A Formal Model of Forth Control Words in the
Pi-Calculus

James Power David Sinclair
Department of Computer Science School of Computer Applications
National University of Ireland, Maynooth Dublin City University
Maynooth, Co. Kildare, Ireland Glasnevin, Dublin 9, Ireland

May 28, 2001

Abstract

In this paper we develop a formal specification of aspects of the Forth programming language. We
describe the operation of the Forth compiler as it translates Forth control words, dealing in particular
with the interpretation of immediate words during compilation. Our goal here is to provide a basis
for the study of safety properties of embedded systems, many of which are constructed using Forth or
Forth-like languages. To this end we construct a model of the Forth compiler in the m-calculus, and have
stmulated its execution by animating this model using the Pict programming language.

1 Introduction

In this paper we seek to contribute to the study of stack-based languages and architectures
by providing a model of the control structures used in the Forth programming language. Stack-
based machines have a long history in programming language implementation, but lately have
achieved increase prominence due to the widespread use of the Java programming language, and
its corresponding implementation architecture, the Java Virtual Machine (JVM) [8].

The Forth programming language is relatively old in the context of high-level programming lan-
guages, dating from around 1970. Its emphasis on high performance coupled with a small memory
footprint has helped establish the language, particularly in relation to embedded microcontroller
systems and similar industrial applications. Reflecting this, Forth has been standardised by both
ANST and the ISO [6].

In this section we give an overview of stack-based machines and point to some of the strengths
and weaknesses of existing implementations of this approach. In particular we highlight the
importance of formal models in establishing safety properties, particularly in relation to Forth’s
control structures. We also present an overview of the m-calculus, the formalism used later in
the paper to model the interaction between the processes in the Forth compiler.

1.1 Stack-Based Machines

In the extreme case a stack-based language will insist on all programming activities being
performed directly on the stack, including expression evaluation, local variable storage, parameter

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

passing and the return of result values from functions. More realistically, many such language
will mask these basic operations with a friendlier syntax.

Much of the original motivation for the use of stack-based machines in programming language
translation was as an abstract “machine code”. Such languages were low-level enough to allow
straightforward translation to a given assembly language for a specific architecture, but yet
sufficiently high-level to allow the compiler-writer ignore many implementation details, most
particularly the number and nature of the target architecture’s registers.

The development and increasing popularity of the Java programming language and the JVM
however have sparked renewed interest in the pragmatics surrounding stack-based language de-
sign. The Java language technology typically involves a Java compiler that translates Java
programs into bytecode, along with an interpreter (the JVM) that executes this code. However,
such systems still have difficulty in competing with Forth-based applications in terms of speed
and memory efficiency [2], although the situation is improving.

Forth combines a distinctive postfix stack-based programming approach with a remarkably
economical syntax. While fundamentally similar to the JVM architecture, Forth differs from the
JVM in that it does not provide direct primitive support for classes and objects. However, Forth
does provide a flexible yet structured approach to the implementation of flow of control that
contrasts sharply with that of the JVM, and it is Forth’s implementation of these structures that
forms the focus of this paper.

Forth control structures are a unique combination of high-level structured concepts with the
flexibility of low-level test-and-branch operation. Further, Forth is unusual in that it allows
the programmer define new control words, providing for a variety of possible constructs. One
disadvantage of this approach, however, is that these control words can increase the complexity
of the code, and can cause unexpected side-effects if used incautiously.

Systems such as the JVM incur significant performance overheads by dealing with safety
properties at run time, using a bytecode verifier. Indeed, one alternative to JVM bytecode, also
designed to allow safe, mobile code, deliberately preserves high-level control structures for this
reason [4]. However, in industrial critial applications, and particularly with embedded systems,
run-time failures are unacceptable, and considerable emphasis is placed on testing and static
verification of the software.

1.2 Formal Semantics and the m-Calculus

In the following sections we present a formal model of the Forth compiler, concentrating on
the compilation of Forth control words. Providing formal definitions of programming languages
is a well-established field, usually known as formal semantics (see e.g. [16] for a survey) and, in
this context, our definition would most likely be classed as an operational semantics of Forth.

However, the structure of the Forth compiler lends itself to a particular form of specification.
Specifically, the operation of Forth is most often described in terms of the Forth engine’s concur-
rent interactions with the control, data and return stacks, with the total effect being the parallel
composition of these interactions. Thus the words in a Forth program become events that trigger
changes in the processes representing the Forth stacks, along with other internal structures such
as the dictionary.

This contrasts with the compositional approach typically taken in denotational descriptions,
such as in [14], and the structural approach taken in modern operational semantics, as in [5]. Our

2
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

model differs from both these approaches since, in each case, the definition is structured around
the (abstract) syntax of the programming language being defined. This makes sense for high-
level languages which express control using nested syntactic structures (such as if statements,
while-loops etc.), but is not so appropriate to Forth, where a program is simply a sequential list
of words, with no real nesting.

Thus we take a different approach, making the processes of the Forth system central to our
model, and viewing the program text as a stream of events which affect these processes. In this,
our semantics bears a similarity to previous specifications of aspects of Forth, such as [7] and
particularly [15]. However, these specifications concentrated on the execution of Forth programs,
whereas our specification concentrates on the actions of the Forth compiler.

The modelling formalism that we have chosen to use here is the m-calculus [9]. The w-calculus
provides a primitive set of operations for describing the interactions between communicating pro-
cesses, as well as allowing for the movement of communication channels between these processes.
This formalism is not typically used to specify the formal semantics of programming languages
([13] is an exception, but even this concentrates on concurrency aspects of the language).

However, we believe that the m-calculus is particularly suited to providing an operational model
of the web of interactions between various components of the Forth system. To model the Forth
system it is necessary to allow for a number of interacting processes which may include either
compile-time or run-time behaviour, as the system switches from compiler to interpreter mode.
In addition, the use of immediate and postponed words within word definitions further enmesh
these processes, making their presentation using standard structural approaches quite difficult.
Also, the basic purpose of the Forth compiler, the definition of new words, finds a natural model
in the 7-calculus primitives for the creation and movement of names between processes, and the
necessary reconfiguration of communications between these processes.

We will not give a full presentation of the calculus here; we seek only to introduce the notation
used in the rest of this paper. The two main events that can occur are:

e ¢(n), denoting the receipt of some message, hereby named n, along a channel ¢, and

e ¢(n), denoting the sending of some existing name n out along the channel ¢

In the m-calculus channels are first-order objects; that is, channels can be sent and received along
other channels. The silent event, 7 denotes an internal action, hidden to other processes.
For our purposes, processes can then be described as:

e c¢. P, where e is an event and P is a process - the process P here is guarded by the event e
e P + P, denoting nondeterministic choice between processes P, and P

e P | P,, which denotes the processes P; and P, being run in parallel

e new a (P) introducing (and binding) the new name a in process P

e Pp; P,, which denotes the sequential composition of processes P; and P!

Tf we assume that every process performs the action done() as its last action we can define sequential com-
position as a special case of parallel composition.

P;Q = new start ({start/done} P | start.QQ)

3

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

Two processes running in parallel may use guards to synchronise; the basic reaction rule
formalises the synchronisation in a manner similar to -reduction in the lambda calculus:

(@(y).P + M) | @(z).Q + N) — {g}P 1Q

1.3 Notation

To increase the readability of our specification, we use some notational conveniences not prim-
itive to the m-calculus:

e We use macro-like definitions to give names to processes; thus P(n) € defines the
macro P indexed by n, defined to be the same as process () after suitable substitution for
parameter n.

e Tuples are represented using square brackets; for example: [z, y] is the pair consisting of x
and y.

e We use [1"\l5 to represent the concatenation of lists 1 and Iy, and overload this notation to
also apply to list elements. We use the constant Nil to represent the empty list, and the
functions hd and tl to represent the usual list head and tail operations.

All of the specifications presented in the following sections have been type-checked and tested
using the Pict system [11], a programming language based closely on the m-calculus. The spec-
ification was translated almost directly into Pict, which helped to check the consistency of the
model, and, as an executable language, allowed us to simulate the actions of the compiler as it
dealt with various configurations of source code. The full Pict source code is presented in [12].

2 Overview of the Model

The Forth programming language is characterised by the fact that it not only a stack-based
language, but also a semi-compiled language. A Forth program consists of a series of words, which
can be either Forth standard words or words defined by the user. These words are processed
sequentially by the Interpreter. Each word has an entry in the Dictionary and the complied code
associated with the word read by the Interpreter is retrieved from the Dictionary and executed.
The effect of each word is to modify the state of one of the Forth stacks.

The Forth language has three stacks. The Data Stack is used to manipulate data. The Return
Stack is used store the return addresses of the calling procedures?. The Control Flow Stack is
used to implement control flow management. Forth provides a set of standard words that provide
a more structured approach to control flow management than the basic low-level branches and
labels implemented by many assembly languages.

In this paper we are interested in Forth’s approach in providing structured control flow primi-
tives, as we believe that this has a fundamental impact on verification and optimisation, as well
as a possible influence the design of future intermediate representations. We will abstract the
syntax of a Forth program to the primitives shown in figure 1.

2Forth allows the user to access this stack using the words >R and R>

4
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

POSTPONE | Postpone the execution of an immediate word when in compiler mode.
. wordname | In interpreter mode execute the user defined word. In compiler mode execute the
user defined word if it is an immediate word, otherwise append its compiled code to
the complied code of the word currently being complied.

; Finish compiling the current word and mark it as a non-immediate word.
; IMMEDIATE | Finish compiling the current word and mark it as an immediate word. We will treat
; IMMEDIATE as one word.

CHANGE We will use CHANGE as an abstraction of all Forth words that modify the data stack.
IF This is an immediate word that marks the origin of a forward conditional branch.
AHEAD This is an immediate word that marks the origin of a forward unconditional branch.
THEN This is a immediate word that resolves an IF or AHEAD.
BEGIN This is an immediate word that marks a backward destination.
AGAIN This is an immediate word that resolves a backward unconditional branch.
UNTIL This is a immediate word that resolves a backward conditional branch.
CS-ROLL This is an immediate word that reorders the control stack.
CS-PICK This is an immediate word that copies an item on the control stack.

Figure 1: The abstracted Forth syntazx, as used in this paper. Here we choose to use an abstraction to
represent the usual data stack manipulations, allowing us to concentrate on Forth’s control words.

The user can extend the Forth dictionary by defining new words. When a : is encountered, a
new word is being defined, and the Forth systems switches from interpreter mode into compiler
mode until the ending ; or ; IMMEDIATE is encountered. The new Forth word is defined in terms
of existing Forth words, which are either immediate words or non-immediate words. Immediate
words are executed immediately by the compiler whereas non-immediate words have their com-
piled code appended to the compiled code of the Forth word being defined. It is only when the
non-immediate word is subsequently executed by the Interpreter that the behaviour defined by
the non-immediate word is executed. An immediate word may be POSTPONEd, causing it to be
treated as a non-immediate word.

As well as primitives for defining new words, we have included the six immediate control words
IF, THEN, BEGIN, AGAIN, UNTIL and AHEAD. These control the generation of branch and labelled
instructions by maintaining all labels in the program on the control flow stack. Each of these
instructions corresponds to either generating a new label or using an existing label from the
control flow stack. The primitives CS-ROLL and CS-PICK are used to change the ordering on the
control flow stack without generating any new labels.

Figure 2 gives an overview of our specification of the Forth programming system. It shows
the processes that model each component of the Forth system and the channels that carry
information between the processes, and should thus be used as a reference when reading the 7-
calculus specification in sections 3 and 4. Section 5 will describe the interactions between these
processes as the Forth compiler goes through selection and iteration constructs.

5

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

roll(v)

pick(v)

change(v)
{ push(v) supplies(t)
Data pop Forth Processor resolve(t) Control newL abel (l)
Stack value(v)) label(1) Flow <~
(Interpreter & Compiler) Stack
o nchen
word(w defnChan(c) |
create(n) !
]
definition([n,a,d,i
Source src(w) Code ([(n2d.]) o newAddress(a)
Code Buffer Dictionary
getDefinition(n)
insertCode(w)

Figure 2: Overview of the specification of the Forth system. The processes and events depicted here
are described by the specifications in sections 3 and 4.

FORTH =
INTERP | DICTIONARY (d) | CBUF (sre, Nil) | DATA(Nil,0) | CFS(Nil)
| genLabel(1) | genAddress(1)

Figure 3: Specification of the main processes of the Forth system. This is the starting point for the
processing of some Forth program, available on the stream src, based on an initial dictionary d of
pre-defined words.

3 Processing a Forth Program

Figure 3 is our top level specification of the Forth programming system. The system is the
parallel composition of the Interpreter/Compiler process, the Dictionary process, the Source
Code process, the Source Code Buffer process and the two main stack processes - the Data Stack
and the Control Flow Stack.

In the remainder of this section we describe those processes within the Forth system that
interact with the Forth source code, specifically the dictionary, code buffer and the data stack.
We do not deal with Forth’s return stack further here; its specification is similar to that of the
data stack, and it does not play a significant role in the rest of our specification.

3.1 The Forth Dictionary

We start the specification with our description of the Forth dictionary, used to hold word
definitions, and defined in figure 4 as the Dictionary process. The two primary processes of the

6

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

DICTIONARY (w) &
create(n).newAddress(a).
new nChan (DICTADD(nChan, [n,a, Nil,ord],w) | defnChan{(nChan))
+ getDefinition(n).de finition{((find n w)).DICTION ARY (w)

DICTADD(nChan,[n,a,d,i],w) et
nChan(s).
if s = done then DICTIONARY ([n,a,d, i w)
else if s = doneimm then DICTIONARY ([n,a,d,imm] w)
else DICTADD(nChan,[n,a,d"s,i], w)

genAddress(n)
newAddress(n).genAddress(n + 1)

Figure 4: Specification of the Forth dictionary. This specification describes the dictionary itself, along
with the maintenance processes of accessing a dictionary entry, and adding to the dictionary. Here the
function find returns a dictionary entry for a given word n.

Dictionary are to add a new word to the Dictionary or report on an existing word. Reporting
on an word n involves searching the dictionary and returning the address a of its compiled code,
its definition d, and its immediacy status ¢. When adding a new word to the Dictionary a
new address is generated along newAddress and a new channel nChan is created. This cannel
can then be used by the the Compiler to supply words from the definition to the Dictionary.
When the definition is completed then the word n is marked as either imm or ord, depending on
whether the definition is an ordinary word terminated with ; or an immediate word terminated
with ; IMMEDIATE, and the channel is released.

3.2 Source Code

The compilation and interpretation processes in Forth are both driven by the source code of
the program being processed, in the form of a stream of Forth words. In our specification we
introduce a buffer CBUF between the Forth source code stream src and the processor INTERP.
Typically a word is read from the source code src, and, via CBUF, delivered to the interpreter
INTERP via the word channel.

The introduction of the code buffer provides for modification of the input stream, which can
occur when the compiler processes an immediate word, and is achieved using the insertCode
channel. Figure 5 specifies this process.

3.3 The Data Stack

Figure 6 specifies the Data Stack process. Since the data stack is not the primary focus of this
paper, we have abstracted considerably from the actual details of its operation. In particular,
we model this stack as consisting of some specified size size, along with the stack contents, a
list of values. Values can be added to the front of the list via the push channel or removed from
the front of the list in response to a pop signal. The change channel allows us to abstract the

7

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

CBUF (src,buf) %
if buf = Nil then src(w).word(w).CBUF (src, buf)
else word(hd buf).C BUF (src, (tl buf))
+ insertCode(w).CBUF (src,buf w)

Figure 5: Specification of the Forth source code buffer. Here the stream src contains the Forth program
as a series of words, which are then buffered by CBUF before being fed to the program processor.

DAT A(values, size) =
push(v).DAT A([v"values, size + 1))
+ pop().value(hd values). DAT A((tl values), size — 1)
+ change(n).DAT A(Nil, size +n)

Figure 6: Specification of the Forth data stack. We have abstracted considerably here from the full
details of its operation.

behaviour of Forth words that manipulate the Data Stack. Forth words that increase the size of
the Data Stack, such as DUP, PICK and DROP, can be abstracted as change(1) and change(-1).
Forth words that manipulate the Data Stack without changing its size, such as ROLL, can be
abstracted as change(0).

4 Control Structures

In this section we turn to the main focus of our paper, the formal specification of Forth control
words. In particular we specify the compile-time activities of the Forth processor, mainly centered
around label management via the control stack, and code generation. To describe the generated
code we use a simple pseudo-assembly language consisting mainly of labels and jumps.

4.1 The Compiler

Figure 7 specifies the Compiler process. When the Interpreter reads a word definition, which
starts : n, it creates an entry in the Dictionary for the word n and invokes the Compiler with
the supplied channel nChan. The Compiler reads successive words from the code buffer CBUF
until it reads either ; or ; IMMEDIATE, relays the appropriate signal to the Dictionary, and then
returns to the top-level Interpreter/Compiler process.

If, during compilation, the Compiler reads the word POSTPONE it reads the next word m from
the source code buffer, retrieves m’s definition and sends that definition along channel nChan
to the Dictionary. If the Compiler reads a numeric literal from the source code buffer, it sends
some code along the channel nChan that will push this number onto the data stack when the
word n is executed. If the Compiler reads any other word it enters the COMP process. The
COMP process will be described after the Control Flow Stack is specified since it relies on the
Control Flow Stack to generate the structured control flow.

8

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

COMPILE(nChan) *

word(w).
if w = “POSTPONE” then word(m).nChan(m).COM PILE(nChan)
else if w = “;” then nChan(done).INTERP
else if w = “; IMMEDIATE” then nChan{(doneimm).INTERP

else if isNumber(w) then nChan("push w").COM PILE(nChan)
else COMP(nChan,w); COMPILE(nChan)

Figure 7: Specification of the main actions of the Forth compiler. Here we assume a boolean-valued
function isNumber to test if a word is a numeric literal. The immediate words are dealt with by the
process COMP, described later.

CFS([lo, to]" [l 0] - "Ml 1)) =
resolve(to).label{lo).CFS([l1, t1]" -+ - Mln, tn])
+ supplies(t').newLabel (I").label(I').CFS([U', t'1Mlo, to] [l1, t1]" - - - Mln, ta])
+ pick(k).CFS([l, te] o, to) 1, t1]" - - Ml ta))
+ roll(k).CFS([lg, tx) lo, to] 1, t1]" - - - [ty th1 | Mlew1s thra] -+ Mlny ta])

def

genLabel(n) =
new Label(n).genLabel(n + 1)

Figure 8: Specification of the Forth control stack. This stack is used for label management, and
maintained by the compiler as it processes immediate words.

4.2 The Control Flow Stack

The Control Flow Stack stores [label,type] pairs that are used by the control flow words IF,
THEN, BEGIN, AGAIN, UNTIL and AHEAD, as described in figure 1. The valid label types are orig
and dest. Pairs are added to the Control Flow Stack via the supplies channel, which also causes
the creation of a new label along newLabel. A pair is removed from the Control Flow Stack
when the value on the resolve channel matched the type of the pair on top of the Control Flow
Stack. In each case, the label value of the pair is transmitted by the Control Flow Stack to the
Compiler via the label channel. The pick and roll channels are used to modify the Control Flow
Stack in response to CS-PICK and CS-ROLL instructions.

4.3 Compiling a New Word

Figure 9 specifies the processing of a word w, compiling it, and sending the results along
nChan. If the word w is not one of the built-in control words, then the Dictionary is searched
for the an entry for w. If w is a non-immediate word a subroutine call (represented as "jsr")
to the compiled code for w is generated and added to the n’s entry in the Dictionary. If w is
an immediate word its definition is retrieved from the Dictionary and inserted into the stream
of words from the Code Buffer via the insertCode channel.

When the COMP process receives the immediate Forth words IF, THEN, BEGIN, AGAIN, UNTIL
or AHEAD it performs the corresponding actions on the Control Flow Stack, and generates either

9

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

COMP(nChan,w)
if w =1F then supplies(orig).label(l).nChan("ifzero 1")
else if w = THEN then resolve(orig).label(l).nChan("1:")
else if w = BEGIN then supplies(dest).label(l).nChan("1:")
else if w = AGAIN then resolve(dest).label(l).nChan("goto 1")
else if w = UNTIL then resolve(dest).label(l).nChan("ifzero 1")
else if w = AHEAD then supplies{(orig).label(l).nChan("goto 1")
else getDefinition(w).de finition(|w, a,d,)).
if (i = ord) then nChan("jsr a")
else insertCode(d)

Figure 9: Specification of the execution of Forth immediate words. This specification should be con-
sidered in conjunction with that of the control-flow stack, since its action mainly involve accessing the
labels on that stack.

INTERP =
word(w).
if w=“" then word(n).create(n).de fnChan(nChan).COM PILE(nChan)
else TINTERP

Figure 10: Specification of the Forth interpreter. As before, we have abstracted away any details not
dealing directly with word compilation.

a label, conditional jump or unconditional jump as appropriate.

For example, in the case of the conditional forward branch (IF) a request for a label of type
orig is sent to the Control Flow Stack and the label [is then received along label. The con-
ditional branch "ifzero 1" is sent along the code channel. A subsequent THEN word issues
a resolve(orig) to the Control Flow Stack and receives a label [. The label "1:" will then be
appended to the compiled code.

4.4 The Interpreter

The Forth Interpreter reads words from the source code, retrieves the compiled code associated
with the Forth word from the Dictionary, executes the compiled code and modifies the Data
Stack. We choose not to fully specify the actions of the interpreter here, except to note that
when the Interpreter reads : wordname it issues a command to the Dictionary to create an entry
for wordname and switches into compiler mode.

5 Some Examples of Compiling Forth Control Words

In this section we show how the standard if-else selection construct and the while looping
construct found in most high-level programming languages, can be implemented in Forth. The
approach here should be contrasted with high-level languages with built-in nested control struc-
tures, as well as with assembly languages that must rely on unstructured test and branch in-
structions.

10
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

We have simulated the operation of the Forth compiler over these and other examples through
a translation of the w-calculus specification into the Pict programming language.

5.1 The if-else Statement

Forth’s built-in control words can already handle the usual if-statement selection, using IF
to test a condition, and THEN to mark the end of the conditionally-executed block. As is not
uncommon in Forth programming, we shall use the more intuitive word ENDIF as a synonym for
THEN.

One of the unique aspects of Forth programming is the possibility of creating new control struc-
tures via the definition of additional control words. In particular, we can enhance the IF-ENDIF
structure by adding an ELSE, mimicking the usual if-else statements in high-level languages.

The standard definition for ELSE is as follows:

: ELSE (11 -- 12 / --)
POSTPONE AHEAD
1 CS-ROLL
POSTPONE THEN

; IMMEDIATE

To demonstrate the use of ELSE and its interaction with the built-in control words, we consider
the following example Forth code, along with its (rough) equivalent in a C-like language, and its
translation into a pseudo assembly language as described by our specification.

Forth Code C equivalent Translation
. examplel =
: examplel void examplel() jsr cond
cond { if (cond) ifzero L1
IF statsy tats jsr statsy
ELSE statso | stats goto L2
ENDIF e Ll :
statss .
; Jsr statss
} L2:

When this is executed, cond is evaluated, leaving a flag on the stack, and then either stats;
or statssy is executed depending on whether the flag is true or false respectively.

To show that this definition does indeed produce a stack-safe program, in figure 11 we show
the actions of the Forth compiler as it processes the definition of examplel. We can see that
when the word ELSE is executed, the IF has already created a conditional jump to some as yet
undefined label L1. The postponed word AHEAD will create another jump, generating a new
label L2 and placing it on the stack. The ¢S-ROLL word changes the order of these labels, and
thus it is the target if the IF jump that is resolved by the postponed THEN.

A number of other selection patterns can be constructed using Forth words; for example
appendix A.3 of [6] defines four other Forth words, CASE, OF, ENDCASE and ENDOF , which
provide a functionality similar to the switch statement in C++ or Java.

11

Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

Event | Control Flow Stack | Output
word(:)
word(EXAMPLE])
word(cond) "jsr cond"
word(1F) | [L1,orig] "ifzero L1"
word(statsy) | [L1,orig] "jsr stats;"
word(ELSE) | [L1, orig|
word("ahead") [L1, orig][L2, orig] "goto L2"
word("1 csroll") [L2, orig][L1, orig]
word("then") [L2, orig] "Li:"
word(statss) | [L2, orig] "jsr statsg"
word(THEN) "L2:m

Figure 11: Compiling the definition of program examplel.

5.2 The while Loop
To define the while loop in Forth, we follow [6] and define two extra control words, WHILE and
REPEAT.

: WHILE (dest -- orig dest / flag --)
POSTPONE IF
1 CS-ROLL

; IMMEDIATE

: REPEAT (orig dest -- / --)
POSTPONE AGAIN
POSTPONE THEN

; IMMEDIATE

The semantics of these words can best be explained in the context of the following example:

Forth Code C equivalent Translation
example2 =
: example2 void example2() jsr init
init { L3:
BEGIN cond it jsr cond
WHILE stats while (cond) ifzero L4
REPEAT stats jsr stats
; } goto L3
L4:

In this program, nit is executed before the loop, the Forth code cond represents the evaluation
of the condition, and the code stats represents the statements in the loop body. Thus, BEGIN

12
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

Event | Control Flow Stack | Output
word(:)
word(EXAMPLE2)
word(init) "jsr init"
word(BEGIN) | [L3, dest] "L3:"
word(cond) | [L3, dest] "jsr cond"
word(WHILE) | [L3, dest]
word("if") [L3, dest][L4, orig] "ifzero L4"
word("1 csroll") [L4, orig][L3, dest]
word(stats) | [L4, orig|[L3, dest] "jsr stats"
word(REPEAT) | [L4, orig][L3, dest]
word("again") [L4, orig] "goto L3"
word("then") "L4:"

Figure 12: Compiling the definition of program example2.

marks the start of the loop, WHILE must be a conditional-branch depending on the truth of cond,
and REPEAT must represent both an unconditional branch back to the start of the loop, as well
as mark the end of the loop.

To show that this combination of words does indeed represent the familiar while loop control
structure, figure 12 shows the translation of the definition of example2. We can see from this
example how WHILE uses the IF control word to test the condition, and how REPEAT generates
both an unconditional jump back to the label pushed by BEGIN, as well as a target for the
conditional jump generated by WHILE.

As mentioned earlier, Forth programmers are not restricted to a predefined set of control
structures, but are free to devise new combinations of the control words to construct more exotic
control patterns. Appendix A.3 of [6] gives some examples of Forth versions of common and
not-so-common control patterns.

6 Conclusions and Further Work

In this paper we have presented a formal specification of aspects of the Forth programming
language, in particular the processes involved in the compilation of Forth control words. We see
the contribution of this work falling into three main categories:

e The formal specification of aspects of the Forth system. As a stack-based machine, Forth
exhibits many features similar to other stack-based languages, a technology crucial to em-
bedded systems. We hope that a formal study of Forth constructs can act as a foundation
for the study and comparison of such stack-based languages, and contribute to the verifi-
cation of their safety properties.

e A formal explication of Forth control structures. The compilation of Forth control words,
being a mixture of syntactically simple, but nonetheless structured constructs, is unique
to Forth. The study of such structures can contribute to the general field of research

13
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

surrounding the user of low-level control structures that facilitate the data-flow analysis
process, central to, for example, bytecode verification in the JVM.

o The use of the w-calculus in programming language specification. As mentioned in section
1, this approach gives a different perspective to traditional compositional semantics. Such
a specification is particularly suited to languages with little syntactic structure that have
to interact with a number of different data structures or devices.

We intend to extend the specification to cover some of the aspects of the Forth system not
covered above, most notably the data stack. We have already type-checked and simulated the
operation of the specification using the Pict system. The next step is to translate our specification
into a format suitable for a proof assistant such as Coq [3] or Isabelle [10], so that it could be
used as a basis for the formal verification of safety properties of Forth programs.

References

[1] A.V. Aho and R. Sethi and J.D. Ullman, Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1986.

[2] M. Barr and B. Frank, Java: Too Much for Your System?, Embedded Systems Program-
ming, May 1997.

[3] C. Cornes et al., The Coq proof assistant reference manual, Rapport Technique 177, INRIA,
July 1995.

[4] M. Franz, Open Standards Beyond Java: On the Future of Mobile Code for the Internet,
Journal of Universal Computer Science, 4:5, pp. 521-532, May 1998.

[5] Matthew Hennessy, The Semantics of Programming Languages, Wiley, 1990.

[6] ISO/IEC 15145:1997 Information technology - Programming languages - Forth, International
Standards Organisation, 1997.

[7] Peter J. Knaggs, Practical and Theoretical Aspects of Forth Software Development, Ph.D.
thesis, University of Teesside, March 1993.

[8] Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification, Addison-Wesley,
1999.

[9] Robin Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge University
Press, 1999.

[10] L.C. Paulson, Isabelle: A Generic Theorem Prover, Springer-Verlag LNCS 828, 1994.

[11] Benjamin C. Pierce and David N. Turner, Pict: a programming language based on the -
calculus, Technical Report, Computer Science Department, Indiana University, 1997.

14
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

[12] James Power and David Sinclair, A Formal Model of Forth Control Words in the Pi-Calculus
- and its animation in Pict, Technical Report NUIM-CS-TR-2001-03, Dept. of Computer
Science, National University of Ireland, Maynooth, February 2001.

[13] C. Rockl and D. Sangiorgo, A m-calculus Process Semantics of Concurrent Idealised ALGOL,
Second International Conference on the Foundations of Software Science and Computation
Structure, pp. 306-321, Amsterdam, The Netherlands, 22-28 March, 1999.

[14] David A. Schmidt, Denotational Semantics: a methodology for language development, Allyn
and Bacon, 1986.

[15] Bill Stoddart, An Event Calculus Model of the Forth Programming System, The 12th eu-
roFORTH conference on the FORTH programming language and FORTH processors, St.
Petersburg, Russia, 4-6 October, 1996.

[16] David A. Watt, Programming Language Syntaz and Semantics, Prentice-Hall, 1991.

15
Accepted for the 6th International Workshop on Formal Methods for Industrial Critical Systems
Paris, France, July 16-17, 2001

