is just under 2 bytes [2].

Figure 1 summarises the distribution of method sizes in the Grande and SPEC suites, based
on counting the number of bytecode instructions in the corresponding class files. The approach
of statically measuring the program source is typical for most standard program metrics used
in software engineering, and static method sizes and call counts form the basis of metrics such
as weighted method per class and the response for a class [10].

As can be seen from Figure 1 the method sizes for the Library methods used by both
programs has a similar distribution, with a large number of small methods (less than 10
bytecode instructions), and a decreasing frequency as the method size gets larger. The SPEC
application code follows a similar distribution, with a peak occurring for some large methods
used in the programs themselves. However, the Grande suite is somewhat different, with a
reduction in the overall presence of very small methods immediately noticeable. In fact 25.9%
of the Grande application methods, and 41.5% of the SPEC application methods are of size
less than 10 instructions.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

10 D. GREGG, J. POWER AND J. WALDRON
g
ra

n
d
e
 s

ta
ti
c
 l
ib

 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

g
ra

n
d
e
 s

ta
ti
c
 a

p
p
 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

g
ra

n
d
e
 s

ta
ti
c
 t
o
ta

l 
%

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 s

ta
ti
c
 l
ib

 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 s

ta
ti
c
 a

p
p
 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 s

ta
ti
c
 t
o
ta

l 
%

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

Figure 1. Distribution of method calls, calculated statically. These charts compare the distribution of
method calls in the bytecode source for the Grande and SPEC benchmark suites. The horizontal axis

indicates method size in terms of number of bytecode instructions.

Figure 2 measures the frequency of method calls that occur dynamically, during the program
execution. We can see that for methods in the class library used by both benchmarks, the
frequency of a method call varies inversely with its size, as predicted by its static occurrence
frequency. However, the distribution of dynamic method calls in the applications differs
markedly between the SPEC and Grande programs, with the SPEC programs maintaining
the distribution of the class library, and the Grande programs giving noticeably less weight to
smaller methods. Indeed, small methods, of less than 10 bytecode instructions, count for 9.8%
of the Grande application methods called, but 38.6% of the SPEC application methods called.

The use of small methods in the class library as well as in the SPEC suite suggests that
these programs have been written in the traditional object-oriented style. The absence of this
distribution in the Grande suite suggests that these programs have been written using a more
“procedural” style, with less emphasis on reducing method size.

While the elimination of a method call overhead is the most obvious benefit of inlining,
another advantage is that larger blocks of code are created, and these may then be subjected to

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 11
g
ra

n
d
e
 d

y
n
a
m

ic
 l
ib

 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

g
ra

n
d
e
 d

y
n
a
m

ic
 a

p
p
 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

g
ra

n
d
e
 d

y
n
a
m

ic
 t
o
ta

l 
%

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 d

y
n
a
m

ic
 l
ib

 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 d

y
n
a
m

ic
 a

p
p
 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 d

y
n
a
m

ic
 t
o
ta

l 
%

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

Figure 2. Distribution of method calls, calculated dynamically. These charts compare the distribution
of method calls during the execution of programs from the Grande and SPEC benchmark suites. The

horizontal axis indicates method size in terms of number of bytecode instructions.

more wide-ranging optimisation. Figure 3 presents another view of the distribution of method
sizes, where the frequencies are based on the number of bytecode instructions that the method
contains.

For example, from Figure 3 we can see that methods of size less than 10 instructions
accounted for 40.7% of all library instructions executed in the Grande suite, and 17.6% of all
library instructions executed in the SPEC suite. Such a measure is inherently biased against
small methods, but helps to give an impression of the proportion of bytecodes that would be
affected by inlining these methods.

As can be seen in Figure 3, the instructions in small methods still form a significant
proportion of the instructions executed in the class library. However, in the application code
this is reversed, with small methods making a negligible impact on the total number of
bytecodes executed in the Grande applications, but accounting for 13.5% of all application
instructions executed in the SPEC suite.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

12 D. GREGG, J. POWER AND J. WALDRON
g
ra

n
d
e
 b

y
te

c
o
d
e
 l
ib

 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

g
ra

n
d
e
 b

y
te

c
o
d
e
 a

p
p
 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

g
ra

n
d
e
 b

y
te

c
o
d
e
 t
o
ta

l 
%

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 b

y
te

c
o
d
e
 l
ib

 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 b

y
te

c
o
d
e
 a

p
p
 %

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

s
p
e
c
 b

y
te

c
o
d
e
 t
o
ta

l 
%

0

6

12

18

24

30

36

42

48

54

1
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

8
0

−
8

9

>
8

9

Figure 3. Distribution of method sizes, calculated by bytecode size. These charts compare the
distribution of total bytecodes executed between the methods executed from the Grande and SPEC
benchmark suites.The horizontal axis indicates method size in terms of number of bytecode instructions.

Radhakrishnan et al. note a consistent tri-nodal distribution in the dynamic sizes of methods
called in the SPEC suite, with most of the methods being either 1, 9 or 26 bytecodes long
[24]. None of the figures presented above reflect such a distribution, and it is unclear how the
distribution reported by Radhakrishnan et al. could have been calculated.

4.2. Distribution of Small Methods

Since smaller methods are seen as reflecting an object-oriented programming style, this
subsection studies their composition in some detail. It should be remembered throughout
this subsection that, as shown in Figure 2, smaller methods represent a significantly lesser
proportion of the Grande suite compared to the SPEC suite.

Figure 4 shows the distribution between methods containing less than 10 instructions in the
Grande and SPEC suites. Here each method has been weighted by the number of times it was
called dynamically, in order to get a better view of its effect on the suite. For the purpose of

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 13

Categories of small methods called
A simple load/store and constant access only
B field As for A, but also has dynamic field access
C s/field As for A, but also with static field access
D invoke As for A, but also invokes dynamic methods
E s/invoke As for A, but also invokes static methods
F field & invoke As for A, with dynamic field access and dynamic method calls
G field & s/invoke As for A, with field access and static method calls
H invoke & s/field As for A, with static field access and dynamic method calls
I invoke & s/invoke As for A, with static and dynamic method calls
J s/field & s/invoke As for A, with static field access and method calls
K control Contains a control instruction, such as if or goto
L others All methods not in the above categories

gr
an

de
 d

yn
am

ic
 li

b 
%

0

6

12

18

24

30

36

42

48

54

A B C D E F G H I J K L

gr
an

de
 d

yn
am

ic
 a

pp
 %

0

6

12

18

24

30

36

42

48

54

A B C D E F G H I J K L

gr
an

de
 d

yn
am

ic
 to

ta
l %

0

6

12

18

24

30

36

42

48

54

A B C D E F G H I J K L

sp
ec

 d
yn

am
ic

 li
b 

%

0

6

12

18

24

30

36

42

48

54

A B C D E F G H I J K L

sp
ec

 d
yn

am
ic

 a
pp

 %

0

6

12

18

24

30

36

42

48

54

A B C D E F G H I J K L

sp
ec

 d
yn

am
ic

 to
ta

l %

0

6

12

18

24

30

36

42

48

54

A B C D E F G H I J K L

Figure 4. Profile of the small methods in the Grande and SPEC suites. The table partitions methods
containing less than 10 instructions into various categories based on the instructions they contain. The
bar charts shows he proportion of small methods that belong to each category, based on methods called

dynamically, for the Grande and SPEC suites.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

14 D. GREGG, J. POWER AND J. WALDRON

this study, we have partitioned this set of small methods into 12 separate categories, based on
their general functionality. To do this, we have ignored stack-manipulation instructions, and
concentrated on method calls, field accesses and control instructions.

The simple methods in Category A thus contain only variable load and store instructions, as
well as constant accesses. A very small proportion of these methods contain just a single return
instruction. Radhakrishnan et al. identifies methods containing only 1 instruction as “wrapper
methods”, consisting of control transfer instructions [24]. However, the single instruction in
such methods must be a return instruction. As can be seen from Figure 4, these form a
negligible part of the application methods called in either the Grande or SPEC suite (0%
and 5% respectively). They do, however, account for a significant proportion of class library
methods called in both Grande, at 43%, and SPEC, at 26%, where they are chiefly responsible
for returning constant values.

Methods that simply access a static field, either changing or returning its value are prime
candidates for inlining and subsequent constant propagation. As can be seen from Figure 4,
these methods, constituting category C, do not have a significant role in either suite. Similarly,
categories E and J which contain static method calls account for a low proportion of the total
in both suites.

Methods in category B are the classic get and set methods, that just access or change an
instance variable. These play a relatively small role in the class library methods called in both
suites, but account for 40% of application methods in the SPEC suite, almost twice as high
a proportion as for the Grande suite at 23%. While the higher usage of such methods in the
SPEC suite is consistent with the object-oriented nature of the programs, as noted in previous
sections, it is interesting to see that this is not in turn reflected in the class libraries.

The methods in category D consist of the actual “wrapper” methods that mainly dispatch
a call to another (non-static) method. These account for a fairly consistent proportion
through the Grande and SPEC class library methods (20% and 13% respectively) and in
the corresponding Grande and SPEC application methods (23% and 10% respectively). The
correspondence between library and application programs, as well as the lower usage in
SPEC application programs suggest that such methods may not be typical of object-oriented
programs.

The methods in category K of Figure 4 are the only ones to contain control instructions,
such as if or goto branches, or throw instructions. As such, they are the only methods that
can correspond to conditional or iterative statements in the corresponding Java code. This
category of method plays a very small part in the small-method application code for either the
Grande or SPEC suites, 6% in each case, supporting our thesis that these small methods deal
chiefly with encapsulation and interface issues, rather than with actual computation. However
category K methods play a significant role in the library methods called for the Grande and
SPEC suites, 20% and 28% respectively, suggesting a heavier reliance on class library routines
that perform computations.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 15

5. Conclusions

In this paper we have analysed programs from a number of different Java applications by
measuring a number of method-based characteristics. These included the nature of the method
calls, the use of the class library methods, the polymorphicity of method call sites, and the
sizes of the methods called. These figures are based on the dynamic analysis of running Java
programs, and effectively simulate some of the work done by a run-time compiler. We believe
that the data presented here can provide a solid, quantitative foundation for the study of
optimisation techniques in such compilers.

We have presented a comparative study of applications from two standard benchmark suites
for Java programs: the SPEC JVM98 and Java Grande benchmark suites. We have exposed
significant differences between these suites using our dynamic, method-based measurements,
and suggest that run-time optimisation strategies would benefit from a study of these
differences. We note that the programs from the Grande suite demonstrate a measurably
less object-oriented approach than SPEC applications, including making less use of the class
library and making greater use of longer methods.

As we have noted, our work differs in a number of important points from that presented
by Radhakrishnan et al. [24]. First, they note a tri-nodal distribution in method sizes for the
SPEC suite, where most methods contain 1, 9 or 26 bytecodes. While a number of different
approaches can be taken to measuring method size, none of the three approaches analysed
in this paper appear to yield this distribution. Second, they suggest that the similarity in
distribution is due primarily to the influence of methods from the class library. We observe no
such similarity between programs in the SPEC suite, and we note in Table III that they vary
widely in their use of library methods. Third, Radhakrishnan et al. state that methods of size
1 contain a “control transfer instruction” which we note must more specifically be a return
instruction

We have presented a novel classification of small methods in Java programs, with a view to
understanding their composition and usage. We note that few small methods contain branching
or control instructions, and we describe the distribution of these methods between get and set
methods, as well as “wrapper” methods. As before, a quantifiable difference between SPEC
and Grande applications emerges as a consistent feature of our study.

The work presented in this paper raises two important question in relation to the
performance of Grande applications. First, do existing compiler optimisations, targeted
specifically at object-oriented programs, deliver satisfactorily for scientific applications that
may not make such heavy use of these techniques? Second, are the programs in the Grande
suite representative of scientific applications, or will such applications come to resemble object-
oriented programs as more of the code base is moved to Java? We believe that the analysis
presented in this paper provides a framework in which an answer to these questions can be
developed, particularly as more scientific applications in Java become available for study.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

16 D. GREGG, J. POWER AND J. WALDRON

REFERENCES

1. B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S.J. Fink, D. Grove,
M. Hind, S.F. Hummel, D. Lieber, V. Litvinov, M.F. Mergen, T. Ngo, J.R. Russell, V. Sarkar, M.J. Serrano,
J.C. Shepherd, S.E. Smith, V.C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine.
IBM Systems Journal, 39(1):211–238, February 2000.

2. D. Antonioli and M. Pilz. Analysis of the Java class file format. Technical Report 98.4, Dept. of Computer
Science, University of Zurich, Switzerland, April 1988.

3. M. Arnold, S. Fink, V. Sarkar, and P.F. Sweeney. A comparative study of static and dynamic heuristics
for inlining. In ACM Workshop on Dynamic and Adaptive Compilation and Optimization, pages 52 – 64,
Boston, MA, USA, January 18 2000.

4. M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. Adaptive optimization in the Jalapeño
JVM. In Object Oriented Programming Systems Languages and Applications, pages 47 – 65, Minneapolis,
Minnesota, USA, October 15-19 2000.

5. K.R. Bowers and D. Kaeli. Characterising the SPEC JVM98 benchmarks on the Java virtual machine.
Technical report, Northeastern University Computer Architecture Research Group, Dept. of Electrical and
Computer Engineering, Boston Massachusetts 02115, USA, 1998.

6. T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage collection and heap growth to
reduce the execution time of Java applications. In Object-Oriented Programming Systems, Languages
and Applications, pages 353 – 366, Tampa, Florida, USA, October 14-18 2001.

7. J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Benchmarking Java against C and Fortran for
scientific applications. In ACM Java Grande / ISCOPE Conference, pages 97 – 105, Stanford University,
California, USA, June 2-4 2001.

8. M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. Benchmarking Java Grande applications. In
Second International Conference and Exhibition on the Practical Application of Java, Manchester, UK,
April 2000.

9. P. Chang, S.A. Mahlke, W.Y. Chen, and W.W. Hwu. Profile-guided automatic inline expansion for C
programs. Software - Practice and Experience, 22(5):349 – 369, May 1992.

10. S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, June 1994.

11. C. Daly, J. Horgan, J. Power, and J. Waldron. Platform independent dynamic Java virtual machine
analysis: the Java Grande Forum Benchmark Suite. In Joint ACM Java Grande - ISCOPE 2001
Conference, pages 106–115, Stanford, CA, USA, June 2001.

12. S. Dieckmann and U. Hölzle. A study of the allocation behaviour of the SPEC JVM98 Java benchmarks.
In 13th European Conference on Object Oriented Programming, pages 92–115, Lisbon, Portugal, June
1999.

13. N.E. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. Thomson Computer
Press, 1996.

14. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
15. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison Wesley, 1996.
16. Brian Henderson-Sellers. Object-Oriented Metrics. Prentice Hall, 1996.
17. K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A study of devirtualization techniques

for a Java Just-In-Time compiler. In Object Oriented Programming Systems Languages and Applications,
pages 294 – 310, Minneapolis, Minnesota, USA, October 15-19 2000.

18. K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T. Onodera, H. Komatsu,
and T. Nakatani. Design, implementation and evaluation of optimisations in a Just-In-Time compiler. In
ACM 1999 Java Grande Conference, pages 119–128, San Francisco, CA, USA, June 1999.

19. I.H. Kazi, H.H. Chan, B. Stanley, and D.J. Lilja. Techniques for obtaining high perfromance in Java
programs. ACM Computing Surveys, 32(3):213–240, September 2000.

20. T. Li, L.K. John, V. Narayanan, A. Sivasubramaniam, Jyotsna Sabarinathan, and Anupama Murthy.
Using complete system simulation to characterize SPEC JVM98 benchmarks. In International Conference
on Supercomputing, pages 22–33, Santa Fe, NM, USA, May 2000.

21. Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics. Prentice Hall, 1994.
22. V. Narayanan and M.I. Wolczko, editors. Java Microarchitectures. Kluwer Academic Publishers, 2002.
23. I. Pechtchanski and V. Sarkar. Dynamic optimistic interprocedural analysis: A framework and an

application. In Object-Oriented Programming Systems, Languages and Applications, pages 195 – 210,
Tampa, Florida, USA, October 14-18 2001.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls



Published in: Concurrency and Computation: Practice and Experience
Vol. 17, No. 7-8, June-July, 2005, pp. 757-773.

1

COMPARISON OF THE GRANDE AND SPEC BENCHMARK SUITES 17

24. R. Radhakrishnan, N. Vijaykrishnan, L.K. John, A. Sivasubramaniam, J. Rubio, and J. Sabarinathan.
Java runtime systems: Characterization and architectural implications. IEEE Transactions on Computers,
50(2):131–146, February 2001.

25. R.W. Scheifler. An analysis of inline substitution for a structured programming language.
Communications of the ACM, 20(9):647 – 654, September 1977.

26. SPEC. SPEC releases SPEC JVM98, first industry-standard benchmark for measuring Java virtual
machine performance. Press Release, August 19 1998. http://www.specbench.org/osg/jvm98/press.html.

27. T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic optimization framework
for a Java Just-In-Time compiler. In Object-Oriented Programming Systems, Languages and Applications,
pages 180 – 194, Tampa, Florida, USA, October 14-18 2001.

28. Sun Microsystems. The Java HotSpot virtual machine. Technical White Paper, 2001.
http://java.sun.com/products/hotspot/.

29. V. Sundaresan, L. Hendren, and C. Razafimahefa. Practical virtual method call resolution for Java.
In Object Oriented Programming Systems Languages and Applications, pages 264 – 280, Minneapolis,
Minnesota, USA, October 15-19 2000.

30. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java optimization
framework. In 9th NRC/IBM Center for Advanced Studies Conference, pages 125–135, Toronto, Canada,
November 1999.

31. J. Whaley. Partial method compilation using dynamic profile information. In Object-Oriented
Programming Systems, Languages and Applications, pages 166 – 179, Tampa, Florida, USA, October
14-18 2001.

32. T.J. Wilkinson. KAFFE, a virtual machine to run Java code, July 2000. http://www.kaffe.org.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; :0–0
Prepared using cpeauth.cls


