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Abstract

The goal of this thesis is to examine some of the ways in which we might

optimise the design of topological qubits. The topological operations which

are imposed on qubits, in order to perform logic gates for topological quantum

computations, are governed by the exchange group of the constituent particles.

We examine representations of these exchange groups and investigate what re-

strictions their structure places on the efficiency, reliability and universality of

qubits (and multi-qubit systems) as a function of the number of particles com-

posing them. Specific results are given for the limits placed on d-dimensional

qudits where logic gates are imposed by braiding anyons in 2+1 dimensions.

We also study qudits designed from ring-shaped, anyon-like excitations in

3+1 dimensions, where logic gates are implemented by elements of the loop

braid group. We introduce the concept of local representations, where the gen-

erators of the loop braid group are defined to act non-trivially only on the local

vector spaces associated with the rings which undergo the motion. We present

a method for obtaining local representations of qudits and show how any such

representation can be decomposed into representations which come from the

quantum doubles of groups. Due to the dimension of the local representation

being related to the number of generators, any non-Abelian properties of the

representation are not compromised with an addition of extra operations, we

conclude that universal representations may be easier to find than in previously

discussed cases (though not for topological operations alone).

We model a ring of Ising anyons in a fractional quantum Hall fluid to study

how interactions in a real environment may impact any qubits we have created.

Fractional quantum Hall liquids are currently one of the most promising pos-

sibilities for the physical realisation of TQC and so present a natural choice of

system in which to study these effects. We show how interactions between the

anyons compromise the practicality of qubits defined by the fusion channels

of anyon pairs and explore the use of the fermion number parity sectors as

qubit states. Interactions between the anyon ring and the edge of the liquid

are modelled to study the effect they will have on the state of the qubit. We

perform numerical simulations, for a small system, to give some indication of

how the edge interaction will influence the reliability of the qubit.

iii



Acknowledgements

Firstly, I need to thank my incredible supervisor, Dr. Joost Slingerland. I

could not have reached this point without his advice, guidance and (most

importantly) patience over the last five years. I will always be grateful for

how accommodating and approachable he was over the years as well as his

unwavering enthusiasm and support.

To the other members of the group; Olaf, Jorgen, Ivan and Niall, thanks for

helping me over all those mental blocks and also for the many post-conference

beers around Europe.

For being delightful distractions and protectors of my sanity, I’ll be for-

ever indebted to my office/lunch mates; Aoife, Úna, Glen, Graham, Sepanda
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Introduction

Topological quantum computation (TQC) is a field which is still very much

in its infancy. A number of models of how a topological quantum computer

may be implemented have been devised (see refs. [1, 2, 3] for examples) but

there has not yet been any definitive experimental proof of the existence of the

necessary non-Abelian, anyonic excitations on which these designs are based,

though simpler types of topological excitations and some intriguing experi-

mental results which point to non-Abelian anyons have been observed [4, 5, 6].

Even at this early stage of development, it is useful to consider how the device

may be optimally designed. The work in this thesis was then motivated by an

interest in answering this question for the basic components of a topological

quantum computer, i.e. the qubits. We wanted to understand the theoreti-

cal conditions under which a qubit might possess the most useful properties

which would inform us of certain limits that could feasibly be reached by the

computer.

To this end, chapters 2 and 3 of the thesis will be primarily focused on the

study of the representations of various exchange groups associated with the

movements of anyonic excitations within a topological quantum system. We

will be concerned with finding the most general properties of representations

of these exchange groups as the physics of any excitations which are subject

to the exchange group are of more interest than the properties of particular

anyon models given by specific representations.

These representations are useful as they allow us to study topological ex-

citations outside of the constraints imposed by the physical materials which

harbour them. The results found then apply to any realisation of these excita-
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tions and we can specialise to specific systems by adding in any extra physical

restrictions imposed.

Representations of exchange groups are also of interest in TQC where the

representation of the generators of the exchange group gives the possible logic

gates which can be implemented on a topological qubit by allowing the con-

stituent anyons to undergo this exchange. Study of this general representation,

for anyonic excitations defined by a particular exchange group, then enables

us to determine what design optimisations are possible within the limits al-

lowed by the presentation of their exchange group. This highlights the essential

properties which are necessary for an “ideal” topological quantum computer

and allows us to identify systems which could potentially approach such ideal

limits.

By inserting the constraints of particular anyon models into this general

framework we can see the extent to which these ideal conditions must be

compromised and assess the practicality of the system to see whether it can

meet the requirements of TQC.

The work presented in this thesis is separated into three distinct, but closely

related, projects; two of which, examined in chapters 2 and 3, study the op-

timal design of topological qubits discussed above and the other, discussed in

chapter 4, examines the effects of introducing some physical restrictions into

the design. Each these projects have been given a dedicated chapter in this

thesis but there are some deep connections and common ideas which arise in

all three chapters which I will introduce first. How each of the concepts relates

specifically to the work will be explained in detail in the body of the thesis, I

will just provide a quick overview of some of the important terminology and

concepts here.

1.1 Topological Quantum Computation

Topological quantum computing is a method of implementing quantum com-

putations by storing information in certain quantum states which can only be

altered by manipulating the topology of the system, see ref. [1, 7, 8, 9, 10] for

a comprehensive introduction to TQC theory.

Other designs for quantum computers encode information in local quan-
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tum states of a system. Such states are extremely unstable and will decohere

through interaction with the environment, this places a high demand on the

isolation of the system and speed of the computation, making the system diffi-

cult to scale. Storing information in non-local, topological degrees of freedom

of a system means there is a much lower probability of loss or corruption of

the information due to local perturbations. Operations can then be performed

with less worry about disturbing the sensitive local quantum states. Topolog-

ical quantum computers aim to utilise these more robust, non-local quantum

states in order to produce a quantum computer which scales with greater ease.

However, in order to obtain the topological particles that will be used in the

computation, such machines must be built from complex topological systems

which, so far, have not been found in nature and are difficult to achieve in the

lab. Many of the challenges with topological quantum computation then are

not in the implementation of the actual computations but in discovering and

producing the complex and delicate topological phases of matter which display

the necessary properties, as discussed in ref. [9].

The basic units of information in quantum computation are two-level, quan-

tum systems called qubits, see e.g. ref. [11, 8]. Topological qubits are then

two-level, quantum systems whose state can be altered through a topologi-

cally nontrivial operation. In general a topological qubit will consist of a col-

lection of topological (quasi-)particles whose configuration dictates the state

of the qubit. Moving these (quasi-)particles around in a certain manner then

amounts to imposing quantum gates on the qubit.

While two-level systems (bits) are sufficient for classical computing, the

case is slightly more complex for quantum computation. Quantum mechanical

systems with more than two states exist and we may be forced, or choose, to

use such systems as our basic unit of information. The analogy to a classical bit

is then somewhat lost and so we alter the name to make this change obvious,

a three state system is then referred to as a qutrit, a four state system as a

quqart, and so on. In general, we call a d-state system a qudit.

A topological system will have many states, to create a qudit from this sys-

tem we must choose d states to encode the information we wish to store. Ideally

we should ensure the chosen states are topologically degenerate, i.e. states at

the same energy level but which require some topological operation in the de-
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generate subspace in order to move between them. There should also be an

energy gap to the other states of the system to protect the qubit from slipping

out of the computational space [1, 12].

1.2 Anyons

Quantum statistics is a property by which we can distinguish between different

types of particles, usually bosons and fermions. If we have a wavefunction, ψ,

which describes a system of two particles, then the quantum statistics of these

particles determines what effect exchanging their position will have on ψ. If ψ

remains unchanged by such an operation then the wavefunction is symmetric

under exchange and we call the particles bosons, alternatively if ψ becomes

−ψ then the wavefunction is antisymmetric under exchange and the particles

are referred to as fermions. In our everyday, (3+1)-dimensional world these

are the only two possibilities, however, more exotic results are found when we

move to 2+1 dimensions [13].

To understand what happens in moving to a (2+1)-dimensional system we

should first look at the mathematical explanation of these exchange statistics.

Instead of just performing one exchange we consider the case where we ex-

change two particles twice, so that they return to their original positions. It

is not difficult to see that this operation is equivalent to leaving one particle,

which we will call p2, in place and moving the other particle, p1, completely

around it and back to its starting position.

p
2

p
1

Figure 1.1: Moving one particle around another, equivalent to two exchanges.

If we track the path, or worldline, of p1 (shown in red above) we see that

it traces out a loop around p2 with a base point on p1. In (3+1)-dimensional

space we can picture taking this loop and, using the dimension perpendicular

to the plane it lies in, pull it around p2, we can then shrink it down in size

until it becomes a single point located at p1.
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This operation is done without breaking or cutting the loop in any way. In

topological terms we call this form of operation a continuous deformation, i.e. a

deformation of one object into another which does not involve cutting or gluing

the original object. If one object can be transformed into another by a contin-

uous deformation we say that they are homeomorphic and from a topological

perspective they are equivalent, see for example ref. [14].

We see, therefore, that a loop encircling a point in 3+1 dimensions is home-

omorphic to a point at the loop’s base. A point is a topologically trivial object

so we have in fact shown that the path which p1 takes around p2 is equivalent

to a trivial path. Thus the operation of double exchange of particles in 3+1

dimensions is completely trivial, in other words, if τ exchanges two such par-

ticles, then τ 2 = 1. A single exchange then must be a root of the identity so

we get; τ = ±1, and so we have produced the exchange statistics for bosons

and fermions.

Moving to 2+1 dimensions makes things more complicated. The loop can

no longer be contracted to a point, this is because the dimension which we

used to pull the loop around p2 is not present in this system. So we would

have to either pull the loop through p2 or cut it, both of which would mean the

result is not homeomorphic to the loop we started with. Therefore the path of

p1 is not equivalent to the trivial path and so τ 2 = 1 is not a requirement for

this system. There is then more freedom in the values τ can take.

In fact, if ψ is a wavefunction describing two particles in 2+1 dimensions

then it picks up a phase factor, eiϑ, under exchange; τψ 7→ eiϑψ [15, 16]. The

exact value of ϑ is determined by the species of particles we are dealing with.

For ϑ = 0 we get e0 = 1 so we have bosons and for ϑ = π we have eiπ = −1

and so we get fermions. However, ϑ is not constrained to these two values and

can actually take any value between 0 and 2π. Thus the particles are dubbed

anyons, and they can be considered a generalisation of bosons and fermions.

1.3 The Braid Group

The exact nature of the exchange operators, τ , mentioned in section 1.2, and

hence also the nature of the anyonic phase factors, ϑ, are determined by the

braid group, Bn, on n ’strands’ [17]. The braid group has generators, τi, which
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exchange strands i and i+ 1 in the manner depicted in figure (1.2).

1 2 nn-1i i+1i-1 i+2

1 2 nn-1i i+1i-1 i+2

Figure 1.2: τi braids the ith and (i+ 1)th strands.

The worldlines of particles in 2+1 dimensions act in an equivalent way to

the strands and so exchanging these particles can be viewed as the braiding of

their worldlines. Braids can by multiplied together by simply stacking them on

top of each other and the inverse of a braid is found by inverting the crossing

of the two strands.

Figure 1.3: The braid τ1τ2 Figure 1.4: The braid τ1τ
−1
1

The presentation of the braid group, as described by Artin [18], is given by

generators τi, for i = 1, 2, ..., n− 1, which obey the following group relations:

τiτj = τjτi {for |i− j| ≥ 2} (1.1)

τiτi+1τi = τi+1τiτi+1 (1.2)

Relation (1.1) here is simply a statement of how spatially separated braids

have no influence on each other so it does not matter which order we do them

in. Relation (1.2) is a form of the well-known Yang-Baxter relation which will

be discussed in much greater detail several times later in this thesis.

An important property of the braid generators is that they are conjugate

to each other. We can take any generator, τj and produce any other generator

in the group, say τk, by conjugating τj by the appropriate braid, X, which is

some combination of the generators of Bn; τk = XτjX
−1, figure 1.5 shows this

diagrammatically.
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τ1τ1

τ2
-1

τ1
-1

τ3
-1

τ2
-1

τ2

τ3

τ1

τ2

τ3

Figure 1.5: This shows if we conjugate τ1 by another braid, τ2τ3τ1τ2, we get
the same effect as if we just performed τ3.

This property is useful as it means all braid group generators are equivalent,

they only differ by our labelling convention. The generators then share the

same properties, specifically they all have the same eigenvalues and so their

trace and determinants are all equal.

Finally if the system is described by a wavefunction, ψ, then representations

of the braid group can be obtained by examining the effect of the generators

ψ on configurations of the system. One dimensional representations of the

braid group will always exist, where the wavefunction picks up a phase factor,

τψ 7→ eiθψ, when particles are braided. Here then we see the anyonic nature of

the two-dimensional particles emerging directly from representations of their

exchanges.

The order in which we apply the braid generators will clearly not affect

the outcome, as the phase factors commute with each other. Particles whose

exchanges can be described by one-dimensional representations of the braid

group are then termed Abelian anyons. However, the presentation of Bn per-

mits higher dimensional, irreducible representations. The matrix representa-

tions of the braids in these cases will, in general, not all commute and so the

order in which we apply them does affect the outcome. Particles whose ex-

changes are described by higher dimensional, irreducible representations of Bn

are then called non-Abelian anyons [19].

For TQC purposes, information can be stored in the configuration of the

anyons, to create qudits. Logic gates can then be implemented on these qudits

by manipulating this configuration through braiding of the anyons. Qudits

7



built from Abelian anyons then will only be able to undergo operations which

change their state by some trivial phase factor. To enable us to perform

a larger set of logic operations (potentially any desired logic operation) we

then require non-Abelian anyons. For our purposes then we will primarily be

concerned with non-Abelian representations of the braid group and Abelian

representations will be regarded as significantly less useful.

It is interesting to note here, that if we were to move back to a (3+1)-

dimensional system then any braid which brings all particles back to their

starting position can be untangled, such braids are called pure or coloured

braids. This is not obvious from figures 1.2 - 1.5 above as it is difficult to

imagine another dimension in these diagrams, but we will always be able to

continuously deform the strands until any pure braid is completely untangled.

Every pure braid is then equivalent to the trivial braid in 3+1 dimensions.

The square of any braid is clearly a pure braid so we get an extra group relation

of the form:

τ 2
i = 1 (1.3)

But the braid group along with relation (1.3) is actually the presentation the

symmetric group, Sn. The symmetric group has also been well studied and

most importantly is known to have only representations which correspond to

those of bosons and fermions, specifically it has two one-dimensional represen-

tations, τi = ±1, corresponding to bosons and fermions and higher dimensional

representations which can all be decomposed into one of the one-dimensional

representations by assigning an extra quantum number to each particle [20, 9].

1.4 Fusion Trees

The topological charge of an anyon is specified by the phase factor its wavefunc-

tion picks up when braided. In a system with multiple anyons present, multiple

species of anyons inevitably emerge. Groups of anyons can move close together

and act effectively as a single anyon with a different topological charge, see for

example [9, 21]. For any two non-Abelian anyons this new topological charge

may take on a range of values, called fusion channels. The fusion channels are
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determined by the fusion rules of the particular anyon model, which can be

given as a fusion algebra of the form [8, 22]:

a× b =
∑
c∈T

N c
a,bc (1.4)

where: a, b and c are topological charges, N c
a,b is an integer referred to as a

fusion coefficient which determines the probability of that fusion outcome and

T is the set of allowed topological charges in the anyon model. Notice that the

fusion can possibly have multiple outcomes (provided |T | > 1), such “multi-

channel” fusions will then present a multi-level system which can be utilised

as a qudit.

There are many example of such models (see for example ref. [22]), the

most well known being the Fibonacci model [23, 24] which we will use as an

illustrative example. The Fibonacci model contains two particles species; one

of topological charge 1, called the vacuum, and another of charge τ , called the

Fibonacci anyon. The fusion rules for the system are then given as:

1× 1 = 1 1× τ = τ

τ × τ = 1 + τ

These can be interpreted as: combining any anyon with a topologically trivial

particle leaves it unaltered, while combining two Fibonacci anyons produces

either a single Fibonacci anyon or a vacuum anyon with equal probability.

We can design systems of anyons using these models and examine how

the different species of anyons interact with each other in an attempt to de-

scribe what is happening in real topological systems. Fusion trees give a useful

diagrammatic display of how the anyons in a system are behaving [25].

A fusion tree contains edges, which represent the anyons in the system, and

vertices where two edges meet, which represents the fusion of two anyons or

the splitting of an anyon into two separate anyons. To draw a fusion tree we

start with an edge for each anyon in the system, the edges depict the worldlines

of the anyons so we can have braiding or joining of edges at different points in

the diagram depending on how the anyons behave at those times. It should be

noted that an edge can have multiple labels, if two edges meet at a vertex and

9



the fusion outcome of the anyons they represent have more than one possibility,

then the edge which exists this vertex must bear both possible labels.

The “tree” title stems from a common method of obtaining the overall

topological charge of a system whereby we pick one anyon in the system and

let it fuse with each of the other anyons one at a time, as if we are zooming

out in discrete steps, until we are left with the overall topological charge of the

whole system. The resultant structure resemble a trees as seen figure 1.6.

τ τ

τ

τ1+

τ

Figure 1.6: Fusion tree for three Fibonacci anyons with a total charge of τ .

Given that certain fusions can have more than one outcome, a given fusion

tree can have multiple different possible labellings. The labellings then repre-

sent different states the system of anyons can be in. Therefore, we obtain a

basis for the system by writing down all possible fusion tree labellings for the

collection of anyons.

Notice above we just picked a charge at random to start with, this choice

will affect the shape of the resulting fusion tree but the overall topological

charge of the anyons shouldn’t change. The multiple different fusion trees

which can be drawn for any group of anyons will correspond to different basis

choices. It can often be useful to change between different bases, if the fusion

of a certain two anyons is desired we can move to a basis where these fuse

together first before their fusion product fuses with the rest of the anyons in

the collection. Such a basis change is achieved using a so-called F-move [24],

which changes the order in which three particles are fused together by acting

with an appropriate transformation, called an F-matrix, on the original basis.

In figure 1.7, F is the transformation matrix linking the two bases, it is a

function of the charges of the three anyons, a, b and c, the two possible initial

fusion channels, x and x̃, and the total outcome of the fusion, d.

Exchange of the anyons may alter the fusion outcome as it affects the state

of the system non-trivially, we then need to account for braiding in the fusion

10



a b c

d

F
a,b,c

d
x,x~

x ~

a b c

d

x

Figure 1.7: The order the anyons a, b and c are fused in is changed by moving
to a basis where b and c fuse before combining with a. Note the resultant
charge d remains unchanged by this operation.

tree method. This is done by altering the basis to one in which two anyons

are exchanged via application of the R-matrix.

R Ra,b

b,a

c

a b

c

a
a

b
b

c
c

Figure 1.8: The braiding of anyons a and b is accounted for by moving to a
new basis using an R-move.

In figure 1.8, R is the transformation matrix moves to a basis where anyons

a and b are in the opposite order, it depends on the two braided anyons, a and

b, and their fusion outcome, c.

The form of the F and R-matrices is determined by consistency equations,

known as the pentagon and hexagon equations [26, 2], which ensure that certain

combinations of F and R-moves will return the system to its original state.

1.5 Conformal Field Theory

As mentioned in section 1.2, systems which contain the anyonic excitations

necessary for topological quantum computation are (2+1)-dimensional in na-

ture. However many important elements of these systems, such as the edge

(see e.g. ref. [27]), are in fact (1+1)-dimensional.

These (1+1)-dimensional quantum systems can often be described by a

two-dimensional, conformally-invariant quantum field theory. Such theories

will then be useful in modelling anyon systems and so we will give a brief

introduction. The overview here follows the treatment in many conformal

11



field theory books and reviews such as ref. [28, 29, 30, 31].

For any statistical model we can define a pair correlation function, Γ(i−j),

which gives a measure of the statistical dependence of an interaction between

two sites. This function will naturally depend on the nature of the interaction,

but more importantly for us it will also be a function of the distance between

the two sites. In general, this pair correlation function will decay exponentially

with the distance over which the interaction takes place;

Γ(i− j) ∼ exp

(
−|i− j|

ξ

)
(1.5)

where ξ is a characteristic length and is termed the ‘correlation length’ of the

interaction. However, at a quantum critical point the correlation length will

diverge, it exceeds the system size and the pair correlation is instead limited

by the linear size of the system. The exponential decay in equation (1.5) is

replaced by an inverse power decay:

Γ(i− j) ∼ 1

|i− j|d−2+η
(1.6)

where d is the dimension of space and η is some exponent characterising inter-

action taking place. For correlations over distances which are large compared

to the lattice spacing, i.e. in the continuum limit, the absence of the correlation

length, ξ, indicates that Γ(i−j) will be independent of the scale of the system.

A (quantum) field theory description of this model would then be invariant

under conformal transformations, i.e. angle preserving transformations, as this

is known to be true of all such scale-invariant, (1+1)-dimensional quantum

field theories [32].

Conformally-invariant quantum field theories, more commonly referred to

as conformal field theories, are very useful in (1+1)-dimensional systems as

they are often completely solvable using only symmetry arguments due to

the infinite dimensionality of the conformal symmetry algebra (or Virasoro

algebra).

We start with a particular two-dimensional quantum field, φ(z, z̄), written

in terms of holomorphic (and antiholomorphic) coordinates, z = x + iy. Its

behaviour under a conformal transformation is governed by the field’s scaling

12



dimension, ∆, and its spin, S, which are combined into quantities known as

the holomorphic conformal dimension, h = 1
2
(∆ +S), and its antiholomorphic

counterpart, h̄ = 1
2
(∆− S). If such a field also obeys the following conformal

transformation of its holomorphic coordinates, as z 7→ f(z):

φ(z, z̄) 7→
(
∂f

∂z

)−h(
∂f̄

∂z̄

)−h̄
φ(f(z), f̄(z̄)) (1.7)

then it is called a primary field and its action on the absolute vacuum at

z = 0 produces an eigenstate, |h, h̄〉, of the Hamiltonian, with an energy h+ h̄.

The holomorphic and antiholomorphic parts of a conformal field are mostly

decoupled from each other, enough that they can be considered in isolation.

From here on we will consider only holomorphic operators which act on the

holomorphic part of φ(z, z̄) but it should be noted that each of these operators

will have an antiholomorphic counterpart which acts on the antiholomorphic

part.

The holomorphic energy-momentum tensor of the theory can be expanded

in terms of mode operators Ln; T (z) =
∑

n∈Z z
−n−2Ln. These modes satisfy a

commutator algebra known as the Virasoro algebra, defined by the commuta-

tion relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0 (1.8)

The operator c is known as the central charge of the conformal field theory.

As c commutes with the Virasoro operators, Ln and L̄n, we can choose a

representation of the Virasoro algebra such the c is diagonal. The value of c

obtained by acting on the states of some CFT then defines the commutation

relations of the Virasoro algebra. We can then obtain a representation of the

CFT described by this c value by acting with the Virasoro generators on some

initial lowest weight state.

The variation of a state under a conformal transformation is then given by

acting on the state with the appropriate generator, Ln. The subspace of the

Hilbert space generated by the action of the Ln on the state |h, h̄〉 is closed

under the action of the conformal generators and so forms a representation of
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the Virasoro algebra called a Verma module, V (c, h).

The constraint of regularity of T (z)|0〉 at z = 0 indicates that Ln|0〉 = 0

for all n ≥ −1, and the hermiticity of T (z) results in the relation L−n = L†n.

Together these properties, with relations (1.5), imply that the Ln and L̄n act

as raising (n ≤ −1) and lowering (n ≥ 1) operators of the eigenvalues of L0

and L̄0 and thus will produce the states of the Verma module by acting in

various combinations on the lowest weight state.

The commutation relations between the energy-momentum tensor and the

field operator show that |h, h̄〉 = φ(0, 0)|0〉 is this lowest weight state, and so

it is often called a primary state. Such a primary state is annihilated by all

Ln, L̄n with n > 0, and it produces other states within the same conformal

family, called descendant states, φ(−n)|0〉, under action of L−n, L̄−n.

The operator (L0 + L̄0) is proportional to the Hamiltonian. It has the

eigenvalues which are the conformal dimensions of the states in the mod-

ule, e.g. (L0 + L̄0)|h, h̄〉 = (h + h̄)|h, h̄〉, which can then be interpreted as

the energy of the state. Similarly the operator (L0− L̄0) is proportional to the

momentum operator.

We can then produce the spectrum of a conformal field theory. For the

value of c associated with the particular theory, we obtain a Verma module

for each primary field, φi(z, z̄), by building a tower of descendant states. This

is done through the action of the generators of the Virasoro algebra which

behave as ladder operators on the lowest weight states, created by applying

the primary fields to the vacuum state.

A Verma module will give an irreducible representation of the Virasoro

algebra unless there exists a state, |χ〉 (which is not the lowest weight state

|h, h̄〉), for which Ln|χ〉 = 0 {for n > 0}. Such states are called null states and

can be considered to be the primary states of their own Verma (sub)module.

A Verma module can then be reduced into irreducible representations of each

of its null states.

The Kac determinant [33] can be used to obtain the conformal dimensions,

hp,q, of any null states within a Verma module, V (c, h). From the Kac de-

terminant we find that all theories with c < 1 have positive, real conformal

dimensions. It also shows that the central charge, c, and the conformal dimen-

sions of any null states, hp,q, can be expressed in terms of a new parameter
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m = 1
2
± 1

2

√
25−c
1−c as:

c = 1− 6

m(m+ 1)
(1.9)

hp,q =
[(m+ 1)p−mq]2 − 1

4m(m+ 1)
(1.10)

For m ≥ 2, 1 ≤ p ≤ m− 1, 1 ≤ q ≤ m, this defines the conformal dimensions

for all constituent primary fields of a conformal field theory with a particular

central charge, provided c < 1. Note this actually gives twice the number of

fields for each theory but we find that hp,q = hm−p,m+1−q and the corresponding

fields can be identified with each other, i.e. the representations of these fields

are isomorphic. Models defined by relations (1.9) and (1.10) are referred to

as minimal models and in principle “everything” about these conformal field

theories can be fully determined.

Conformal field theory also furnishes us with rules for fusing fields together,

which are derived from the operator product expansion (OPE) of the corre-

lators the conformal fields. Taking φi,j to be a primary field with conformal

dimension hi,j, the constraints placed on the operator algebra due to existence

of null states in the theory allows us to derive the following fusion rules for

primary fields from their OPE:

φa1,z1 × φa2,z2 =

2m−1−a1−a2∑
a3=Aint,A+=1

2m+1−z1−z2∑
z3=Zint,Z+=1

φa3,z3 (1.11)

where Zint = |z1 + z2| + 1, Aint = |a1 + a2| + 1, A+ = (a1 + a2 + a3) mod 2,

z+ = (z1 + z2 + z3) mod 2 and m is the parameter of the CFT defined by the

conformal charge, see equation (1.9).

1.6 Thesis Outline

As stated at the beginning of the introduction, this thesis covers work on three

separate projects and a chapter has been dedicated to each of them.

In chapter 2 we give the most general description of a qudit. We then

examine what properties a qudit must display to be defined as optimally de-

signed. We force our general qudit to display these properties and then discuss
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what restrictions this places on it. Finally we compare current qudit models

to this optimally designed, general qudit to see how well they match. We use

a similar method to examine multi-qudit gates and look into the issue of infor-

mation leakage from such systems, using our general qudit approach to search

for leakage-free, universal systems.

In chapter 3 we consider a system of anyonic ring-shaped excitations in 3+1

dimensions which can utilize several types of motion in three spatial dimensions

to produce quantum computations. We study the possible implementations

of qudits in this system and compare the results to those found for general

exchange groups in chapter 2. We also study systems in which each ring has

an internal vector space associated with it and introduce local representations

to define a certain type of action of the exchange group generators on such a

system. We discuss the advantages and difficulties of using this ring system for

TQC over the current more conventional (2+1)-dimensional implementations.

In chapter 4 we move away from the more abstract tone of the previous

two chapters in order to examine the reality of implementing these designs in

a physical system. We model Ising type anyons in a fractional quantum Hall

fluid and discuss how the anyons composing the qubits in the bulk can interact

with the current on the edge of the sample. Using numerical simulations we

predict how the interactions will affect the state of the qubits over time and

discuss what demands this places on how the qubits should be designed.
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Chapter 2

Topological Qubit Design

A natural question to ask when considering the design of a quantum computer

is; “What is the optimal way in which to design a qudit?”. As the computer

will be built from these qudits, an efficient design would be essential to the

overall efficiency of the quantum computer.

There has been many schemes suggested for the implementation of a topo-

logical quantum computer, however, they all stem from the same basic premise.

We have a collection of qubits which are composed of (quasi-)particles that are

topological in nature. Information is encoded in the topology of the qubit and

logic gates are implemented on the qubit by altering this topology is some way.

The topological particles we are referring to are 2+1 dimensional anyonic

particles, which we discussed in section 1.2, and the information is stored in

the arrangement of the anyons within the qubit. We can alter this topologi-

cal feature by exchanging the anyons and so logic gates are implemented by

braiding the anyons around each other. Thus every operation that can be per-

formed on these qubits is an element of the braid group, which was described

in section 1.3.

Representations of the braid group then yield the possible operations we

can perform with a specific qubit. The goal of this chapter will be to look at

various different topological qubit designs and attempt to find representations

of the braid group for said qubits which have certain desirable properties.

2.1 Standard TQC Scheme

We start with a collection of anyons, we have some two-dimensional system

wherein excitations display anyonic statistics. We will not consider the exact
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properties of the anyons, i.e. their topological charge and fusion rules, or the

specific nature of the system containing them. This allows us to keep our

results as general as possible and we can restrict to specific anyon models later

on.

The Hilbert space of the system is just the fusion space of the anyons, states

in this space are then labelled by the possible ways in which the anyons in the

system can fuse together. This Hilbert space does not have a natural tensor

product structure which makes it difficult to fit these states to the standard

computation models, based on collections of two-level systems. To solve this,

we group anyons together into smaller collections (of usually 3 or 4) which we

call qubits. The qubit is defined by restricting the overall fusion charge of the

group of anyons to a set value (often the vacuum, 1, which is convenient as

the qubit then has trivial topological charge and can be exchanged without

effecting the system), this value is conserved under any operations which take

place inside the qubit.

aa aa aa aa aa aa

b
1

b
2

c
1

c
2

Figure 2.1: A possible qubit space for a system of six anyons. Here a is the
anyon charge and the circles, bi and ci, represent anyon fusion with their labels
denoting the fusion outcomes. c1 and c2 are the charges of the qubits, they
are fixed, b1 and b2 can have multiple values which can be altered by braiding
the other anyon around one of the anyons inside the b circle. To define the full
qubit space we must also fix the overall charge of all 6 anyons.

The qubit space (or computational space) is composed of the possible ways

in which the anyons can be fused together under the consideration that certain

groups of anyons are required to fuse to specific values, i.e. the anyons within

a qubit must fuse to the topological charge of the qubit.

This computational space does have a natural tensor product structure [1]

making it much easier to work with than the full Hilbert space. However,

there is a price to pay for using this ‘simpler’ space; the computational space

is, in general, smaller than the full Hilbert space of the system. While op-

erations performed within a qubit do not alter its charge, multi-qubit opera-

tions, i.e. braiding anyons from different qubits around each other, may change
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the topological charge of one or all of the qubits involved. This will result in

some of the information, “leaking” out of the computational space into so-

called “non-computational” states.

Information which is in a non-computational space cannot be accessed by

single qubit operations but multi-qubit operations may exist which can access

the information and couple it back into the computational space. This is

known as leakage error but it is not an error in a conventional sense as the

information is not lost but has been moved to the states in the Hilbert space

which are not accessible with our chosen qubit implementation.

If we perform calculations using only braiding operations contained within

a single qubit, then there will be no leakage errors as these operations do

not alter the overall topological charge of the qubit. However, if we braid

anyons from two different qubits around each other, it is possible to alter the

topological charge of the qubits and risk losing information to states where the

qubits have a different charge to the one used to define the qubit space. These

are obviously non-computational states and so we can get leakage errors.

There exists TQC models for which leakage errors appear to be avoidable,

see e.g. ref. [34], however these necessarily have trivial one qubit operations

and are not universal. In more standard anyon models, leakage errors are un-

avoidable [7, 17, 23] and we can only work to reduce the amount of information

that is lost.

2.2 The Optimal Qubit

We now need to ask ourselves what properties we desire an “optimal” qubit to

have. There are three criteria which an optimal qubit should fulfil, (see e.g. ref. [8,

7, 23, 35]):

1. Universality: It should be possible to apply any logic operation we wish

to the qubit.

2. Robust against errors: Logic operations should be implemented on the

qubit with few or no errors.

3. Efficiency: Logic gates should be implemented quicker than is possible

for other qubit designs.
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From section 1.3 we know that any operation that can be performed on a

qubit must be matrix representing an element of the braid group. As logic

gates are unitary operations, a unitary representation of the braid group will

then contain all logic operations which can possibly be applied to the qubit.

If the representation of the braid group of the anyons within a qubit is non-

Abelian, the qubit can possibly be universal (though this is not sufficient to

guarantee universality). This is not true for an Abelian representation of the

anyons, which has generators which all commute and so can be simultane-

ously diagonalised. The representation can then be reduced to 1-dimensional

representations which are non-universal.

To maintain robustness we must ensure that information is not able to leak

from the system. The fundamental principles of TQC ensure that it is robust

against decoherence errors but it is still possible to lose information when we

perform operations which move this information from the computational space

to non-computational states.

Lastly if we assume that it is experimentally easy to manoeuvre anyons,

then we would expect qubits containing greater numbers of anyons to be more

efficient (this is not true of current experiments but we are anticipating future

advancements of the field). The number of generators in the braid group is

directly related to the number of anyons in the qubit (as there is a generator for

every neighbouring pair of anyons) thus with more anyons, we have a greater

number of generating matrices in the representation of the group. This gives us

more distinct options to choose from when performing a braid and so we may

be able to reach a desired gate in fewer operations than if we had fewer anyons,

in other words we may be able to produce our desired logic gate quicker.

To summarise then, an optimal qubit should be composed of as many

anyons as possible, with a non-Abelian representation of their braid group,

where none of the operations leak information to non-computational states.

As we will see in the next section, the group relations, equations (1.1)

and (1.2), put an upper limit on the number of generators the braid group

can contain before all 2-dimensional representations must be Abelian. The

question we want to answer is then; What is the maximum number of anyons

a qubit can contain while the braid group representation remains non-Abelian?
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2.2.1 Maximum Number of Anyons

We now want to find this maximal anyon number for qubits. Note that we

are exclusively dealing with qubits here, i.e. 2-dimensional representations of

the braid group, higher dimensional representations will be considered in a

later section. First we note that all logic operations are unitary and a qubit

is by definition a 2-dimensional system, therefore we can accurately represent

all possible logic operations on the qubit through a 2-dimensional, unitary

representation of the braid group.

Due to the conjugacy of the braid generators, they must all have the same

eigenvalues. We choose a basis for our representation such that the first gen-

erator, τ1, is a diagonal matrix. If the two eigenvalues of the generators are

equal, τ1 will be some multiple of the identity, τ1 = λ(1)
12 and is unaffected

by any basis transformation. We can then change to a basis where some other

generator, say τ2, is diagonal. But again τ2 has 2 equal eigenvalues so it too

is some multiple of the identity, τ2 = λ(2)
12. This process can obviously be

repeated to show that, if the eigenvalues of the generators are equivalent then

all generators in the group have a trivial representation.

We look then, only at the case where the eigenvalues are distinct. It is im-

portant to point out here, that if a diagonal matrix has all distinct eigenvalues

then any other matrix which commutes with it must itself be diagonal. This

fact will come into use extensively throughout this chapter.

Again we choose a basis where τ1 is diagonal but with distinct eigenvalues.

We must now use the braid group relations to find the form of the other gen-

erators in this representation, we repeat these relations here for convenience:

τiτj = τjτi {for |i− j| ≥ 2}

τiτi+1τi = τi+1τiτi+1

If all of the other generators must also be represented by diagonal matrices,

we know the braid group representation is Abelian.

A 2-anyon qubit has only one possible exchange, τ1, and so all generators

have a diagonal representation. For the braid group of a 3-anyon qubit there

are two generators, τ1 and τ2, and the group relations place only one restriction
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on them, namely that they must obey equation (1.2), the Yang-Baxter relation.

This allows for the representation of the braid group to be non-Abelian. For

4-anyon qubits we have one extra generator, τ3. Equation (1.1) requires this

to commute with τ1 so it can be simultaneously diagonalised. So τ1 and τ3 are

diagonal matrices but τ2 can still be non-diagonal and so the representation of

B4 can be non-Abelian.

However, it turns out that four is the maximum number of anyons for

which this can occur. If we consider a 5-anyon qubit then we have one more

generator, τ4. Again we can simultaneously diagonalise τ1 and τ3. The extra

generator,τ4, is physically separated from, and so must commute with, τ1,

however, it is not physically separated from τ3. The basis transformation used

to simultaneously diagonalise τ1 and τ3 should then not also diagonalise τ4.

But τ1 has all distinct eigenvalues therefore, in order for τ4 to commute with

it, it too must be diagonal. Now τ2 must commute with τ4, which is a diagonal

matrix with all distinct eigenvalues, and so τ2 must also be diagonal. Therefore

for N = 5, all four generators must have a diagonal representation, thus the

representation of B5 is Abelian.

It is relatively easy to see that this will be the case for any number of anyons

higher than 4. All odd numbered generators form a commuting set and so they

can all be diagonalised simultaneously. Any even numbered generator which

is physically separated from τ1, must also be diagonal in order for the two to

commute (as τ1 has distinct eigenvalues). The only remaining generator is τ2,

if a generator exists which is physically separated from both τ2 and τ1, then

τ2 must also be diagonal. This will be true for N > 4 and we are left with an

Abelian representation for these cases.

The only cases in which this does not occur is when there is three or four

anyons in the braid group, these are then the only cases for which there can

potentially be non-Abelian representations. And so we have our final result;

three or four anyons represent the optimal number from which to compose a

qubit. We still do not know if the braid groups for these qubits are universal,

or even non-Abelian, but we can say that all other options are definitely not

universal.

It is important to highlight that this argument is only true for two-dimensional

representations of the braid group. The result relies heavily on the fact that
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the eigenvalues of two dimensional matrices can only be either all similar or all

distinct. A matrix which commutes with a diagonal matrix with all distinct

eigenvalues must itself be diagonal, whereas if the eigenvalues are similar the

diagonal matrix is a multiple of the identity and any matrix will commute with

it.

In higher dimensions, our above results will be repeated, i.e. if all eigen-

values are similar, any representations are trivial and if all eigenvalues are

distinct, only representations of B3 and B4 can be non-Abelian. However in

higher than 2 dimensions there is more available options, we can choose differ-

ent groupings of the eigenvalues to be similar and distinct, this relaxes some of

the restrictions on commuting matrices. We will examine this in greater detail

in section 2.3.

2.2.2 Universality

We now need to examine whether the optimal anyon numbers found in the

previous section can have a universal representation of their braid groups. In

this section it will be necessary to explicitly refer to which representation we

are using, therefore we will first describe our representation, η, of the braid

group.

As stated in the previous section we start with a 2-dimensional, unitary

representation of the braid group: η′ : Bn → U(2), however we can simplify

this a bit further by demanding that the representation is also special, i.e. η :

Bn → SU(2).

This is easy to justify as the determinant of a representation is itself a

representation and a valid representation is given by dividing a representation

by some one-dimensional representation. All generators in the braid group are

conjugate to each other. This means they all have the same eigenvalues and

thus determinant, so we can divide our representation by the square root of

this determinant so that all generators now have a determinant of 1 and the

representation is special: η = η′√
det(η′)

. We can recover all U(d) representations

by simply multiplying these SU(d) representations by one-dimensional unitary

representations.

As before we can choose the basis of the representation so that η(τ1) is
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diagonal. η(τ2) is not, in principal, diagonal but we have some freedom left in

our basis choice which we can use to ensure the off-diagonal elements of η(τ2)

are real. Using the standard general form of SU(2) matrices and the Yang-

Baxter relation (equation (1.2)) gives the following matrix representations:

η(τ1) =

a
ā

 η(τ2) =

 1
a−a3 b

−b 1
ā−ā3

 (2.1)

Where a = eiφ, for some phase φ and |a|2 + |b|2 = 1. We will assume that

the eigenvalues of the generators, a and ā, are distinct, as allowing them to

be equal immediately renders the representation Abelian, as stated in the

previous section. The choice of b to be real gives a restriction on the values

of a. From the determinant of τ2, we have b2 = 1 − 1
2−ā2−a2 ≥ 0, this gives:

1
2−ā2−a2 ≤ 1 which in turns gives: −π/6 ≥ φ ≥ π/6. This fully defines all possible

representations of B3 which are non-Abelian.

In B4 we have an extra generator, τ3, and we will assume τ1 and τ2 have

the same form as above. τ3 must commute with τ1 and so it is also diagonal.

Therefore, as the eigenvalues of all generators must be the same, there are only

two possibilities: τ3 = τ1 or τ3 = τ̄1. In the first case we get no new restrictions

on φ and so −π/6 ≥ φ ≥ π/6 as in the B3 case. In the second case the Yang-

Baxter relation between τ2 and τ3 does impose some extra restrictions on φ and

we find that a must be a primitive 8th root of unity, i.e. a = ±e±iπ4 . Anyons

with such exchange statistics are known as Ising anyons and will be discussed

in much greater detail in chapter 4, for now we will just mention that these

anyons are known to be non-universal [36].

Vafa’s theorem [37] states that any representation of the braid group arising

from an anyon model (or CFT) with a finite number of topological charges must

have eigenvalues of its exchanges which are roots of unity at some finite order.

Therefore, not all values of φ are permitted, instead only those for which a is

a root of unity are allowed.

It will prove useful to identify the well-studied, Jones representation, ρr,

for B3 within the full set of representations we have given here. Ref. [38] gives
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the following explicit form for the braid generators:

ρr(τ1) =

q
−1

 ρr(τ2) =

 − 1
q+1

√
[3]q

−
√

[3]q
q2

q+1

 (2.2)

where: [x]q = q
x
2−q−

x
2

q
1
2−q−

1
2

and q = ei
2π
r , with r ∈ N, r > 3.

We can see that our representation, η, will exactly match the Jones rep-

resentation if we multiply η by a factor of −a, then perform a coordinate

transformation such that the off-diagonal terms pick up a factor of i. Then

the two representations will be exactly equal with q = −a2. We then have;

q = −a2 = −e2iφ = ei(2φ−π), but −π/6 ≥ φ ≥ π/6 so, allowing q to take the

values q = eiψ, for −2π/3 ≥ ψ ≥ 2π/3, the Jones representation describes all

possible representations of B3.

Freedman et. al [38] provided universality results for the Jones represen-

tation. They found that the images of the representations ρr are dense in an

SU(2) subgroup of U(2) when r ≥ 5 and r 6= 6, 10. More recent universality

results by Kuperberg [39] cover the other roots of unity and even arbitrary

eigenvalues of Jones representations. He states that the images of the repre-

sentations of B3 and B4 are all dense in SU(2) unless q = eiθ with |θ| = π−2π/t,

where θ is some angle and t ∈ Z, t ≥ 3 or q is a root of unity of order 10. Note

that t = 3, 4, 6 are the only cases where π− 2π/t is of the 2π/r form examined in

ref. [38] (with r = 6, 4, 3 respectively). Thus the cases for which the universal-

ity results do not hold, where φ is a primitive root of unity, are exactly those

exceptions which were found by Freedman et al.

We can conclude then that η will give a representation which is dense in

SU(2) for all possible values of a, except a = eiψ where ψ = ±(π − π/2t)

for t ∈ Z, t ≥ 3 or a is a root of unity of order 10. Therefore, our general

representation, η, contains possible anyon models from which we can design

qubits which are universal.

2.3 Qudits

In section 2.2 we analysed under what conditions qubits composed of three or

four anyons are universal. If we stick to one qubit operations, we know that
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there will be no leakage errors in the system. The only optimal property which

has not been addressed then is efficiency.

The qubits discussed in the previous section are only able to produce two or

three generating operations so, while the group is dense in SU(2), it may take

a lengthy and complicated braid in order to achieve a desired logic operation.

This is an issue in terms of computing time and also in terms of the demand it

puts on our ability to control anyons for extended periods of time. We would

like to find a way to increase the number of anyons that we can braid without

their braid group becoming Abelian

One idea to increase the maximal number of anyons is to move from a 2-

dimensional qubit to a d-dimensional qudit. As mentioned in section 2.2, the

advantage here is that in a dimension greater than 2 we can have a multiplic-

ity of the eigenvalues of the generators which is not 1 or d. So it should be

possible to fit more anyons into a qudit, without the representation becoming

Abelian, if we choose the eigenvalues carefully enough to ensure that a genera-

tor commuting with a diagonal matrix does not necessarily have to be diagonal

itself.

Given a qudit of dimension, d, it would then be useful to be able to say what

is the maximum number of anyons such a qudit can contain while retaining its

potential for universality. If we can relate the maximum number, N , of anyons

the representation can take before becoming Abelian to its dimension, d, we

will be able to easily identify how to optimally design a general qudit so that

it could potentially be universal.

2.3.1 Optimal Qutrit

It is useful to first examine a specific example to introduce some of the concepts

we will need later on, we will look at the case of d = 3 or a qutrit.

As was found in the qubit case, if the representation has 3 different eigen-

values then we will only have non-Abelian representations for 3 and 4-anyon

qutrits and if the representation has only one eigenvalue then it will be Abelian

for any number of anyons. We should then look at the new case which can’t

exist in two dimensions, i.e. where one of the eigenvalues has a multiplicity of

2. We construct a three-dimensional representation, ρ, of the exchange group
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on n generators, each of which have two eigenvalues λ and µ, where λ occurs

twice in the matrix representation of each generator.

We can choose the basis of the representation such that all odd numbered

generators are simultaneously diagonalised, this satisfies equation (1.1). If two

odd numbered generators have the exact same matrix representation, then

any generator which commutes with one must also commute with the other.

If N ≥ 5 there will always be at least one even numbered generator which is

spatially separated from one of these odd generators but not the other, but

if both odd generators are equal this even generator must commute with its

neighbouring odd generator.

As the braid generators are all conjugate to each other, the product of

two neighbouring generators can be transformed into the product of any other

neighbouring pair through conjugation by an appropriate braid. Thus if a

neighbouring pair of generators commutes, all such pairs will commute and

the representation is Abelian. If two odd numbered generators are equal then

this forces the representation to become Abelian (in fact this is true for any

two spatially separated generators).

As the odd generators are all diagonal matrices, they can only differ by

the arrangement of the eigenvalues along their diagonal. There are only three

distinct arrangements of the eigenvalues, λ and µ, within a diagonal matrix,

namely {λ, λ, µ}, {µ, λ, λ} or {λ, µ, λ}, thus there can be at most three odd

numbered generators and so six generators in total; τ1 → τ6

A given arrangement of the eigenvalues along the diagonal of a τodd will

partition the basis vectors on which the representation acts. Specifically it

groups vectors together into eigenspaces which are acted on by similar eigen-

values of τodd. Any matrix which commutes with this τodd must preserve this

partitioning.

The form of the even numbered generators, τ2, τ4 and τ6, is then restricted

as they must commute with all spatially separated odd numbered generators

and hence must preserve the eigenspaces created by each partitioning of the

basis vectors by these τodd. τ2 and τ4 will preserve the same eigenspaces as τ5

and τ1 respectively, but τ6 will have the most restricted form as it commutes

with both τ1 and τ3 and so must preserve the eigenspaces of both of these

odd numbered generators (τ1 and τ3 must have a different ordering of the
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eigenvalues so we know they will group the basis vectors differently).

We denote our basis vectors β1, β2 and β3 and we can choose an ordering

such that {β1, β2} is the 2-dimensional eigenspace preserved by τ1, {β2, β3} is

the eigenspace preserved by τ3 and {β1, β3} is the eigenspace preserved by τ5.

If we look at τ6, we see that it must preserve the 2-dimensional eigenspace

formed by β1 and β2 and also that formed by β2 and β3, it can only preserve

both spaces simultaneously if it does not map any of the basis vectors into any

of the other basis vectors, i.e. it must be diagonal. As a result τ6 will commute

with τ5 and the representation of B7 becomes Abelian.

We should then eliminate τ6 from our system by reducing the number of

particles to 6. Now there is no even generator which commutes with two

odd generators and so no generator is required to preserve two 2-dimensional

eigenspaces simultaneously. τ2 and τ4 need only preserve one 2-dimensional

eigenspace each, this is still possible if they are both non-diagonal provided

they have the following form:

ρ(τ2) =


M

(1)
11 M

(1)
12 0

M
(1)
21 M

(1)
22 0

0 0 µ

 ρ(τ4) =


µ 0 0

0 M
(2)
11 M

(2)
12

0 M
(2)
21 M

(2)
22


where M1 and M2 are unitary, 2×2 matrices and µ is the eigenvalue of multi-

plicity 1. However, we must take into account that these two generators must

also commute with each other. But the two matrices, ρ(τ2) and ρ(τ4), will only

preserve the same eigenspaces if they are both diagonal. Commutation of the

even numbered generators then causes B6 to have an Abelian representation.

Moving to N = 5 finally solves the problem, τ5 is eliminated and so τ2

must only commute with τ4. Choosing τ4 to have the form of ρ(τ4) listed

above, we are free to choose the same form for τ2, thereby allowing the two

even numbered generators to preserve the same eigenspaces while remaining

non-diagonal. Note while τ2 and τ4 have the same form, the matrices should not

be equal, for the same reason we require this of the odd numbered generators.

Thus we get a 3-dimensional, non-Abelian representation for B5. For the

group of possible logical operations on a qutrit to have a non-Abelian repre-

sentation (and so present a possibility for universality), the qutrit should be
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composed of a maximum of 5 anyons, thus we can have one more anyon in

qutrits over qubits.

Performing this same argument for even higher dimensional cases is more

difficult, as we can choose the multiplicities of the eigenvalues such that the

eigenspaces which must be conserved split the basis vectors into multiple

groups which contain more than one vector. This makes it very difficult to

determine the nature of the restrictions that come from the commutation of

even numbered generators.

2.3.2 General Anyon Number Limits

We want to generalise this results of qubits and qutrits to arbitrary dimensional

qudits. It will also be useful to further generalise by not restricting ourselves to

the specific structure of the braid group. Instead we consider only properties

common to all exchange groups, our result will then hold for qudits composed

from anyonic excitations other than the point-like two dimensional particles

which we have considered so far. For example, the motion group for ring-

shaped excitations in 3 dimensions, defined by Dahm [40, 41], which we will

look at in detail in chapter 3. Specifically, we will require only the following

properties of exchange group representations:

1. Generators that do not involve the same object (i.e. particles and strands)

commute.

2. The group is represented unitarily.

3. The generators in our favoured set are conjugate to each other and any

adjacent pair of generators is conjugate to any other adjacent pair.

The first property here, like the first braid group relation, is connected with

the basic physical principle that spatially separated operations commute. The

second property comes from the unitarity of time evolution. Both of these

properties are therefore natural assumptions to make when dealing with any

exchange group.

The third property, the availability of a set of conjugate generators, is

more special. However, whenever all generators of a group perform the same

action, just on different objects, then the only difference between two distinct
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operations is the ordering of the objects they are acting on. One would expect

in this case that the generators would all be conjugate to each other. If, on

the other hand, there were different types of generators (such as exchanges of

distinguishable types of particles) then this property will no longer hold (we

will consider an example of this in chapter 3). The inclusion of property 3

allows us to use the argument introduced in the previous section that, through

conjugation, if any neighbouring generators commute the representation must

be Abelian.

We now define various versions of the ’maximal number of anyons’:

• N(d) is the largest n for which Bn has a non-Abelian representation of

dimension d.

• N(d, p) is the largest n for which Bn has a non-Abelian representation of

dimension d, such that the elementary exchanges have p distinct eigen-

values.

• N(d, m̄) is the largest n for which Bn has a non-Abelian, d-dimensional

representation such that the exchanges have p distinct eigenvalues with

multiplicities m1, ...,mp given by the partition m̄ of d. For example if

m̄ = (2, 2, 1), then d = 5 and the representation is required to have

three distinct eigenvalues, two of them with multiplicity 2 and one with

multiplicity 1.

• N(d, m̄, q̄) is the largest n for which there is a non-Abelian, d-dimensional

representation of Bn such that the exchanges have p eigenvalues, λ̄ =

(λ1, ..., λp), with multiplicities m̄ = (m1, ...,mp). qi is the number of

distinct eigenvalues with a multiplicity i and so q̄ = (q1, ..., qd) is a list

of the number of λ with each eigenvalue multiplicity between 1 and d.

For example if q̄ = (2, 1, 0, 0) then d = 4 and there are 3 eigenvalues,

2 of which have multiplicity 1, 1 with multiplicity 2 and none with any

higher multiplicities (q̄ will often be truncated to the highest non-zero

multiplicity, for instance, q̄ = (2, 1) in the previous example).
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Our results so far for qubits and qutrits can be summarised using the above

definitions as:

N(2) = N(2, 2) = 4

N(3) = N(3, 2) = N(3, (2, 1)) = 5

N(3, 3) = 4

N(d, d) = 4

We would like to obtain some relations which will allow us to calculate these

maximal number of anyon figure for a general system. We will see that, while

exact relations are difficult to produce without knowing certain specific details

about the system, we will be able to provide some useful general limits.

Let us consider a d dimensional representation, η, of BN . The representa-

tion matrices of all generators in BN have the same eigenvalues, (λ1, ..., λd), as

they are all conjugate to each other.

As usual we choose a basis in which the representation matrices of all odd

numbered generators are simultaneously diagonal. We have already shown,

with arguments that relied only on properties (1) - (3), that representations

of B3, B4 and B5 can be non-Abelian, thus these arguments will apply to the

general exchange groups we are now considering. We will then concentrate on

groups with N ≥ 5.

Odd Numbered Generators

Property (3) guarantees that if any neighbouring pair of generators commute

the representation will be Abelian, therefore no two of the diagonal matrices,

η(τodd), can be equal. Hence we get our first limit on how large N can be; a

d-dimensional representation of BN must yield a different arrangement of the

eigenvalues in every one of the representation matrices of the odd generators.

Therefore the maximum number of odd generators we can have is the number

of possible ways in which we can arrange the eigenvalues of group.

The more distinct eigenvalues we have the larger this number will be thus if

all eigenvalues have a multiplicity of 1 we get that the number of arrangements

is d! and N(d) ≤ 2d!. However, if there is multiple occurrences of an eigenvalue,

31



then we must take into account that simply permuting these occurrences will

not produce a distinct arrangement. Therefore if an eigenvalue, λi, has a

multiplicity mi then:

N(d, m̄) ≤ 2d!
∏
i

1

mi!
(2.3)

Finally we also need to consider that a τeven does not see the value of the

eigenvalues in a τodd when it commutes, it is simply the pattern of like and

unlike eigenvalues in the τodd which allow it to commute with the τeven. This

means that if we have two eigenvalues, λk and λl, which have the same multi-

plicity, mk = ml, then we can swap the two eigenvalues, λk ↔ λl, to produce

a new arrangement. However any τeven which commutes with a τodd with the

first arrangement of eigenvalues will also commute with the second. So when

calculating the number of distinct arrangements which the odd generators can

take we must exclude any which can be obtained by swapping eigenvalues with

equal multiplicities in another arrangement, we then need to introduce q̄ as

defined above:

N(d, m̄, q̄) ≤ 2d!
∏
i,k

1

mi!qk!
(2.4)

Note to obtain this result we have assumed that there is more than one distinct

eigenvalue, i.e. mi < d, otherwise the representation will be trivial and also

that there is at least one eigenvalues with mi > 1 otherwise N ≤ 5 as argued

in section 2.2.

We saw in the qutrit example that the actual upper limit on N was smaller

than the one given by equation (2.4) and this will clearly be the case for

any dimension larger than 2. The reason for this is that equation (2.4) only

takes into account the restriction imposed by odd numbered generators being

required to commute while remaining distinct from each other. But, as we have

just seen with qutrits, there is a host of other factors which also contribute

restrictions to the representation of the generators.
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Even Numbered Generators

Next we need to examine the fact that each even numbered generator, τeven,

must commute with all odd numbered generators to which it is not adjacent,

by property (1).

Firstly we should note that if a matrix must commute with two η(τodd)’s

which group a certain subset of basis vectors into different eigenspaces, then

this matrix preserves both groupings by only mapping the subset into basis

vectors which both η(τodd)’s group with the subset. That is, if x, α, β and γ

are all mutually exclusive subsets of the basis vectors, and τi and τj are odd

numbered generators where η(τi) groups x with α and γ and η(τj) groups x

with β and γ, then an even numbered matrix, η(τk), which commutes with

both η(τi) and η(τj), must not map elements of x into any elements of α or β,

but can map elements of x into elements of γ.

We know from the previous section that each η(τodd) is a diagonal matrix

with a different arrangement of the eigenvalues, {λi}. A given η(τeven) will

then have its form restricted by the η(τodd) it must commute with. We will

assume there is an odd number of generators in total so that Nodd = N+1
2

and each η(τeven) must preserve the eigenspaces of all η(τodd) except the two

it is adjacent to. This is the most restrictive case, if there is an even number

of generators there will be one η(τeven) which has only a single neighbouring

η(τodd) and so there is more freedom in its form.

Take some even numbered generator, τz, which is physically separated from,

and so commutes with, one odd numbered generator, τa. Our representation,

η, acts on a vector space, V , with elements, vi. η(τa) will group these vectors

into eigenspaces which η(τz) must preserve. The (i, j) element of η(τa) maps vi

into vj, if these are in different eigenspaces (i.e. if the (i, i) and (j, j) elements

of η(τa) are dissimilar) then this element of η(τz) must be zero. Thus η(τz)

takes a form where entries which correspond to dissimilar eigenvalues in τa are

zero.

For two dissimilar eigenvalues, λi and λj, which act on eigenspaces, ei and

ej respectively, through η(τa), each vector in ei cannot be mapped into the mj

vectors in ej by η(τz). Thus the number of zero entries in η(τz) will then be
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given by:

∑
i,j 6=i

mimj =
∑
i

mi(d−mi) = d2 −
∑
i

m2
i (2.5)

Now assume that τz is physically separated from another odd numbered gener-

ator, τb. As each η(τodd) must have a different arrangement of the eigenvalues

we know that η(τb) will treat at least one basis vector as part of a different

eigenspace to how η(τa) treats it. This means that more entries in η(τz) must

be zero, the exact number of new zeroes corresponds to the multiplicity of the

eigenvalues that have different positions between η(τa) and η(τb) but it must

be at least 2 (this case arising from the exchange of an eigenvalue with m = 1

and another with m = 2).

Continuing this procedure we see that η(τa) will contain at least 2 extra zero

entries for each other τodd it is spatially separated from. Thus η(τa) contains

Q zero entries, where we define:

Q ≥ d2 −
∑
i

m2
i + 2 [Nodd − 3] (2.6)

This accounts for
∑

i 6=jmimj zeros from commutation with the “initial” τodd

and 2 extra zero from every other τodd except the two that neighbour τa. If Q

is equal to the total number of off diagonal entries in a d-dimensional matrix

then η(τz) must be diagonal, so for a non-Abelian exchange group we must

have:

d2 −
∑
i

m2
i + 2 [Nodd − 3] ≤ d2 − d− 2

⇒ N(d, m̄, q̄) ≤
∑
i

m2
i − d+ 4 (2.7)

In order to obtain the largest N we need to maximize the
∑

i 6=jmimj term.

This will be largest when we have fewer distinct eigenvalues, with one eigen-

value having a much larger multiplicity than the others. Specifically this occurs

if we reduce the number of eigenvalues to 2 with: m1 = d − 1, m2 = 1 (as

we must always have more than one eigenvalue). For these values we get

N(d, (d− 1, 1), 0) = d2 − 3d+ 6.

However our relation for Q only shows its minimum value, its derivation
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relies on the assumption that each τodd (except the “initial” τodd) which τz

commutes with forces only 2 extra entries in η(τz) to be zero. In general the

number of extra zeros will depend on the extent of the changes in the arrange-

ments of the eigenvalues of the τodd and the multiplicity of those eigenvalues

that are exchanged. For the case with m1 = d−1, m2 = 1, each of the η(τodd)’s

differ by the location of λ2. For η(τz) to commute with a η(τodd), where λ2 is

entry (j, j), then all off diagonal elements of row j and column j in η(τz) must

be zero. Therefore, each τodd forces (2d− 2) elements in η(τz) to be zero, this

gives a corrected result of; N(d, (d − 1, 1), (1, 0, 0, ..., 1, 0)) = d + 4, which is

lower than our previous result, assuming d ≥ 3.

It is difficult therefore, to say exactly what partitioning of the eigenvalues

will maximize N . Eigenvalues with large multiplicities allow for many distinct

arrangements of the eigenvalues which still preserve a large eigenspace, thus an

η(τeven) can commute with many η(τodd) while maintaining a non-diagonal form

in this eigenspace. However, eigenvalues with smaller multiplicities produce

a greater number of smaller eigenspaces, thus each η(τodd) a given η(τeven)

commutes with requires less of its elements to be zero.

The two formulae we have found so far, equations (2.4) and (2.7), give

two separate bounds for the number of odd generators. However neither limit

can be exceeded and so the true limit will be given by the minimum of the

two results. We must ensure that the number of odd generators does not

exceed the number of eigenvalue arrangements but also that any Nodd − 2 of

these arrangements preserve at least one eigenspace which is 2-dimensional or

higher.

N(d, m̄, q) ≤ min

([
2d!
∏
i

1

mi!q!

]
,

[∑
i

m2
i − d+ 4

])
(2.8)

The number and multiplicities of the eigenvalues will determine which of the

two is in fact the minimum.

The limit on N given by equation (2.8) will allow for all η(τeven) to have

a non-diagonal form. However we must also consider that the τeven are them-

selves physically separated, thus they must commute with each other. But,

similar to the η(τodd), no two of the η(τeven) can be equal, nor can they preserve

all the same eigenspaces. The restrictions this places on the number of possible
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non-diagonal η(τeven) will again depend on the number and multiplicity of the

eigenvalues but it is difficult to obtain an explicit relation.

Clearly for two non-diagonal, even-numbered generators, η(τz) and η(τy), if

a non-diagonal submatrix of η(τz) corresponds to a similar or trivial submatrix

in η(τy) there is no effect on either submatrix. But these submatrices then

preserve the same grouping of the basis vectors on which they act. η(τz) and

η(τy) then must differ in their action on some other eigenspace.

If the non-diagonal submatrix of η(τz) corresponds to a diagonal subma-

trix of distinct eigenvalues in η(τy) then this forces the submatrix of η(τz) to

also be diagonal, restricting its form quite severely. However, η(τy) and η(τz)

can treat the same eigenspace differently without one of them necessarily act-

ing on it with a diagonal submatrix, in this case the restrictions enforced by

commutation are not so obvious.

As η(τz) and η(τy) must also commute with all other even generators in the

system. Each η(τeven) must preserve at least one eigenspace differently and so

impose new restrictions on η(τz) and η(τy). Clearly there will be some limit

on Neven above which the η(τeven) will only all commute if at least one of them

is diagonal and the representation becomes Abelian. This limit will depend

heavily on the partitioning of the eigenvalues and so without knowing more

about these eigenvalues and their multiplicities we cannot produce a precise

relation for N .

We must stress then that the limit in equation (2.8) is an overestimation

of the maximum number of objects an exchange group can contain before it

must have an Abelian representation. However, a more specific bound on N

for a general exchange group is beyond the scope of this thesis.

2.3.3 Upper Limit for the Braid Group

As discussed at length in previous sections, the braid group is the most relevant

exchange group for us. This group has just one extra relation to the general

case, the Yang-Baxter relation, which we would expect to lower the limit given

in equation (2.8) (the conjugation criteria actually follows from this relation

so we would expect most of the general exchange groups we defined in the

previous section to feature it in their presentation). For Bn, an important
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general result for N(d) has been proved by Formanek in ref. [42]. There he

shows that for the braid group specifically:

N(d) = d+ 2 (2.9)

This is the same result which we found in sections 2.2 and 2.3.1 for the cases

d = 2, 3. Our results in those sections, however, were obtained from the

physical properties of the exchange groups mentioned in section 2.3.2.

In ref. [43] all irreducible representations of Bn that are of dimension d ≤ n

are classified. There are 11 cases, (A) through (K), listed in the paper. Cases

(A) and (B), shown below, apply to any number of particles while the remain-

ing cases are special cases, we will only mention the ones that are necessary

for our calculations:

(A) A representation of Burau type, either:

• χ(y)⊗ βn(z) : Bn → GLn−1(C), where 1 + z + · · ·+ zn−1 6= 0, or

• χ(y)⊗ βn(z) : B̂n → GLn−1(C), where 1 + z + · · ·+ zn−1 = 0

(B) A representation of standard type: χ(y) ⊗ γn(z) : Bn → GLn(C) where

z 6= 1.

In both cases, χ is a character of Bn (i.e. a 1D representation). Also βn(z)

denotes the reduced Burau representation of Bn with parameter z, while β̂n is

the non-trivial composition factor of βn(z) which exists when z is an nth root of

unity. Explicit formulae for βn and β̂n and also for the standard representation,

γn, can be found in ref. [43].

The special cases all occur for 3 < n < 9. We will mention the cases that

are relevant for qutrits as an example of how they apply to our results which

show that qutrits must have 2 ≤ n ≤ 5.

The case n = 2 is uninteresting as it must be Abelian. For n = 3, we have

case (B) above. For n = 4, we have β4 from case (A) as well as the special

case (D), which is given in ref. [43] as ε4 : B4 → GL3(C). Finally, for n = 5

we use the non-trivial composition factor, β̂5(z) from case (A).

Ref. [43] deals with representations into GLd(C) so one might be concerned

about unitarity. However, we find that, in each of the above cases, taking χ(y)
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to be unitary and restricting the values of the parameter, z, to roots of unity

yields a unitary (or at least unitarisable) representation.

2.4 Multi-Qudit Gates

To fully realise a universal quantum computer we will need to consider multi-

qudit gates, i.e. braiding of particles from different qudits around each other.

All multi-qudit gates can be simplified to a succession of two-qudit and single

qudit gates, therefore if we are able to construct a universal set of leakage-

free, two-qudit gates, then we can perform universal quantum computation

without leakage. However, even if we assume that no leakage occurs in single

qudit gates it is still likely to plague multi-qudit gates, as we discussed in

section 2.1.

A first simple question to ask is whether systems of two qudits exist in which

all exchange processes are both leakage-free and universal. The computational

Hilbert space of the system is then closed under the action of the braid group

for the anyons in the two qudits, i.e. the computational Hilbert space carries

a representation of the full two-qudit braid group.

We assume the qudits we are considering contain n1 and n2 anyons (where

n1 + n2 = n is the total number of anyons comprising the two qubits) and the

dimensions of the qubit spaces are d1 and d2.

We are then looking for a non-Abelian representation ρ, ofBn. In order for ρ

to be leakage free we require that it decomposes as a tensor product of a d1 and

a d2-dimensional representation, that is, the two-qudit Hilbert space should be

a tensor product of the two individual qudit spaces, so it has a dimension

d = d1d2. If no representations of this dimension exists then we must move

to a higher dimensional representation, this means that in moving from two

single qudits to a two-qudit gate we were forced to introduce states which were

not accessible to the single qubits, these are non-computational states and we

then have leakage of information from the qudits into these states which can

not be accessed by the qubit operations. Of course we will easily be able to

construct diagonal representations which satisfy these conditions but these will

be Abelian so cannot meet the universality requirement, we therefore look only

for non-Abelian representations.
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Exchanges which only involve anyons from a single qudit will have a rep-

resentation which is simply the single qudit representation of the exchange

applied to the vector space of the qudit in which it takes place, with the iden-

tity matrix applied to the vector space of the other qudit. In other words,

exchanges which feature only anyons from the first qudit will have a represen-

tation given by:

ρ(τi) = ρ1(τi)⊗ 1d2 (1 ≤ i ≤ n1 − 1) (2.10)

where ρ1 is the d1-dimensional representation of Bn1 on the Hilbert space of

the first qudit. Similarly the exchanges which only feature anyons from the

second qudit have a representation given by:

ρ(τj) = 1d1 ⊗ ρ2(τj) (1 ≤ j ≤ n2 − 1) (2.11)

where ρ2 is the d2-dimensional representation of Bn2 on the Hilbert space of

the second qudit. The representations ρ1 and ρ2 are obtained via the methods

described in previous sections. Once these representations are fixed there is

then only one generator for which we have to find a representation, τn1 . This

is the only generator which exchanges anyons between the two qudits. We can

find a representation for this generator by subjecting it to the constraint that

it must satisfy the braid relations (equations (1.1) and (1.2)) with all other

generators in the system.

If we can find a representation for τn1 then we have shown that the two-

qudit Hilbert space can be decomposed into the tensor product of two single

qudit spaces and thus we have a non-leaking two-qudit system. However, we

will see that, for qudits of low dimension, such as qubits and qutrits, the

constraints can usually not be satisfied, so that for almost all types of qubits

and qutrits, it is unavoidable that leakage will appear for at least some of the

possible exchange processes.

2.4.1 Two-Qubit Gates

We start with an analysis of two-qubit gates, i.e. d1 = d2 = 2. The individual

qubits in our system must be non-Abelian so that we can achieve interesting
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operations. From our results in section 2.2, this means there are three types of

two-qubit gates which are of interest to us: firstly a gate between two qubits

composed of three anyons ((3 + 3)-anyon gate), a gate between two qubits

composed of four anyons ((4 + 4)-anyon gate) and a gate between a qubit

composed of three anyons and a qubit composed of four anyons ((3 + 4)-anyon

gate).

We are then looking for a non-diagonal, four-dimensional representation, ζ,

of B6 ((3+3)-anyon gate), B8 ((4+4)-anyon gate) and B7 ((3+4)-anyon gate).

However, the result from ref. [42], mentioned in section 2.3.3, shows that no

non-Abelian, d-dimensional representations of Bn exists when d < n−2. Thus

the only case which could potentially be useful is the (3 + 3)-anyon gate.

In B6 we have five generators, where τ1 and τ2 exchange the anyons only

within qubit 1 and τ4 and τ5 exchange the anyons only within qubit 2. As

the two-qubit space is a tensor product of the single qubit spaces these four

generators will simply be given by equations (2.10) and (2.11):

ζ(τ1/2) = η1(τ1/2)⊗ 12

ζ(τ4/5) = 12 ⊗ η2(τ1/2) (2.12)

Where η1/2 is the representation η from equation (2.1) but on the appropriate

qubit space. By choosing a convenient basis, this gives us the following forms:

ζ(τ1) =


a

a
0

0
ā

ā

 ζ(τ2) =


1

a−a3 0 c 0

0 1
a−a3 0 c

−c 0 1
ā−ā3 0

0 −c 0 1
ā−ā3



ζ(τ4) =


1

f−f3 g

−g 1
f̄−f̄3

0

0
1

f−f3 g

−g 1
f̄−f̄3

 ζ(τ5) =


f

f̄
0

0
f

f̄

 (2.13)

where f = a or f = ā and hence g = c =
√

1− 1
2−a2−ā2 . All that is left is to

find is a representation for τ3, which is the one braid that exchanges anyons

between the two qubits. We use the group relations to find what ζ(τ3) should
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be. Firstly, τ3 should commute with τ1 and τ5 which means that it too must be

diagonal (regardless of the value of f), where each eigenvalue must be either

a or ā.

ζ(τ1) =


x

x̄
0

0
x̄

x

 (2.14)

where: x = a or x = ā. The Yang-Baxter relation between τ3 and τ2; τ2τ3τ2 =

τ3τ2τ3, gives the following relations:

c

[
x

a− a3
− x̄

ā− ā3

]
= c|x|2 c

[
x̄

a− a3
− x

ā− ā3

]
= c|x|2

which give a restriction on the eigenvalue a, namely;

a2 = −ā2 (2.15)

This in turn gives a restriction on φ;

e2iφ = −e−2iφ ⇒ cos(2φ) = −cos(2φ)⇒ cos(2φ) = 0 (2.16)

which means there are only four possible values for φ: φ = ±π
4

or φ = ±3π
4

.

In short a is restricted to be a primitive eight root of unity.

All group relations are satisfied at this point so we have shown that a

leakage-free representation of a two-qubit gate exists so long as each qubit

contains only 3 anyons and the eigenvalues of the exchange matrices are prim-

itive eight roots of unity. These eigenvalues describe the Ising anyon model

which is known to be non-universal for quantum computation (even at the

single qubit level) [36] (as mentioned earlier in section 2.2.2). The representa-

tions of B6 we have found are then precisely the ones one obtains from anyon

models with the fusion rules of the Ising model and, in fact, for these anyon

models the full six-anyon Hilbert space with trivial total topological charge is

4-dimensional, which explains the absence of leakage.
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2.4.2 Two-Qutrit and Qubit-Qutrit Gates

We can use a similar approach to examine if leakage-free braiding is possible for

a two-qutrit gate. As detailed in section 2.3.1, all 3-dimensional representations

of Bn are known and can be found in ref. [43]. We showed in the same section

that it is possible to have non-Abelian qutrits composed of 3, 4 or 5 anyons.

Thus we have 6 possibilities for a two-qutrit gate, i.e. using (3 + 3), (3 + 4),

(3 + 5), (4 + 4), (4 + 5) or (5 + 5) anyons.

We are then looking for a non-diagonal, 9-dimensional representation of

B6, B7, B8, B8, B9 and B10 respectively. All of these cases satisfy Formanek’s

N ≤ d+ 2 result so we get no immediate restrictions.

We then proceed in the same way as in the previous section, first by fixing

a representation of the exchanges which involve anyons from exclusively one

qutrit, using equations (2.10) and (2.11), then examining whether a represen-

tation of τn1 exists. Doing this, however, we found that none of the cases give

a result which is both non-Abelian and leakage-free. Therefore in two-qutrit

systems having at least some braids with leakage is unavoidable.

There is another system which we can consider and where we have a gate

between a qubit and a qutrit. This means we would have a 6-dimensional

representation of Bn where the possibilities are a (3 + 3), (3 + 4), (3 + 5) or

(4 + 4)-anyon gate, as a non-Abelian qubit has n1 = 3, 4 and a non-Abelian

qutrit has n2 = 3, 4, 5. Again we directly calculate each of these possibilities

and we find no leakage-free, non-Abelian representations.

In principle one may go on and, using the same method, test the possibilities

for d > 3 two-qudit gates and it is indeed very straightforward for d = 4, 5 as

all irreducible representations of B3 for these dimensions are given in [44].

In fact it is known that if each anyon carries a representation of a quantum

group (i.e. a quasitriangular Hopf algebra), the tensor product of these repre-

sentations carries a braid group representation defined by exchanging tensor

factors and applying the R-matrix of the quantum group. Since in such situ-

ations, each anyon must have a vector space of dimension at least 2 attached

to it, we get a minimum of d = 8 dimensions for a qudit made up of three

such anyons (or d = 16 for four anyons). This yields leakage-free, multi-qudit

braiding, since there are no states outside the tensor product to leak into.
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However, it is conjectured (see e.g. [45], conjecture 6.6) that the braid group

representations that occur in this way always have a finite braid group image

and therefore are never universal for quantum computation (although they can

be non-Abelian). We will consider such representations in more detail when

analysing the motion group in chapter 3.

So far we have shown that for systems consisting of qubits and qutrits, it

is not possible to have a situation where all braidings are leakage free, except

in an exceptional case with non-universal qubits of Ising type. However, it

is actually only necessary for there to exist a single leakage-free, entangling

exchange operation for a multi-qudit system to be universal. Therefore, if any

of the systems above contain such an entangling operation, they will, in fact,

be capable of leakage-free, universal quantum computation.

It would be of great interest to find the leakage-free subgroup of the braid

group for representations that occur in simple anyon models, and of even

greater interest to find the closure of the images of these representations in

the corresponding unitary groups. Again, if braiding within qubits is universal

and a single leakage-free entangling two-qubit gate exists, then the projective

image of the leakage-free subgroup should be dense. Unfortunately, a leakage-

free, entangling two-qudit braiding gate has yet to be found for any anyon

model which has universal single-qudit braiding and finding such an operation

is beyond the scope of this thesis.

2.5 Conclusion

In this chapter we have considered many questions concerning the optimal

design of qudits composed of anyons in 2+1 dimensions. The main result from

the chapter was in section 2.2 where we showed that the optimal design for a

qubit was using 3 or 4 anyons because this can potentially provide universal,

leakage-free single qubit operations using only exchanges within the qubit.

More generally we showed using results of Formanek that a d-dimensional

qudit should be composed of less then d+ 2 anyons, otherwise the representa-

tion of the braid group of those anyons must be Abelian and universal quantum

computation cannot be achieved, within the single qubit system.

Generalising even further from braiding to an arbitrary exchange operation
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as a means of implementing logic gates, we were able to indicate that an upper

bound on the maximum number of anyons a qudit should contain such that

universality is possible is:

N(d, m̄, q) ≤ min

([
2d!
∏
i

1

mi!q!

]
,

[∑
i

m2
i − d+ 4

])

as given in equation (2.8). However, we highlighted that this is an overesti-

mation and in reality N will be much lower for a given d. Obtaining a more

accurate limit on N should be a goal in any future work. A clear relation be-

tween the dimension of the representation of a qudit and the maximal number

of anyonic components, for an arbitrary exchange group, will be a useful tool

in the design considerations of a topological quantum computer.

In terms of two-qudit gates, we found that there are no universal multi-

qudit systems, with dimensions 2 and 3, in which all operations are leakage-

free. Note that it is conjectured [45], and known for the cases treated in

ref. [46], that braid group representations coming from anyons with quantum

dimensions that square to an integer are non-universal for TQC. However,

whether any systems can exist with a single leakage-free, entangling operation

remains an open question.
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Chapter 3

TQC with Anyonic Rings

In chapter 2 we stressed how the fundamental ingredient in topological quan-

tum computation is a system which picks up a non-trivial, anyonic phase under

some exchange of its constituent particles. In section 1.2 we saw that, in order

for particles to have such anyonic exchange statistics, we are forced to confine

them to two spatial dimensions which ensures braiding of their worldlines is

topologically non-trivial. However, this is only true of traditional, “point-like”

particles. If the anyonic excitations are not restricted to be point-like, we can

imagine a variety of differently shaped objects which could undergo exchanges

that remain topologically non-trivial in 3+1 dimensions.

The case we will focus on is that of anyonic excitations which are ring-

shaped. The number of possible topological operations ring-shaped excitations

can undergo is much larger than just the simple braid exchanges the point-

like particles are subject to. Ring-shaped excitations are governed by the

motion group which contains within it three separate types of topologically

non-trivial motions. A larger class of logic operations can then be performed

on the qudits so, one would hope, this would make universality more feasible

as well as making the system more efficient.

The goal of this chapter will be to examine various methods of implement-

ing qubits in a system of anyonic rings and to assess the viability of such a

system for topological quantum computation by using representation theory

to obtain the properties of the qubits we have constructed.
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3.1 The Motion Group

It has been shown, by Dahm [40], that the motion of such rings is governed by

the motion group, Motn, on n rings.

A rigorous definition of Motn is provided in Dahm’s paper. In general we

can consider a manifold, M , along with a submanifold, S, which is the disjoint

sum of n submanifolds, S1, ..., Sn.

If we take homc(M) as the group of homomorphisms from M to itself with

compact support, that is elements of homc(M) send points on M to other

points on M where the non-trivial homomorphisms of M are a compact subset

of hom(M). Now take homc(M ;S) as the subgroup of homc(M) containing

homomorphisms on M which act trivially on the submanifold S. Dahm then

defines Mot(M ;S) as the relative homotopy group π1(homc(M), homc(M ;S)).

This can be understood as the group of homotopy distinct paths in the

space of homomorphisms of M which leave the submanifold S unchanged. In

other words the elements of Mot(M ;S) are motions of M which leave S alone

but alter the loops of the fundamental group of M .

In this chapter we will only deal with the case where M = R3 and S is a

disjoint union of n unlinked, unknotted circles. Therefore, Motn is the group

of topologically distinct motions of distinct, unlinked circles in 3-dimensional

space.

There is a more convenient way to look at the motion group. There exists

a natural homomorphism, discovered by Dahm [41] and thus referred to as the

Dahm homomorphism, from the motion group, Motn, into the automorphism

group of the fundamental group of M \ S, i.e. Motn ∼ Aut(π1(M \ S)).

M\S is obtained when we take the manifoldM and remove the submanifold

S. The fundamental group on this space will contain homotopy distinct loops.

These loops tell us about the holes in the manifold which occur due to the

removal of S, along with any homotopy of M itself. The automorphism group

on this fundamental group then contains the ways in which these loops can be

mapped into other loops in the fundamental group while preserving products.

This formulation of the motion group is much easier to understand pic-

torially. When we remove S from M we are left with a 3-dimensional space

with n annular holes. We choose a base point, b, through which each loop in
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the fundamental group must pass. As the annular holes are 2-dimensional, we

are able to pull loops over the annuli and contract them to the base point in

our 3-dimensional space, thus the generating set of loops will be those which

pass through the centres of the circles. We then draw all homotopy distinct

loops which link with a single circle and contain the point b, these loops are

the generators of the fundamental group π1(M \ S).

We can introduce the free group, Fn, which is isomorphic to π1(M \ S).

That is, we associate to every loop, a distinct element, xi, which is taken to

be a generator of the free group and so has no relations on it. Being group

elements, the xi must be invertible, to incorporate this we give each loop a

direction, anticlockwise from convention, we can then think of the inverse of

an xi to be an inversion of the direction of the loop it labels.

We can now talk about the operations in the motion group by referencing

their action on the free group generators attached to the loops.

b

x1 x2 x3

Figure 3.1: Pictorial representation of π1(M \ S) on three rings. With free
group generators, xi, labelling the loops.

Figure 3.1 shows the pictorial interpretation of the group π1(M \ S). We

will see that elements of Motn can now be interpreted as simple operations on

these loops. The generators of Motn fall into three separate types of motion,

as defined by Dahm [40, 41]:

• Exchanges : Exchanges involve swapping the positions of two adjacent

rings, as you would with point-like particles in three-dimensions. All

possible exchanges are then contained in the symmetric group, Sn. The

presentation of Sn was given in section 1.3 but we will reiterate it here

for clarity. Sn has generators, τi, which exchange the ith and (i + 1)th
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rings and which obey the exchange relations:

τiτj = τjτi {|i− j| ≥ 2} (3.1)

τiτi+1τi = τi+1τiτi+1 (3.2)

τ 2
i = 1 (3.3)

The symmetric group, generated by the exchanges, is a finite group. It is

important to note that this subgroup is not essential to the definition of

the motion group, i.e. permutations of the rings may not be a symmetry

of the system. This is the case if the rings are distinguishable.

b

x1 x3 x
2

Figure 3.2: Exchange of the second and third rings, i.e. τ2.

• Flips : Flips involve rotating a ring through 180◦, so if there is a direction

associated with the ring, it is reversed. All flips are governed by the flip

group, Fn, which has generators, fi, which rotate the ith ring and obey

the flip relations:

fifj = fjfi {i 6= j} (3.4)

f 2
i = 1 (3.5)

Given that the flips commute and are of order 2, we can say that Fn =

(Z2)n, i.e. the flip group is also a finite group. Similar to the symmetric

group, the flip group is also not necessary for the definition of the mo-

tion group. If the flips are not symmetries of the system it means that

different orientations of the rings can be distinguished from each other.
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b

x1 x2 x3
-1

Figure 3.3: Flip of the first ring, i.e. f1.

• Slides : Slides involve shrinking one ring in size, pulling it through the

centre of another ring and finally returning it to its original position,

with its original size restored. All slides are governed by the slide group,

Sn, with generators, σij, which slide ring i through ring j and which

obey the slide relations:

σijσkl = σklσij {i, j, k, l all distinct} (3.6)

σikσjk = σjkσik {j 6= k} (3.7)

σijσkjσik = σikσkjσij {i, j, k all distinct} (3.8)

It can be seen that the slide group is infinite, the case for two rings is

just the free group on the generators which must be infinite, and Sn will

contain S2 as a subgroup. Inclusion of the slide group is demanded by the

definition of the motion group, the slide generators will be symmetries

of the system even if the rings and their orientations are distinguishable.

b

x1 x2 x3x2 x2
-1

Figure 3.4: Sliding the third ring through the second, i.e. σ32.

The three groups, Sn, Fn and Sn are all subgroups of Motn. The motion of
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the rings must obey relations (3.1) - (3.8) above and, in addition, the following

cross relations which show how operators from the different subgroups act on

each other:

τ−1
k fiτk = fτk(i) (3.9)

τ−1
k σijτk = στk(i),τk(j) (3.10)

fiσjkfi = σjk {i 6= k} (3.11)

fiσjifi = σ−1
ji (3.12)

where: τk(i) gives the index of the ith ring after the permutation τk is applied

to the system. We can now easily show the action of these operators just

using the free group, i.e. we look at a set containing the labels of the loops,

(x1, x2, . . . , xn), and show the action of the different operators on this set:

τi(x1, . . . , xi, xi+1, . . . , xn) = (x1, . . . , xi+1, xi, . . . , xn)

fi(x1, . . . , xi, . . . , xn) = (x1, . . . , x
−1
i , . . . , xn)

σij(x1, . . . , xi, . . . xj, . . . , xn) = (x1, . . . , x
−1
j xixj, . . . xj . . . , xn)

3.2 Qubits Using Slides

We want to use these ring-shaped excitations to build qubits. Similar to chap-

ter 2, we would like to examine the optimal way in which to design such a

qubit which means calculating the maximum number of rings we can have in

the qubit before the motion group on the rings becomes Abelian.

We can start by considering the slide group in isolation. As mentioned

above, the slide group is the only subgroup which must be included in the

motion group, we assume for the moment that permutations and flips of the

rings are not symmetries of the system. As discussed at length in chapter 2,

to examine the suitability of using the slides as qubit operations we will need

to find all possible 2-dimensional representations of Sn.

We can choose a basis where σ12 is a diagonal matrix. If σ12 = z12, i.e. some

multiple of the identity, then this operation is trivial in all bases and we can

move to a new basis where one of the other generators is diagonal (note that

unlike the braid generators the slide generators aren’t conjugate to each other
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so can have different eigenvalues). We can keep doing this until we find a

generator which is not trivial (assuming one exists), so we will assume we have

labelled the rings in such a way that σ12 is a non-trivial operation if one exists

in the group. We can then use equations (3.6) - (3.8) to try to find the full

representation.

Relations (3.6) and (3.7) show that we can now simultaneously diagonalise

all other generators except σ1k (for k 6= 2) as they all commute with σ12. We

can obtain these other σ1k by noting that they must obey the Yang-Baxter

relation:

σ12σk2σ1k = σ1kσk2σ12

[σ12σk2]σ1k = σ1k[σ12σk2] (3.13)

Thus each σ1k must commute with the matrix [σ12σk2] which is the product of

two diagonal matrices. We then have two possibilities for each k:

1. σk2 = zσ−1
12 : We then have [σ12σk2] = z1 which gives us no restrictions

on σ1k.

2. σk2 6= zσ−1
12 : This gives [σ12σk2] = D, D being some diagonal, non-

identity matrix. So σ1k must itself be diagonal (as we have chosen σ12 6=

z1).

If (2) is the case for all k then we get a completely trivial system, all generators

commute with each other so the representation is Abelian. However, if some

of the k’s obey case (1) then we can have non-diagonal generators and thus

Sn has a non-Abelian representation.

Now consider a generator σpq, where p 6= 1, this will commute with σ12 and

so must be diagonal. If we also have q 6= k, then σpq will also commute with

σ1k. Then, either σ1k is a diagonal matrix (even if we have case (1) above) or

σpq = z1.

Such a σpq will always exist for any k provided n ≥ 4. So if we have a non-

diagonal representation of three rings, then any additional ring we add must

act trivially when we slide any other ring through it. This means, though we

can have as many rings as we wish inside the qubit, only three of the rings can

produce non-trivial sliding operations or the representation will be Abelian.
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Remember also that these calculations have only taken into account the

slide subgroup of the motion group. If we add in the operations from Sn and

Fn the situation becomes even more restrictive. The issue arises due to the fact

that, from equation (3.10), the slides become conjugate to each other under the

exchange operations, i.e. σij = τ−1σklτ , for some appropriate τ ∈ Sn. Thus,

inclusion of Sn ensures that the rings are indistinguishable and so all σij must

have equal eigenvalues. Then if any generator is a multiple of the identity all

generators are a multiple of the identity and we cannot add rings which have

trivial sliding operations to the system without making the representation of

all slides trivial.

This is similar to the results we obtained in section 2.2.1 for qubits com-

posed of point-like anyons, as we have a maximum of three objects with which

non-trivial operations can be performed (if Sn and Fn are omitted more op-

erations can exist but they must all be trivial). This similarity stems from

the fact that the braid group is actually contained within the motion group,

as is evidenced by the presence of the spatially separate (equation (3.6)) and

Yang-Baxter (equation (3.8)) relations in the presentation of the slide group.

Specifically the braid group operators are equivalent to a slide operation fol-

lowed by an exchange (the slide group alone contains the pure braid group).

Using similar methods to chapter 2 we could now calculate higher dimen-

sional representations of the slide group. Due to eigenvalue multiplicity we

would expect to find larger non-Abelian groups but as the group is so closely

related to the braid group we would not expect to find any solutions which

differ greatly from those calculated in the previous chapter.

3.3 Induced Representations of Motn

We have already mentioned that the slide group is an infinite group whereas

the other two subgroups are finite. Thus there is an advantage to be gained

from starting with a desirable representation of Sn and, using this, induce a

compatible representation of the full motion group.

To start with we obtain a desirable, i.e. non-trivial, representation, π, of Sn

as we have outlined in section 3.2. We then want to obtain a representation,

INDMot
S (π) of Motn which, when reduced to the subgroup Sn, contains the
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representation π. If we take Vπ to be the dπ-dimensional vector space on

which the representation π acts, then we must first build the vector space, W ,

on which INDMot
S (π) acts.

We can collect the elements of Motn from the symmetric and flip groups

together by taking the semidirect product these two subgroups, SnnFn, which

has elements g = (τ, f), where τ ∈ Sn, f ∈ Fn. W can then be obtained by

taking the tensor product of the group algebra of SnnFn with the vector space

Vπ, i.e. W = C[Sn n Fn] ⊗ Vπ. This means that the basis vectors of W have

the form:

wg,i = g ⊗ vi (3.14)

where vi is a basis vector of Vπ and g ∈ SnnFn. We can then use equations (3.9)

- (3.12) to calculate the representation acting on W . Firstly an element of

Sn n Fn, acting on a basis vector, will simply permute it into another basis

vector:

g′wg,i = g′(g ⊗ vi) = g′g ⊗ vi = g′′ ⊗ vi (3.15)

A slide acting on a basis vector will act only on the vector, vi, in the second

tensor factor producing a representation, π, of some slide (not necessarily the

same one) on the basis vector:

σwg,i = σ(g ⊗ vi) = g ⊗ g−1σgvi = g ⊗ π(g−1σg)vi = π(σ′)(g ⊗ vi) (3.16)

where σ′ = g−1σg. Thus we can say in general if any element of Motn can be

written as gσ then:

INDMot
S (π)(gσ) =

∑
h,i

π(h−1gσg−1h)g−1h⊗ vi (3.17)

W then will have a basis vector for every element of Sn n Fn combined with

every basis vector of Vπ, thus INDMot
S (π) will be a (n!2ndπ)-dimensional repre-

sentation. However, under certain conditions this representation will be highly

reducible. This occurs if the centralizer of π is non-trivial which can arise as

a result of the flips or exchange groups acting trivially. The centralizer of π is
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defined as:

Cπ :=
{
s ∈ Sn n Fn | ∀σ ∈ Sn : π(s−1σs) = π(σ)

}
(3.18)

Take a dπ-dimensional representation of the centralizer, i.e. states are given by

a superposition of all centralizer elements;
∑

s∈Cπ s⊗vi. Such a representation

is invariant under the action of the centralizer elements and the slide operators.

We produce new states by acting with elements of Sn n Fn which are not

elements of Cπ, in general we get one state for each such element.

We have then found a subrepresentation of INDMot
S (π) whose dimension

is smaller by a factor of the order of Cπ, i.e. we have shown that we can

easily reduce INDMot
S (π) to a representation of dimension: d = n!2ndπ

|Cπ | . This

representation is not necessarily irreducible, the purpose here is merely to show

that the induced representation can usually be reduced.

Generally the centralizer, Cπ, contains only the identity element. In this

case, using equations (3.10) and (3.12), we see that, for any s, there will be at

least one σ for which s−1σs 6= σ. Reduction of INDMot
S (π) is not as simple and

it may even be irreducible.

However, if we set the centralizer to contain the flip group, Fn, then from

equation (3.12) we find that σij = σ−1
ij . Thus we can define a new representa-

tion which acts on a vector space, Xπ, with basis states which are of the form

xi =
∑

k fk ⊗ vi. These xi states are invariant under Fn and get mapped into

each other by elements of Sn and Sn. So we get a reduced representation of

dimension dX = n!2ndπ
2n

= n!dπ.

Similarly if we set the centralizer to contain the exchange group, Sn, then

from equation (3.10) we find that σij = σkl. We then define a new represen-

tation acting on a vector space, Yπ, which has basis vectors yi =
∑

k τk ⊗ vi
which are invariant under the action of Sn and which are mapped into each

other by the elements of Fn and Sn. So we get a reduced representation of

dimension dY = n!2ndπ
n!

= 2ndπ.

Finally, we can take a combination of the above two cases and set the

centralizer to contain the full semidirect product, SnnFn. We then have that

all σij are equal and are also equal to their inverses. Thus we can define a dπ-

dimensional representation which acts on a vector space, Z, with basis vectors,
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zi =
∑

k,l fkτl ⊗ vi which are invariant under the action of Sn n Fn which are

mapped into each other by Sn.

We have talked at length in chapter 2 about how higher dimensional repre-

sentations yield more useful, efficient systems. When inducing representations

of Motn, from a desired representation, π, of the slide group it will then be ben-

eficial to have the order of the centralizer of π to be as small as possible. This

is, however, related to physical characteristics of the system. If the centralizer

encompasses all the elements of the flip or exchange groups it corresponds to

the slides being equal under these operations.

3.4 Local Representations

The previous two sections showed that the efficiency of a qubit composed

from anyonic rings, i.e. the number of independent operations available on the

qubit, is limited by the requirement that the slide group has a non-Abelian

representation. We would like to see if any alternative implementations of

qubits can avoid this issue, allowing us to increase the number of possible logic

gates without compromising the universality of the qubits.

To this end we consider a system in which each ring in the system has an

internal d-dimensional vector space, V , associated with it. The Hilbert space

of the system is then V ⊗n, where n is the number of rings in the system, and

has a dimensionality of dn.

We can introduce local representations by defining the action of the motion

group operators to be non-trivial only on the vector spaces associated with the

rings which are involved in the motion. A given motion group operation,

mij, acting on rings i and j (any motion group operation will act on at most

two rings at a time) is then represented by a tensor product of d-dimensional

matrices, mi and mj, acting on the vectors space corresponding to the ith and

jth rings and the identity operator, 1d, acting on all other vector spaces.

Specifically, the exchange operations, τi, acts by swapping the ith and

(i + 1)th vector spaces inside the tensor product, i.e. it acts with some d2-

dimensional exchange matrix, τ , on the ith and (i+1)th tensor factors and acts
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trivially on all other vector spaces:

τi = 1
1 ⊗ 1

2 ⊗ · · · ⊗ τ i,i+1 ⊗ 1
i+2 ⊗ · · · ⊗ 1

n (3.19)

It is important to highlight that we can define the exchanges such that they

don’t alter the local vector spaces of the rings, they simply exchange them.

The flip operations, fi, act with some orientation altering operation, f , on the

ith vector space only and act trivially on all other tensor factors:

fi = 1
1 ⊗ 1

2 ⊗ · · · ⊗ f i ⊗ 1
i+1 ⊗ · · · ⊗ 1

n (3.20)

The slide operators will act non-trivially on the two tensor factors with the

slide operator, denotedR (for reasons which will become clear later). However,

unlike the exchanges, the tensor factors on which R acts are not necessarily

neighbouring. If we let [rp]
i be a d-dimensional matrix acting on the ith vector

space, then Rij =
∑

p

[
r1
p

]i ⊗ [r2
p

]j
and:

σij =
∑
p

1
1 ⊗ 1

2 ⊗ · · · ⊗
[
r1
p

]i ⊗ · · · ⊗ [r2
p

]j ⊗ · · · ⊗ · · · ⊗ 1
n (3.21)

If the exchange subgroup is included in the motion group, i.e. if the rings are

indistinguishable, we can use the exchanges to give a slightly simpler form

of σij, we find a d2-dimensional matrix for R acting on neighbouring sites,

R =
∑

p

[
r1
p

]i ⊗ [r2
p

]i+1
, then for any σij we conjugate R by the appropriate

exchange operators in order to move the ith and jth tensor factors to neigh-

bouring sites before we act with R and then move them back to their original

sites afterwards. We explained in the definition of the exchanges that the τi

act trivially on the local vector spaces so this process will not affect the action

of the R matrix.

The representation of the motion group then consists of three independent

operators, τ , f and R. The generators of the motion group differ only by the

vector spaces on which these operators act on. Finding local representations

of a system then requires us to only find the representation of these three

operators thus is less work compared to the methods in section 3.2 and 3.3.

Also, under this definition of the operators many of motion group relations

56



are automatically simplified. This can be easily seen for equations (3.1), (3.4),

(3.6) and (3.11) given the tensor product structure and for equations (3.2),

(3.3), (3.9) and (3.10) from the permutation nature of the exchanges. We are

then left with only four non-trivial relations, which can be expressed in terms

of the operators τ , f and R as:

f 2
i = 12 (3.22)

RikRjk = RjkRik {j 6= k} (3.23)

RijRkjRik = RikRkjRij {i, j, k all distinct} (3.24)

fjRijfj = R−1
ij (3.25)

where the subscripts denote the tensor factors on which the f and R operators

act. This local representation approach presents us with an obvious advantage

over the previously discussed methods, namely the dimension of the represen-

tation of the system will increase with the size of the Hilbert space. If an

extra ring is added to the system, the representation of the operators of the

smaller system changes only by the addition of a trivial tensor factor. This

does not affect the form of the non-trivial f , τ and R factors, it only increases

the number of tensor factors each can act on, i.e. if the form of f , τ and R

allow for a non-Abelian representation of n rings, increasing the number of

rings will not affect the non-Abelian nature of these operations on the n rings

but it will add new operations to the system.

We can then increase the number of logic operation possible in the system,

increasing the efficiency of our computations without adversely affecting the

range of possible operations. However, it is expected that local representations

will be reducible. Thus, even if the local representations are universal, there

may be operations which we can never reach in a given irreducible subrepre-

sentation.

We should mention that qudits are now defined locally on each ring. One

qudit operations are then those which act solely on one local vector space,

operations which involve multiple rings are then multi-qudit operations. As

all states in the Hilbert space are included in the local representation, there

is no longer any non-computational states in the system. Local operators
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act within qudit spaces and all remaining states are accessible to multi-qudit

gates, this means there we will not need to worry about leakage errors and all

information remains within the computational space.

3.4.1 2 Dimensional Local Vector Spaces

We start with simplest nontrivial case, where the internal vector spaces are two

dimensional. If f is not a multiple of the identity, we can think of this vector

space as being spanned by the states which denote a direction associated with

the ring. The flip operator is then a two dimensional matrix which acts only

on a local vector space in a way which flips/changes between “forwards” and

“backwards” directions. The exchange operator is a four dimensional matrix

which exchanges two neighbouring vector spaces, specifically;

τ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (3.26)

We then need to find the representation of theR and f matrices. From the slide

group presentation, we can view R as solutions of the Yang-Baxter relation,

equation (3.8), which also obey equation (3.7). Considering R in this way is

beneficial to us as all four-dimensional solutions of the Yang-Baxter relation

have been found and catalogued by Dye [47]. Thus we need only to check

which of the solutions listed in this paper also obey equation (3.7) in order to

find all possible representations of R. We can then easily use relations (3.5)

and (3.12) to calculate f .

Unitary Solutions to the Yang-Baxter Equation

Dye [47] identifies 5 families of solutions to the four-dimensional Yang-Baxter

equation, we list them here for convenience. A solution to the Yang-Baxter

equation can be written in the form:

R = kAHA−1 (3.27)
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Where: k = eiφ for arbitrary φ, A is of the form Q⊗Q, with Q being a 2× 2,

invertible matrix and H is some 4× 4 matrix. Dye’s five families of solutions,

F1 - F5, are then given by different values of H and Q.

However for our purpose, i.e. using the slides to implement logic gates, we

only care about solutions up to unitary equivalence. That is, if we can perform

some basis change transformation, Ũ , on any of these Yang-Baxter solutions,

R, to produce a different solution, R′, then we say that they are equivalent;

R ∼ ŨRŨ−1. Given the tensor product nature of our R matrix we demand

that this basis transformation is actually the tensor product of two equivalent

2× 2 unitary matrices, Ũ = (U ⊗U). This ensures that two R are considered

equivalent only if they are related by performing the same basis transformation

on the two vector spaces on which the slide operator acts. Therefore we will

first classify Dye’s solutions up to such a unitary equivalence.

Family 1, F1

H1 =


1

x
0

0
y

z

 Q =

a b

c d

 (3.28)

where: |x| = |y| = |z| = 1 and ab̄+cd̄ = 0, i.e. the columns in Q are orthogonal.

We can let U be a unitary matrix such that Q = UD, where D is some diagonal

matrix. Then as D ⊗D is a diagonal matrix it will commute with H:

R = k(Q⊗Q)H1(Q⊗Q)−1 = k(U ⊗ U)H1(U ⊗ U)−1 (3.29)

This shows that Family 1 just consists of matrices that are all unitarily equiv-

alent to kH1. We rename it FU1 to highlight the fact that it is a family of

unitary equivalent solutions.
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Family 2, F2

H2 =


0 p

1

1

q 0

 Q =

a b

c d

 (3.30)

where: |pq| = 1, p =
(|b|2 + |d|2)(āb+ c̄d)

(|a|2 + |c|2)(ab̄+ cd̄)
, q =

1

p
and ab̄ + cd̄ 6= 0. We can

rewrite H = h⊗ h, where:

h =

 0
√
p

1√
p

0

 (3.31)

The Yang-Baxter solution then becomes: R = k(QhQ−1)⊗2. The tensor prod-

uct of a unitary matrix with itself is clearly also a unitary matrix, hence we

can now look at the simpler case of QhQ−1 and if this is unitary then so will

R = AH2A
−1. Let M be a matrix which diagonalises h, i.e.:

M =

x√p y
√
p

x −y

 (3.32)

If we choose y2

x2 = p then QM−1 will be a unitary matrix, thus we can write

Q = UM for some unitary matrix U . R then becomes:

R = k(QhQ−1)⊗2 = k(UMhM−1U−1)⊗2 = k(UDU−1)⊗2 (3.33)

where D is a 2 × 2 diagonal matrix with eigenvalues ±1. Thus, family 2

consists of matrices which are unitarily equivalent to a diagonal matrix with

eigenvalues ±k. D is then a subset of the H1 matrices, so the equivalence

classes of Family 2 are the same as Family 1, thus F2 is contained within FU1 .
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Family 3, F3

H3 =


0 p

1

1

q 0

 Q =

a b

c d

 (3.34)

where: ab̄+cd̄ = 0. Notice this is similar as Family 2 but here Q has orthogonal

rows. This gives new restrictions on p and q, namely:

|pq| = 1 |p| = |d|
2

|a|2
|q| = 1

|p|
(3.35)

We can use the same method as in Family 1 and write Q as the product of a

unitary matrix, U , and a diagonal matrix, D; Q = UD.

R = (Q⊗Q)H3(Q⊗Q)−1 = (U ⊗ U)(D ⊗D)H3(D ⊗D)−1(U ⊗ U)−1

(3.36)

Therefore all of Family 3 are unitarily equivalent to H̃3 = (D⊗D)H3(D⊗D)−1.

To make things simpler we split Family 3 into two subfamilies; F3(i) and F3(ii).

The difference between the two is that the members of F3(i) have the restriction:

p = 1/q, whereas F3(ii) has only the less restrictive requirement |p| = 1/|q|.

Examining F3(i) first, we have; H3(i) = H2 = h ⊗ h, with h give by equa-

tion (3.31). Now choosing:

D =

1 0

0 x

 ⇒ H̃3(i) =

 0
√
p

x

x√
p

0

⊗2

But conjugation by a unitary matrix cannot produce a unitary matrix from a

non-unitary matrix. As R is, by definition, a unitary matrix then DhD must

also be unitary. Therefore we must have x =
√
|p|eiφ, for some phase factor

φ, which gives:

H̃3(i) =

 0 e−iφ

eiφ 0

⊗2

(3.37)
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This matrix can be easily diagonalized by a unitary transformation: (U ⊗

U)H̃3(i)(U ⊗ U)−1 = H1. So we see that F3(i) is also a subset of FU1 .

F3(ii) is not as easy to classify, we can no longer write H3 as a tensor product

of 2× 2 matrices and so we have (by choosing D to be the same as in F3(i)):

H̃3(ii) =


0

p
x2

1

1

x2q 0

 (3.38)

We can bring R into a nicer form by choosing an appropriate matrix for U ;

U =

eiγ1 0

0 eiγ2

 (3.39)

R = (U ⊗ U)H̃3(U ⊗ U)−1 =


0

p
x2 e

2i(γ1−γ2)

1

1

x2qe2i(γ2−γ1) 0

 (3.40)

In F3(i) we showed that x =
√
|p|eiθ, this was a result of choosing an x which

normalises Q, therefore, we can choose this value here too. We can rewrite p

and q in a similar manner; p = |p|eiγp and q = |q|eiγq = eiγq

|p| . Finally we are

free to choose the roots of unity in U , therefore can we set: 2(γ1−γ2) = 2θ−γp
which allows us to express R as:

R =


0 1

1

1

eiα 0

 (3.41)

where α = γq + γp, note eiα 6= 1 as this corresponds to p = 1/q which is part of

F3(ii). Thus F3(ii) represents a distinct family of solutions which are unitarily

equivalent to an off diagonal 4×4 matrix with eigenvalues 1 and eiα, for α 6= 0.

We then get our second unitarily equivalent family; FU2
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Family 4, F4

H4 =
1√
2


1 0 0 1

0 1 1 0

0 1 −1 0

−1 0 0 1

 Q =

a b

c d

 (3.42)

Where: ab̄+ cd̄ = 0. Again we can use the Q = UD trick and choose the same

D as in the previous case to give:

H̃4 =
1√
2


1 0 0 1

x2

0 x x 0

0 x −x 0

−x2 0 0 1

 (3.43)

where H̃4 = DH4D
−1 and we must have x = ei

nπ
2 , with n ∈ Z, for R to

be unitary. Family 4 then consists of matrices which are unitarily equivalent

to H̃4. Note H̃4 cannot be diagonalized by a unitary transformation, so it is

not in F1 and the eigenvalues of H̃4 are ±x, 1√
2
(1 ± i) which are different to

those of F3(ii). Therefore, F4 is a new independent family of unitary equivalent

solutions which we label; FU3 .

Family 5, F5

H5 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 Q =

a b

c d

 (3.44)

with no further restrictions on Q. Note that H5 will commute with any Q⊗Q

so we have R = kH5. H5 cannot be diagonalised by a unitary transformation

and its eigenvalues are ±1, therefore it is not in F1, F3(ii) or F4. So solutions

constructed from H5 are their own family of unitary solutions, FU4
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Unitarily Equivalent Families

The 5 families of Yang-Baxter solutions which Dye found then fit into the

following 4 families of solutions up to unitary equivalence:

FU1 : Matrices of the form:

R = k


1

x
0

0
y

z



FU2 : Matrices of the form:

R = k


0 1

1

1

eiα 0


FU3 : Matrices of the form:

R =
k

2


1 0 0 e2iβ

0 eiβ eiβ 0

0 eiβ −eiβ 0

−e2iβ 0 0 1



FU4 : Matrices of the form:

R = k


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


where: |x| = |y| = |z| = 1, 0 < α < 2π, β = nπ/2 for n ∈ Z.

3.4.2 Representations of Slide and Flip Groups

We now impose our second condition on these Yang-Baxter solutions by seeing

which of the R’s listed above also satisfy the other relations of the motion

group, i.e. equations (3.22), (3.23) and (3.25). To satisfy all these relations

we must introduce the flip operator, f . Similar to the slide operator, we also

require f to be unitary, therefore we can set it equal to some phase factor

times a special unitary matrix:

f = eiφ

 a b

−b̄ ā

 (3.45)

But due to relation (3.22), we know that det(f) = ±1, so; eiφ = ±1 or ±i. If

we test each of the families of solutions from section 3.4.1 we see that only the

solutions in FU1 also satisfy relation (3.23). Therefore, from now on we shall
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only consider solutions of the form:

R = k


1

x
0

0
y

z

 (3.46)

where: |x| = |y| = |z| = 1. Finally we must check whether these remaining

solutions satisfy relation (3.25). For simplicity we can assume the slide operates

on neighbouring rings without loss of generality, we can then write:

R(12 ⊗ f)R(12 ⊗ f) = 14 (3.47)

where we are concentrating only on the 4-dimensional space of the two rings

which are acted on non-trivially by these operations. This gives the two fol-

lowing cases:

Case (i): b = 0

When we have b = 0, we must necessarily have a 6= 0 and |a|2 = 1. But from

equation (3.22) we must also have a = ±e−iφ, with eiφ = ±1 or ±i depending

on the value of det(f). Equation (3.47) then gives; k, x, y, z = ±1. With these

restrictions we then have the following form of R(1) and f (1):

R(1) = ±


1

x
0

0
y

z

 f (1) = ±

1 0

0 ±1

 (3.48)

Case (ii): b 6= 0

Here we have b 6= 0, therefore a = −xā and x = z/y. From relation (3.22) we

see that, if b 6= 0, then a = −ā. Therefore a is either zero or has no real part

and x = 1. The same relation gives the equation:

e2iφ(a2 − |b|2) = 1⇒ eiφ = ±i
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So setting b 6= 0 restricts the determinant of f to only the ±i option. We

can nicely parametrise a and b as: a = ±i sin θ, b = eiψ cos θ. Note that

θ 6= (2n+ 1)π/2, for any n ∈ Z, as this would correspond to b = 0. From

equation (3.47) we get; k = ±1, y = z = ±1, this gives the following form for

R(2) and f (2), with θ 6= (2n+ 1)π/2:

R(2) = ±


1

1
0

0
z

z

 f (2) =

 sin θ ieiψ cos θ

−ie−iψ cos θ − sin θ

 (3.49)

3.4.3 Canonical Flip Basis

It is interesting and helpful to move to the basis where the flip matrix is in the

following canonical form;

f̃ =

0 1

1 0

 (3.50)

It now becomes obvious that, if the local states on the rings label the direction

associated with the ring, the flip matrix exchanges between the “forwards”

and “backwards” states.

If f is a multiple of the identity, as is a possibility for f (1), then it will be

unchanged by any basis transformation and so we cannot put f (or R) into

the canonical flip basis form, given in equation (3.50). We deal then only with

the subcases of relation (3.48) where f is diagonal, but not a multiple of the

identity, i.e. those corresponding to det(f (1)) = −1. The following two cases

then refer to the cases introduced in the previous section.

Case (i)

In this case we can change to the canonical flip basis via the following unitary

transformation:

U1 =

1 1

1 −1

 (3.51)
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This will put f in the form of equation (3.50). We must then perform the same

basis transformation on R:

R̃ = (U1 ⊗ U1)R(U1 ⊗ U1)−1 = ±1

4


α β γ δ

β α δ γ

γ δ α β

δ γ β α

 (3.52)

α = 1 + x+ y + z β = 1− x+ y − z

γ = 1 + x− y − z δ = 1− x− y + z

 for x, y, z = ±1

There is then 8 possible values for R̃ depending on the combinations of ±1

each of x, y, z take. If an even number of these values are −1 then we will be

able to write R̃ as a tensor product; R̃even(−1) = ±(χ1⊗χ2), where χi = 12 or

χi = f . However if an odd number of the values are −1 then R̃ has a slightly

more complex form; R̃odd(−1) = ±1/2[χ1 ⊗ N ± χ2 ⊗H], where χ1 and χ2 are

the same as before but are always unequal, and H and N are given by:

H =

−1 1

1 −1

 N =

1 1

1 1

 (3.53)

Case (ii)

Now for the R(2) and f (2) given in relation (3.49). By the definition of case

(ii), f (2) can never be a multiple of the identity therefore we run into the same

issue as for f (1). However, if z = 1, then R(2) is a multiple of the identity and

will not be affected by any basis change thus giving us a subcase of case (i),

we will then only look at z = −1. First we move to the basis where f (2) is

diagonal using the unitary transformation:

U2 =

 ie−iψ(1−sin θ)√
2(1+sin θ)

1+sin θ√
2(1−sin θ)

ie−iψ cos θ√
2(1+sin θ)

cos θ√
2(1−sin θ)


⇒ f (2)′ = U2f

(2)U−1
2 =

1 0

0 −1

 (3.54)
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We then have f (2) in the same form as in equation (3.48) (when f (1) is not a

multiple of the identity), so we can again use the basis transformation U1 to

transform f (2) into the canonical form:

f (2)′′ = U1U2fU
−1
2 U−1

1 =

0 1

1 0


Performing the same basis transformation on R gives:

R̃(2)′ = (U1 ⊗ U1)(U2 ⊗ U2)R(U2 ⊗ U2)−1(U1 ⊗ U1)−1

⇒ R̃(2)′ = ±

cos θ sin θ

sin θ − cos θ

⊗
1 0

0 1

 (3.55)

Finally we can write down the families of unitary solutions to the relations of

the motion group in the canonical flip basis. If the flip matrix, f , is a multiple

of the identity then R takes the form given in equation (3.46), otherwise we

can move to the canonical flip basis where f is given by equation (3.50) and

R takes on one of the following forms:

R̃ = ±(12 ⊗ 12), R̃ = ±(12 ⊗ f), R̃ = ±(f ⊗ 12), R̃ = ±(f ⊗ f)

R̃ = ±

cos θ sin θ

sin θ − cos θ

⊗ 12

R̃ = ±1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 R̃ = ±1

2


1 −1 1 1

−1 1 1 1

1 1 1 −1

1 1 −1 1



R̃ = ±1

2


1 1 −1 1

1 1 1 −1

−1 1 1 1

1 −1 1 1

 R̃ = ±1

2


1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1


with θ 6= (2n+ 1)π/2. R then can have non-trivial action in this basis and so

there is a potential for universality in the system. However, we will not be

concerned in this thesis with testing the universality of such systems, we are

only interested in showing that non-Abelian representations do exist.
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3.5 Local Representations for d > 2

While successful in calculating the local two-dimensional representations of

Motn, the method used in section 3.4.1 is not as useful if we want to go to higher

dimensional local representations. This is due to the method relying heavily on

known solutions to the Yang-Baxter equation, which we then specialised to suit

our needs. In theory we could move forward using a similar method, however,

Yang-Baxter solutions in higher dimensions are not as readily available and

so we would have to calculate them ourselves, making the method extremely

inefficient.

We can, however, show that the action of R on the vector spaces of two

rings is equivalent to the R-matrix of the quantum double of the group labelling

the states in these vector spaces. We will start with the R operator in the

previously stated standard form: Rij =
∑

p

[
r1
p

]i⊗ [r2
p

]j
. Equation (3.23) and

the unitarity of R then show that we can bring R into the form of a controlled

operation, R =
∑

i gi ⊗ ei (where ei projects onto the ith basis vector), this

allows us to label the basis vectors of the vector spaces by the projectors which

act on them.

Using the Yang-Baxter relation (equation (3.24)) and the unitarity of R

again, we will see that the representation of R decomposes into subrepresen-

tations which act independently on the conjugacy classes of the r̃1. For each

subrepresentation, we can then label the basis vectors according to the distinct

matrix, gk, and the copy, p, of that matrix to which the vector corresponds,

|ei〉 → |gk, p〉.

By choosing an appropriate basis we then show that R acts on the tensor

product of two such states by conjugating the g-label of the first by the g-

label of the second and by altering the copy number of the first by some

matrix factor, α. The Yang-Baxter relation requires the α matrices to form

a representation under conjugation of the centralizer of each conjugacy class.

The action of R is then seen to be equivalent to that of the R-matrix of the

quantum double of the group composed of the g-matrices which label the basis

states of the local vector spaces.
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Linear Independence and Upper Triangular Form

We define some general matrix, R, to be the non-trivial component of the slide

operators. Given that the slide operators are conjugate under the exchanges

which act trivially on the local vector spaces we can look exclusively at a single

slide generator, say Ri,i+1, the non-trivial component for this generator will be

identical to that as for all other generators. We purposefully chose a generator

which acts on adjacent rings so that R is a d2-dimensional matrix which acts

on neighbouring tensor factors, R =
∑

p

[
r1
p

]i ⊗ [r2
p

]i+1
. The specific tensor

factors that R acts on is not important (i.e. we don’t care about the value of

i), if we then redefine R to be a matrix acting on neighbouring tensor factors,

we can drop the tensor factor labels allowing us to write the non-trivial slide

component as: R =
∑

p r
1
p ⊗ r2

p.

We can safely assume that all the r1’s and r2’s are linearly independent, if

not we can redefine them in such a way that they are. For example; say the

r1’s are not linearly independent, then there will be one r1
p (at least one but

let’s choose only one for simplicity) which can be given as a linear combination

of the others, say r1
1 =

∑
p6=1 cpr

1
p. Thus:

R =

[∑
p6=1

cpr
1
p

]
⊗ r2

1 +
∑
p 6=1

r1
p ⊗ r2

p =
∑
p 6=1

{
r1
p ⊗ cpr2

1 + r1
p ⊗ r2

p

}
=
∑
p 6=1

r1
p ⊗ (r2

p + cpr
2
1) =

∑
p 6=1

r1
p ⊗ r̃2

p

Now R does not contain r1
1 so it is a sum of only linearly independent r’s.

If there are more linearly dependent r’s we can repeat the above process to

remove the dependent ones one by one until we are left with only linearly

independent matrices.

We will now require R to be a d2-dimensional representation of the slide

operator. Firstly then, it must obey equation (3.23):

(12 ⊗ τ)(R⊗ 12)(12 ⊗ τ)(12 ⊗R) = (1⊗R)(12 ⊗ τ)(R⊗ 12)(12 ⊗ τ)∑
p,q

r1
p ⊗ r1

q ⊗ r2
pr

2
q =

∑
p,q

r1
p ⊗ r1

q ⊗ r2
qr

2
p (3.56)

But as all the r’s are linearly independent we must have: r2
pr

2
q = r2

qr
2
p for any

70



p and q (i.e. all r2 matrices must commute with each other).

Any matrix can be brought into upper triangular form by a unitary trans-

formation. It can also been shown that a set of commuting matrices can

always be brought into upper triangular form simultaneously by the same uni-

tary transformation [48]. So we can choose a basis such that all the r2 matrices

are upper triangular. Therefore, in the 2-dimensional case, for example, we

have each r2
p in the following form:

r2
p =

a b

0 c

⇒ R =
∑
p


[r1
p]11

ap bp

0 cp

 [r1
p]12

ap bp

0 cp


[r1
p]21

ap bp

0 cp

 [r1
p]22

ap bp

0 cp



 (3.57)

If we define eij as a matrix with all zero entries except for the (i, j)th entry

which is 1, we can now easily write R as:

R =
∑
p

{
r1
p ⊗

∑
j≥i

cijp eij

}
=
∑
j≥i

(∑
p

cijp r
1
p

)
⊗ eij =

∑
j≥i

r̃1
ij ⊗ eij (3.58)

Note that, while the r1
p were taken to be all linearly independent, the r̃1

ij =∑
p c

ij
p r

1
p are not necessarily linearly independent.

Unitarity of R

As we talked about in section 2.3.2, we only care about unitary representations.

So R should be unitary, meaning its rows and columns are orthonormal. Using

equation (3.58), with an appropriate basis choice, we can write a general d2-

dimensional R as:

R =



r̃1
11 r̃1

12 r̃1
13 · · · r̃1

1d

0 r̃1
22 r̃1

23 · · · r̃1
2d

0 0 r̃1
33 · · · r̃1

3d

...
...

...
. . .

...

0 0 0 · · · r̃1
dd


(3.59)

where r̃1
ij are arbitrary d × d matrices. Looking at the first two columns of

R, c(1) and c(2), notice that all elements in these columns, which are not also
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elements of r̃1
11, are zero. Therefore, in order for c(1) and c(2) to be orthonormal,

the first two columns of r̃1
11 must be orthonormal. This same argument can be

used to show that, for the first d columns of R to be orthonormal, all columns

of r̃1
11 must be orthonormal, i.e. r̃1

11 must be unitary.

If r̃1
11 is unitary, then its rows are also orthonormal. As the first row of r̃1

11

is normalised, if any other elements along the first row of R are non-zero then

this first row of R will not be normal. A similar argument can be made for

the first d rows of R. So, for R to be unitary, all r̃1
1k, for k 6= 1, must be zero

matrices.

Moving to the (d+1)th column ofR, we see that the only non-zero elements

are those belonging to r̃1
22. We can use the same argument as above to say,

that in order for columns (d+ 1) through (d+ d) of R to be orthonormal, r̃1
22

must be unitary. Then, in order for rows (d + 1) through (d + d) of R to be

normal, we must have that all r̃1
2k, for k 6= 2, must be zero matrices.

These unitary arguments can be easily extended to every column and row

of R to show that the only non-zero elements will be those which are elements

of the submatrices r̃1
ii, for 1 ≤ i ≤ d, all of which must be d-dimensional

unitary matrices. The only non-zero entries are then those which correspond

to the diagonal elements of r2
p. We then have eij = 0 unless i = j, so we can

relabel the non-zero matrices as ei = eii. R is clearly block diagonal form,

with each block being one of the r1 matrices.

The ei are projection operators which act non-trivially on only one basis

vector of the second vector space, specifically the ith basis vector. We can

therefore label the states of this local vector space by the ei matrix which acts

on it, i.e. V (2) = {e1, ..., ed}.

Yang-Baxter Solutions

For notational ease we will rename r̃1
i = gi, thus with R from equation (3.58)

and taking into account the results of the previous section we have;

R =
∑
i

gi ⊗ ei (3.60)
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Now we can examine the effect of the Yang-Baxter relation (equation (3.8))

on these results:

R12R13R23 = R23R13R12∑
a,b,c

gagb ⊗ eagc ⊗ ebec =
∑
a,b,c

gbga ⊗ gcea ⊗ eceb

∑
a,b

gagb ⊗ eagb ⊗ eb =
∑
a,b

gbga ⊗ gbea ⊗ eb (3.61)

The ei are projectors so we have eiej = δijei. We can ignore the sum over b and

just focus on one single value, as linear independence of the ei demands that

any result obtained here must hold for all b. This also allows us to effectively

ignore the final tensor factor, as before. So for all b we have:

∑
a

gagb ⊗ eagb =
∑
a

gbga ⊗ gbea (3.62)

We can examine the matrix elements of the ga by multiplying on the left by a

factor of (1⊗ em) and on the right by a factor of (1⊗ en) which gives:

(1⊗ em)
∑
a

gagb ⊗ eagb(1⊗ en) = (1⊗ em)
∑
a

gbga ⊗ gbea(1⊗ en)

gmgb ⊗ emgben = gbgn ⊗ emgben

gmgb ⊗ [gb]mn emn = gbgn ⊗ [gb]mn emn (3.63)

where emn corresponds to the original definition of the eij above. So we then

have our main result, that either of the following cases must be true:

[gb]mn = 0 or

gmgb = gbgn (3.64)

Therefore if gn is not conjugate to gm by gb (for any b), then there is no gb

with [gb]mn 6= 0. Therefore, if there exists some gp which is not conjugate to

any other gq, then ep projects onto an invariant vector. More generally, if the

g’s divide into non-conjugate groups we get invariant vector subspaces.
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Decomposing the Local Vector Spaces

We can show that the g matrices form a closed set under conjugation. We

have already used the fact that the g’s are unitary matrices, therefore, for all

b and m, there exists some n such that [gb]mn 6= 0 and, for all b and n, there

exists some m such that [gb]nm 6= 0. Otherwise we would have that at least

one g is a zero matrix and thus not unitary. This then implies:

∀ b,m ∃ n : gn = g−1
b gmgb

∀ b, n ∃ m : gm = gbgng
−1
b (3.65)

Thus the conjugate of any g by some other g′ gives yet another g′′, so the g’s

form a set which is closed under conjugation.

Let G be the group generated by the g-matrices. The set {g1, ..., gd} of

g’s that occur in R is then a union of conjugacy classes of G. We can order

our basis by these conjugacy classes, by grouping basis vectors, ei, together

which have corresponding matrices, gi, from the same conjugacy class. The

ei are then split into sets, Aj, where for any two elements, ea, eb ∈ Aj, their

corresponding g-matrices are conjugate to each other, ga = XgbX
−1. The

Aj then correspond to the conjugacy classes of G. We should note at this

point that, as the gi are not linearly independent, there can be multiple ei

corresponding to equivalent g-matrices.

Some features of the form of the gi can now be deduced; we choose one

such matrix, gz. The condition from equation (3.64) means that the only non-

zero elements of gz will be those acting on basis elements whose corresponding

g-matrix is conjugate to another g matrix by gz. In short, there will only be

non-zero elements between basis vectors from the same Aj set.

The basis has been ordered so that elements from the same Aj set are ad-

jacent which means that gz will take on a block diagonal form. The matrix, gz,

is then split into blocks of dimension dAj , where only blocks which correspond

the same Aj have non-zero elements.

For example; take a 7 dimensional local vector space where the gi split into

3 conjugacy classes, G = {{g1, g2}, {g3, g4, g5}, {g6, g7}}. We should reiterate

that some of the gi here may be equal, i.e. we have 7 basis vectors but not all
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will correspond to a distinct g-matrix. The g-matrices then take the following

form:

A1

e1

e2

A2


e3

e4

e5

A3

e6

e7



∗ ∗
∗ ∗

 0 0

0


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 0

0 0
∗ ∗
∗ ∗




(3.66)

The block diagonal nature of the g’s lets us decompose the vector spaces, V ,

on which they act (i.e. the local vector spaces of the rings) into a direct sum

of vector spaces containing basis vectors from the different conjugacy classes:

V = V A1 ⊕ V A2 ⊕ · · · (3.67)

Any g will then act on V by acting individually with each of its submatrices,

aj, on the corresponding direct sum components, V Aj . So the representation

of R acting on V decomposes into subrepresentations corresponding to the

conjugacy classes of G.

It is worth noting that if all gi are distinct, then the block matrices, aj,

will just be permutation matrices, with non-zero elements between basis vec-

tors whose corresponding g-matrices are conjugate to each other under that

particular gi. However, as some of the gi may be equivalent, more complicated

forms of the aj can occur.

The Copy Label

Assuming some of the g-matrices are equivalent, we look at one conjugacy

class, Aj, where at least two distinct elements, ga and gb, have multiple copies.

We can choose the order of the basis elements such that those corresponding

to equivalent g’s are next to each other (equal g’s will obviously be in the same

conjugacy class so the previous ordering is not affected).

Taking one matrix, gd, we can look at one of its submatrices, aj, which
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corresponds to the conjugacy class, Aj, containing ga, gb and their copies.

Assuming gd is the matrix by which ga and gb are conjugate, there will be non-

zero entries between any basis vectors whose g’s are equivalent. As the basis

is ordered by those with equal g’s being adjacent, these non-zero elements will

be grouped into block matrices with dimensions given by the number of copies

of the g-matrices they relate. Thus the submatrix, aj, is itself split up into

submatrices, âk, which relate groups of equivalent basis vectors (but it is not

necessarily block diagonal).

Earlier we saw how, in order for R to be unitary, its submatrices, gi, were

required to be unitary. The same reasoning can be used to show that the

submatrices of each gi, aj, must also be unitary and, furthermore, so must

the submarines of each ai, âk. Thus we can safely say that the âk are square

matrices, i.e. any groups of equivalent g’s must be the same size. Therefore,

the elements of any conjugacy class, Ai, must all have the same number of

copies. In our example the number of matrices that are equivalent to ga must

be the same as the number equivalent to gb, as well as any other distinct g

matrices in Aj.

This allows us to switch to a more convenient labelling of the basis vectors.

Instead of using ei, we will label such a vector by the distinct g-matrix to

which it corresponds and also by an extra label which indicates which copy of

that element which ei corresponds to. While multiple basis vectors may then

have the same g-label, their copy labels will differ. The subspace, V Ai , can

then be written as a tensor product of the form:

V Ai = CAi ⊗ Vα (3.68)

where CAi is the algebra of the conjugacy class Ai, it has a basis of elements

|gj〉, with gj in Ai. Vα = Cdi is a vector space with basis states |p〉, where p is

an integer representing which copy of the element of Ai we are referring to. A

state in this vector space then has the form;

|gj, p〉 = |gj〉|p〉 (3.69)
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Action of R

Looking at the form of R given in equation (3.60), we see that, while R acts

on two vector spaces simultaneously, it only alters the state of the first space.

Specifically, the g-label of the state will be conjugated by the g-label of the

state of the second vector space and the copy label will changed by the action

of some matrix, α, which depends on the g-label of both states. With the basis

given in equation (3.69) for each of these vector spaces, this can be written as:

R(|ga〉|v〉 ⊗ |gb〉|w〉) = |gbgag−1
b 〉α(ga, gb)|v〉 ⊗ |gb〉|w〉 (3.70)

Now say we have two g-matrices, gz and gy, which both commute with a third,

ga. The vector spaces labelled by these g-matrices then form a (sub)system

whose state is given by; |ga〉|a〉⊗|gy〉|y〉⊗|gz〉|z〉. We can act on this system of

three rings with R12, R13 and R23, and this action must obey the Yang-Baxter

relation (equation (3.24)):

R12R13R23(|ga, a〉 ⊗ |gy, y〉 ⊗ |gz, z〉) = R23R13R12(|ga, a〉 ⊗ |gy, y〉 ⊗ |gz, z〉)

α(ga, gzgyg
−1
z )α(ga, gz)|ga, a〉 ⊗ α(gy, gz)|gzgyg−1

z , y〉 ⊗ |gz, z〉 =

= α(ga, gz)α(ga, gy)|ga, a〉 ⊗ α(gy, gz)|gzgyg−1
z , y〉 ⊗ |gz, z〉

In order for the Yang-Baxter relation to be satisfied we then must have:

α(ga, gzgyg
−1
z )α(ga, gz) = α(ga, gz)α(ga, gy)

α(ga, gzgyg
−1
z ) = α(ga, gz)α(ga, gy)[α(ga, gz)]

−1 (3.71)

This shows that, if c is an element of the centralizer of a conjugacy class, Aj,

then α(c, Aj) is a representation of Aj under conjugation.

To give α a nicer form, we can choose for each conjugacy class, A, a special

element gA. For each gi ∈ A, we then choose some element, xgi , of G such that;

xgig
Ax−1

gi
= gi. The action of a particular x is; xgk |gA, p〉 = α(gA, xgk)|gk, p〉.

The basis vectors have already been ordered such that those corresponding to

similar g-matrices are grouped together. Within these g-groups then, we can

further order the basis vectors such that the x for a particular g-group maps

each basis vector in the g-group to one with an equivalent copy number in the
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gA-group, i.e. we can choose our basis such that α(gA, xgk) = 1, for all gk. The

action of the x elements is then:

xgk |gA, p〉 = |gk, p〉 (3.72)

Quantum Double Form

Now that we have completely fixed the basis of the local vector spaces (up to

a phase) we can examine the action of some element, gi, of the group G on

this vector space:

gi|gk, p〉 = xgigkg−1
i

[xgigkg−1
i

]−1gixgk [xgk ]
−1|gk, p〉 =

= xgigkg−1
i

[xgigkg−1
i

]−1gixgk |gA, p〉 (3.73)

But we can easily see that
(

[xgigkg−1
i

]−1gixgk

)
is an element of gA’s centralizer:

(
[xgigkg−1

i
]−1gixgk

)
gA
(

[xgigkg−1
i

]−1gixgk

)−1

= [xgigkg−1
i

]−1gigkg
−1
i xggkg−1 = gA

(3.74)

where we have used the inverse of definition (3.72). Equation (3.73) then

becomes:

xgigkg−1
i

[xgigkg−1
i

]−1gixgk |gA, p〉 = xgigkg−1
i
|gA〉α

(
gA, [xgigkg−1

i
]−1gixgk

)
|p〉 =

= |gigkg−1
i 〉α

(
gA, [xgigkg−1

i
]−1gixgk

)
|p〉 (3.75)

But we have already seen that
(

[xgigkg−1
i

]−1gixgk

)
is an element of gA’s cen-

tralizer, therefore α
(
gA, [xgigkg−1

i
]−1gixgk

)
is a representation of this element.

For a group, H, with elements, h ∈ H, the quantum double, D(H) =

C[H]⊗ F (H), is the group algebra generated by elements of the form h⊗ eh,

where F is some function of the group elements and C[H] is the group algebra

associateed with H [49, 50, 51]. By definition of the quantum double, there

exists an element of D(H)⊗D(H) called the R-matrix given by:

R =
∑
g,h

Phg ⊗ Pg (3.76)
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for g, h ∈ H. Taking these quantum double elements to label the states of some

vector space we can look at the action of a single quantum double element,

Phg ∈ D(H), on this space. Given the conjugate relationship between the

group elements: gPhg
−1 = Pghg−1 , we can order the basis such that conjugate

elements are together to give invariant subspaces for each conjugacy class, A.

The action of an element of the quantum double on one of these subspaces is

then:

Phg|hi, vj〉 = δh,ghig−1|ghig−1, β([xghig−1 ]−1gxi)vj〉 (3.77)

where: hi ∈ H, vj are the basis elements of a representation, β, of the central-

izer of some special element, Ah, of the conjugacy class and xi is an element

of H which relates hi to this special element through conjugation. This action

is easily seen to be equivalent to the action we have just derived for group

elements acting on basis vectors of the representation of R. Comparing equa-

tions (3.60) and (3.76), shows that R is in fact the R-matrix of the quantum

double of the group, G, labelling the basis states.

Thus, if the states of the local vector spaces of the rings are labelled by the

distinct elements of a group, G, and the copy number of that element in G, then

the representation of the slide operator, R, will split into subrepresentations

which act on subspaces corresponding to the conjugacy classes of G. Within

a given subrepresentation, the action of R is then equivalent to that of the

R-matrix of the quantum double representation, D(G) ⊗ D(G). We have

shown then that all local representations of the slide group are equivalent to

representations of the quantum double of the group acting on the local vector

spaces.

We must remember that this only gives us a representation of the slide

group. However, once we have obtained such a representation of Sn, we can use

it to induce a representation of the full motion group using the method outlined

in section 3.3. This induced representation will usually not be irreducible but,

given that it is induced from a non-Abelian representation of Sn, we know

that there will be non-Abelian, irreducible subrepresentations within it.
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3.5.1 6 Dimensional Example

A simple example is a 6n-dimensional case. The loops of the fundamental

group labelling each ring then take a 6-dimensional vector space with states

labelled by the elements of some group of order 6 or higher (we could take a

subgroup of a group with an order larger than 6).

The Dihedral Group

For this example we will choose the smallest such non-Abelian group, i.e. D3,

the dihedral group with two generators, {s, r}, and a presentation:

s2 = e r3 = e rs = sr2 (3.78)

This group then has 6 elements; {e, s, r, r2, sr, sr2}, which can be split into

three conjugacy classes; Ae = {e}, Ar = {r, r2}, As = {s, sr, sr2}. Labelling

the basis states by the elements of D3, then gives us a 6-dimensional local

vector space, V , for each ring. V will then naturally fall apart into a direct

sum of three smaller vector spaces corresponding to the three conjugacy classes

of D3:

V = V Ae ⊕ V Ar ⊕ V As (3.79)

where dim(V Ae) = 1, dim(V Ar) = 2 and dim(V As) = 3. Each conjugacy class

has only one copy of its elements so we can ignore the copy label for each state

and the R matrix becomes a direct sum of permutation matrices, up to phases,

acting on the different vector spaces.

The Quantum Double Representation

As stated in the previous section, the representation of the R-matrix of the

quantum double is given by (from equation (3.76)):

R =
∑
h,g

Phg ⊗ Pg =
∑
g

(∑
h

Ph

)
g ⊗ Pg =

∑
g

g ⊗ Pg (3.80)
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for g, h ∈ G, ehg ∈ D(G), R ∈ D(G) ⊗ D(G) and Pj is a projection with∑
j Pj = 1. We can see this directly matches our form for R, as given in

equation (3.60).

We can now act with R separately on the subspaces associated with each

of the conjugacy classes. V Ae is a 1-dimensional vector space, on which R acts

trivially;

R(V Ae ⊗ V Ae) = 12(V Ae ⊗ V Ae)

V Ar is a 2-dimensional space but, as the group elements labelling the basis

vectors commute, we must have that R acts trivially on this space too;

R(V Ar ⊗ V Ar) = 14(V Ar ⊗ V Ar)

For qi ∈ {s, sr, sr2} we have, from the group relations in equation (3.78);

|q1q2q
−1
1 〉 = |q3〉. Thus, R acts on V As as a permutation matrix (up to a

phase). We then have two trivial subrepresentations of R and a non-Abelian

subrepresentation acting on the vector space with states labelled by elements

of As. However this non-Abelian, 3n-dimensional local representation of the

slide group is may still be reducible.

Reducing the non-Abelian Representation

For two rings, the 9-dimensional subrepresentation of R acting on V As ⊗ V As

can be reduced down into nine 1-dimensional representations and so the rep-

resentation is Abelian. This can easily be deduced from the form of the two

generators; R12 will act only on the V As
1 and R21 will act only on V As

2 . The

generators must therefore commute and so we can find a basis where both are

represented by diagonal matrices.

We can now introduce the rest of the motion group generators, namely τ

and f . The exchanges, τ , simply exchange the tensor factors; e.g. τ |s〉|sr〉 =

|sr〉|s〉. The flips, f , act on a single tensor factor only but have no effect

on these basis states; f |s〉 = |s−1〉 = |s〉, f |sr〉 = |r−1s−1〉 = |sr〉, f |sr2〉 =

|r−2s−1〉 = |sr2〉. Taking the full motion group into account, we will no longer

have an Abelian representation. The states in the chosen basis now must be
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invariant under τ and f operations as well as R. We find that there will be

five 1-dimensional subrepresentations which are Abelian but two 2-dimensional

subrepresentations which can be non-Abelian.

For three rings, we can have a non-Abelian representation of the slide group

alone. We now have generators, Rij, for i, j ∈ {1, 2, 3}, and, as in the previous

case, we will have that Rij commutes with Rji, for all i, j. Also, from how

we defined R, we know that Rik will commute with Rjk for all j, k. However,

Rij and Rik will not necessarily commute, indeed we can find representations

where they do not commute. We cannot, therefore, find a basis where all

generators are simultaneously diagonal. Similar to the two ring case, we can

now add in the other generators of the motion group which may add more

interesting operations to the system.

Thus we are able to show that a system which can be described by such a

local representation could possibly be utilized for non-Abelian computations,

using the slide group alone as well as the full motion group. Note that it is

known that the quantum double of D3 is actually universal for anyonic braiding

with a measure operation [52], and so we should expect these universality

results to apply also for the D(D3) for the slide group of ring-shaped anyonic

excitations. However, it is conjectured that such representations will never be

universal for topological operations alone [45].

3.6 Conclusion

In this chapter we introduced the concept of (3+1)-dimensional anyonic exci-

tations and showed that such quantum statistics are possible using ring-shaped

anyons which are subject to the motion group. We saw that non-Abelian repre-

sentations of such a system do exist and would be of potential use in topological

quantum computation. The potential to increase the pool of possible systems

in which to search for non-Abelian anyons presents a clear motivation for the

study of these systems.

The bulk of the chapter focused on outlining three major procedures that

can be used to obtain desired representations of a given system of rings; qubit

representations of small numbers of rings, induced representations from non-

Abelian slide group representations and local representations.
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Qubit representations of the ring system were shown to have similar con-

straints to those found for the two-dimensional qubit models in chapter 2, with

these results expected to continue to match for higher dimensional qudits.

We introduced the concept of local representations, which is defined by re-

quiring the operators of the motion group to act non-trivially only on internal

vector spaces associated with the rings which undergo the particular motion.

Such representations were shown to provide a promising route to obtaining

non-Abelian representations of a system of rings, presenting encouraging re-

sults for systems where increasing the number of rings did not alter the effect

of the topological operations. This allows us to increase the number of possible

logic operations on a qubit, potentially increasing efficiency, without compro-

mising the universality of those operations. It also provides us with an easy

way of producing many qubits.

Using results from ref. [47], we categorised all possible 2-dimensional local

representations. For arbitrary dimension, we presented a proof showing how

the local representation of the slide generator, R, is related to the R-matrix

of the quantum double of the group labelling the basis states of the vector

spaces it acted on. With a representation for this operator, we showed how a

representation of the full motion group could then be induced.
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Chapter 4

Interacting Ising Anyons

The previous two chapters discussed the constraints imposed on a topological

quantum computer by limitations placed on its constituent qubits due to the

(abstract) mathematical laws they must obey (mainly the group-like nature of

the operations). We were able to offer some guidelines on how to optimize the

design of the computer within the confines of these laws.

However, in a real system these laws would not be the only constraints

on the system. Although topological operations are robust against small per-

turbations of the system, unwanted topological changes which are out of our

control may occur. Qubits should not be expected to exist in complete isola-

tion and the inevitable interaction with their environment will have an effect

on computations we perform.

This chapter focuses on one specific system where anyons are predicted

to occur, we examine methods for creating qubits within this system and in-

vestigate how undesired interactions can affect the accuracy of calculations.

By modelling these more realistic qubits, we hope similarly to the previous

two chapters, to be able to provide some guidelines for how best to construct

topological qubits in a physical system so as to minimize errors.

4.1 The Fractional Quantum Hall Effect

Fractional quantum Hall systems are currently among the most promising

candidates for the physical realisation of topological qubits. When an electron

gas is confined to a (2-dimensional) plane and subject to low temperatures

and a strong, perpendicular magnetic field its Hall resistance, RH , becomes
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quantised [53];

RH =
1

ν

h

e2
(4.1)

where e is the electron charge and h is Planck’s constant. ν here is called

the filling factor of the system, given by the ratio of electrons to magnetic

flux quanta (Φ = hc/e); ν = Ne/NΦ, where NΦ is the number of flux quanta.

This quantisation of RH is known as the quantum Hall effect. Semi-classically,

the filling factor can take on non-integer values [54] giving rise to fractional

quantum Hall systems.

At all integer values of the filling factor we would naively expect the Hall

conductance, σH , to increase inversely to the magnetic field. However, ex-

periments [53] show the presence of plateaus in the Hall conductance as the

magnetic field is varied. Electrons moving in 2 dimensions in a perpendicu-

lar field have their kinetic energy quantised into Landau levels [55, 56]. The

Landau levels for electronic systems have a degeneracy which is proportional

to NΦ, so if we decrease the magnetic field we decrease the degeneracy of the

Landau levels and force electrons to occupy higher Landau levels (with higher

kinetic energy) thus increasing the conductance.

When disorder is present in the system it splits the degeneracy of the

Landau levels. The disorder potential allows electrons to take energy values

between the Landau levels but these electrons are localised about equipotential

contours and so do not contribute to the Hall conductance. Thus, when the

magnetic field is decreased and some electrons are forced out of their Landau

level, they may not reach the energy of the next Landau level and instead move

to one of these localised states. Here they don’t contribute to the current

density and so the Hall conductance is not increased. We then don’t see

the proportional decrease in the Hall resistance we expect from the classical

RH ∝ B formula, rather plateaus appear where the localised states prohibit

the Hall conductance from increasing with lower magnetic field. Such a plateau

persists until an electron is excited to an extended state, this electron is not

localised and so contributes to the conductance [57, 58, 59].

For certain fractional values of the filling factor the quantum Hall effect also

displays plateaus, generally when ν is a simple, odd-denominator fraction. For
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fractional filling of the lowest Landau level, ν < 2 (for 2 spin directions), we

see prominent plateaus at ν = 1/3, 1/7, as well as ν = p/(2p± 1). In the first

Landau level, 2 < ν < 4, we see new plateaus at ν = 5/2, 7/2 and 12/5.

Figure 4.1: Quantised Hall states in the first (left) and second (right) Lan-
dau levels. Rxy, RH are the Hall resistance and R,Rxx are the longitudinal
resistance which goes to zero at the plateaus. Sources: refs. [60] and [61] re-
spectively (reprinted with permission).

Trial Wavefunctions

The explanation behind these fractional quantum Hall states, however, is much

more complex than the integer case. For filling fractions that are less than one,

all electrons are in the lowest Landau level, meaning the kinetic energy is the

same for all states and can be set to zero [62]. It is clear then, that the system

is dominated by the interaction between the electrons. However, the specific

underlying cause of the effect has not yet been fully determined, so we must rely

on phenomenological descriptions in terms of trial wavefunctions or effective

field theories, see for example refs. [63, 64]. From these approximations we

can extrapolate some of the physics of the system, which can be compared to

physical observations to determine the accuracy of the prediction, as well as

using direct comparison with exact solutions from numerical models for small

systems.

Trial wavefunctions have been proposed for a variety of fractional filling

factors, including the Laughlin states at ν = 1/q (q = odd) [63] and the com-

posite fermion / hierarchy states at ν = p/(2p± 1) [65, 66], and, while all studied

states are predicted to exhibit anyonic excitations, for the most part these

excitations are expected to be Abelian in nature [67].
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The Pfaffian wavefunction proposed by Moore and Read [19] and its particle

hole conjugate, the antiPfaffian state [68, 69], have been shown through nu-

merical analysis to have a large overlap with the state at ν = 5/2 [70, 71, 72, 73].

Though it is still unclear which best describes the state [74, 75] (recent results

slightly favour the antiPfaffian [76]). This makes the ν = 5/2 state of particu-

lar interest as the excitations of both the Pfaffian and antiPfaffian trial states

carry non-Abelian statistics and so present a candidate system for topological

quantum computation [77, 78]. While these statistics alone are not sufficient

for universal quantum computation, methods have been devised to combine

them with certain non-topologically protected operations in order to achieve

universality [79, 80].

Non-Abelian statistics have also been predicted on the basis of other trial

wavefunctions which have been shown to have good overlaps with certain frac-

tional quantum Hall states, including the Read-Rezayi state [81, 82] at ν = 12/5

and the Bonderson-Slingerland state [83, 84] at ν = 12/5 and ν = 2 + 3/8. How-

ever the Moore-Read state currently presents the best prospect for developing

topological qubits, its larger gap to excitations means it can be seen at higher

temperatures [61]. It is then more likely that experiments will observe and be

able to manipulate this state than these other suggested states.

Qubits in FQH Liquids

Naturally the ν = 5/2 state is under intense scrutiny at the moment and much

effort has been made to address the question of how one might construct and

operate on a qubit in the system. The interaction between quasiparticles in

the bulk and the excitations on the edge of the system present a challenge to

the construction of any qubit in the system.

In current proposals, qubits are imagined as collections of anyons in the

bulk of the system. The state in which the qubit resides is determined by

the fusion channels of the bulk anyons, as discussed in section 1.4. However,

the integrity of the state may be compromised due to inevitable interactions

between the qubit and edge excitations, as well as interactions between anyons

in the bulk.

To be confident in the calculation performed by our topological computer,
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we must then ensure to implement a design of the qubits which would minimize

any compromising effects of the edge-bulk and anyon-anyon interactions, or at

least we would like to understand these effects so that we can compensate for

them in our calculations. To this end, this chapter focuses on modelling anyons

in a ν = 5/2 fractional quantum Hall sample in order to ascertain how exactly

these interactions affect the state of the qubits. To do this, we must derive the

eigenstates of the interacting system in order to calculate the time evolution

of any information stored in the qubit.

4.2 The Ring Model

We take as our system a 2-dimensional electron gas subject to low tempera-

tures and a strong, perpendicular magnetic field and we ensure that the ratio

of electrons to magnetic flux quanta is appropriate to produce a fractional

quantum Hall state at filling factor ν = 5/2.

The incompressibility of a fractional quantum Hall fluid means it will try

to maintain a constant density throughout. However, we will assume that

the density would naturally decrease towards the edges, lowering the filling

factor here and resulting in the creation of quasiparticle excitations in an

attempt to keep the density constant [85]. Alternatively we can ensure that

the quasiparticles will be created close to the edge by increasing the number

of impurities here (as quasiparticles tend to be localised on impurities [86]) or

by altering the magnetic field or electron density close to the edge.

For a circular droplet then, we can assume that these excitations approxi-

mate a circular ring close to the edge of the sample. This ring of bulk quasi-

particles forms the qubit (or qubits) of the system, i.e. it is where we plan

to store the information for quantum computations. For the predicted anyon

model for this system (discussed more in the Ising anyon section), every pair

of anyons has two possible fusion channels, forming a two-level system, so in a

non-interacting system we would have N/2 − 1 qubits, for N anyons. The −1

factor here comes from choosing that the overall topological charge of the sys-

tem to be the vacuum (this will actually depend on the number of the anyons

in the system but we would expect excitations to be created in pairs which

would fuse back to the vacuum).
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The Chiral Edge

Being an incompressible liquid (see refs. [63, 87]), the fractional quantum Hall

system has an energy gap to excitations in the bulk. The only low-lying exci-

tations then, are surface waves along the edge of the liquid. At the boundary

of the system there is a confining potential which pushes the energy of the

Landau levels above the Fermi surface creating gapless excitations which are

restricted to the 1-dimensional edge due to the bulk gap.

The Hall conductance and electric confinement generate a current which

causes these excitations to propagate along the edge. With the direction of

the propagation set by the magnetic field and backscattering suppressed by

the necessarily strong nature of this field [88], these edge modes are chiral in

nature.

The edge excitations can then be shown to be described by a U(1) Kac-

Moody algebra [89], for which the Hilbert space of the chiral boson theory

forms a representation. By calculating the electron propagator it is found that

the electrons are strongly correlated, with the electron correlator having an

anomalous exponent. These states then resemble Luttinger liquids, where the

electron correlator also bears an anomalous exponent [27]. Then, due to the

unidirectionality of these edge modes, we can say that the edge can be thought

of as a chiral Luttinger liquid. A series of papers by Wen and Lee [27, 90, 91, 89]

show this in greater detail.

Most importantly for us, as we will see in later sections, the low energy

excitations of a Luttinger liquid can be described by an appropriate conformal

field theory [92, 93], and so the edge of a fractional quantum Hall liquid can

be treated as a chiral conformal field theory.

Ising Anyons

The non-Abelian anyon species which are proposed to be present in the ν = 5/2

state are of Ising type [19], meaning the edge is described by the Ising conformal

field theory. The Ising CFT actually only describes the neutral excitations of

the ν = 5/2 state, for a full description of the ν = 5/2 state we should tensor

this Ising CFT with a U(1) theory which describes the charged excitations.

However, the charged excitations will only contribute Abelian phases to the
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braiding representations [80], owing to the 1-dimensional nature of the U(1)

description. We will, therefore, largely ignore this part and concentrate solely

on the neutral excitations.

This Ising CFT has three species of anyon; a topologically trivial particle,

1, a fermion, ψ, and an Ising anyon, σ, which have conformal weights; 0, 1/2

and 1/16 respectively and obey the Ising fusion rules:

1× 1 = 1, 1× ψ = ψ, 1× σ = σ

ψ × ψ = 1, ψ × σ = σ

σ × σ = 1 + ψ (4.2)

along with their symmetric counterparts. Our model then consists of a ring of

σ anyons excited close to the edge of a ν = 5/2 fractional quantum Hall puddle,

which interact with each other through the Ising fusion rules in equation (4.2)

(a detailed Hamiltonian for this system will be given in section 4.3).

We can obtain the topological charge of the entire ring by looking at its

fusion tree; we pick a particular σ and fuse it with a neighbouring σ, then fuse

this product with the next σ and so on for all σ’s in the chain. A standard

basis for such a chain is to label states by the possible labellings of the fusion

tree, as shown in figure 4.2.

σ1σ0 σ3σ2 σ4 σ5 σ2N σ2N+1

y0

σ
y1

σ
y4

σ

T
Figure 4.2: Fusion tree for a collection of interacting σ anyons. yi ∈ {1/ψ}
labels the fusion of channel of all anyons to its left, i.e. yi ∈ {σ0×σ1×· · ·×σi+1}
and T is the combined topological charge of all anyons in the system.

The links between even and odd numbered σ’s are fixed, due to the Ising

fusion rules (equation (4.2)) all anyons to the left of any of these links must

fuse to a σ charge. The links between odd and even numbered σ’s (labelled
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by y’s in the figure), however, are variable, they can be labelled by either 1 or

ψ. Each of these y-labelled links then has an associated 2-dimensional vector

space, V , spanned by the states {|1〉, |ψ〉}.

However, as the chain is circular, the final fusion product must fuse back

to the first σ. Due to translational invariance of the chain, we would expect

the fusion between the N th and zeroth anyons to behave in a similar fashion

to all other fusions. This translational invariance is not apparent in our above

basis choice, as each label is dependent on the fusions which preceded it and

so different sites must be treated differently.

We will be interested in calculating the effect of anyons interacting with

their nearest neighbours, it will therefore be useful to move to a more suitable

basis which allows for a more simple interpretation of these interactions. We

can perform an F -move on each of the (even, odd) links (i.e. those which must

take a σ value) to produce a fusion tree in which each even numbered σ fuses

with the odd numbered σ to its right, before combining with the fusion product

of the anyons to the left of this pair. The F -move which performs this basis

change is in fact trivial, [F yσσ
y′ ]σ,y′′ = 1, for y, y′, y′′ ∈ {1/ψ}. So we can say this

new basis, with (even, odd) pair fusing as shown in figure 4.3, is equivalent to

the basis in figure 4.2.

σ1σ0 σ3σ2 σ4 σ5 σ2N σ2N+1

x0 x1 x2 xN

y0

y1

T
Figure 4.3: Fusion tree for σ anyons in an (even, odd) pairing basis. The
Xi ∈ {1/ψ} now label the fusion channel of only the individual pairs, i.e. Xi ∈
{σ2i× σ2i+1}. The yi ∈ {1/ψ} labels on the main fusion branch are equivalent
to the y labels in figure 4.2, they denote the fusion channel of all X’s (and
hence all σ’s) to its left.

Clearly the basis in shown in figure 4.3 is only suitable for an even number

of anyons, thus T = 1/ψ. For an odd number of anyons, we can still pair
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them in a similar fashion, the only difference will be a single, lone anyon at

the end of the tree, σ2N . Thus for the odd case we must have T = σ. However,

calculation of the interactions between neighbouring anyons is unaffected and

can be carried out in the same manner as for the even case as we will see in

the next section.

4.3 Anyon Ring Hamiltonian

An obvious place to start is by constructing the Hamiltonian for the ring of

anyons, as done in ref. [94, 95, 86], this allows us to determine the dynamics

of our qubits in isolation from any external interactions.

Firstly we look at an open chain of anyons. The Hamiltonian can be

obtained by implementing an interaction between all neighbouring σ anyons

which will be dependent on their fusion channel [24, 96, 97]. We then follow a

similar procedure to the one outlined for Fibonacci anyons is ref. [94] and [95],

to find the contribution of each site to the Hamiltonian.

We use the basis defined in figure 4.3 in the previous section, where anyons

fuse together in (even, odd) pairings. An interaction is implemented by assign-

ing some energy penalty to the fusion channels of the anyons, then, as each

pair has two fusion channels, the interaction takes the form; ΠJ = Jσz (σz is

a Pauli matrix and is not associated with the σ anyons) where the sign of J

will determine which channel is favoured (if J > 0 the ψ channel is favoured

in this formulation).

We start be examining the interaction between these (even, odd) anyon

pairs. In our chosen basis, this just involves applying the above interaction

operator, ΠJ , to the vector space associated with the fusion charge of each

(even, odd) anyon pair. If we let Πi and σzi be operators which act trivially

on the vector spaces of all X labels except for Vi, on which the Π or σz

operators are applied respectively, then this interaction contributes a value of∑N
i=1 ΠJ

i = −J
∑N

i=1 σ
z
i .

We now need to account for the interaction between the (odd, even) anyon

pairs. To do this, we must change to a basis where such anyons fuse together

in this order. Take a subspace of 4 anyons, σi−1 to σi+2, which, in our current

basis, are fused with (σi−1, σi) giving a vector space, V i−1
2

, of their fusion
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charges and (σi+1, σi+2) giving a vector space, V i+1
2

. For notational ease, we

will label these two fusion charges as a and b respectively. The charge a then

fuses with the total charge of all preceding anyons, K ∈ {X0 × · · · × X i−3
2
},

giving a × K = L, which then fuses with b to give L × b = M as the total

charge of the first i+ 2 anyons.

A trivial F -move allows us to move to a basis where a first fuses with b,

giving a charge y ∈ {σi−1×σi×σi+1×σi+2} with K× y = M determining the

values of y. Using another trivial F -move we can make a fuse with σi+1, to

give a σ charge, before fusing with σi+2, to give y. Finally we must perform a

non-trivial F -move on a, [F
σi−1σiσi+1
σ ]a,ã, to move to a basis where σi and σi+1

fuse together to give some charge, ã.

σiσi-1 σi+1 σi+2

a bK

L

M

σiσi-1 σi+1 σi+2

a bK

M

y

σiσi-1 σi+1 σi+2

a
K

M

y
σ

σiσi-1 σi+1 σi+2

a
K

M

y
σ

~

FF

F

Figure 4.4: The process needed to move to a basis where an odd numbered
anyon, σi, is paired with the even numbered anyon, σi+1, to its right. Only
the final F -move shown is non-trivial.

As shown in figure 4.4, we now have a basis where σi is paired with σi+1,

as desired. At this stage we implement the interaction as before, by applying

the interaction operator, Jσz, to the vector space associated with the charge

of σi and σi+1, i.e. ã.

Lastly we must reverse all of the operations performed to get to this basis,

in order to return to our original basis of (even,odd) pairings. While inverting

the various F -moves brings us back to our original basis, the entire process

may result in a non-trivial action on our original vector spaces. The two spaces

are then given new labels a′ and b′, which are not necessarily the same as a
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and b. However, while the vector spaces a and b may have been altered, the

ultimate fusion of the four anyons cannot be affected by this process, i.e. we

still must have a′ × b′ = a× b = y.

But a′ is related to the original a by the following series of non-trivial

operations;

a′ = [F σi−1σiσi+1
σ ]ã,a′Π

J
a′ [F

σi−1σiσi+1
σ ]a,ãa (4.3)

and all F -moves of this form are equivalent, i.e. we have a′ = [F σσσ
σ ]−1ΠJ [F σσσ

σ ]a,

where;

F = [F σσσ
σ ] =

1√
2

1 1

1 −1

 (4.4)

Thus with the value of ΠJ given above, we have: a′ = σxa (σx is also Pauli

matrix and is not associated with the σ anyons). So this process will ‘flip’ the

state of a to the opposite fusion channel. Then for a′ × b′ = a× b to hold we

must also have b′ = σxb. Thus the interaction between σi and σi+1 causes the

state of a to be flipped, which forces the state of b to also be flipped, in order

for the total charge of the four anyons to remain unchanged.

We can perform a similar procedure for all (odd,even) pairings in the sys-

tem, and so this interaction then contributes a factor of J
∑N

i=1 σ
x
i σ

x
i+1. Our

resultant Hamiltonian is then a combination of the contributions from both

the (even,odd) interactions and (odd,even) interactions:

H = J
N−1∑
i=1

σxi σ
x
i+1 +

N∑
i=1

σzi (4.5)

This is the Hamiltonian for a chain of interacting σ anyons. To describe the

ring of anyons which features in our model, we need to close the chain by

allowing the first and last anyons to interact. Due to translational invariance

of the ring, we should be able to shift the numbering of the anyons without

changing the physics, i.e. our choice of σ0 is arbitrary and the system should

behave the same regardless of this choice. The interaction between σN and σ0

should then have an equivalent contribution to the other interactions in the

system, i.e. we should get a σx ⊗ σx factor acting on the two vector spaces
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involved, namely V0 and VN .

When obtaining Hamilonians corresponding to interacting anyons, it is

convention to set the energy assigned to one of the fusion channels to zero.

This can be easily done by shifting the values assigned by interaction operator

by J and setting J = J/2;

Π
J/2 7→ J

2
12 − Π

J/2 = J

0 0

0 1

 (4.6)

where we have chosen to assign the zero energy to the 1 channel. This will

have no effect on the Hamiltonian we have obtained; for each i we get an extra

−1i⊗−1i = 1 term from the σxi σ
x
i+1 term and an extra −1i term from the σzi ,

which will obviously cancel. The only difference, is that now a positive J will

penalize the ψ channel but we can add an overall negative sign to bring this

in-line with our original formulation. According to ref. [98, 96] the ψ channel

can have a lower energy, this is largely dependent on the distance between the

anyons and can oscillate between positive and negative but the sign difference

will not ultimately affect our results. We would like to choose J such that

the ψ channel has an energy of −J , i.e. J > 0, this means we give an energy

penalty to the 1 channel so that a given Ising link prefers to have a ψ charge.

This finally gives the Hamiltonian as:

H = −J
N∑
i=1

{σxi σxi+1 + σzi } (4.7)

But equation (4.5) can be recognised as the Hamiltonian for the transverse

field Ising model (TFIM) [99] at its critical point, with the magnetic field in

the z direction.

The anyon ring described by this Hamiltonian is then coupled somehow to

chiral edge modes described by an Ising conformal field theory. This coupling

has been explored previously for the interaction between single bulk anyons

and the edge [100, 85]. Before we examine the coupling in detail we first need

to study the internal dynamics of the ring of bulk excitations.
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4.3.1 The Transverse Field Ising Model

The method for diagonalising the above Hamiltonian (equation (4.7)) for the

TFIM is well known, however, we will outline the procedure here to highlight

some aspects which will be of particular importance when we move to our

circular chain case. We will follow the derivations provided in ref. [101, 102,

103].

Open Chain

We start with the general form of the transverse field Ising Hamiltonian i.e. not

at its critical point. With the magnetic field in the z direction this is written

as:

H = −J

{
N∑
i=0

σxi σ
x
i+1 + g

N∑
i=1

σzi

}
(4.8)

Note in the finite, open chain case, the particles on the ends of the chain are

nondynamical, their values are fixed by the boundary conditions. Therefore

this calculation is done over a chain of length N + 2, where sites 0 and N + 1,

the end sites, are fixed to be either equal or unequal. The first term in equa-

tion (4.8) gives the nearest neighbour interaction between the spins with an

interaction energy of J , the second term gives the coupling to the perpendicu-

lar magnetic field, where Jg is the strength of the magnetic field. This model

clearly reproduces equation (4.7) when g = 1, which also happens to be a

quantum critical point between the ferromagnetic, g < 1, and paramagnetic,

g > 1, phases of the TFIM.

Our first step is to move from a spin description of the model to a fermionic

description wherein spin values on sites are reinterpreted as sites which are

either occupied or unoccupied by a fermion. This is done using the following

Jordan-Wigner transformation [104]:

σzi = 1− 2c†ici

σ+
i =

1

2
(σxi + iσyi ) =

∏
j<i

(1− 2c†jcj)ci

σ−i =
1

2
(σxi − iσ

y
i ) =

∏
j<i

(1− 2c†jcj)c
†
i (4.9)
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where: c†i and ci are fermionic creation and annihilation operators. Some

algebraic manipulation then gives the fermionised Hamiltonian as:

Hf = −J

{
N∑
i=0

[
ci+1ci + c†i+1ci + c†ici+1 + c†ic

†
i+1

]
+ g

N∑
i=1

[
1− 2c†ici

]}
(4.10)

We can move to the momentum basis by introducing fermionic momentum op-

erators, ck, and then perform a Bogoliubov transformation [105], by switching

to a description in terms of fermions which have creation operators;

γ†k = ukc
†
k + ivkc−k (4.11)

We choose the coefficients uk and vk so as to eliminate all terms which don’t

conserve fermion number:

uk = cos

(
θk
2

)
vk = sin

(
θk
2

)
θk = tan−1

(
sin(k)

cos(k)− g

)
(4.12)

Lastly, absorbing a constant term into the definition of H leaves us with the

fully diagonalised Hamiltonian:

H =
∑
k

εk

(
γ†kγk −

1

2

)
(4.13)

where εk = 2J
√

1 + g2 − 2g cos(k) is the excitation energy of a Bogoliubov

fermion with momentum k. Inserting g = 1, to match up with our anyon

model then leaves us with:

εk = 4J

∣∣∣∣sin(k2
)∣∣∣∣ (4.14)

For appropriate values of N and J then, we can have arbitrarily small exci-

tation energies, thus the system is gapless indicating that g = 1 is indeed a

critical point of the TFIM. The possible momenta, k, will be restricted by the

fixed boundary conditions on the finite chain, see for example refs. [99, 102]

which give:

k =
π

N + 1

(
m+

θk
π

)
{for integer m} (4.15)
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For g ≥ 1 equation (4.15), with θk given in definitions (4.12), has N real

solutions for 0 ≤ k ≤ π. For g < 1 however, there are N − 1 real roots and

one complex root of the form; k0 = π + iλ corresponding to a single localised

Majorana mode. At the critical point, g = 1, the roots of equation (4.15) take

on the simplified form:

k =
(2m+ 1)π

2N + 1
{for: m = 0, ..., N − 1} (4.16)

If g is not restricted to the critical point, we can use the result to describe a

model with paramagnetic (g > 1) and ferromagnetic (g < 1) sections. One

dimensional wires, with such paramagnetic and ferromagnetic sections, contain

Majorana fermions on the critical boundary between them and have been used

in another proposed TQC model [106, 3]. Many of our results will then have

relevance to this TQC implementation also.

We have assumed in the above calculations that the interaction between

each pair of anyons is of the same strength (implying that all anyons are

evenly spaced throughout the ring). However, it is likely that this will not be

the case in reality and the interaction between the anyons will vary. This can

be accounted for by implementing a per site interaction strength, Ji, and field

strength, gi. We should then reformulate the Hamiltonian as:

H ′ =
∑
i

{
Jiσ

z
i σ

z
i+1 + giσ

x
i

}
(4.17)

We can use a Jordan-Wigner transformation to fermionise the system in a sim-

ilar fashion to before but, as the system is no longer translationally invariant,

we cannot diagonalise the Hamiltonian in the momentum basis to obtain mo-

mentum dependent energies of the form in equation (4.14). Nonetheless it will

prove useful to keep this model in mind as a comparison to our “evenly spaced,

homogeneous field” model and we will periodically return to this alternative

model as we proceed through this chapter.

Closed Chain

Now we need to reintroduce the fact that this chain is actually a closed ring,

which will have an effect on the the outcome of the diagonalisation, specifically
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on the permitted momenta.

Firstly, into the original Ising chain Hamiltonian, equation (4.7), we insert

an extra term which accounts for the Ising interaction between the last and

first σ anyons, as discussed earlier:

Hc = −J

{
N−1∑
i=0

(
σzi σ

z
i+1 + σxi

)
+ σzNσ

z
0

}
(4.18)

Performing a similar Jordan-Wigner transformation and basis change, as was

outlined above in equation (4.9), gives:

Hc = −J

{
N−2∑
i=0

(c†i + ci)(c
†
i+1 − ci+1)− P (c†N−1 + cN−1)(c†0 − c0) +

N−1∑
i=0

(1− 2c†ici)

}
(4.19)

This is similar to equation (4.10) except we have an extra term accounting

for the closed nature of the chain. It is not immediately clear how we would

diagonalise this Hamiltonian, so we would like to express it in a more familiar

form. To this end we introduce the parity operator, P :

P =
∏

j<N+1

(1− 2c†jcj) = (−1)F (4.20)

Note (−1)F will give −1 if F is odd and +1 if F is even, where we have used

the fact that 1 − 2c†jcj = −1 if a fermion is present and +1 if not. As the

product in the above formula is over all sites, F simply counts the number

of sites which are occupied by a fermion. Hence, P gives ±1 depending on

whether there is an even or odd number of fermions present in the chain, it is

then referred to as the parity term.

We see that, if there is an odd number of occupied sites, P = −1, then

the extra term is of the same form as the first term and so this term can be

absorbed into the first sum. We know that the N th site must be identified with

the 0th site in order to close the chain into a ring, so we relabel c0 = cN and

the Hamiltonian is then in the same form as in equation (4.10), i.e. Hc = Hf ,

but with periodic boundary conditions.

However, if there is an even number of occupied sites, P = +1, then the

parity operator term has the wrong sign and so cannot be absorbed into the
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sum of the first term. To remedy this, we introduce antiperiodic boundary

conditions, c0 = −cN . Again this puts equation (4.19) in the same form as

equation (4.10) but now with antiperiodic boundary conditions.

Thus we are separating the Hilbert space into two subspaces according to

the parity of the number of occupied sites. We then consider the Hamiltonian,

Hf , acting on each subspace separately.

From here, we can just follow the same procedure as in the open chain case,

meaning we obtain a similar result for the closed Hamiltonian:

Hc =
∑
k

εk

(
γ†kγk −

1

2

)
(4.21)

We must now say something about the restrictions on the values of the mo-

mentum k which arise from the discretisation of a finite chain with periodic or

antiperiodic boundary conditions. We obtain different restrictions for the two

Hilbert subspaces:

k =

 2mπ
N

If P = −1

(2m+1)π
N

If P = +1
(4.22)

for −N
2
≤ m ≤ N

2
− 1 if N is even and −N−1

2
≤ m ≤ N−1

2
if N is odd. It

is important to remember that N here is the number of fermionic sites in the

chain, i.e. the number of spins in the transverse field Ising model, but as the

chain sites refer only to every second link in the anyon fusion tree the number

of anyons in the chain will actually be 2N .

Summarising; if there is an odd number of occupied sites, then the momenta

of the Bogoliubov fermions (i.e. the fermions created by application of the

γ†k operators) are restricted to integer multiples of π/N and, if there is an

even number of occupied sites, then the momenta are restricted to half-integer

multiples of π/N.

The Ground State

The ground state of a system described by the Hamiltonian in equation (4.21) is

of the form of the BCS ground state [107, 108]. It is a product of the Bogoliubov

annihilation operators acting on the vacuum, |gs〉 = |BCS〉 =
∏

k γk|0〉. It
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is important to calculate the contribution to the ground state energy of the

k = 0 and k = π modes. As these both satisfy k = −k, their omission from the

ground state could, depending on the phase, lower its energy, see ref. [109]. At

the critical point, ε0 = 0, so the k = 0 mode contributes nothing to the energy

of the groundstate. Its inclusion in the product then makes no difference to

the ground state energy but we must omit it as γ0 = c0 which would give;

|gs〉 =
∏

k 6=0 γkγ0|0〉 = 0. For k = π we have επ = 4J , its inclusion then

increases the energy of the ground state and so we should also omit this mode

from the product. Normalising, we then get the ground state in the following

form:

|gs〉 =
∏

0<k<π

(uk + ivkc
†
kc
†
−k)|0〉 (4.23)

However, the range of k values will be different depending on which parity

sector we are in, thus we get two separate states which we label |gseven〉 and

|gsodd〉. Note that this is just for notational ease, it is not clear yet which one

of these is the actual ground state. Also |gsodd〉 is not the ground state of the

odd sector, in fact it is not even an eigenstate of the system as valid odd sector

states must be given by a product of an odd number of γ†k acting on |gsodd〉.

It can be easily checked that any γk will annihilate the appropriate “ground”

state. We can obtain the energy of either state with by acting on it with Hc.

For |gseven〉 we get:

Hc|gseven〉 = −
∑
k

εk
2
|gseven〉 = −2J

N−1∑
m=0

sin

[
(2m+ 1)π

2N

]
|gseven〉 (4.24)

We write the sin term in exponential form and use
∑L−1

j=0 x
j = 1−xL

1−x to get:

Eeven
gs = −2J

1

sin
(
π

2N

) (4.25)

For |gsodd〉 we get:

Hcγ
†
0|gsodd〉 = −

∑
k

εk
2
γ†0|gsodd〉 = −2J

N−1∑
m=0

sin

[
2mπ

N

]
γ†0|gsodd〉 (4.26)
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Using similar methods to those which produced equation (4.25) above, we get:

Eodd
gs = −2J

cos
(
π

2N

)
sin
(
π

2N

) (4.27)

In general
cos( π

2N )
sin( π

2N )
< 1

sin( π
2N )

, so Eeven
gs < Eodd

gs , meaning the lowest even sector

state is the true ground state of the system, |gseven〉 = |gs〉. However, in the

thermodynamic limit all states will become degenerate, as their energies are

proportional to 1/N.

Given the excitation energy, equation (4.14), and the property of our system

that J > 0, it is clear that, in the odd parity sector, single particle excitations

will contain the lowest energy state. As the energy of a state is proportional to

its momentum, we easily identify the lowest energy state in the odd sector to

be γ†0|gsodd〉. While it can be shown that |gsodd〉 and γ†0|gsodd〉 have the same

energy, as stated earlier, |gsodd〉 is not an eigenstate of the system and so does

not have a well-defined energy. The energy of the true state is given by adding

the excitation of a zero momentum Bogoliubov fermion to Eodd
gs :

Hcγ
†
0|gsodd〉 =

[
ε0γ
†
0 −

∑
k

εk
2
γ†0

]
|gsodd〉 = 0− 2J

N−1∑
m=0

sin

[
2mπ

N

]
γ†0|gsodd〉

(4.28)

The zero momentum excitation is then a Majorana fermion with zero energy,

giving the lowest state of the odd sector an energy of:

E0 = −2J
cos
(
π

2N

)
sin
(
π

2N

) (4.29)

We also want to calculate the energy of first excited state in the even sec-

tor, i.e. the energy of exciting two fermions with the lowest possible total

momentum available in the even sector, the reason for this will become clear

later. The lowest possible total momentum is K = 0 and the lowest energy
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state with K = 0 is γ†π/Nγ
†
−π/N |gs〉:

Hcγ
†
π/Nγ

†
−π/N |gs〉 =

[
επ/N + ε−π/N −

∑
k

εk
2

]
γ†π/Nγ

†
−π/N |gs〉

=
[
4J
∣∣∣sin( π

2N

)∣∣∣+ 4J
∣∣∣sin(− π

2N

)∣∣∣+ Egs

]
γ†π/Nγ

†
−π/N |gs〉

⇒ E−π/2,π/2 = 8J sin
[ π

2N

]
− 2J

cos
(
π

2N

)
sin
(
π

2N

) (4.30)

We now rescale the zero energy so that Egs = 0 and recalculate E0 and E−π/2,π/2

relative to this new ground state energy. Further simplification can be achieved

using sin (1/N) ≈ 1/N for N >> 1. Finally we can make the results a little

clearer by setting the scaling energy J = N
4π

, leaving us with:

Egs = 0

E0 = 1/8

E−π/2,π/2 = 1 (4.31)

in the N → ∞ limit. These energies will prove useful for identifying the

appropriate conformal field theory to describe the model.

4.3.2 TFIM - Ising CFT Correspondence

We have indicated previously that our model is described by the transverse field

Ising model at its critical point, we therefore expect it to have some equivalent

description in terms of conformal field theory. We then need to deduce which

conformal field theory corresponds to the critical TFIM, of course this is well

known [28] but it is useful show it explicitly (which we will do by comparing the

Lagrangian of the system with that of a conformal field theory with c = 1/2).

We can write the Hamiltonian in the continuum limit, where the lattice

spacing, a, goes to zero, we follow the procedure outlined in ref. [101]. We

define the continuum fermion field as:

ψ(xi) =
1√
a
ci {ψ(x), ψ†(x′)} = δ(x− x′) (4.32)

Inserting this into the position basis Hamiltonian, equation (4.10), and writing

ψ(xi), using a Taylor expansion, as; ψ(xi+1) = ψ(xi) + a∂xψ(xi) + O(a2), we
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get:

H = −J
∑
i

{
g + 2a(1− g)ψ†(xi)ψ(xi) + a2

[
ψ†(xi)∂xψ

†(xi)−

−ψ(xi)∂xψ(xi)] +O(a3)
}

(4.33)

We can then move to the continuum limit by replacing a by an infinitesimal

distance in the x direction, dx:

H = const.−
∫ {

2J(1− g)ψ†(x)ψ(x) + Ja
[
ψ†(x)∂xψ

†(x)− ψ(x)∂xψ(x)
] }
dx

(4.34)

We are interested in the critical point, setting g = 1 means the first term in the

integral will be zero. Note the second term in the integral implies that as a→ 0

we must take J → ∞, the constant term is dependent on J and so will tend

to ∞ in the continuum limit. At the critical point the Hamiltonian density

can then be expressed as; H = ψ∂xψ − ψ†∂xψ
† which has a corresponding

Lagrangian density:

L = 2i
(
ψ∂̄ψ + ψ̄∂ψ̄

)
(4.35)

where ∂ = 1/2(∂t − i∂x) is the holomorphic differential operator and ψ† = ψ̄

in one dimension. This L is the Lagrangian density for massless free Dirac

fermions in one dimension. To see this, note that fermions which are solutions

to the Dirac equation have the following Lagrangian density:

Lff = iΨ† [γµ∂µ −m] Ψ (4.36)

where: Ψ = (ψ ψ̄)T is a Dirac spinor field and m is the mass. For massless

fermions in the x and t dimensions only, this can be rewritten as:

Lff = i
(
ψ̄ ψ

) 0 ∂t − i∂x
∂t + i∂x 0

ψ
ψ̄

 = 2i
(
ψ∂̄ψ + ψ̄∂ψ̄

)
(4.37)

We see that this is identical to L. Thus we can say that the TFIM at its critical

point can be described by the same conformal field theory which describes
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massless free fermions.

This is known to be the Lagrangian of a conformally invariant field theory

with central charge c = 1/2, see ref. [29]. This corresponds to m = 3 in

equation (1.9) which gives three primary fields with conformal dimensions,

h1,1 = 0, h2,1 = 1/2 and h2,2 = 1/16 (where h̄ = h for all fields).

We can derive this directly by setting the Hamiltonian corresponding to

this Langrangian density to be the energy-momentum tensor, which can then

be expressed in terms of the Virasoro operators, as described in section 1.5.

This shows the h2,1 primary field to be the fermion field, ψ, and the h1,1 field

to be the topologically trivial field, i.e. the identity, 1. The h2,2 field is a little

more complex, it is found to relate to a field σ called the twist field, see for

example ref. [31], which is an interpretation of the boundary conditions of the

ψ field, rotating the ψ field about the σ field changes its boundary conditions

from periodic to antiperiodic.

Returning to our original formulation in terms of Ising anyons, the three

fields correspond directly to the vacuum, the fermion and the Ising anyon.

The interpretation of the twist field is now more obvious as inclusion of an

extra Ising anyon will increase the number of sites in the chain by one, thus

requiring us to change the boundary conditions of the chain. Indeed the fusion

rules produced by the CFT confirm these comparisons. For the Ising model,

m = 3, equation (1.11) gives us the appropriate fusion between the primary

fields as:

φ1,1 × φa,z = φa,z φ2,1 × φ2,1 = φ1,1

φ2,1 × φ2,2 = φ2,2 φ2,2 × φ2,2 = φ1,1 + φ2,1 (4.38)

(for a, z ∈ {1, 2}) which match exactly with the fusion rules listed earlier in

the chapter for the Ising anyon model (equation (4.2)).

This correspondence then explains our results in section 4.3.1, here we

showed that the three lowest lying, zero momentum states of the system had,

in the thermodynamic limit, relative energies of 0, 1/8 and 1. Due to the non-

chiral nature of the ring we would expect, in the CFT description, the primary

fields to occur in holomorphic and antiholomorphic pairs, (φ̄, φ). The action of

the three primary fields of the Ising model, (1, 1), (ψ, ψ) and (σ, σ), will then
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produce highest weight states |0, 0〉, |1/2, 1/2〉 and |1/16, 1/16〉 (pairs of fields with

different conformal dimensions are forbidden, this will be explained further in

the next section).

This shows that these three lowest lying, zero momentum states can be

interpreted as the lowest weight states of the (1, 1), (ψ, ψ) and (σ, σ) represen-

tations of the Virasoro algebra for c = 1/2. Using the Virasoro operators, we

can then build towers of descendant states from these primary states which

should produce the (low-energy) spectrum of our model.

Spectra Comparison

We can understand this correspondence between the fermionic operator and

CFT pictures more accurately if we examine the spectra for the low-lying

states in both cases. For the fermionic operator case we will have two separate

spectra, one for the even sector and one for the odd sector.

Even sector: If we take the thermodynamic limit and set J = N/4π as above,

we get: εk ≈ |k/2|, with k ∈ (2m+1)π
N

. We can approximate the spectrum by

simply calculating the possible excitations which can produce a given energy.

For example:

• ε = 0: This energy can only be achieved by a state with no excitations

thus the total momentum, K, of the state is also zero.

• ε = 1/2: This energy is only achievable in a state with one excitation but

such states are not in the even sector, so we do not include any states at

this energy level. For a similar reason we ignore all energies which are

an odd multiple of 1/2.

• ε = 1: We produce this energy from a state with two excitations, one

with k1 = π/N and the other with k2 = −π/N, so the total momentum is

K = 0. We denote such an arrangement as:

(
− π
N
,+

π

N

)
→ K = 0
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• ε = 2: There are four possible states with this energy:

(
± π
N
,±3π

N

)
→ K = ±2π

N
,±4π

N

We continue on in this fashion and obtain the plot in figure 4.5.
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Figure 4.5: Low energy spectrum for the P = +1 sector. The (×2) labels
represent the fact that two states are represented here.

Odd sector: We can do a similar calculation for the odd sector, where we will

have εm ≈ 2mπ
N

+ 1
8
, the 1

8
contribution coming from the ground state energy

of the odd sector. This then gives us the spectrum shown in figure 4.6.
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Figure 4.6: Low energy spectrum for the P = −1 sector. The (×n) labels
represent the fact that n states are represented here.

From the Ising CFT, we can use the representation of the Verma module

of each field to plot the spectrum. By acting on the states produced by the

ladder operators with (L0 + L̄0) and (L0− L̄0), we can obtain their energy and

momentum. Doing this separately for the three fields then yields the following

spectra:
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Figure 4.7: 1 sector.
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Figure 4.8: ψ sector.
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Figure 4.9: σ sector.

It can be seen that the σ spectrum, figure 4.9, exactly matches the odd

sector spectrum, figure 4.6. None of the above spectra match the even spec-

trum, figure 4.5, however, if we combine the 1 and ψ spectra, figures 4.7 and

4.8, we see that together these exactly reproduce it, as follows:
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Figure 4.10: Composite spectrum produced by combining the spectra for the
1 and ψ sectors.

The even sector then contains two CFT particle towers, the (1, 1) and

(ψ, ψ). These can be differentiated by noting that states in the (1, 1) sector

have an even number of right-moving (if we take the convention that holomor-

phic operators create positive momentum states) and an even number of left-

moving (negative momentum) fermions excited, whereas states in the (ψ, ψ)

sector have an odd number of left-moving and an odd number of right-moving

fermions excited, hence the (xL, xR) notation of the fields which show the left

and right moving channels. The fermionic operators, γk, being the modes of
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the fermionic field, have a relation to the modes, Ln, of the energy-momentum

tensor of the field [29]:

Ln =
1

2

∞∑
k=−∞

(
k +

1

2

)
: γn−kγk : (4.39)

Here the notation of the fermionic operators follows that of the Virasoro gener-

ators, i.e. γ−k = γ†k and γ̄k = γ−k, and the colon brackets represent normal or-

dering of the fermionic operators, i.e. annihilation operators are always moved

to the right. We see then, that the L−n operators will always create or destroy

an even number of right-moving fermions, similarly the L̄n create or destroy

an even number of left-moving fermions. Application of these operators to

any state will then always conserve the parity of the number of left and right

moving fermions, thus states in a particular tower will all have the same parity

of left and right moving fermions.

For states in the odd sector, the parity of the number of right-moving

fermions can be even or odd but the parity of the number of left-moving

fermions must be the opposite. Again the Ln and L̄n operators conserve the

parity of the number of both right and left-moving fermions, so they always

create valid odd sector states.

We can now see why pairs of fields with different conformal dimensions

are disallowed. A pair such as (ψ, 1) would correspond to a state with an

odd number of right-moving and even number of left-moving excitations, thus

an odd number of excitations overall. This puts the state in the odd sector

but the momentum of the state is still determined by the allowed momenta of

the 1 and ψ fields, i.e. it has even sector momentum, which is not allowed in

the odd sector. Similar results are found for other combinations of dissimilar

conformal fields. More generally this constraint comes from the modular in-

variance of the theory, i.e. the requirement that the theory makes sense when

defined on the torus restricts the combinations of the Verma modules which

can possibly occur, see ref. [29]. Thus pairs of fields with different conformal

dimensions correspond to states with a momentum which is not permitted in

the parity sector of the particle number. These are not valid eigenstates of the

Hamiltonian and are, in fact, not even part of the Hilbert space of the system.

Finally, it is important to remember that the spectra in figures 4.5 and

109



4.6 are only an approximation of the energy spectrum of the Hamiltonian

in equation (4.21), which is only accurate provided the angle k/2 is small.

Figure 4.11 shows a direct comparison between the spectrum obtained from

exact diagonalisation of the Hamiltonian and that from our approximation for

a finite sized chain.
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Figure 4.11: Low energy spectrum for the (1, 1) and (ψ, ψ) sectors withN = 12.
Dots represent approximate, CFT spectrum values, crosses represent exact
spectrum values.

The approximate spectrum, and hence the conformal field theory descrip-

tion, is then clearly only good for the low momenta, and consequently low

energy, states of the spectrum. Assuming the system is big enough, this will

not be a problem as such low lying states will be sufficient for our purposes.

4.3.3 Qubit Definition

In order to achieve our ultimate goal of using this system to implement topo-

logical quantum computation, we will need to decide in what way the qubits

of the computer will be encoded. For TQC, we would like to choose states

which are topologically degenerate [9]. Only topological operations in this de-

generate subspace can alter the state of the qubit thus protecting it from local

perturbations.

In the J → 0 limit, the anyons are all far apart and essentially isolated

from each other, there is then no chain interpretation. The energy difference

between the fusion channels of two anyons disappears, i.e. all states become
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degenerate, and we get a system of N “ideal” qubits, with the degenerate

fusion channels of each pair of anyons taken as the qubit states.

This is clearly an idealised system. In reality we would expect some inter-

action between at least some of the anyons. Returning to J 6= 0, we recover

our ring model where the interactions between the anyons in the ring then

lifts the degeneracy of the states in the spectrum. At low energies we then

get bands of degenerate states arising from the CFT description of the chain,

as seen in figures 4.5 and 4.6. The energy difference between the states then

introduces a time scale for the dephasing of states in the system, related to

the gap between the bands.

It is then no longer obvious which states should be chosen as the qubit

states. States which are degenerate are in the same parity sector and are thus

not topologically distinct, i.e. they will correspond to a similar labelling of the

fusion tree for the anyon ring. However, since the energies of the spectra are

in units of 4Jπ/N, we can choose a system large enough so that the bands in

the two sectors become close in energy.

Looking at the lowest “band” in each sector, i.e. just the |gs〉 and γ†0|gs〉

states, figure 4.12 shows how they become more degenerate at higher N . Other

degenerate bands in the system can be shown to behave in a similar manner and

any pair of states from these quasi-degenerate bands can then be considered a

good choice for qubit states.
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Figure 4.12: Energy difference between |gs〉 and γ†0|gs〉 as the system size, N ,
grows (for J = 1, i.e. we keep the same distance between the anyons at all N ,
thus there is a lower 2-dimensional density of anyons at higher N .).

Note that, in a real system, increasing the number of anyons forces the

111



separation between the anyons to decrease, thus increasing J and lifting the

degeneracy again. However, J decays exponentially with distance, so we would

expect it to grow at a slower rate that N . (−1)F will remain a protected

quantum number for large N so, if these quasi-degenerate states are close

enough in energy, they will produce a good approximation of the ideal qubits.

Assuming the anyon-anyon interaction remains significant, the band struc-

ture within each parity sector will still cause dephasing of any qubit states we

choose. Any information stored in the qubit will then become corrupted after

a certain time, as we can no longer be confident of its state.

We will focus on one possible solution to this problem. The parity of a

state should not be affected by the dephasing, i.e. states will only dephase into

other states within their own parity sector. Thus we take the anyon ring to

be single qubit, with the qubit states defined to be the parity of the state of

the ring. These states will remain good qubit states regardless of the values of

N or J , thus any information stored in the qubit will not be corrupted by the

dephasing of the specific state of the ring.

However, this choice of qubit will limit the number of operations that can

be performed on the qubit, certain topological operations exist which alter

the state of the qubit but not its parity, phase change for example. Thus,

while information can be reliably stored in this parity sector qubit, it may

not be practical for quantum computation. We will not, however, assess the

practicality of the system in this thesis, so this implementation of a qubit will

be sufficient for our purposes.

Another solution to this qubit definition issue can be uncovered by return-

ing to the alternative system discussed in section 4.3.1. Here we allowed the

distance between anyons in the chain to vary, resulting in a site-dependent

interaction energy, Ji, with a description of the system given by Hamiltonian

in equation (4.17). Moving to the continuum limit shows the the Lagrangian

for this system to be:

L′ = 2(J(x)−G(x))ψ†(x)ψ(x) + J(x)a
[
ψ†(x)∂xψ

†(x)− ψ(x)∂xψ(x)
]

(4.40)

where the interaction energy and the magnetic field coupling are now a function

of space, Ji, Gi 7→ J(x), G(x). Since, in general, these two functions will not

112



be equal everywhere, this prevents the cancellation of the mass term. Thus

letting the anyons space differently in the chain alters the description of the

model from massless to massive free fermions. The mass term introduces a gap

to excitations for the ground states of both parity sectors which protects them

from perturbations of the system. The ground states of the parity sectors may

then represent good qubit states.

It should be noted however, that these excitations occur within the energy

gap of the incompressible fractional quantum Hall state and so this “new”

mass gap must be smaller than the original gap, in which our system has been

created. If one is relying on this smaller gap to define qubits, then it must be

first ensured that the topological operations performed on the qubit can be

done within the time-scale set up by this smaller energy difference. It is also

clear that the inclusion of this mass term means that the Lagrangian density is

no longer conformally invariant, and so the CFT correspondence breaks down

for this model.

Now that some regimes for the computational states of the system have

been suggested we need to examine how interactions between the qubit and

the edge of the fluid will influence the integrity of the various qubit implemen-

tations.

4.4 Edge Interaction

As stated in section 4.2, the neutral sector of the edge of the ν = 5/2 quantum

Hall fluid is described by a chiral Ising conformal field theory. The energy

spectra for such a system can be easily pictured as similar to those shown

above in figures 4.7, 4.8 and 4.9 except, due to the chiral nature of the edge,

we only consider those descendant states which arise from the application

of holomorphic Virasoro operators on the primary fields, as antiholomorphic

operators must annihilate the primary fields; L̄−m|p〉 = 0 [29]. More simply

only states which have momentum which is both in the direction permitted

by the orientation of the magnetic field and proportional to the energy of the

state (i.e. states with a constant velocity, k/Ek = const) are kept.
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trum.
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Figure 4.14: Chiral odd sector spec-
trum.

Comparing these edge spectra with the bulk ring spectra given by figures 4.5

and 4.6, one notices that not only are many states missing in the chiral case, but

some of those which remain are at different energies to the non-chiral case. This

is because, as detailed in section 4.3.2, primary fields for the non-chiral case

are, in fact, a composite of a field with its anti-holomorphic counterpart thus

they have double the energy, i.e. E(1, 1) = 0, E(ψ, ψ) = 1 and E(σ, σ) = 1/8

in the bulk ring but E(1) = 0, E(ψ) = 1/2 and E(σ) = 1/16 on the edge.

The purpose of this chapter is to study the interaction between the edge and

the anyon ring in the bulk. To this end, we need to introduce some coupling

between the anyon ring, described by the spectra in figures 4.5 and 4.6, and

the edge modes, described by the spectra in figures 4.13 and 4.14. We can

then write the Hamiltonian for the full system as:

H = HR +HE +HI (4.41)

where HR is the contribution to the Hamiltonian from the interaction between

the anyons in the bulk ring, given by equation (4.21), HE is the contribution

from the chiral CFT on the edge and HI accounts for the interaction between

the bulk ring and the edge.

The fundamentally different way we have treated the bulk ring and the edge

up to this point makes it difficult to think about how an interaction between

the two would affect the system. The simplest interactions would involve an

exchange of fermionic modes between the edge and the ring which conserves

momentum [100], thus changing the state of both subsystems, however the

energy separation between states in the two spectra are different so it is unclear
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what states the interaction would force each subsystem into. On top of this,

the most likely interactions would naturally involve the exchange of only a

single excitation, but this would change the parity sector of both subsystems

causing them both to enter into a sector where the momenta of the exchanged

excitation is not permitted. We can solve these issues by allowing states with

momenta in either direction on the edge, i.e. we remove the chiral condition,

the edge is then of a similar form to the bulk ring and so the interaction is

easier to calculate.

4.4.1 Double Chain System

The correspondence between the description of the ring spectrum in terms of

fermions and in terms of conformal field theory, mentioned in section 4.3.2,

shows that we can think of the ring as being composed of two chiral edges, an

inner and outer edge, on which particles flow in opposite directions, thus giving

us the holomorphic and antiholomorphic descendant states seen in figures 4.5

and 4.6.

We want to use this comparison to make a simplification to our calculation;

instead of examining the interaction between the edge chiral CFT and the ring

transverse Ising chain, we instead model the edge as another non-chiral chain.

We then perform the much simpler calculation of the interaction between two

identical, concentric, periodic chains. The inner chain represents the ring of

anyons in the system and so we call it the ring chain, the outer chain represents

the edge of the system and is therefore named the edge chain, we use R and

E respectively to label elements from the different chains.

To reproduce an approximation of the actual system, after the interaction

term is calculated we simply project onto a subspace of the Hilbert space of this

system which contains only those states from the edge chain which contain no

negative momentum modes. More simply we treat the edge as a full, non-chiral

chain but after the calculation is completed we reduce back to the chiral case

by eliminating states produced by application of antiholomorphic operators.

There are, however, some subtleties, most importantly, in the even sector

we must still include the lowest negative momentum mode, γ†−π/N , in order to

obtain the states in the ψ tower. This may seem arbitrary but we can consider
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it a mathematical trick necessary to obtain states which would be physically

present. We justify this trick by claiming that the operation γ†−π/Nγ
†
π/N is actu-

ally a different type of operation to the fermion creation operators and should

instead be considered some sort of topological operator, T0. In section 4.3.2 we

mentioned that the (1, 1) and (ψ, ψ) towers were distinguished by the parity of

their number of right (and left) moving fermions, with states in both sectors

having an overall even number of fermions. For the chiral case we would ex-

pect the tower with an odd number of right movers, the ψ tower, not to exist

as any of its states cannot have an odd number of left movers to ensure an

overall even fermion number. However, such states are physically present. T0

is then essential as it introduces a single left moving fermion, γ−π/N , which is

necessary to produce states in the ψ tower.

We must also consider the energy of the states in the edge chain. Remem-

ber the chiral spectrum shows that the primary fields of the ψ and σ towers,

and the descendant states created from these, have a lower energy than their

counterparts in the non-chiral spectrum. This is an important consideration

as the energy difference between two states will dictate how likely the system

is to jump between those two states when perturbations (such as edge/bulk

interactions) are introduced. Thus we must implement a lowering of the en-

ergy of the states in the ψ and σ sectors of the edge chain (by E2

2
and E1

2

respectfully), but not the 1 sector.

In our simplified system we then have two copies of the Hamiltonian from

equation (4.21):

H0 = HE +HR =
∑
k

εk

(
γ†kγk −

1

2

)
+
∑
l

ζl

(
δ†l δl −

1

2

)
(4.42)

where: δl = uldl − ivld†−l, the d†i being fermion creation operators on the edge

chain. Using exact diagonalisation, we can easily produce the spectrum for

such a system (if the chains are relatively small) as can be seen in figure 4.15.

Now we need to consider how these chains interact with each other. We

can introduce a coupling between the chains at each site, producing a closed

ladder model (see for example refs. [110, 111]) where, due to the varying dis-

tances between the chains, the inter-chain couplings will be site-dependent.

We can reasonably assume that in an actual system neither chain will be per-
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Figure 4.15: Spectrum for two noninteracting rings of 8 σ anyons.

fectly circular, thus we would expect for there to be a point where both chains

are closest together. Any interaction between the two chains would obviously

be strongest at this point. We note that the interaction strength decays ex-

ponentially with distance between the anyons, so in our model we will make

the assumption that the inter-chain coupling is negligible except at the point

where the chains are closest.

We then have two closed chains which are coupled to each other at one point

only. The chains are composed of the same species of anyon, so the interaction

between two anyons from separate chains should be the same as that between

two anyons from the same chain, though with potentially a different coupling

strength. We will choose the numbering of the anyons so that the non-negligible

interaction occurs between the zeroth anyon on each chain, i.e. σE0 and σR0 .

In the current basis these anyons are paired with their respective neighbour-

ing anyons, we must therefore use F -moves to break this pairing and pair them

together before applying the interaction operator ΠJI , we then unpair them

and return to the original basis pairings. From section 4.3, we see that this is

equivalent to the process for obtaining the interaction between an (odd, even)

pair of anyons. We know then that the result will be a factor of JI(σ
x ⊗ σx)

applied to the tensor product of vector spaces; V E
0 ⊗ V R

0 .

Thus the extra term, HI , which is added to H0 (from equation (4.42)) to
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account for this inter-chain interaction, is given by;

HI = JIσ
x
0,Eσ

x
0,R (4.43)

where JI is dependant on the distance between the two chains at their closest

point. We now need to express this term in the same basis as the base Hamil-

tonian, H0, from equation (4.42). We use the procedure from section 4.3,

first performing a Jordan-Wigner transformation on HI , then switching to the

momentum basis leads to:

HI =
JI√
NRNE

∑
k,l

{(
ck + c†k

)(
dl + d†l

)
PR

evenP
E
even +

(
ck + c†k

)(
dl + d†l

)
PR

evenP
E
odd

+
(
ck + c†k

)(
dl + d†l

)
PR

oddP
E
even +

(
ck + c†k

)(
dl + d†l

)
PR

oddP
E
odd

}
(4.44)

where the P
E/R
even/odd are projections onto the even and odd parity sectors of the

two rings. These projections just ensure that the correct momenta values are

summed over, i.e. if it is understood that k and l should be summed over the

momenta values appropriate to the sector of the particular state HI is acting

on, then we can express this more simply as:

HI =
JI√
NRNE

∑
k,l

(
ck + c†k

)(
dl + d†l

)
(4.45)

Here, similar to H0, the momenta values which k and l take are those from the

particular sector in which the Hamiltonian is acting. One could now perform

a Bogoliubov transformation to put HI in the exact same form as the base

Hamiltonian but it will often be more useful to keep the interaction term in

this form, i.e. in terms of ck operators rather than γk operators. The interac-

tion is then described by a fermion of momentum, k, on the ring chain being

annihilated and a superposition of fermions of all available momenta, l, being

created on the edge chain, or vice versa. The effect of the interaction on the

system will be nontrivial as it mixes certain states together, specifically now

each momentum state, |k〉, on one chain is coupled to all momentum states,

|l〉, in the sector the other chain is in.
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4.4.2 Computing Elements of HI

Due to the addition of the interaction term, the full Hamiltonian, H = H0+HI ,

is no longer diagonal in the basis of eigenstates of H0. We then need to find a

method to diagonalise this interacting Hamiltonian to find the eigenstates and

energies of the interacting system.

Firstly, we will need to be able to write down the interaction matrix, i.e. we

need to see how HI acts on the eigenstates of H0. The matrix elements of

HI in our basis are obtained by computing expectation values of the form;

〈A(0)|HI |Z(0)〉. Here |A(0)〉 and |Z(0)〉 are states of the non-interacting, double

chain system (occasionally we will refer to such states as “bare” system states)

which have the form:

∏
i,j

γ†i δ
†
j |gsR, gsE〉 = γ†i |gsR〉δ

†
j |gsE〉 (4.46)

with γ†i representing excitations of the ring chain and δ†i representing excita-

tions of the edge chain. Given the form of HI from equation (4.45), this allows

us to write matrix elements of HI as:

〈A|HI |Z〉 =
JI√
NRNE

∑
k,k′

〈α, β|
(
cke

ik + c†ke
−ik
)(

dk′e
ik′ + d†k′e

−ik′
)
|ω, ψ〉

=
JI√
NRNE

〈α|
∑
k

(
cke

ik + c†ke
−ik
)
|ω〉〈β|

∑
k′

(
dk′e

ik′ + d†k′e
−ik′
)
|ψ〉

⇒ 〈A(0)|HI |Z(0)〉 = JI
1√
NR

〈A(0)
R |HI,R|Z(0)

R 〉
1√
NE

〈A(0)
E |HI,E|Z(0)

E 〉 (4.47)

Thus allowing us to reduce such expectation values to the product of two

simpler expectation values, each containing operators which only act on one

of the chains. We can then calculate the expectation values for each chain

separately and combine the results to obtain the matrix elements of HI .

Another point of note is that, due to the linear nature of HI (linear in

terms of the action on single ring), the action of HI on a particular bare

state is to produce a superposition of states all of which have the opposite

parity to the initial state. For all states in this superposition, the momentum

of the excited fermions will not be allowed in the parity sector defined by the

number of excited fermions e.g. a state with an odd number of even momentum
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excitations. Physical interpretation of the states in the superposition is then

difficult as they are not eigenstates of the system (fortunately, evaluation of

the expectation values does not require a physical meaning for them).

These states will only have a non-zero overlap with states of equal parity,

thus the only non-zero expectation values will come from those from the op-

posite parity sector to the initial bare state on which HI acted. Evaluation

of these expectation values is then complicated as the commutation relations

between operators from different parity sectors are not the usual fermionic

anticommutation relations, i.e. {ck, ck′} 6= δk,k′ .

Opposite Parity Operators

To progress any further then, we must find the commutation relations for

operators from different parity sectors. Using the definitions of the fermionic

momentum operators:

ck =
1√
N

∑
j

cje
−ikj (4.48)

we see that, if a is a momentum value from the even sector and z is a momen-

tum from the odd sector, i.e. a = (2n+1)π
N

, z = 2mπ
N

for n,m ∈ [−N
2
, N

2
− 1] if N

is even or n,m ∈ [−N+1
2

, N−1
2

] if N is odd, then:

{ca, cz} = {c†a, c†z} = 0 {ca, c†z} =
1

N

∑
j

ei(z−a)j =
1

N

∑
j

e
2iπ
N

(m−n)je−i
πj
N

(4.49)

Similarly, using definition (4.11) we get:

{γa, γz} = {γ†a, γ†z} = 0 {γa, γ†z} =
1

N

∑
j

ei(z−a)j [uauz + vavz] (4.50)

In the case of equal parity states these relations simplify to the delta functions

we are more familiar with;

{ca, cz} = {c†a, c†z} = 0 {ca, c†z} = δa,z

{γa, γz} = {γ†a, γ†z} = 0 {γa, γ†z} = δa,z
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It is quite clear from these commutation relations that any term in a matrix

element calculation, of the form in equation (4.47), that contains states, |α〉,

|ω〉 or |β〉, |ψ〉, which have equivalent parity, will be zero. Each expectation

value is obtained by summing a number of state overlaps and each of these

overlaps will contain a HI contribution. Acting on a state with HI gives a

superposition of states of the opposite parity, as each term in HI is linear

(that is, in its action on a single chain). An overlap between states of different

parities will always have an odd number of raising and lowering operators

which, by the commutation relations above, must always annihilate the state.

From here on then we will only ever consider the overlaps between opposite

parity states, i.e. we will deal exclusively with matrix elements of HI between

even and odd sector states, the rest of the overlaps are always zero.

Approximations

The nature of the states of the system is dependent on the number of sites

on the chain, N , as this dictates the number of possible excitations and their

allowed momentum values. We can say then that the matrix elements of HI

will be difficult to evaluate analytically for general N as, from the definition

of the states (equations (4.46) and (4.23)) and the commutation relations for

the momentum operators (equation (4.49)), we will obtain an infinite series of

products over uk factors and sums over vk factors.

It is beyond the scope of this project to try to obtain analytic solutions for

such terms but for relatively small chains we can solve these overlaps. However,

as the following quick approximation of the quantity of necessary calculations

shows, this problem is intractable by hand for even the smallest systems.

To compute the matrix elements of HI we must evaluate expectation values

of the form; 〈n|HI |x〉, where |n〉 is the state which is the initial, bare state of

the system. For each state |x〉, then we will have to calculate a large number

of factors, giving us a superposition of overlaps inside the sum. We would like

to work with the momentum space operators, ck, c
†
k, so for each γ† excitation

in each state there will be two terms. Now we must include the terms from

the ground states, we will have one even parity state, whose excitations act

on |gseven〉, and one odd parity state, whose excitations act on |gsodd〉. These
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“ground states” (remember |gsodd〉 is not actually a ground state of the system

but the state on which odd parity sector excitations act) contain 2 factors for

each momentum value from the appropriate sector which is between zero and

π. Finally, we have to account for HI which contains a creation operator and

an annihilation operator for every possible momentum value in the sector of

|n〉. In total, for each state |x〉, then there will be:

Nx = 2×Nx
γ + 2×Nn

γ + 2×N even
(0<k<π) + 2×Nodd

(0<k<π) + 2×N even/odd
k

(4.51)

where: Na
γ is the number of γ† operators in the state |a〉 and Nk is the number

of possible momenta values. We then must calculate Nx factors for every state,

|x〉, which produces a non-zero results for a given |n〉, of which there are 2N−1.

For example, let us look at the elements corresponding to the bare ground

state for N = 2. There are 4 possible states in the system, 2 of which are the

opposite parity to |gs〉 and so give a non-zero overlap. Each of the odd parity

states have only a single excitation, |gsodd〉 has a single term (there is no odd

sector momenta between 0 and π so |gsodd〉 = |0〉) and HI contains 4 operators.

This gives Nx = 16, with only 2 possible odd sector states this means, in order

to obtain the elements of HI corresponding to the bare ground state, we must

calculate 32 separate overlaps.

This is only for the ground state which is the simplest state, we will also

need to calculate 3 more similar terms, one for each of the other bare eigen-

states. The overlaps in these terms will get progressively more complicated as

the number of excitations in the state increases. Note also, that this is only

considering one ring, there is also the overlap on the other ring to consider.

Solving computationally is clearly the only option for involved calculations,

however the calculations will still be computationally expensive for large N .

It will be useful therefore, to examine if there are any approximations we can

make which will reduce the number of terms that need to be computed while

not deviating too far from the exact result.

We have already mentioned how any overlap of states we will come across

must be evaluated using the commutation relations from equation (4.49). Due

to the dependence of these commutations on 1/N we may then expect, for
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large enough systems, a small contribution from overlaps which require a large

number of commutations to evaluate. Naively then, we could expect a good

approximation of an overlap by expanding it in terms of the commutation

factors and eliminating any terms above an order of 1/N.

However we must be careful, each of the commutation factors also contains

a sum over N values of j; 0 ≤ j ≤ N − 1. The sum factors are all roots of

unity, so the magnitude of the sum will then be< N , meaning the commutation

term is < 1. It’s exact magnitude then depends on the difference between the

momentum values of the operators being commuted, if this is large then the

commutation term will be small, ∼ 1/N, but in general this will not be the

case. This results in a similar situation to the usual equal parity operator

commutation relations.
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Figure 4.16: Evaluation of the commutation factor {ca, c†z}, where a = 2mπ
N

,

z = 2(n+1)π
N

. The system size is N = 20, and we calculate this term or all:
−N

2
≤ m,n ≤ N

2
− 1.

A simple plot of the commutation terms dependence on the difference be-

tween the momenta values, figure 4.16, shows that there will be many momenta

values for which this factor cannot be considered negligible, for small system

sizes. It is apparent then that the order of 1/N for a term is not indicative of

the magnitude of that term, terms of high order in 1/N cannot be assumed to

be negligible and so we must find another approximation method.

Instead we can expand a given state,
∏

p γ
†
p|gs〉, in terms of cp, c

†
p opera-

tors, which gives a superposition of states of the form A(ca · · · cz)(c†a · · · c†z)|0〉
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(where A is some constant which is a product of up and vp factors). From the

definitions of γ†k and |gs〉 it is clear that, if we calculate the total number of

uk and vk factors in A, then this number will be the same for each term in

the superposition, i.e. the total number of uk and vk factors remains constant,

though their ratio will vary between terms. A plot of uk and vk, figure 4.17,

over all possible momentum values shows that for any given k; |uk| > |vk|.
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Figure 4.17: Plot of |uk| and |vk| for all k values. Note that at k = 0; |uk| = 1,
|vk| = 0, we have omitted this point as the behaviour of the functions here is
not clear in the plot.

Replacing a uk factor with a vk factor for any A will then clearly always

result in decreasing the magnitude of A. We can then say that terms in

the superposition which have a higher number of vk factors will give a less

significant contribution to any overlap.

We can then write a given expectation value as a sum of terms with in-

creasing order of vk factors. To get an idea of what order of vk terms will be

significant to the evaluation of the expectation value, we can perform some

numerical simulations for small system sizes. States with higher momentum

excitations will have more accurate results for a given order of vk (as the vk

terms at large k are smaller) therefore we examine the expectation value with

the lowest momentum excitations; 〈gseven|HIγ
†
0|gsodd〉 (the notation |gseven〉

and |gsodd〉 was explained in section 4.3.1). For small values of N we can

compute this expectation value exactly and compare it to approximations to

various orders of vk.
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Figure 4.18: Difference between exact and approximate results for
〈gseven|HIγ

†
0|gsodd〉 as a percentage of the exact overlap value for increasing

values of N .

We find, see figure 4.18, that calculating the overlap up to fourth order in vk

gives a good approximation for small system sizes. We can then justify ignoring

all terms which are O([vk]
5) and higher in expectation value calculations.

We write a given state,
∏

p γ
†
p|gs〉, as a superposition of states in terms of

momentum space fermion operators, c†k. Examining the form of the ground

state, equation (4.23), it is clear that the order of vk factors in any of the su-

perposition states is related to the number of excited fermions of the state. By

lowering the maximum order of vk we allow in our computation, we are restrict-

ing the calculation to states with lower numbers of excitations. Overlaps of

states with large numbers of excitations will take many commutations to eval-

uate, each of which lowers the magnitude of the overlap (see equation (4.49)).

These would then be expected to contribute less to the expectation value than

the overlaps from states with less excitations.

4.4.3 Reintroducing Chirality

As stated in section 4.4.1, we have been using the two interacting rings as a

simplified model of our actual system. In the real system the edge ring is in

fact chiral in nature, thus we must account for this at some point.

After obtaining the energies and eigenstates of two non-chiral, interacting

rings we can simply alter our methods to fit the more complicated chiral system
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by projecting out all states of the edge chain which are not present if only one

direction of momentum is permitted.

The excitations on the chiral edge chain can only propagate in one direction,

which we choose to be the +k direction. If we look at the energy spectrum,

figures 4.5 and 4.6, we want to eliminate any states which contain negative

momentum excitations. We do this by projecting onto the space of positive-

only momentum states, i.e. we only consider states which are created by γ†+k

operators (except for the T0 operator mentioned in section 4.4.1).

The interaction Hamiltonian (equation 4.45) also must be altered, as it

is it can hop any excitations from one chain to the other but now certain

excitations, i.e. those with negative momentum, are no longer allowed on the

edge chain. Expressing the portion of the interaction Hamiltonian which acts

on the edge ring, HI,E, in terms of Bogoliubov operators then we have:

HI,E =
∑
k

{
ukγk + ivkγ

†
−k + ukγ

†
k − ivkγ−k

}
=

=
∑

k≥−π/N

{
(uk + ivk)γk + (uk + ivk)γ

†
−k + (uk − ivk)γ†k + (uk − ivk)γ−k

}
(4.52)

Now, as with the base states, we remove any terms containing negative mo-

menta operators.

HI,E =
∑

k≥−π/N

{
(uk + ivk)γk + (uk − ivk)γ†k

}
(4.53)

The states on the inner ring remains unchanged so we don’t need to worry

about altering HI,R. Thus the full Hamiltonian now looks like:

H =
∑

k≥−π/N

εk

(
γ†kγk −

1

2

)
+
∑
l

ζl

(
δ†l δl −

1

2

)
+

+
JI√
NENR

all l∑
k≥−π/N

{
(uk + ivk)γk + (uk − ivk)γ†k

}{
ulδl + ivlδ

†
−l + ulδ

†
l − ivlδ−l

}
(4.54)
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4.4.4 Scaling Interaction Energies

There are three separate interaction energies in this problem, remember these

are the energy penalties assigned to the 1/ψ fusion channel splitting and so they

describe how favourable the ψ fusion channel is due to the distance between

the anyons. For the interaction between σ anyons on the edge, we have the

energy JE, on the ring we have JR (collectively we will call these the in-chain

interaction energies) and for the interaction between the ring and the edge we

have JI (often refereed to as the inter-chain interaction energy).

As the interactions are all between the same species of anyons (σ − σ

interactions) it would seem reasonable to assume that all of the interaction

energies are equal, i.e. JE = JR = JI . However the locations of the two σ

particles in any interaction will be different for interactions involving different

J ’s. Along with the differencing behaviour between the edge and the bulk,

this will cause the different interaction energies to scale differently.

The ring is composed of σ anyons in the bulk, thus the strength of an

interaction between any two such anyons scales as a function of the distance

between them. For a fixed number of anyons, NE, the distance between any

two particles is proportional to the length of the chain, LR, for a constant linear

density of anyons. We would expect the distance between anyons in the ring

to then be ∆R ∼ LR/NR. Thus the energy splitting, JR, decays exponentially

with an increase in the chain length, for fixed NR we have; JR ∼ e−LR/l for

some characteristic length, l, of the system (usually taken to be the magnetic

length). This scaling is described further in section 1.5 and ref. [101].

The edge however, is described by a conformal field theory. Its critical

nature requires the interactions to scale linearly with the length, LE, for fixed

NE we have; JE ∼ l/LE. Previously we have described the edge as a chiral

chain, so it may be expected that the interaction strength should scale similar

to that of the ring. However, we should always keep in mind that the chain

description of the edge (and similarly the CFT description of the ring) is

only an approximation of the system, in reality the edge is described more

precisely by the Ising CFT, so the interaction strength must scale linearly.

To compensate for this, in the anyon chain model of the edge, the number of

anyons in the chain must grow proportional to the length of the chain so the
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scaling remains linear.

Lastly, the strength of the interaction between the rings themselves is de-

termined by the distance, d, between the two at their closest point, i.e. between

σ0,E and σ0,R. From how we have defined our model, the ring will always stay

“close” to the edge with the two lengths growing in tandem as the system is

scaled. The distance between the two then grows proportional to their length

and we would expect an exponential scaling of the interaction energy, Ji ∼ e−d,

where d does not have any obvious dependence on NR or NE.

There are, however, many possibilities for the physical realisation of the

anyon ring. We will explore just two interesting regimes of the system arising

from some of these possible realisations.

• Regime 1: The number of quasiholes is proportional to the length of

the ring. When the size of the system is increased the number of anyons

increases in proportion to it, meaning that the interaction strength in the

ring is now a linear function of length, similar to the edge, JR ∼ l/LR. This

describes the creation of anyons along the edge necessary to maintain

constant linear density in the liquid as the system grows. For larger

systems there will then be more potential qubits present in the system.

• Regime 2: The number of quasiholes in the ring is fixed. This is the

situation we have described above, the number of σ anyons in the system

does not change as we increase the size of the system, so as the length

of the ring increases the interaction strength falls off as JR ∼ e−LR/l.

This best describes a ring of a set anyon number which we wish to place

in systems of various sizes. For larger systems the anyons in the bulk

interact less and so the qubits are better protected.

Both of these regimes will be explored in more detail in the numerical simula-

tions section (section 4.6).

4.5 Perturbation Theory

Now that we have outlined exactly how to obtain the elements of the interaction

matrix, HI , we can move forward with diagonalising it. Given the size of the
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system, 2NE+NR for the non-chiral case, direct diagonalisation of HI will require

extensive computational time for large systems.

If HI is small in comparison to H0, then we can consider it a small per-

turbation to a fully diagonalised system. This allows us to use perturbation

theory as an alternative method to calculate the eigenstates and eigenvalues of

the interacting system under this weak perturbation, see for example ref. [112]

for an introduction to perturbation theory. The potential advantage of this

method comes from expanding interacting eigenstates in terms of the small

parameter of HI , we can then save computing time by omitting terms of high

order in this parameter.

The (NENR)−1/2 factor in HI would certainly qualify as a small parameter

(for large enough systems) and indicates that perturbation theory is appropri-

ate but we must be careful as the inter-chain coupling, JI , must also be taken

into account. If JI ≈ JE/R then the use of perturbation theory can be justified

but, given that the anyons composing the ring are created close to the edge,

this cannot be argued to be true in general and there may be regimes of the

system where JI is considerably larger than the in-chain couplings.

However, it will prove fruitful to examine the perturbation theory re-

gardless, not only for its potential speed up in diagonalising large/weakly-

interacting systems but, more importantly, because it can provide us with an

approximation for the general form of an interacting eigenstate (and its en-

ergy) for such systems. This general form would give an insight into the effect

the interaction has on non-specific systems and may let us make some more

universal predictions for the how this will influence the information in the

qubit.

Therefore, assuming JI(NENR)−1/2 is small, perturbation theory offers a

good approximation for the eigenvalues and eigenvectors of the interacting

system. Specifically, it allows us to express the perturbed eigenvalues and

eigenstates of the system in terms of the more simple bare eigenvalues and
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eigenstates. To second order in JI(NENR)−1/2 we have:

En = E(0)
n + 〈n(0)|HI |n(0)〉 −

∑
m 6=n

|〈m(0)|HI |n(0)〉|2

E
(0)
m − E(0)

n

(4.55)

|n〉 = |n(0)〉 −
∑
m 6=n

〈m(0)|HI |n(0)〉
E

(0)
m − E(0)

n

|m0)〉+

+
∑

m,m′ 6=n

[
〈m(0)|HI |m′(0)〉〈m′(0)|HI |n(0)〉

(E
(0)
m − E(0)

n )(E
(0)
m′ − E

(0)
n )

− 〈m
(0)|HI |n(0)〉〈n(0)|HI |n(0)〉

(E
(0)
m − E(0)

n )2

]
|m(0)〉

(4.56)

where the bracketed superscripts indicate the order of the correction of that

value, i.e. X(0) is the unperturbed, bare system value of the quantity X.

More Approximations

Notice in equations (4.55) and (4.56) that the matrix elements of HI all appear

with an energy denominator, related to the difference in energy between the

two states in the expectation value of the element. If the states in a given

expectation value have a large difference, then they will always appear with

a large denominator rendering their contribution to the perturbation theory

effectively negligible. The most significant contributions to a perturbed state,

|n(0)〉, will then be from states which are “close” in energy to |n(0)〉. Perturba-

tion theory then offers a further saving on computational resources by enabling

us to also omit from our calculation those expectation values which contain

states with large energy differences.

We first need to find, for a given state, which of the other states have a

large enough energy difference to justify removing them from our calculation,

this is not as straight forward as it may first seem. Naively, we can assume

that the energy of a state depends largely on the number of excitations in that

state, we can easily count the number of excitations in each of the states in the

expectation value and if they are above a set limit we can exclude this term.

However, there is a larger number of states with high numbers of excitations

(for large enough systems) thus, though the energy difference between states

with low and high numbers of excitations will be large and so contributes little

to the overall calculation, the number of such terms in the sum is also large

and so their combined contribution may be significant. Before we rule out all
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states with a certain number of excitations, we should examine how many such

states exist to determine if their combined effect will still be negligible.

For the perturbed energy value of a given state, it is then useful to com-

pare the combined contribution to the perturbation from states of differing

excitation numbers. In figure 4.19 we look at four sample states from a par-

ticular system, each with a different number of excitations. We then calculate

the perturbed energy value for each of these states where, for each term, we

note the excitation difference between the states appearing in that term along

with the terms contribution. We then collect together the contributions from

expectation values with equal excitation number differences and compare their

total contribution to the overall perturbed energy. Doing this for the perturbed

value of states with differing excitation numbers, allows us to see a trend of the

type states which will have the most profound effect on the perturbed energy.
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Figure 4.19: Comparison between expectation values with various final state
configurations as the number of excitations in the initial state grows (for system
size N = 6).

The plot in figure 4.19 clearly shows that the most significant states for

the perturbed energy are those which have an excitation number which is one

greater or one less than the number of excitations in the state being per-

turbed, i.e. the states closest in excitation number but which don’t contribute

zero due to being equal parity to the perturbed state.

Combining the low vk order and close excitation number approximations

together will enable us to calculate the perturbed eigenstates and eigenvalues
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more quickly, while ensuring the result will be to a good approximation.

Degeneracies

Equations (4.55) and (4.56) will work only if the states in the system are non-

degenerate. If degenerate energy levels exist, there will be energy denominators

which are zero and so the perturbation theory breaks down. According to

the spectra in figures 4.5 and 4.6, we should expect quite a few degenerate

energy levels in our model. The perturbation of states corresponding to these

degenerate energies must be handled carefully due to singularities which will

arise.

Terms containing singularities must be solved directly, i.e. by diagonalisa-

tion of the portion of the Hamiltonian which acts on the degenerate subspace,

before perturbation theory is applied to the other states in the system. How to

handle these states is dependent on the parity sectors to which the degenerate

states belong.

If any states are at the same energy but in opposite parity sectors, then

the first order term in the eigenstate calculation (equation (4.56)) contains

singularities. Projecting the matrix H0 + HI onto the degenerate subspace

we obtain the eigenvectors of this degenerate subspace through exact diago-

nalisation. No opposite parity states appear in the second order term as this

gives only overlaps between equal parity states and the expectation value of HI

between states from the same parity sector is always zero, as discussed in sec-

tion 4.4.2, thus any singularities are cancelled by zeros in the numerator. The

eigenvectors of the degenerate subspace can then be taken as the unperturbed

states, substituting them into the non-degenerate formula (equation (4.56)),

with the sums therein taken over only states in the non-degenerate subspace,

gives the perturbed states we are looking for.

Conversely, if the states are in the same parity sector, then there is no first

order contribution from degenerate states, again due to overlaps between non-

equal parity states equalling zero and HI changing the parity of the states it

acts on. There is, however, a contribution to second order states, singularities

can then arise because the grouping of the terms in the energy difference

denominator does not match with the grouping in the numerator’s overlaps.
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Therefore, we project the second order matrix H0 + HI(H0 − Ed)
−1PndHI

(where Ed is the degenerate energy and Pnd is a projection onto the non-

degenerate subspace) onto the degenerate subspace and diagonalise to obtain

its eigenvectors. Again if the eigenvectors of this matrix are taken as the

unperturbed states, using the non-degenerate theory with them (and sums

taken only over non-degenerate states) produces the interacting states.

Occasionally an energy level will contain multiple states from both parity

sectors (in the N → ∞ limit). We then have equal parity degeneracy and

opposite parity degeneracy together. To tackle this we simply combine the

two above approaches, we project onto the degenerate subspace and diagonalise

the matrix H0 + PsHIPs + PoHI(H0 − Ed)−1PndHIPo, where Ps and Po are

projections onto the equal parity degenerate space and the opposite parity

degenerate space respectfully.

For the eigenvalues we only need to worry about opposite parity states.

The first order correction contains no singularities (it is always zero as it must

be an overlap of equal parity states) and the second order term is only non-

zero for opposite parity states. Then, if there is only equal parity states in

the degenerate subspace, there will only be corrections to the energy from

non-degenerate states but, if there is opposite parity states, we obtain the cor-

rections to the energy by calculating the eigenvalues of the matrix mentioned

above.

The presence of degeneracies then forces us to directly diagonalise parts

of HI corresponding to the degenerate subspace. We saw in section 4.3.3,

that the number of degenerate states depends on the system size and for the

large systems to which perturbation theory can be applied there will be a

large number of degenerate states. Therefore, in the very systems we expected

perturbation to help speed up our calculations, we find that it cannot be

applied to the majority of the states, thus we may loose a lot of the computing

time we would have hoped to have saved.

Also in the implementation of the numerical simulations it was found that

the calculation of the many overlaps required to compute the matrix elements

of HI was a much bigger drain on computational resources than its subsequent

diagonalisation (this is discussed further in section 4.6). Thus any speed up

offered by the perturbation theory was not at the point of the calculation where
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it could be really effective. As a computational tool then, perturbation theory

does not offer much help, however, its ability to produce a general form of the

interacting eigenstates warrants its continued use.

4.5.1 Interacting System Eigenstates

Using equations (4.55) and (4.56), the eigenvalues, ∆k, and eigenstates, |kI〉,

of the interacting system can now be expressed in terms of the noninteracting

eigenvalues, Ek, and eigenstates, |kN〉.

Firstly the interacting energies, note that the first order terms will be zero

as they are all of the form E
(1)
n = 〈kN |HI |kN〉, i.e. an overlap of equal parity

states. Thus we are left with;

∆I
n = En,R + En,E −

J2
I

NENR

∑
p(m)6=p(n)

|〈mN
R |HI,R|nNR 〉〈mN

E |HI,E|n(0)
E 〉|2

(Em,R − En,R) (Em,E − En,E)
(4.57)

where p(k) 6= p(n) means the sum is over states |kN〉 where the parity of |kNR 〉

and |kNE 〉 are the opposite parity to those of |nNR 〉 and |nNE 〉 respectively. The

eigenstates of the interacting system are then;

|nI〉 = |nNRnNE 〉 −
JI√
NENR

∑
p(m)6=p(n)

〈mN
R |HI,R|nNR 〉

En,R − Em,R
〈mN

E |HI,E|nNE 〉
En,E − Em,E

|mN
Rm

N
E 〉+

+
J2
I

NENR

p(k) 6=p(n)∑
p(m)=p(n)

mE 6=nE∑
mR 6=nR

{
〈mN

R |HI,R|kNR 〉〈kNR |HI,R|nNR 〉
(Em,R − En,R)(Ek,R − En,R)

×

×〈m
N
E |HI,E|nNE 〉〈kNE |HI,E|nNE 〉

(Em,E − En,E)(Ek,E − En,E)

}
|mN

Rm
N
E 〉 (4.58)

Again notice that the last second order term from equation (4.56) drops out

as it contains an overlap of equal parity states.

We can now talk generally about the interacting eigenstates and energies.

It is clear the energies in particular will only be slightly perturbed from their

original values in the absence of a first order correction. Most importantly

we see that the most significant perturbations to a given state/energy come

from states which are close in energy to the non-interacting state and from the

opposite parity sector to it.

Naively we would expect the most probable outcome from an interaction

which hops single fermions between chains to be states which are closest in
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energy and in the opposite parity sector, i.e. states which require little extra

energy to excite. The above result enforces these expectations.

4.5.2 Time Evolution

We discussed in section 4.3.3, that we will be interested in using the parity

sectors of the anyon ring as the qubit states. Assuming we can manipulate

the anyons in the ring, then we can force the system to be in any particular

eigenstate of the noninteracting system we wish. However the eigenstates

of the noninteracting system, i.e. those composing the qubit states, are not

eigenstates of the interacting system. This becomes an issue if we look at how

the state behaves over time.

The evolution of eigenstates, |χj〉, of the system over time can be easily

obtained from Schrödinger’s equation as:

|χj(t)〉 = e−
iEjt

h̄ |χj(0)〉 (4.59)

where Ej is the eigenvalue corresponding to |χj〉. If the system is placed in

one of its eigenstates then the probability of finding the system in that same

eigenstate after a time t will always be 1:

Pχj(t) = |〈χj(0)|χj(t)〉|2 =
∣∣∣〈χj(0)|e−

iEjt

h̄ χj(0)〉
∣∣∣2 =

∣∣∣e− iEjth̄ ∣∣∣2 |〈χj(0)|χj(0)〉|2 = 1

(4.60)

States which are not eigenstates of the system have a slightly more complicated

time evolution. Firstly, to see how such a state evolves, we express it in terms

of a superposition of the eigenstates of the system. Let |s〉 be a state which is

not an eigenstate of the system, then:

|s〉 =
∑
j

|χj〉〈χj|s〉 =
∑
j

aj|χj〉 (4.61)

where aj = 〈χj|s〉 is just a constant. We can now time evolve each of the

eigenstates separately to find how |s〉 evolves.

|s(t)〉 =
∑
j

aj|χj(t)〉 =
∑
j

aje
−
iEjt

h̄ |χj(0)〉 (4.62)
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Each eigenstate then oscillates at a different frequency, determined by its eigen-

value, so the probability of finding the system in a state |s〉 after a time t is

not always 1 if |s〉 is not an eigenstate of the system.

For our system then, the noninteracting eigenstates are not eigenstates

of the interacting system. Therefore, if we place the system in one of these

noninteracting states, the system will oscillate out of that state over time. This

in turn, means that at a certain time the probability of finding the system in

the state we started with may be lower than the probability of finding it in

some other state.

In short, the interaction between the edge and the ring introduces a time

scale for how long the information in the qubit remains uncorrupted. Opera-

tions on the qubit will have to be done within this time frame in order for us

to be confident in the validity of the results.

Applying this time evolution to the general form of the interacting eigen-

states, given in the previous section (equations (4.58)), allows us to see how a

general interacting state will behave over time for weakly interacting systems.

For the system we are dealing with we will call an eigenstate of the noninter-

acting system, |nN〉, we place our qudit in this state by manipulating the fusion

channels of the σ anyons appropriately. The eigenstates of the actual system

are the interacting eigenstates, |nI〉, given by perturbing the non-interacting

eigenstates using equation (4.56):

|nI〉 = |nN〉+
∑
m 6=n

〈mN |HI |nN〉
En − Em

|mN〉 (4.63)

where the zeroth order term is the noninteracting state and the Ei are the

energies corresponding to the noninteracting states. We can then expand |nN〉

in terms of these eigenstates:

|nN〉 =
∑
k

|kI〉〈kI |nN〉 =
∑
k

|kI〉

{
〈kN |nN〉+

∑
m 6=k

〈kN |HI |mN〉
Ek − Em

〈mN |nN〉

}
(4.64)
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But the noninteracting eigenstates are orthonormal, 〈aN |bN〉 = δa,b:

|nN〉 =
∑
k

|kI〉

{
δk,n +

∑
m6=k

〈kN |HI |mN〉
EN
k − EN

m

δm,n

}

|nN〉 = |nI〉+
∑

par(k) 6=par(n)

〈kN |HI |nN〉
Ek − En

|kI〉 (4.65)

where the sum is only over states with the opposite parity to |nN〉. We can

now time evolve the interacting eigenstates as they are the eigenstates of the

system, if ∆j is the energy corresponding to the interacting eigenstate |jI〉

then we get:

|nN(t)〉 = e−
i∆nt
h̄ |nI〉+

∑
par(k) 6=par(n)

〈kN |HI |nN〉
Ek − En

e−
i∆kt

h̄ |kI〉 (4.66)

Note that the ∆’s are interacting eigenvalues, they can also be expressed in

terms of the noninteracting eigenvalues, using equation (4.55).

∆k = Ek −
∑

par(m)6=par(k)

|〈mN |HI |kN〉|2

Em − Ek
(4.67)

The interaction energy, JI , enters into the equations through the perturbation

term, HI . From equation (4.66), we see then that this energy quantity influ-

ences how much the evolution of a state depends on interacting eigenvectors

which are obtained by perturbing the other noninteracting states.

If the interaction energy is very weak, the state can be approximated by just

the interacting eigenstate coming from perturbing itself, |nN〉 ≈ |nI〉, which

means there will be very little oscillation and the probability of staying in that

state remains high. As JI is increased, a greater dependence on other interact-

ing eigenstates comes into play, with the state expressed as a superposition of

more than one eigenstate then it will start to oscillate more wildly as each of

the eigenstates rotates at a different rate. As stated earlier, the perturbation

theory only holds for small values of JI but this at least gives us an idea of

how the system can be expected to behave in general and we will see later that

these predictions are actually quite useful, even at large JI .

Equation (4.67) shows that the interaction energy influences how large the

eigenvalues of the interacting eigenstates will be, specifically increasing JI will
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decrease the magnitude of the eigenvalue (assuming the second order term is

smaller than the zeroth order term which will be true unless JI is large). As

would be expected then, we find that the strength of the interaction between

the anyon ring and the edge of the fractional quantum Hall puddle directly

affects how reliable the qudit is.

The probability that the system has moved from its initial state, |nN〉 to

some alternative state of the non-interacting system, |mN〉, can be found by

measuring the overlap of the two states at after a particular time t. Keeping

to second order we obtain:

|〈nN(t)|mN(0)〉|2 =

∣∣∣∣〈nN(0)|HI |mN(0)〉
(En − Em)

(
e
i∆nt

~ − e
i∆mt

~

)∣∣∣∣2 (4.68)

This probability will clearly depend heavily on the value of JI and so the states

of a strongly interacting system will have a greater probability of moving into

a different state of the noninteracting system through time evolution.

4.6 Numerical Simulations

We have stated previously that an analytic solution to this problem for general

N is beyond the scope of the project and is potentially not possible. Though

the perturbation theory provides us with some general impressions of how the

system’s time evolution can be expected to depend on the interaction strength,

these perturbation results will not be applicable to all types of systems we wish

to examine, as JI is not always small.

Instead we use numerical simulations to understand how the system is

behaving. For set values of JE and JR we can vary JI and monitor how this

affects the time evolution of the system. This allows us to compare the regimes

defined in section 4.5.1. Such simulations can then be used to shed some light

on which regimes would be most beneficial to an actual implementation of

TQC in this system.

It is important to note at this point that the simulations in this section

consider all regimes for only a single system size, i.e. only one value of NE

and NR is examined. While the effects of increasing the number of anyons

(or decreasing the size of the system) can be approximated by changing the
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in-chain interactions appropriately, this approximation is only exact in the

thermodynamic limit. A large system modelled by increasing the interaction

values of a smaller system will inherit the finite size effects of the smaller

system, causing a deviation from the true spectrum of that system.

It must be stressed then, that a much deeper study of these regimes for

larger system sizes is needed before it is possible to say anything definitive

about the nature of the model in the thermodynamic limit. With these simu-

lations then we aim only to glimpse some distinguishing features of the model

and draw attention to areas which warrant closer examination.

System Size

Our first step is to find the eigenstates of the interacting system, i.e. we need

to diagonalise HI . Diagonalisation is computationally expensive for large ma-

trices and so this will limit the size of systems we can simulate in a reasonable

time frame. For weakly interacting systems, one may consider using the results

of perturbation theory (equations (4.55) and (4.56)) to more quickly evaluate

a good approximation of the interacting eigenstates. However, as discussed

in section 4.5, the large number of degenerate states present in large systems

(where these results would be most accurate) indicate that we will still have

to use exact diagonalisation to obtain a number of the eigenstates.

Further, it was shown in section 4.4.2 that the number of terms within

expectation values of HI grows rapidly with increasing system size. Due to

this, it is found that the calculation of these expectation values of HI are, in

fact, the most intensive part of the calculation. Thus, with large sums over such

expectations values, the perturbation theory method is actually quite slow. It

is then more efficient to calculate the eigenvectors by exact diagonalisation

of HI , where the expectation values are used only to calculate the matrix

elements. This method is also not restricted to the weakly interacting systems

the perturbation theory applies to, and so it can be used for all values of JI .

With the complexity of the matrix elements of HI as the limiting factor,

we find a system size of NR = NE = 4 as an upper limit for systems that we

could simulate in a reasonable time. Note that this relatively small system,

with a Hilbert space of dimension 2NE × 2NR , could be diagonalised much
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quicker in a real space description. However, for the analysis of this model it is

required to formulate the problem in momentum space as we need to be able

to distinguish the direction of the momentum of the states on the edge ring in

order to project onto the chiral subsystem. Thus, the states of the system and

the interaction term take on a more cumbersome form which causes a severe

escalation of the computation time for larger systems.

It is also noteworthy that, at this system size, the O(v4) approximation,

which we introduced in section 4.4.2 for the calculation of overlaps between

states, becomes exact as there will be no terms of higher order in v. Thus, all

matrix elements of HI are calculated exactly in the following numerics.

Hilbert Space

With a specific value for the size of the chains, we can easily calculate the

allowed momentum values and write down states of the noninteracting system.

Remember that only certain combinations of edge and ring states are per-

mitted. For the topological charge of the full system to be 1, the topological

charge of the ring and the edge must be equal. For an odd number of anyons

on both chains, the charge of each chain will be σ and so we can always choose

the 1 fusion channel of the two chains. Thus we get no extra restrictions on

the states and the Hilbert space will be (2NE × 2NR)-dimensional. However,

for a chain with even anyon number, the topological charge will be 1 or ψ.

For two such chains to fuse to 1 then we must require that they both have the

same charge which restricts the number of allowed states.

The labelling conventions used so far may cause some confusion at this

point. The topological charge, 1, ψ or σ, of a chain depends on the number

of σ anyons on the chain and their combined fusion channel. But regardless

of its topological charge, the states in the spectrum of the chain can be split

between conformal sectors, also labelled 1, ψ and σ, which are dependent on

the momenta of the excitations in the states. For a set charge of the chain, the

number of anyon pairs fusing to ψ then gives the number of fermions in the

system, which, in turn, dictates the momentum parity sector of the spectrum.

For an odd number of ψ fusings, the chain is in the σ momentum sector and,

for an even number of ψ fusings, the chain is in the 1 or ψ momentum sector
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(the exact sector in the even case depends on how many of these ψ fermions are

left and right moving which is not obvious in the anyon fusion-tree picture).

For an (even, even) ring and edge chain system, like the one we will be sim-

ulating, the chains must either both be in the odd momentum sector or both

in the even momentum sector. The possible conformal sector combinations

are then; (σ, σ), (1, 1), (1, ψ), (ψ, 1), (ψ, ψ). We then must eliminate the com-

binations which give an undesired total charge, namely states in the (σ, 1/ψ)

or (1/ψ, σ) conformal sectors. For each individual chain, the number of states

in each parity sector is 2N−1, thus the dimension of the Hilbert space will be

given by:

dH = nEodd × nRodd + nEeven × nReven = 2
(
2NE−1 × 2NR−1

)
(4.69)

For the NE = NR = 4 system we wish to simulate then we have a 128-

dimensional Hilbert space.

Time Evolution

For our simulation, the system is set in a particular initial state of the nonin-

teracting system, |n〉. We will choose this to be the ground state for simplicity

and speed but the same methods can be applied to any state.

This initial state is then expanded as a superposition of interacting eigen-

states, as shown in section 4.5.1, in which form we can easily time evolve the

initial state, using the method outlined in section 4.5.2. For each time step,

we measure the probability of the system being in the same state it was at

t = 0, Pn(t) = |〈n(0)|n(t)〉|2. The probability that the system has remained in

its initial state can then be plotted as a function of time.

Finally, for each time step we also measure the probability that the system

has moved into any one of the other non-interacting eigenstates of the system,

|k〉; Pk(t) = |〈k(0)|n(t)〉|2. We can then produce a number of plots showing

how the likelihood of the system being in each of the states of the noninteract-

ing system changes over time. As outlined in section 4.3.3, we are not actually

concerned with the individual state that the system is in but rather the fermion

number parity of this state. We can then combine the probabilities to make

the plots more legible. Note in all plots time will be given in units of 1/̄h.
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As mentioned earlier, the initial state is always chosen to be the ground

state, i.e. an even sector state. If the parity sectors are considered to be the

states of a qubit, then
∑
k=odd

Pk(t) will give a measure of the reliability of the

qubit at a given time, t.

4.6.1 Non-Chiral System

Firstly we examine time evolution in the simplified, non-chiral system de-

scribed in section 4.4.1.

We would first like to examine the effect of the interaction on the base

system by comparing the energy spectra of the two systems. However, the

interacting eigenstates do not have a well-defined momentum, as translational

invariance is broken when the interaction is introduced. This makes a direct

comparison between the two spectra, beyond their eigenvalues, quite difficult.

Instead, for set values of JE and JR, we can look at the spread of the

non-interacting states in terms of energy, then follow their evolution for small

changes in the interaction energy. The extent to which the spread of the

spectrum has changed from the non-interacting case (figure 4.15) will give an

indication of how strongly JI will affect the time evolution of a non-interacting

state subject to this interaction.

Regime 1

We first consider the case where JE and JR scale similarly, the scaling for JI

has not been determined and it will likely not relate to JE and JR in any

obvious way. Fixing JE and JR to be equal, we can look at a range of values

of JI to analyse how it affects the system.

This can be considered part of regime 1 (see section 4.4.4), describing a

system where the linear density of the anyons in the ring chain scales with the

system size thus giving JR a similar linear scaling to the scaling of JE, from

the CFT describing the edge chain. Note, however, that this could also refer

to the case where JE and JR both scale exponentially with size. This may

be a more useful interpretation as, by its definition, the non-chiral case more

accurately describes two similar chains. The double ring case then may be

more relevant to modelling systems where the anyons in each ring behave very
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similarly, i.e. two rings of bulk anyons, rather than our proposed system where

the ring chain scales differently to the edge and the similarity is achieved by

scaling the linear anyon density on the ring to compensate.

Figure 4.20 shows the change in the spread of the spectrum for JE = JR =

1. Note that the JI = 0 point describes the spread of the non-interacting

spectrum in figure 4.15.
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Figure 4.20: Change in the spread of the eigenvalues of the systems as JI is
increased. With guides to the eye shown to highlight the evolution of the 3
lowest and highest energy states.

With a lower interaction energy the states are less disturbed from their non-

interacting energies, thus a larger interaction between the edge and the chain

will disorder the system more, relative to the non-interacting spectrum. For a

large JI then, we expect a given non-interacting state to have a bigger overlap

with a large number of interacting eigenstates. As outlined in section 4.5.1,

this will cause the expected value of the state to change more dramatically

over time. We would expect the time evolution plots to reflect this and show

that a greater probability of the system changing to an opposite parity state

as JI is increased.

In figures 4.21 - 4.24 we plot the time evolution of the non-interacting

ground state for increasing values of JI , with JE and JR remaining constant.
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Figure 4.21: JE = JR = 1, JI = 1
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Figure 4.22: JE = JR = 1, JI = 2
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Figure 4.23: JE = JR = 1, JI = 4
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Figure 4.24: JE = JR = 1, JI = 6

It is clear that, if JI > 4, then for this system there is a significant probabil-

ity of the system moving into an opposite parity state (Popp > 0.5). Figure 4.23

shows that the possibility of the system changing to an opposite parity state

starts to becomes more probable than it remaining in the initial state for

JI = 4. For larger interaction energies than this, the information stored in the

qubit is likely to be corrupted.

We have two options to reduce the chances of this occurring, first we could

try to perform any calculations within the time frame where the state is un-

likely to jump or we could reduce the strength, JI , of the interaction between

the chains. Usually it is required that the topological operations which pro-

duce logic gates must be implemented slowly or the energy of the system may

exceed the gap to excitations and extra quasiparticles could be created which

will affect the state of the system, see e.g. ref. [80]. It would therefore be safer

to explore methods which don’t require us to perform calculations within a
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time-frame, we will then concentrate on the second option where the interac-

tion is weakened.

In reverse order the plots, figures 4.21 - 4.24, show the effect of lowering

the interaction strength. It is clear, as predicted in the previous section, that

lowering the value of JI affects the likelihood of the system moving into an

opposite parity state. This is an indication that the description produced by

perturbation theory for low values of JI , i.e. equation (4.66), is still useful in

the interpretation of the dynamics of strongly interacting systems.

Decreasing JI from 6 to 1 lowers the maximum Popp from ∼ 0.8 to ∼ 0.1,

which means the probability of the system remaining in the initial state is

always considerably higher than the probability of it changing. For JI ≤ 1 the

probability of changing state in this system becomes effectively zero. Thus, by

lowering values of JI , the state of the system becomes more robust. To ensure

that the integrity of the qubit remains intact, it is then essential to engineer

the interaction between the two rings to be as low as possible.

Regime 2

We now look at regime 2 where the edge interactions and ring interactions

scale differently with size, specifically JE scales linearly whereas JR decays

exponentially. For larger system sizes then, the difference between the two

values will grow. Keeping JE = 1 we can look at the effects of moving to a

different system size (without a corresponding increase in the anyon density) by

plotting the spread of eigenvalues as JI is increased for JE = 0.5 and JE = 0.1.

In the case JE = JR we simply obtain the results of regime 1, however, unlike

the system in regime 1, these results will only hold at this specific system size.

Comparison with figure 4.20 will then indicate the effect of the faster decay of

JE as the system size increases.

Figure 4.25 shows that for regime 2, at larger JI we again see a bigger

spread of the interacting eigenvalues in both systems, similar to what was

shown for regime 1. However, a clear interpretation of how the difference in

JE for the two systems influences the effect of JI is not easily obtained from a

comparison of these two plots.

In the absence of anyon-anyon interactions in the bulk we obtain a system
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Figure 4.25: The spread of the eigenvalues of the systems with JE = 1 and
JR = 0.1, JR = 0.5 respectively, as JI is increased.

of 2N degenerate states, as discussed in section 4.3.3. It is the introduction

of this bulk interaction which lifts the degeneracy of the system, producing

the spectrum in figure 4.11. An increase in the bulk interaction, JR, then will

correspond to a decreases in the degeneracy of the states on the ring chain.

In figure 4.25 we see the system with lower JR (on the left) has a smaller

spread of the energies for the non-interacting case, i.e. there’s a bigger degener-

acy in the energies for the JR = 0.1 system at JI = 0. Because of this difference

in the initial, JI = 0 point, it is difficult to discern any useful information by

comparing the plots at subsequent JI . We then look to the time evolution plots

to gain a clearer understanding of the how JI affects the systems differently.

Similar to regime 1 then, for each system size, i.e. each value of JE and

JR, we can see how a range of JI values will affect the time evolution of the

ground state of the non-interacting system.

We plot the time evolution for two systems; JR = 0.5 and JR = 0.1. The

following figures should then be read left to right for increasing JR values, at

constant JE and JI , and top to bottom for increasing JI , with constant JE

and JR.
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Figure 4.26: JE = 1, JR = 0.1, JI = 1
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Figure 4.27: JE = 1, JR = 0.5, JI = 1
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Figure 4.28: JE = 1, JR = 0.1, JI = 2
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Figure 4.29: JE = 1, JR = 0.5, JI = 2
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Figure 4.30: JE = 1, JR = 0.1, JI = 4
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Figure 4.31: JE = 1, JR = 0.5, JI = 4
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Figure 4.32: JE = 1, JR = 0.1, JI = 6
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Figure 4.33: JE = 1, JR = 0.5, JI = 6

By reading left to right for each value of JI it can be clearly seen that the

interaction will have a more prominent effect on the system for weaker in-chain

coupling on the ring. We see Popp start to increase beyond Pinitial for JI ≈ 2

when JE = 0.1 but this does not happen in the JE = 0.5 system until the

interaction strength is JI ≈ 4.

For larger system sizes, figures 4.26 - 4.33 show that the state of the system

becomes much more likely to change and operations must be performed in a

much shorter time span to compensate for the faster oscillations between states.

The integrity of the system, in regime 2, is then not only dependent on the

separation between the ring and the edge but also the size of the system.

Edge Absorption

The strong coupling limit has been examined previously, refs. [100, 85] found

that, when the interaction between a bulk anyon and the edge is very strong,

the anyon effectively becomes absorbed into the edge of the system. This

would suggest that figure 4.24 should present a similar plot to that obtained

by considering a new system where a σ anyon from the chain has been absorbed

into the edge of the system so NR 7→ NR − 1 and NE 7→ NE + 1.

However, these studies consider only single bulk anyons, or at least bulk

anyons which don’t interact with each other, and so the results cannot be so

easily applied to our model. The interaction between the bulk anyons in our

system means that, though the inter-chain interaction may be strong enough

to absorb an anyon into the edge chain, the anyon has not decoupled from the

ring chain and must still be considered a part of this chain also. It will likely
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be difficult to apply this complex interaction to the anyon absorption inter-

pretation, so our current method provides a more convenient representation of

the strong coupling limit for our model.

If we were to return again to the system where anyons in the ring are permit-

ted to be unevenly spaced, as described by the Hamiltonian in equation (4.17)

and Lagrangian in equation (4.40), this absorption explanation would become

relevant. With a non-constant, in-chain coupling, the ring structure becomes

less strict, we can imagine moving one anyon in the ring closer and closer to

the edge while keeping the others fixed. The interaction strength between this

anyon and it’s neighbouring ring anyons diminishes, which is permitted thanks

to the variable interaction strength in this model. Eventually, the anyon will

be closer and more strongly coupled to the anyons on the edge, the anyon is

now more a part of the edge chain and we can say it has been absorbed by it.

The chain lengths are altered by the absorption, NE 7→ NE +1, NR 7→ NR−1,

and the interaction between the two chains is now negligible at all points.

Note that in the actual system, the edge will be chiral, there is then an anyon

from a non-chiral chain begin absorbed into a chiral chain, which represents a

complex, non-trivial process (the effects of which are beyond the scope of this

thesis).

It’s interesting to note here, that the ring chain is now no longer a closed

chain. There is no next-nearest neighbour interaction term in the Hamiltonian,

the distance between next-neighbours is taken to be such that the interaction

between them is negligible. So, with the removal of an anyon from the bulk,

there is now a gap in the ring across which there is no interaction, the anyons in

the bulk then form an open chain. We can model how this new system interacts

with the edge relatively easily using the same methods as above, by replacing

the Hamiltonian describing the bulk anyons with the open chain Hamiltonian

from equation (4.13) or, alternatively, by introducing next-nearest neighbour

interactions for the “end” anyons.

4.6.2 Chiral Edge System

We now reintroduce the chirality of the edge, allowing us to simulate our

original model. Firstly, we look at the effect of reintroducing the chirality
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of the edge on the non-interacting spectrum, figure 4.15. For the edge to be

chiral, any operator which creates edge chain states with negative momentum

must be eliminated (except for γ†−π/N which is needed to create states in the

ψ sector, see section 4.4.1). We must, therefore, project onto the subspace of

the Hilbert space containing states whose edge component only has operators

with momentum k ≥ −π/N on the edge chain.

The number of remaining states in the edge spectrum is given by the num-

ber of even groupings of the momentum modes (−1, ...,N/2−1) and the number

of odd groupings of the momentum modes (0, ...,N/2 − 1). For the ring chain

however, we have the same number of states as before, thus we get a Hilbert

(sub)space for the chiral model with dimension:

dH = nEodd × nRodd + nEeven × nReven =
(
2
NE/2 × 2NR−1

)
+
(
2
NE/2−1 × 2NR−1

)
(4.70)

For our simulated model, with NE = NR = 4, this gives a 48-dimensional

Hilbert space.

We also must introduce a lowering of the energy of the states on the edge,

halving the conformal dimensions of the sectors, as mentioned in section 4.4.1.

Figure 4.15 shows the ψ and σ sector states appropriately lowered in relation

to the 1 sector.
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Figure 4.34: The non-interacting spectrum for a chiral edge without (left) and
with (right) lowered ψ and σ state energies, for JE = JR = 1.

We expect this energy lowering to have an effect on the likelihood of the

state moving to a different sector, as states from different sectors, e.g. the 1

and σ sectors, are now closer in energy. Looking to the perturbation theory

interpretation of the interacting eigenstates (equation (4.56)), terms which

150



correspond to different parity states now have a lower energy denominator

and so the probability of them overlapping is higher.

Regime 1

We can reintroduce the inter-chain coupling now, i.e. set JI 6= 0, and, as ex-

pected from our non-chiral calculations, we see that the magnitude of this

coupling strength determines how disturbed the states are from their non-

interacting energies. In regime 1 the linear density of anyons in the ring scales

with the system size, thus JE ∼ JR. As in the non-chiral case, JI is unde-

termined so, setting the in-chain interactions to some particular value, we can

observe the effects of various strengths of JI . Again, a good indication of how

strongly the interaction is affecting the system can be gained by following the

spread of the energies for a set JE and JR as JI is varied, with JE = JR = 1

we get the following plot;
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Figure 4.35: The spread of the eigenvalues of the system with JE = JR = 1 as
JI is increased. With guides to the eye shown to highlight the evolution of the
3 lowest and highest energy states.

Note that JI = 0 in figure 4.35 gives the spread of the non-interacting,

lowered spectrum from figure 4.34. We again see that, with increasing JI , the

spectrum becomes more distorted from the non-interacting case. It should be

noted, however, that the degree to which the states have moved is less than

in the non-chiral, regime 1 case, as seen by comparison with figure 4.20. This

indicates that the energies of the states of the system are then less affected by
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the interaction than in the non-chiral case.

This is surprising as we stated earlier that the lowering of the edge energies,

and consequent “closeness” of the states in the chiral case, should increase the

contribution from other states, as indicated in the perturbation theory results

(section 4.5). We would then expect the eigenvalues to undergo a more drastic

change due to the introduction of the coupling. However, while this is true and

terms arising from overlaps with different sectors states will indeed contribute

more to the interacting eigenstates in the chiral case, the number of such terms

in the non-chiral case is larger by a factor of 2NR−1
[
2NE − (3)2NE/2−1

]
. The

contribution from this number of extra states will, in general, be much greater

than the slight change we see in the energy difference denominators, thus the

gain produced by the states moving closer is overcome by the loss from the

discarded antiholomorphic states.

Again, keeping JE and JR constant, we can plot the time evolution of the

ground state of the non-interacting system for varying values of JI .
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Figure 4.36: JE = JR = 1, JI = 1
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Figure 4.37: JE = JR = 1, JI = 4
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Figure 4.38: JE = JR = 1, JI = 5
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Figure 4.39: JE = JR = 1, JI = 6
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The time evolution plots clearly show that the increase in JI leads to an

increase in the likelihood of the system decaying into an opposite parity state,

along with a speed up in the oscillations of the state. These plots display a

somewhat similar behaviour to the non-chiral plots, figures 4.21 - 4.24, but, as

with the spectra, the effect of the interaction is diminished by the reintroduc-

tion of the edge chirality (due to a lower number of states to sum over in the

perturbation theory). As a result, for the system to be likely to change state,

the interaction between the edge and the ring must be significantly stronger

than in the non-chiral case. We see that the probability of the state flipping to

an odd parity state only becomes larger than the probability of it remaining

in the even sector only for JI > 5.

Also the oscillations of the state of the system are much more rapid in the

non-chiral case than the chiral case, note that figures 4.21 - 4.24 are for a range

t ∈ [0, 20] whereas figures 4.36 - 4.39 plot over a range of t ∈ [0, 100]. This

is further indication that equation (4.66), derived from perturbation theory,

still describes many of dynamics of the system for strong interactions. The

interacting eigenvalues determining the rate of oscillation of the state have

a contribution from a sum over all states of the system, as shown in equa-

tion (4.67). As there is more states in which to sum over in the non-chiral

Hilbert space this term could lead to larger interacting eigenvalues, for large

JI , and thus faster oscillations in the time evolution of the state.

Regime 2

Moving to regime 2, similar to the non-chiral case, the scaling of the system

will now have an effect on the spectrum. Remember for this regime, as the

system grows JE will scale linearly whereas JR scales exponentially to zero,

meaning the coupling for the ring will fall off much quicker than the edge

couplings. For a set JE and JI then we can observe the effect of increasing the

system size. We will again look at two separate systems with JR = 0.1 and

JR = 0.5, for which we can produce the spectrum spread plots.

As with the non-chiral, regime 2 case (figure 4.25), we find that the differ-

ence in the degeneracies of the spectra at JI = 0 makes it difficult to compare

the plots for increasing interaction strength. The time evolution plots must
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Figure 4.40: The spread of the eigenvalues of the systems with JE = 1 and
JR = 0.1, JR = 0.5 respectively, as JI is increased.

again be relied upon to give a clearer understanding of how the effects of JI

change with decaying JR values.

We provide an equivalent layout to that used in the non-chiral regime 2

section above. The plots then should again be read from left to right for

constant JI and JE with decreasing JR, and top to bottom for constant JR

and JE, with increasing JI .
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Figure 4.41: JE = 1, JR = 0.1, JI = 1
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Figure 4.42: JE = 1, JR = 0.5, JI = 1
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Figure 4.43: JE = 1, JR = 0.1, JI = 3
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Figure 4.44: JE = 1, JR = 0.5, JI = 3
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Figure 4.45: JE = 1, JR = 0.1, JI = 4
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Figure 4.46: JE = 1, JR = 0.5, JI = 4
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Figure 4.47: JE = 1, JR = 0.1, JI = 5
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Figure 4.48: JE = 1, JR = 0.5, JI = 5

Clearly, in this regime, the system size will have a large impact on the

robustness of the state of the system. We see, as the system is scaled and JR

decreases relative to JE, that the probability of the system slipping into an

opposite parity state increases steeply, along with the rate of oscillation of the

states.
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As we saw for the plots in regime 1, this behaviour is very similar to

that seen in figures 4.26 - 4.33 for the non-chiral, regime 2 case. The same

interpretation can then be applied, i.e. as the system grows it becomes much

more susceptible to the interaction between the ring and the edge. The major

difference produced by the reintroducing the chiral edge is again a slowing of

the oscillation of the system between the states. As discussed previously, this

can be attributed to the lower number of states contributing to the magnitude

of the eigenvalues of the interacting states in the chiral system, for large JI .

4.7 Optimal Design

From the numerics in the previous section, we can discuss some design con-

siderations that should be taken into account when constructing a topological

qubit using Ising anyons in a ν = 5/2 fractional quantum Hall fluid. How op-

timally we can construct the system will depend on its exact behaviour, some

elements of which have not yet been determined. However, we can safely say

that, if the parity of the anyon ring is intended to be used as a qubit, then the

inter-chain interaction must be kept to an absolute minimum. Regardless of

the other properties of the system, the interaction between the ring and the

edge is the main avenue by which the reliability of the qubit is compromised.

If the ring interacts strongly with the edge, it causes the interacting eigen-

states of the system to deviate more from the initial, non-interacting states

and, also, to have strong overlaps with a larger number of these initial states.

This ultimately leads to a larger probability that the system will oscillate into

an opposite parity state over time. We see this for weak inter-chain coupling in

the perturbation theory, equations (4.55) and (4.56), and the numerics suggest

that, in our simulated system, this relationship holds for stronger couplings

strengths as well.

The optimal case would then be to engineer the system so that the sep-

aration between the ring and the edge is as large as possible. However, this

distance is likely to be out of our control, as it is determined by the natural

decrease in density of the fluid towards the edge of the system. This distance,

along with the nature of how the anyon number is affected by scaling the sys-

tem, are properties which have yet to be determined but using our assumed
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regimes from the previous section we can make some general statements about

what should be expected.

In regime 1, bulk quasiparticles are created in proportion to the linear size

of the system so JE ∼ JR for all system sizes. We see from the plots, figures 4.36

- 4.39, that as JI increases past 4 it starts to become more probable that the

system will flip to an opposite parity state over time, rather than remain in its

initial state. We can plot the difference between the highest value of Popp and

the lowest value of Pinitial for a given range of t. With a set value of JE and

JR, this will indicate the exact value of JI for which it becomes more likely

than not that the system will migrate into opposite parity states over time.

The plot in figure 4.49 then identifies the values of JI for which Popp < 0.5,

this gives some indication limiting values of JI for which this particular qubit

can be considered reliable.
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Figure 4.49: The gap between the likelihood of staying in the initial state
and entering an opposite parity state for increasing JI . Note below the red
line indicates where the probability of changing to an opposite parity state is
greater than that of remaining in the initial state.

Regime 2 describes a system in which the number of bulk quasiparticles

is fixed and so JR scales exponentially to zero with system size. The plots in

section 4.2 show that, for a set value of JE, a weaker in-chain coupling for the

ring, JR, will result in a less reliable qubit. This would seem to indicate that, in

this regime, one should strive to keep the system as small as possible in order

to maximize JR and approach the more robust JR ∼ JE system described by

regime 1.
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However, in reality this will not be the case, as we are considering only

the parity sector qubit and not all qubits of the system. For small JR, we

in fact approach a regime where there is N isolated qubits in the system,

described in section 4.3.3 as the “ideal” regime. In this regime, the qubit which

is closest to the edge will be unreliable, for strong enough JI , but the other

qubits are isolated from this interaction effect and will provide a more versatile

implementation of TQC than the parity sector qubit. Thus, if regime two is

really a possible realisation of the system it would be much more beneficial for

us to sacrifice the reliability of the parity state qubit in favour of the N − 1

protected qubits which emerge for small JR.

If, however, one still desires to use the parity qubit in this regime, an

indication of its reliability for varying values of JR and JI may prove useful.

The following plot (figure 4.50) then shows, for a range of JR values, the

minimum value of JI for which Pmax(opposite) ≥ 0.5. Similar to figure 4.49

for regime 1, this gives a rough guide of the limiting values of JI for which a

system with given JR can be considered reliable.
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Figure 4.50: Lowest value of JI for which the system is more likely to be in an
opposite parity state to the initial state.

How to proceed with the design of the qubit then depends heavily on what

we are able to manipulate in the system. It seems natural to assume JI will be

beyond our control if the anyons composing the ring are created in response

to the density fall off towards the edge of the fluid. It would be more likely

that we have some influence over the values of JE and JR, through appropriate
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scaling of the system. However, we cannot say exactly how this scaling will

affect the qubit, as other physical properties of the system, which we have not

accounted for in this simple model, will likely be affected also.

In short, the results of the simulations in section 4.6 can not be assumed to

accurately describe the dynamics in the thermodynamic limit. Larger systems

will need to be simulated before we can provide a clear picture of the implica-

tions of the interactions on the various qubit designs. More concrete values for

some of the physical properties of the system, such as the interaction strengths

and their scaling behaviour, is also needed to understand which regimes should

be focused on.

An alternative realisation of the model was mentioned in section 4.2, i.e. a

model in which the anyon ring is created by physically manipulating the mag-

netic field, electron density or impurities of the system. Assuming this level

of control is possible, it presents us with a vastly more manageable system,

one which can be tuned much more precisely to our needs. We can then in-

fluence the properties of the system to ensure the anyon ring is located at the

optimal distance from the edge, according to the plots above. There are some

issues with this realisation however, namely, the level of control of the physical

properties of the fractional quantum Hall fluid required here has not yet been

achieved. Experiments can not yet influence the fractional quantum Hall in

such a precise way as to create anyons in, or move them to, desired locations,

as indicated in experimental review papers such as ref. [113].

We have also referred to a variation of our model in which the spacing

of the anyons is not constant, i.e. JR is site dependent. This model is worth

considering, especially if a regime could be reached in which a number of the

anyons have a large separation from their neighbours and so could be used

to create near-ideal qubits. However, we discussed earlier how the interaction

between a ring such as this and the edge will likely be difficult to model due to

the lack of translational invariance even in the non-interacting system. This

complicates the insertion of the chirality of the edge ring, as the problem cannot

be easily expressed in the momentum basis. More sophisticated diagonalisation

methods will then be necessary to obtain the eigenstates of the interacting

system.
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4.8 Conclusion

The goal of this chapter was to provide a simplified model of Ising anyons in a

fractional quantum Hall fluid and to investigate the effects of the interactions

on the system and their implications for TQC.

We argued that the bulk anyons could be approximated by a ring of

interacting Ising anyons and this was shown to behave exactly like the 1-

dimensional, transverse Ising model for a closed chain. It was seen that the

interactions within the ring lift the degeneracy of the states and compromise

the integrity of isolated qubits defined by the fusion channels of anyon pairs.

As an alternative we considered a qubit defined by the parity of the number of

fermions in the system, which remains well defined for large system sizes and

interaction strengths.

We then examined the effect of the interaction between the ring and the

edge on the state of this parity qubit. The edge was approximated by a similar

1-dimensional transverse Ising chain to facilitate the introduction of an inter-

action between the two. Under the assumption that the interaction between

the two chains was only significant at their closest point, we derived a form

for the interaction term and projected the model onto the subspace where the

outer chain contains only positive momentum states, i.e. the edge is chiral,

obtaining the interacting Hamiltonian of the original model.

For a general system, it is likely impossible to evaluate the eigenstates of the

interacting Hamiltonian in general, thus numerical simulations were deemed to

be necessary in order to observe the dynamics of the model. For one particular

system with NE = NR = 4, we were able to diagonalise the Hamiltonian and

obtain the eigenstates of the interacting system. However, as the states of

the qubit are the eigenstates of the non-interacting system, it was clear that,

with the interaction, such states would change over time and introduce the

possibility for the system to decay out of a state we have placed it in making

the qubit unreliable.

Through simulations we displayed that, while not completely unavoidable,

the probability of such errors occurring could be reduced if the system could be

engineered in such a way as to ensure the strength of the interaction between

the ring and the edge is significantly lower than the strength of the interaction
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between the anyons in the ring. Examining two possible regimes of the system,

we showed how the coupling strengths affected the behaviour of the system

and provided some plots (figures 4.49 and 4.50) which give an indication of

the conditions under which the parity qubit should be considered unreliable.

However, it is not clear that these simulations at small system size repre-

sent the system’s behaviour in the thermodynamic limit and we hope future

simulations at larger system sizes may provide a more definite result.
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Conclusions

In this thesis, we examined the design of topological qubits and assesses their

efficiency and practicality as applied to topological quantum computation.

Chapters 2 and 3 studied methods of optimally constructing a qubit using

various different designs. Chapter 4 provides a simplified model for consider-

ing the behaviour of a qubit composed of interacting anyons within a fractional

quantum Hall system. Here we outline the most important results of the thesis

and propose some future work in the area.

Optimal Qudit Design in 2 Dimensions

Chapter 2 focused on qubits created using collections of anyonic excitations

in a 2-dimensional system. With the braid group, Bn, dictating the possible

operations that could be implemented on such a system, we used representa-

tions of this group to determine what design considerations should be made.

We found that a qubit should be composed of either 3 or 4 anyons to ensure

it can be efficient, universal and robust.

We generalised this result to d-dimensional qudits to show the maximum

number, N , of anyons from which a qudit can be composed, without introduc-

ing leakage into single qubit operations, will always be related to its dimension

by: N = d+ 2.

Information leakage becomes an unavoidable issue when multi-qudit gates

are implemented. We again used the representation theory of the braid group

to look into the possibility of producing multi-qubit systems with no leaking

operations. We found that such gates do in fact exist in some very special

cases, but they do not provide universality for quantum computation.
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Generalised Qudit Construction

The braid group is not the only method of implementing logic gates on anyons.

In chapter 2, we tried to derive a formula for the maximum number of anyon-

like excitations from which to compose a qudit if the logic operations on those

anyons are not restricted to any particular exchange group.

While an exact relation proved elusive, we were able to show that the op-

timal number of constituent anyonic excitations will be related to the number

and the multiplicity of the anyon species in the system. We also gave an ex-

treme upper limit on the number of anyons which could comprise such a qubit,

in equation (2.8).

Motion Group Anyons

In chapter 3, we studied a possible implementation of TQC in (3+1) dimen-

sions. We specifically focused on a system of ring-shaped anyonic excitations

in 3 dimensions which can be exchanged using the motion group, Motn, to

produce quantum gates.

By constructing two-dimensional representations of Motn, we obtained re-

sults for the maximum number of rings a qudit can contain that closely re-

sembled the results obtained for (2+1)-dimensional qubits in chapter 2. This

similarity was attributed to the presence of the Yang-Baxter relation com-

mon to both exchange groups and thus the similarity of the representations is

expected to continue to higher dimensional qudits.

Local Representations

In an effort to find non-Abelian, possibly universal representations of the mo-

tion group of rings we introduced the concept of local representations.

For a system where internal vector spaces are assigned to the excitations,

the local representation of the operators of the motion group was defined as

acting non-trivially only on those vector spaces related to the rings which

are involved in the motion. We showed how such representations might be

simpler to calculate due to requiring the computation of only three independent

operators, R, τ and f , regardless of the system size. We also argued how such

representations may be more likely to be non-Abelian as the dimension of the

163



Hilbert space increases with the number of generators.

Using results from Dye [47], we gave a detailed characterisation of all non-

Abelian, 2-dimensional local representations. We showed that non-Abelian

representations of Motn of this form exist but the representation of the slide

group, which we expect to make a large contribution to the universality of the

representation, is always Abelian in these representations.

For local representations in higher dimensions we produced a general for-

mula for calculating the local representation of the slide group operator, R,

and showed that it was related to the R-matrix of the quantum double of some

gauge group acting on the local vector spaces.

Using this formula for R we showed that non-Abelian, local representa-

tions of the motion group exist for which we can possibly be used for universal

quantum computation. These representations alone will likely never be univer-

sal (we saw in section 3.5 that they are related to finite permutation groups),

however, with the addition of some extra operations, such as measurement of

topological charge, certain non-Abelian local representation may prove to be

universal (as seen in ref. [52]).

Ising Anyon Ring

In chapter 4, we modelled a ring of Ising anyons in a fractional quantum Hall

fluid at filling factor ν = 5/2 under interaction with the edge of the fluid.

We showed how the model could be related to a transverse field Ising model

on a closed chain interacting with a chiral Ising conformal theory describing

the edge. We discussed various implementations of qubits arising from this

model and mentioned some motivation for the study of a qubit composed from

the fermion number parity sectors of the ring spectrum in detail.

Extending to a system of two transverse Ising chains which interact at a

single point, we were able to obtain an approximate term for the interaction

between the anyon ring and the edge. Projecting this system onto a subspace

where the spectrum of the edge contains only chiral states we could then study

how this ring-edge interaction affected the state of the parity sector qubit.
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Numerical Simulations

We showed that analytical analysis of the system through perturbation theory

was problematic and this prompted the use of numerical simulations. With

many physical characteristics of the system yet undetermined, we outlined

different possible regimes of the system which are dependant on how the various

interaction energies scale with the system size.

Finally, we performed time evolution simulations under these various regimes

for a single system size and produced a picture of how reliable the parity sec-

tor qubit remains after interactions are taken into consideration. For a single,

small system (NE = NR = 4) we were able to indicate how relationships be-

tween the interaction strengths, JE, JR and JI , affected the dynamics of the

model. However, the connection to the thermodynamic limit is unclear at this

point and will require substantial numerical work at larger system sizes.

Outlook

The work discussed in this thesis presents many opportunities for continued

research.

For the generalised qudit, discussed in chapter 2, we would like to devise

a way in which to obtain an exact relation between the dimension of a qudit

and the optimal number of anyons. This would improve upon our upper limit

result and give a more clear idea of how to optimally construct such systems.

In terms of leakage, we would like to prove (or disprove) our conjecture

for the non-existence of universal, non-leaking, multi-qudit gates for general

d. The existence of such gates would be a strong motivation for searching

for anyon types with larger numbers of fusion channels. Alternatively, the

existence of an anyon model for which only some subset of all multi-qudit

gates is leakage free would be sufficient for universal, leakage-free quantum

computation. It may prove more fruitful to search for such a system.

The next step for the ring-shaped anyonic excitations, discussed in chapter

3, should be to find a real system where such excitations could possibly exist.

Ref. [114] shows that such quantised vortex rings do exist in 3He, however it

remains to be seen if any such excitations exist which also display anyonic ex-

change statistics. Our framework could then be used to predict the behaviour
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of these systems and provide a method for analysing their usefulness for TQC,

if the excitations are shown to exist.

Further research on the Ising anyon ring model, discussed in chapter 4,

should include numerical simulations for larger systems sizes. Though our

results give an indication of some of the dynamics to be expected from this

model, larger system sizes are needed in order to accurately compare with ex-

perimental results and to predict the behaviour n the thermodynamic limit.

A greater number of systems must also be evaluated for any general proper-

ties to be determined. More sophisticated computational procedures, such as

DMRG techniques [115], along with more advanced resources, should allow

the methods we have described in chapter 4 to be extended to much larger

systems.

It will also be useful to look more in depth at the more generalised case of

the model wherein the couplings between the σ anyons are allowed to vary. A

more general result will allow us to model a greater number of regimes of the

system, giving a greater probability of accurately modelling the real system.

However, due to breaking of the translational invariance, analytic results will

be more difficult to obtain even for the noninteracting Hamiltonian and a

numerical approach will likely have to be introduced at an earlier stage than

in our model.
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