
Investigations into

Brain-Computer Interfacing for

Stroke Rehabilitation

Darren J. Leamy

Department of Electronic Engineering

Maynooth University

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

February 2015

mailto:dleamy@eeng.nuim.ie
https://www.maynoothuniversity.ie/electronic-engineering
http://www.maynoothuniversity.ie/


ii



Declaration

I, Darren Leamy, declare that this thesis titled ’Investigations into Brain-

Computer Interfacing for Stroke Rehabilitation’ and the work presented in

it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-

search degree at this University.

• Where any part of this thesis has previously been submitted for a

degree or any other qualification at this University or any other insti-

tution, this has been clearly stated.

• Where I have consulted the published work of others, this is always

clearly attributed.

• Where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely

my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

Signed:

Date:



This thesis is gift to my parents, John and Mairéad.
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Abstract

A stroke is the loss of brain function following the cessation of blood supply

to a region of the brain caused by either a blockage or haemorrhage in the

vasculature. It is a leading cause of death worldwide but survival rates have

increased significantly in the past 25 years with recent estimates putting the

number of worldwide stroke survivors at 33 million. Stroke survivors live

with lasting effects such as limb weakness, limb paralysis, loss of speech,

loss of comprehension and other neurological disorders. The purpose of

stroke rehabilitation is to return the sufferer to as normal a life as possible.

Traditional methods for this involve mass practice of the affected function to

provoke improvement, acquisition of compensatory skills and adaptation to

residual post-stroke disability. Recently, however, brain computer interfaces

(BCI) have emerged as a technology which may have impact in augmenting

traditional approaches, particularly for motor deficits. In this context, BCI

provides a means for closing the sensorimotor loop and driving neuroplastic

processes to enhance recovery.

A BCI is a system for translating measured brain activity into control sig-

nals for an external device, such as a computer or machine. Rehabilitation

BCI attempts to use such a device to encourage positive neurorehabili-

tation in the stroke survivor, to return or strengthen lost or diminished

function. This thesis describes concerted work to improve the current state

and future prospects of rehabilitation BCI. In particular, BCIs which use

electroencephalography (EEG) and functional near-infrared spectroscopy

(fNIRS) to measure brain activity are the focus of these efforts. EEG and

fNIRS are relatively inexpensive, easy-to-use and portable brain measure-

ment/imaging systems compared to other brain imaging methods commonly

found in hospital settings, such as functional magnetic resonance imaging



(fMRI), positron emission tomography (PET) or magnetoencephalography

(MEG). These advantages motivate this research in the hope that at-home

stroke rehabilitation becomes widespread and the accepted method of stroke

rehabilitation.

Investigations described here include the design and development of a novel

fNIRS imaging method, a novel fNIRS synthetic data generation algorithm,

a novel hybrid fNIRS/EEG measurement system, a novel portable EEG

biofeedback BCI, a substantial investigation into the effect of stroke on

EEG BCI operation and performance, and an investigation into potential

biomarkers for neurorehabilitation based on BCI parameters and scalp EEG.

These investigations, based on measurements of both healthy and stroke-

affected brain activity, have lead to the advancement of EEG and fNIRS-

based rehabilitation BCI technology.
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Chapter 1

Introduction

1.1 Preface

Those who are fortunate enough to survive a stroke of the brain have traditionally

been left to live a lower quality of life. In some cases of stroke, the impact on the

life of the survivor may be minimal, such as weakness in a hand or an arm, but in

other cases the impact may be devastating, such as loss of the ability to speak or to

understand speech, severe behavioural or memory problems, or complete paralysis of

one or more limbs. A stroke is damage to the brain caused by a lack of blood supply,

due to either arterial blockage or haemorrhage, resulting is loss of brain function. Each

year in Ireland, approximately 10,000 people are admitted to hospital following a stroke,

while approximately 30,000 stroke survivors in Ireland live with the lasting effects [1].

Recent advances in biomedical technology, however, give hope that those lasting effects

following a stroke may soon be eradicated. While those lasting effects of stroke are

varied, one of them - weakness and paralysis of the hand/arm - has a potential remedy

in the use of Brain-Computer Interface (BCI) systems. These BCI systems and the

exploration, development and improvement of their application as a tool for post-stroke

rehabilitation are the subject of this thesis.

A BCI is a system which measures and analyses brain activity and then trans-

lates that activity into control of another system. Biosignal acquisition systems for the

brain such as electroencephalography (EEG) and functional Near-Infrared Spectroscopy

(fNIRS) record data signals which may be processed by a BCI in real-time to deter-
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1.1 Preface

mine control over a computer or machine. BCIs have been used to allow tetraplegics to

control a computer [2] and to control a robotic arm [3], have allowed both healthy sub-

jects and a subject with myopathy to control a motorised wheelchair [4] and BCIs have

also recently been used in direct brain-to-brain communication between two healthy

subjects where the thoughts of one person in India caused a person in France to see

colours in their vision [5]. BCIs have also shown promise as a tool for stroke rehabilita-

tion by encouraging the brain to form and strengthen neural pathways which take the

place of those damaged by the stroke and ultimately restore lost motor ability to the

stroke survivor [6, 7, 8]. Motor Imagery is a known method for recovering lost function

after a stroke [9]. A BCI can be used in conjunction with this and similar methods to

guide functional recovery by recording, analysing a feeding back information on subject

engagement with rehabilitation therapies.

Until recently, no established post-stroke rehabilitation method made use of mod-

ern technologies. The established technique of Constraint-Induced Movement Therapy

(CIMT) has been shown to be quite successful in returning motor ability to an af-

fected limb, provided that some residual motor ability remains. By forcing the subject

to use their weakened limb, perhaps combined with Motor Imagery (MI) therapy, a

stroke patient may recover a range of motor abilities. In recent years, however, vari-

ous technologies have been tested for post-stroke rehabilitation efficacy - rehabilitation

robotics offers a motorised system to assist movement or to provide resistance training,

virtual reality provides an immersive, interactive environment in which a subject’s pre-

cise movements and activity may be recorded, and systems such as transcranial Direct

Current Stimulation (tDCS) and repetitive Transcranial Magnetic Stimulation (rTMS)

non-invasively stimulate the brain to modulate neuronal activity. As a stroke affects

the brain, BCI was proposed as a potential tool for stroke rehabilitation because of

the ability to measure brain activity and interact with the subject’s body and mind

networks and so more effectively recover motor ability. A review of modern stroke

rehabilitation technologies has been conducted by Laffront et. al. [10].

BCI for this purpose of stroke rehabilitation is not yet a fully developed tool. The

application of BCIs for this purpose is a very modern problem which is constantly seeing

new improvements in system design and understanding of the underlying physiological

effects. Researchers in the fields of engineering, mathematics, physics, psychology and

medicine around the world are currently tackling this challenge in order to improve the
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state of stroke rehabilitation technology. In order for BCI to reach the point where

it is consistently successful as a stroke rehabilitation tool, both system design and

physiological understanding must be progressed. This thesis is a contribution to that

progression, in the hope that future stroke survivors will no longer have to accept a

lower quality of life.

1.2 Objective

The objective of this thesis is to improve the current state of stroke rehabilitation tools

which utilise electroencephalography (EEG) and functional Near-Infrared Spectroscopy

(fNIRS) to record brain activity. This objective is approached from two perspectives.

Firstly, novel improvements to specific aspects of EEG and fNIRS BCI research tools

are explored and evaluated. Secondly, novel EEG-based tools for clinical evaluation of

post-stroke functional recovery are explored and evaluated.

1.3 Contributions

The aim of this thesis is to improve rehabilitation BCI and to uncover new knowledge

of the effects of stroke on BCI operation. The following is a comprehensive list of all

contributions arising from the work described in this thesis:

• An investigation into the novel use of interpolation methods for fNIRS data imag-

ing.

• The design of a novel hybrid fNIRS and EEG measurement system for BCI, using

minimal channels and requiring minimal set-up time.

• A system for generating synthetic fNIRS data in software, allowing for unlimited

fNIRS dataset generation and testing of fNIRS signal processing algorithms on

those datasets.

• The design of a simple bio-feedback EEG rehabilitation BCI system using adap-

tations of commercially-available BCI hardware and software and a unique haptic

feedback glove.
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• The design of a full-head fNIRS/EEG sensor for use by the BCI Research Group,

Institute for Infocomm Research (I2R), A*STAR, Singapore.

• The investigation of the effect of stroke on machine learned BCI parameters and

the feasibility of their use as a measure of post-stroke neuroplastic changes.

• The exploration of the effect of stroke on EEG sensor-space connectivity measures.

1.4 Publications

1. D. Leamy, T. Ward and J. Kocijan, “Using Gaussian process models for near-

infrared spectroscopy data interpolation,” in Proceedings of the 7th IASTED In-

ternational Conference Biomedical Engineering (BioMED 2010), Innsbrück, 2010.

[11]

2. D. J. Leamy and T. E. Ward, “A novel co-locational and concurrent fNIRS/EEG

measurement system: Design and initial results,” in Engineering in Medicine and

Biology Society (EMBC), 2010 Annual International Conference of the IEEE,

Buenos Aires, 2011, pp. 4230–4233. [12]

3. K. T. Sweeney, D. J. Leamy, T. E. Ward and S. McLoone, “Intelligent artifact

classification for ambulatory physiological signals,” in Engineering in Medicine

and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,

Buenos Aires, 2011, pp. 6349–6352. [13]

4. D. J. Leamy, T. E. Ward and K. T. Sweeney, “Functional Near Infrared Spec-

troscopy (fNIRS) synthetic data generation,” in Engineering in Medicine and

Biology Society, EMBC, 2011 Annual International Conference of the IEEE,

Boston, 2011, 6589–6592. [14]

5. D. J. Leamy, R. Collins and T. E. Ward, “Combining fNIRS and EEG to improve

motor cortex activity classification during an imagined movement-based task,” in

Foundations of Augmented Cognition. Directing the Future of Adaptive Systems,

Orlando, 2011. [15]
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6. J. Yu, Y. Pan, K. K. Ang, C. Guan and D. J. Leamy, “Prefrontal cortical activa-

tion during arithmetic processing differentiated by cultures: a preliminary fNIRS

study,” in Engineering in Medicine and Biology Society (EMBC), 2012 Annual

International Conference of the IEEE, San Diego, 2012. [16]

7. D. J. Leamy, J. Kocijan, K. Domijan, J. Duffin, R. A.P. Roche, S. Commins,

R. Collins and T. E. Ward, “An exploration of EEG features during recovery

following stroke - implications for BCI-mediated neurorehabilitation therapy”, J

Neuroeng Rehabil., vol. 11, no. 1, pp. 9, Jan., 2014. [17]

8. A. L. Coffey, D. J. Leamy and T. E. Ward, “A novel BCI-controlled pneumatic

glove system for home-based neurorehabilitation,” in Engineering in Medicine

and Biology Society (EMBC), 2014 36th Annual International Conference of the

IEEE, Chicago, 2014. [18]

1.5 Outline

This thesis is composed of eight chapters in total, including this introductory chapter.

Chapter 2 introduces the reader to the physiological systems and functions of interest,

from the nervous system, to neuronal activity, to the effects of stroke and neural adap-

tation. Chapter 3 introduces the technology which is used to record and investigate

brain function and the effects of stroke on that brain function. Chapter 4 is com-

posed primarily of three conference-published papers which describe multiple efforts

to improve differing aspects of BCI tools, including fNIRS imaging, hybrid EEG and

fNIRS sensor design and synthetic fNIRS data generation. Chapter 5 discusses current

knowledge about the effects of stroke on brain activity and describes an experimental

recording of rest and movement-related EEG activity in healthy and stroke-affected

subjects to be used for further investigation. Chapter 6 describes an analysis of that

recorded EEG from an offline BCI perspective in an attempt to explore the effects of

stroke on BCI operation and to investigate the potential utility of an implicit EEG

BCI-based biomarker for neurorehabilitation. Chapter 7 describes efforts to conduct

connectivity analysis on that same dataset and investigate an explicit biomarker of

neurorehabilitation, followed by a description of the development and test of a low-cost
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biofeedback BCI. Chapter 8 concludes the thesis with a summary, a discussion of future

works arising from this thesis and concluding remarks.
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Chapter 2

The Stroke-Affected Brain

2.1 Introduction

The human brain is the most complex system known to man. Hundreds of billions

of neurons, each with thousands of connections to other neurons and each connection

with differing strength, are responsible for the thoughts, hopes, dreams, perceptions

and emotions of every person. The human brain is capable of producing wondrous art

and exhilarating symphonies, capable of designing machines to take it to other planets

and has recently (in the time frame of the brain’s existence) begun to get a grasp on

understanding itself. This near-infinitely complex structure is subject, unfortunately,

to damage and malfunction. Damage to the brain is more personal than, say, a broken

leg, because the brain is where we are, where our mind exists. Due to the complexity of

the brain, such damage is not easy to fix and we do not yet understand how to remedy

every malfunction. Huge milestones of medicine do not appear suddenly but are the

summation of hours, years or lives of work. This thesis is as a stepping stone towards

eventually being able to fix the damage caused by stroke.

Prior to discussing how modern technology may treat stroke and improve the lives

of stroke survivors, the physiology of the brain and the mechanics of stroke must be

introduced. The physiology and function of the human brain is introduced in this

chapter along with the consequences of a lack of nutrient supply and the brain’s natural

mechanism for adaptation and learning. The causes, resulting effects and the traditional
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treatment of stroke are also explained here as a starting point for understanding the

impact of new knowledge and new technologies described in following chapters.

2.2 Anatomy and Function of the Healthy Human Brain

2.2.1 The Nervous System

The nervous system is the organised network of neurons and glia tasked with control of

muscle movement, sense, perception, memory, operation of internal organs and more.

The nervous system is comprised of two parts: the central nervous system (CNS),

consisting of the brain and spinal cord, and the peripheral nervous system (PNS),

consisting of neurons connecting every other part of the body to the spinal cord. These

neurons provide two-directional signal pathways around the body for functions such as

the sense of touch, heart beat control, gastrointestinal control and muscle control.

The brainstem, cerebellum and cerebrum are the three major parts of the brain,

as shown in Figure 2.1. The brainstem connects the spinal cord to the remainder of

the brain and some upper parts of it are involved in motor reflexes, regulation of the

sleep cycle and respiration and cardiac function. The cerebellum is primarily involved

in coordination and fine control of voluntary motor action. The cerebrum controls all

other functions of the body, such as motor movement, sense, thought, emotion and

perception.

The cerebrum is composed of three layers: the basal ganglia, the limbic system and

the cerebral cortex. The basal ganglia resides at the centre of the brain mass and is

associated with control of voluntary motor actions, routine behaviours, eye movements,

procedural learning, cognition [19] and emotion [20, p. 120]. The limbic system is sit-

uated around the basal ganglia and is not a separate system but rather a collection

of other brain regions not part of cerebral cortex such as the hippocampus, olfactory

bulbs, amygdala, fornix, cingulate cortex and parahippocampal gyrus. The limbic sys-

tem is associated with many functions, including adrenaline flow, emotion, behaviour,

motivation, temperature control, long-term memory and olfaction [21, p. 731].

The outer layer of the cerebrum is the cerebral cortex. This 2–4 mm thick layer

[22, p. 468] has a folded outer surface, featuring ridges (gyri) and grooves (sulci),

which results in a much greater outer surface area than that afforded by the inside of

8
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Figure 2.1: Main parts of the human brain. Source: Brain parts (cropped and edited)

licensed under CC BY-NC 2.0.

a skull. The cerebral cortex is a paired structure, with the left and right hemispheres

separated by the medial longitudinal fissure, where each hemisphere primarily relates

to the opposite side of the body. Each hemisphere is subdivided into four lobes: the

frontal lobe, parietal lobe, temporal lobe and occipital lobe [22, p. 469], as shown in

Figure 2.2.

Figure 2.2: Lobes of the cerebral cortex. Source: Public domain
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2.2 Anatomy and Function of the Healthy Human Brain

The cerebral cortex is organised into separate functional regions. Neuronal activity

in each region has been found to be related to particular tasks or responses. These

areas can be separated into three types: motor areas, for planning and processing of

all motor signals, sensory areas, for receiving and processing sensation signals, and

association areas, for secondary signal processing of signals from all primary motor and

sensory areas.

Of particular interest to this thesis is the primary motor area of cortex (“motor

cortex”), highlighted in Figure 2.3. This region of the brain is the primary area for the

planning and initiation of volitional movement [22, p. 474]. Different regions along the

vertical axis of the motor cortex are responsible for muscles in different parts of the

body. The size of each region of motor cortex representing particular muscles increases

with the complexity of the muscle movement controlled. Therefore, the mouth and

hand regions are comparatively large, due to the typical complex muscle movements

required of these areas, while the areas where the arm and neck are represented are

relatively small.

Figure 2.3: Motor cortex highlighted in red. Source: Brodmann area 4 lateral.jpg licensed

under CC BY-SA 2.1 JP.
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2.2.2 The Neuron

A neuron is a type of electrically excitable cell which is used in both the PNS and

CNS. 10% of brain mass is made up of neurons while the remaining mass is glial cells -

cells which serve support functions for the brain. There are between 100 and 150 billion

neurons in the brain, with each neuron connecting to approximately 1,000–10,000 other

neurons. All neurons in the brain have broadly the same structure, as illustrated in

Figure 2.4. A cell assembly is a group of cells which are capable of briefly acting as a

single structure. Neurons behave in this manner such that all neurons in an assembly

exhibit the same electrical patterns at the same rate of activation [23, p. 6].

Figure 2.4: Structure of a myelinated neuron. Source: Neuron.svg licensed under CC BY

3.0.

The wall of a neuron cell exhibits an ionic transmembrane potential. At resting

state, the interior of the cell is -70 mV compared to the exterior primarily due to

concentrations of sodium ions (Na+) and potassium ions (K+), with a relatively small

contribution from chloride ions (Cl−). These concentrations are maintained through

combined forces of diffusion gradients, electric field gradients, availability of pores in

the membrane and active transportation of Na+ and K+ ions against the established

gradients through sodium-potassium pumps in the cell membrane.

2.2.2.1 The Action Potential

Importantly, the permeability of the membrane to sodium and potassium ions is voltage-

and time-dependant. Should a section of the membrane depolarise to a threshold of

approximately -55 mV, the permeability of the membrane to Na+ ions increases such
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that Na+ rushes into the cell, depolarising the membrane further and again increasing

Na+ permeability. The voltage-dependant membrane permeability to K+ response

is slower than Na+ so after the membrane has hyperpolarised, permeability to K+

increases and K+ rushes out of the cell, depolarising the membrane again. This voltage

pattern, shown in Figure 2.5, is known as an action potential and occurs at any point

in a neuron membrane when the transmembrane potential reaches the depolarisation

threshold from some stimulus. The appearance of an action potential is also referred

to as a neuron activation or neuronal “firing”.

Figure 2.5: Evolution of the action potential. Source: 1222 Action Potential Labels.jpg

licensed under CC BY 3.0.

The occurrence of the action potential in one part of the membrane causes depo-

larisation to the threshold in the neighbouring areas of the membrane and the same

response. Therefore, the action potential propagates along a neuron cell away from the

point of initial stimulation. Following an action potential, there is a recovery period

during which it is impossible to cause another action potential. The smallest amount

of time possible between action potentials is approximately 0.001 s, so a neuron may

fire up to a maximum of 1000 times per second.

As seen in Figure 2.4, the axon is coated with sheaths of Myelin, a fatty substance.

These Myelin sheaths prevent transmembrane ionic flow along the axon except at the

gaps between the sheaths (Nodes of Ranvier) meaning that the action potential “jumps”

along the axon at these points. Propagation of the action potential is faster in this way

than with unmyelinated neurons, which are found in other parts of the nervous system.
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Transmission time for action potentials along cortical axons range is typically 1–10 ms

but this may increase up to 30 ms for the longest axons [23, p. 8].

In order for a neuron to become active, it must first experience some stimulus which

initially depolarises the transmembrane voltage to the activation threshold. This oc-

curs naturally due to stimulus at the cell dendrites (explained below in subsubsec-

tion 2.2.2.2), resulting in the action potential propagating along the neuron to the ends

of the axons. In the brain, dendrites and axons are the points of communication with

other neurons. Information and stimulus from another neuron is received via the den-

drite while information and stimulus is sent via the axon to the dendrite of another

neuron. Essentially, the dendrites are the cell input while the axons are the cell output.

The number of dendrites per cell depends on the location of the neuron in the brain but

there is only one axon, which may divide into several branches. Neurons in mammalian

brains are usually referred to as pyramidal neurons for their triangular shape, as seen

in Figure 2.6.

Figure 2.6: Stained pyramidal neuron in the hippocampus of an epileptic patient. Source:

Pyramidal hippocampal neuron 40x.jpg licensed under CC BY-SA 2.5.

2.2.2.2 The Synapse

A synapse is the functional connection between axons and dendrites of two neurons.

Two general types of synapse exist, electrical and chemical, which describes the mech-

13

http://commons.wikimedia.org/wiki/File:Pyramidal{_}hippocampal{_}neuron{_}40x.jpg
http://creativecommons.org/licenses/by-sa/2.5/deed.en


2.2 Anatomy and Function of the Healthy Human Brain

anism for signal transmission. Electrical synapses transmit by allowing direct current

flow between neurons whereas chemical synapses operate through the release and ab-

sorption of substances called neurotransmitters. At a synapse, the neurons are referred

to as presynaptic and postsynaptic, due to the direction of stimulus. While the same

neuron is always presynaptic or postsynaptic at a chemical synapse, current flow may

be bi-directional at an electrical synapse. The gap between neurons at an electrical

synapse is about 2–3 nm, while at a chemical synapse the gap is about 20 nm. Due

to direct current flow transmission, electrical synapses are also faster than chemical

synapses. Electrical synapses, however, are in the minority in the brain as their usual

function is to synchronise electrical activity among neurons rather than to facilitate

inter-neuronal communication [24, p. 79].

The majority of synapses in the brain are chemical. Signal transmission with these

types of synapses broadly follows these steps [24, p. 80]:

1. An action potential arrives at the presynaptic membrane.

2. Depolarisation increases membrane permeability to Ca++.

3. Due to high transmembrane concentration gradient, Ca++ rushes into the neuron.

4. Ca++ causes neurotransmitter release into the synaptic cleft.

5. Neurotransmitter binds to receptors in the postsynaptic membrane, which induces

a post synaptic potential (PSP) in the cell which may be either excitory (EPSP)

or inhibitory (IPSP).

A single neuron has thousands of dendrites, each of which may have differing levels

of excitory and inhibitory potentials induced in them at their synapses. PSP amplitude

is typically in the order of millivolts and so it is very unlikely that a single synapse

transmission will be strong enough (approximately +20 mV) to induce an action po-

tential in the postsynaptic neuron. However, all PSPs are effectively integrated in a

neuron such that if the summation of all PSPs at an instant depolarises the membrane

to the activation threshold, then the neuron will produce an activation potential [24,

p. 103]. In this way, neuronal firing is dependant on numerous factors, such as the

number of dendritic synapses, the magnitude of EPSPs and IPSPs produced at those

synapses and the distance between synapses and soma.
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2.2.3 The Vascular System of the Brain

The supply of blood to the brain to provide nutrients and to allow cell metabolism

is referred to as cerebral blood flow (CBF). Normal cerebral blood flow to a healthy

adult brain is 750 to 900 ml per minute, which accounts for 15% of cardiac output [21,

p. 761]. This supply of blood must remain highly regulated for the brain to function

normally. The brain performs this regulation quite well, keeping cerebral blood flow at

a normal level even in persons with high blood pressure [21, p. 762].

Blood is supplied to the brain via four arteries - the left and right vertebral arteries

and the left and right internal carotid arteries, as shown in Figure 2.7. These arteries

connect at the base of the brain to form a structure called the Circle of Willis, shown

in Figure 2.8. This structure provides adequate perfusion for the brain in the case of

any of the four arteries becoming obstructed.

Figure 2.7: Blood supply to the brain from the heart. Source: 2122 Common Carotid

Artery.jpg licensed under CC BY 3.0.
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Figure 2.8: Circle of Willis. Source: Circle of Willis en.svg, public domain.

The smaller arteries leading away from the Circle of Willis supply blood to more

localised regions of the brain. The middle cerebral artery (MCA) supplies blood to

most of the lateral surface of the cerebrum, the anterior cerebral artery (ACA) supplies

blood to the medial surface of the cerebrum and deeper layers within the cerebrum and

the posterior cerebral artery (PCA) supplies blood to the infero-lateral surface of the
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temporal lobe, the lateral and median surfaces of the occipital lobe and deeper layers

within the cerebrum [22, p. 724].

Regulation of cerebral blood flow is of critical importance to the brain as any sig-

nificant deviation from the ideal can result in abnormal effects and potentially serious

damage. In the case of a complete cut-off of blood supply to the brain, a person be-

comes unconscious in as soon as 5 to 10 seconds. At the cellular level, a brief loss of

blood supply can cause cellular damage and if the blood supply is not resumed quickly,

infarction (“cell death”) is possible. Should blood supply be stopped for an extended

time, tissue death is a certainty. [24, The Blood Supply of the Brain and Spinal Cord].

2.3 Pathophysiology, Effects and Treatment of Stroke

A stroke is a brain infarction resulting from cessation of blood supply. Following a

stroke event, the area surrounding the infarction becomes inflamed and brain function

here ceases immediately. The brain tissue liquefies, ultimately leaving a cavity in the

brain. There are two mechanisms by which blood supply is lost to an area of the brain:

by arterial haemorrhage (also known as a haemorrhagic stroke) or by arterial occlusion

(also known as an ischaemic stroke) [25, p. 546].

2.3.1 Haemorrhagic Stroke

Haemorrhagic stroke is an arterial bursting and subsequent bleeding in the brain re-

sulting in cell damage and death. Cell damage is caused by hypoxia due to loss of

blood supply, an irritant effect of the blood on brain mass, and increased intracranial

pressure (ICP). ICP damages the brain by physically pressuring cells and by restricting

CBF. This type of stroke is more dangerous than ischaemic strokes but only accounts

for 10–15% of stroke events [26].

2.3.2 Ischaemic Stroke

Ischaemic stroke is an arterial blockage resulting in brain cell damage and death. There

are four types of ischaemic stroke: thrombotic stroke (blood clot at the site of blockage),

embolic stroke (blood clot or other floating mass from elsewhere in the blood stream

causing the blockage, see Figure 2.9), systemic hypoperfusion (general decrease in blood
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supply) and venuous thrombosis (blood clot in the dural venuous sinuses, which drain

blood from the brain). Severity of cell damage depends on proximity to the blockage

site where the nearest cells (core) experience immediate cell death while cells further

away (penumbra) may still receive some blood supply from neighbouring areas and may

only be partially damaged [26].

Figure 2.9: Arterial occlusion caused by atheroma and thrombus. Source: Blausen 0089

BloodClot Motion.png licensed under CC BY 3.0.

The process of ischaemic cell death is called the ischaemic cascade [26, 27, 28],

which is summarised here as:

1. Lack of oxygen from the blood supply causes inhibition of oxidative phosphoryla-

tion in the cell membrane, which produces the cellular fuel adinosine triphosphate

(ATP) [29].
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2. The cell begins anaerobic metabolism, which produces harmful by-products like

lactic acid and hydrogen ions.

3. As ATP is required for the membrane sodium-potassium pump to function, there

is a resulting increase of intracellular Na+ and decrease of intracellular K+ and

thus abject cell depolarisation.

4. Cell depolarisation results in the inflow of calcium ions, Ca++, and water.

5. Intracellular water results in neuronal and glial swelling.

6. Intracellular Ca++ causes the release of the neurotransmitters glutamate and

asparate.

7. Release of glutamate cause more Ca++ to flow into the cell.

8. Excess calcium causes the production of harmful enzymes and metabolic products,

such as oxygen free radicals, which damages cell membranes, damages genetic

material and damages structural proteins of the neuron.

9. Following cell death, toxins and apoptotic molecules are released, causing further

cell damage.

10. Inflammation occurs in the damaged area.

2.3.3 Transient Ischaemic Attack

A transient ischaemic attack (TIA) is similar to an ischaemic stroke but the blockage

is temporary and doesn’t result in acute infarction [30]. While recovery from a TIA is

relatively quick, there is an increased likelihood that the patient will suffer a full stroke

in the months following a TIA [31, 32, 33]. TIAs are therefore important indicators

that a person may soon suffer a stroke but do not have severe lasting effects.

2.3.4 Effects of a Stroke

The lasting effects of a stroke depend on the area of the brain which has been damaged.

In the case of stroke caused by arterial occlusion, infarction occurs in the area supplied

by the blocked artery. Therefore, if the blocked artery is large, supplying blood to a
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large area of the brain, then the damage will be more wide-spread and the effect will

likely be greater than if the blocked artery was small and supplied blood to a small

region of the brain.

For example, a haemorrhage or occlusion of a large artery, such as the internal

carotid artery or MCA, may result in immediate coma, loss of consciousness or death.

As MCA supplies blood to the areas of the brain related to speech comprehension,

word formation, motor areas and sensory areas, occlusion of this artery may also result

in loss of speech control, loss of motor control and loss of sensation [21, p. 763]. A

blockage of the PCA may result in loss of vision as it supplies blood to the occipital

lobe. A blockage of the ACA may result in confusion, loss of problem-solving skills or

personality changes [25, p. 548].

Worldwide, stroke is the third highest cause of years of life lost [34, p. 46]. Previous

studies have found that the fatality rates of all types of first-ever stroke are about 12%

at 7 days, 20% at 30 days, 30% at 1 year 60% at 5 years and 80% at 10 years [35, 36]. In

Ireland, approximately 10,000 people are admitted to hospital following a stroke each

year. Over 30,000 people in Ireland are survivors of stroke, likely suffering from at least

one lasting disability as a result, such as hemiparesis (48%), inability to walk (22%),

need for assistance with activities of daily living (ADL) (24-53%), clinical depression

(32%) and cognitive impairment (33%) [1]. Other studies found that at 12 months

after first-ever stroke, one-third of patients had died, 40-50% live independent lives and

20-30% require assistance with activities of daily living [37, 38]. Additionally, stroke

sufferers are prone to fatigue [39, 40, 41, 42], which has implications for experimental

data recording which will be addressed in this thesis.

Numerous tools are available to clinicians to evaluate the effects of a stroke on

a patient. Iterations of the Stroke Impact Scale (SIS) [43, 44, 45] are examples of

such tools for assessing a range of stroke outcomes, including strength, hand motor

control, activities of daily living/instrumental activities of daily living (ADL/IADL),

mobility, memory, thinking, emotion and communication. Another tool, specifically for

assessing cognitive effects of a stroke is the Mini-Mental State examination [46]. Many

more tools have been developed, often for assessing specific facets of living with and

recovering from a stroke. A list of some such tools is available online1.

1http://www.strokecenter.org/professionals/stroke-diagnosis/

stroke-assessment-scales/
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2.3.5 Treatment and Therapy

Survival and recovery rates following stroke are best when a patient is admitted to a

hospital stroke unit rather than a general medical ward [47]. A stroke unit is an area in

a hospital where patients with acute stroke are admitted to be diagnosed, treated and

rehabilitated for as long as is required. A “stroke team” made up of one or more doctors,

nurses, physiotherapists, occupational therapists, speech and language therapists, social

workers and dieticians work in this treatment of a patient in a stroke unit. There may

also be a pharmacist, clinical neuropsychologist and orthotics/prosthetics specialist

available [48, p. 208].

The traditional objective of stroke rehabilitation is to teach the patient to adapt to

their new disabilities in order to minimise the impact that the stroke has on the patient’s

life. A stroke patient would be taught how to perform activities of daily living, such

as buttoning a shirt or tying shoe laces, without the use of their paralysed hand. The

brain naturally heals somewhat following a stroke and this recovery is helped by active

participation in therapy by the patient. Finally, with respect to stroke treatment, all

rehabilitation efforts should start as soon as possible as evidence shows that the sooner

rehabilitation begins, the better the recovery outcome [49].

2.4 Neuroplasticity

The brain should be thought of as a mould-able, changeable, plastic structure which

constantly uses experiences and the current environment to form its precise organisa-

tion. If the brain was not plastic in this way, it would not be able to form memories,

learn new facts or learn new skills. Each of these capabilities of the brain are only pos-

sible through the adaptable connections between the neurons that comprise it. If those

connections between neurons could not change then normal life would be impossible.

From birth, pre-existing neuronal connections begin to adapt to our experiences and

over our lives neuronal connections strengthen and weaken (cortical plasticity) while

some connections die entirely or new connections are formed (neurogenesis). This

ability of the brain to adapt to the current environment, to sensory stimuli and to

experience is referred to as neuroplasticity.
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2.4.1 Cortical Plasticity

The core mechanism of plasticity in the brain is cortical plasticity - that is, the strength

of connections between neurons is not fixed but actually changeable. As discussed

in subsection 2.2.2, neurons interact through transmission of action potentials along

neuronal pathways which utilise a synapse. At each synapse, an activation potential

at the presynaptic axon induces an EPSP or IPSP in the postsynaptic dendrite, which

is then integrated by the postsynaptic neuron with all other instantaneous PSPs and

may result in an activation potential. Thus, the greater the magnitude of the EPSP

at a particular synapse, the greater the strength of that synapse and the greater the

influence that presynaptic neuron has on postsynaptic activation. That strength of a

synapse, which may also be seen as the strength of a neuronal pathway, is dependent

on the quantity of neurotransmitters released by the pre-synaptic neuron and received

by the post-synaptic neuron. Due to the dependence of cortical plasticity on synaptic

strength, it may also be referred to as synaptic plasticity.

2.4.1.1 Short-Term Synaptic Plasticity

Short-term synaptic plasticity refers to alterations in synaptic strength which last up

to a few minutes. Synaptic facilitation is a sudden increase in synaptic strength which

occurs when two axonal action potentials reach the synapse within a few milliseconds

of each other. The quick succession of action potentials results in elevated levels of

Ca++ inside the axon. The elevated Ca++ level results in higher amounts of subse-

quent neurotransmitter release and thus higher magnitude PSP in the postsynaptic

neuron. Synaptic depression is a sudden decrease in neurotransmitter release levels

caused by lowered availability of neurotransmitter following higher-than-normal release

rates. Synaptic strength is lowered until the reserves of presynaptic neurotransmitter

are replenished. Synaptic potentiation and augmentation refer to increasing ability of

incoming Ca++ to release neurotransmitters. Augmentation lasts for a few seconds

while potentiation last for tens of seconds up to a few minutes [24, p. 164–165].

2.4.1.2 Long-Term Synaptic Plasticity

Other activity can permanently increase synaptic strength (long-term potentiation (LTP))

or permanently decrease synaptic strength (long-term depression (LTD)). In 1949, Don-
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ald Hebb published his theory on one such type of neuronal activity for permanently

altered synaptic strength [50]. Hebb postulates that if the axon of a pre-synaptic neuron

A consistently releases neurotransmitters as the post-synaptic neuron B is activated, a

metabolic change occurs in one or both neurons such that the strength of the synapse

between A and B increases. This central tenet can be summarised as “Cells that fire

together, wire together”, although, technically, the pre-synaptic cell must fire immedi-

ately before the post-synaptic cell [51]. This neuroplastic effect caused by coordinated

neuronal firing is also known as Hebbian learning, Hebbian plasticity or associative

plasticity.

In order for a postsynaptic neuron to undergo LTP, it must possess some coincidence

detector such that LTP occurs when both neurons at a synapse exhibit an activation

potential. This is possible due to the postsynaptic receptor for the neurotransmitter

NMDA permitting sudden influx of Ca++ in the presence of glutamate during depolar-

isation [52]. LTD is a natural requirement for all synaptic transmission as, without it,

synaptic strength could only increase. LTD appears to occur when postsynaptic Ca++

levels increase slowly, which triggers an internalisation in postsynaptic receptors for the

neurotransmitter AMPA, thus decreasing sensitivity [24, p. 179].

Spike-timing dependent plasticity refers to the susceptance of neurons to LTP and

LTD, dependant on the specific timings of activation potentials on both sides of a

chemical synapse. Both LTP and LTD appear dependant on postsynaptic Ca++, where

LTP occurs with a sudden, large influx of Ca++ and LTD occurs with a slow, steady

influx of Ca++.

2.4.1.3 Representational Plasticity

As mentioned in subsection 2.2.1, the cortex can be segmented into areas in which

cortical activity is related to various actions and functions of the body and mind. In

effect, the surface of the cortex can be seen as a cortical map. Take, for example, the

somatosensory cortex, the region of the brain that processes physical touch signals from

around the body located along the postcentral gyrus posterior to the primary motor

cortex. As with the primary motor cortex, different regions along the length of the

somatosensory cortex are related approximately to activity in specific regions of the

body, as shown in the homunculus (“little person”) representation of Figure 2.10.
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Figure 2.10: Sensory homunculus. Source: 1421 Sensory Homunculus.jpg licensed under

CC BY 3.0.

The representation areas may be modified (“cortical remapping”) by experience,

sensory input, injury and learning [52, 53]. An early study conducted by Merzenich

et. al [54] investigated cortical remapping by transecting and ligating a median nerve

of owls and monkeys, such that the somatosensory cortex for that limb received no

information. They then investigated the median nerve representation some months

later and found that it had disappeared. The area in which it previously existed was

taken over by neighbouring representations. Similar investigations with monkeys re-

ported the same result - with no sensory input, a representation area disappears and

neighbouring representations fill the available space i.e. neurons in that region now

processed sensory information of neighbouring neurons [55, 56]. Similarly for humans,

one study demonstrated that long-time right-handed string musicians (violinists, vi-

oloncellists and a guitarist) had enhanced cortical representation for their left hand

in their contralateral somatosensory cortex compared to non-musician control subjects
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[57]. This enhanced representation is due to the heightened sense of precise touch in

the musician’s left hands which must press the instrument’s strings in a precise manner.

Another study demonstrated that reading Braille is associated with an expanded cor-

tical representation for the Braille-reading finger [58, 59]. These, and similar studies,

demonstrate the plastic nature of the brain. As experience and sensory input changes,

the brain adapts.

2.4.2 Neurogenesis

Neurogenesis simply refers to the growth of new neurons from undifferentiated stem

cells. Prior to 1992, the prevailing belief was that a person was born with all of

their neurons and, over time, they would lose them but never grow any new neurons.

Research in the mid-90’s began to challenge that belief until work published in 1998

demonstrated neurogenesis in the hippocampus of the adult brain for the first time [60].

Neurogenesis is a process that occurs primarily during childhood but slows down as a

person ages. However, when a stroke or other injury to the brain occurs, the process

begins again in order to repair damaged neuronal connections and contribute to the

overall neuroplastic process of the brain [61, 62]. Like cortical plasticity, neurogenesis

is influenced by external factors and experience. Together, these two functions of

the brain may therefore be influenced positively by rehabilitation therapy. From this

point, cortical placticity, representational plasticity and neurogenesis will be addressed

together as neuroplasticity.

2.4.3 Stroke Rehabilitation Through Neuroplasticity

The neuroplastic process is constantly affected by a person’s experience which results in

sensory information and neuronal activity in the brain. Regular activations of synapses

keeps the synapse strong while a lack of activation results in a weakened neuronal

connection. As one synapse weakens through non-use, other synaptic inputs may begin

to exert a greater influence over neuronal activation. Thus, a neuron with the correct

connections to other neurons may switch roles as synaptic strengths fluctuate with use.

For example, amblyopia, also known as “Lazy Eye”, is a disorder where visual acuity in

one eye is decreased [63]. As the visual centre of the brain receives weaker or otherwise

interfering signals from the affected eye, the brain may begin to favour only vision in
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the healthy eye or may lose the ability to process binocular vision. This adaptation to

effectively ignore sensory information is a phenomenon referred to as learned non-use

[64]. Treatment of amblyopia initially involves a treatment of the underlying condition

such that vision signals arriving at the brain are now normal. Although the brain has

adapted to incorrectly process vision signals, despite the corrected underlying condition,

it may be possible to force the brain to re-learn correct processing of the vision signals

[63]. This may, in certain cases, involve covering the good eye with a patch, forcing the

brain to process vision signals which it had learned to ignore. This forced learning is

an externally-controlled neuroplastic adaptation to fix a neurological disorder.

A stroke is an injury which the brain adapts to very quickly. While the neuroplastic

process begins initially in response to the stroke event, it continues to function in the

months following a stroke as the brain adapts. Without any intervention, the brain

may spontaneously repair some of the stroke damage and recover some lost function,

particularly in the first 30 days after stroke, continuing up to 90 days after stroke

[65, 66]. However, the neuroplastic processes may be influenced by the activities and

experiences of the stroke survivor. An objective of stroke rehabilitation intervention is

to provide these experiences to the patient such that the neuroplastic process results

in increased recovery of lost function.

As discussed earlier, stroke usually results in some loss of function due to neuronal

cell death. The destroyed neurons evidently were involved in the lost function but

may not have been the source of the function - possibly merely a secondary or tertiary

processing region for that function. In that case, neurons at the source of the function

may still be intact and operating as normal soon after the stroke event. It is possible,

however, to exploit the neuroplastic process of the brain to strengthen previously-

unused neural pathways, which are unaffected by the stroke, so that they provide the

lost function [67]. Such stroke rehabilitation therapies are based on the idea that the

brain is malleable and can be encouraged to form new pathways. Rather than merely

teaching the patient to adapt their lives to their disability, these therapies try to adapt

the brain to the damage to reduce or eliminate the lasting effect of the stroke [68].

Three phases are involved in post-stroke functional recovery [69]. Firstly, reversal of

immediate biological reactions to the stroke event (tissue hypometabolism, neurovas-

cular uncoupling, aberrant neurotransmission [70, 71]) and initiation of cell repair.

Secondly, functional cell plasticity to change synaptic strength of existing neuronal

26



2.4 Neuroplasticity

connections. Thirdly, neurogenesis for formation of new neuronal connections for up to

4 months after stroke [72].

Standard motor rehabilitation therapy following hemiparetic stroke (stroke result-

ing in paralysis of one limb) involves a mix of neurofacilitation techniques, task-specific

training and task-oriented training. Neurofacilitation techniques involve attempts to

retain motor control as much as possible in the patient through promoting normal

movement and inhibiting abnormal movement (see subsection 2.4.4). Task-specific

training attempts to improve ability to perform certain tasks. Task-oriented training

focusses on retaining functional tasks which involve coordination between various sys-

tems (cognitive, neural, musculoskeletal etc.). Time spent performing therapy tasks is

subject-specific but approximately 30–60 minutes of therapy each day is typical, be-

ginning in the days following the stroke event. Motor recovery under these conditions

proceeds quickly in the first month of therapy, slows down in the months following, and

finally plateaus at around 6 months post-stroke [73].

2.4.4 Constraint-Induced Movement Therapy

Constraint-Induced Movement Therapy (CIMT) is a stroke rehabilitation therapy which

attempts to reduce the effect of a stroke on motor control of a patient’s limbs [74, 75].

It is based on the theory of “learned non-use”, where a patient with weakened strength

in their stroke-affected limb will compensate for their disability by increasingly relying

on their corresponding non-affected limb. Repeated reliance on the healthy limb means

that the neural pathways involved in movement of the stroke-affected limb become weak

through non-use, hindering any recovery of strength that would otherwise be possible.

CIMT is therefore very similar to the treatment for amblyopia. The non-affected limb is

physically constrained such that the patient is unable to use it for 90% of their waking

time while at the same time participating in physical therapy which forces them to use

their stroke-affected limb. Though the subject may not perform the therapy tasks well

initially, through repeated engagement, new neural pathways strengthen to eventually

increase strength and motor control in the stroke-affected limb.

Wolf et. al. conducted a study [76] into the effectiveness of CIMT for stroke

rehabilitation. 222 stroke patients who had suffered their first-ever stroke between 3

and 9 months beforehand participated in the study. 116 patients took part in normal
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therapy while 106 patients participated in CIMT. Patients who participated in CIMT

scored statistically significantly higher on outcome measures than the control group.

Recent adaptations of CIMT, such as combining modified-CIMT (mCIMT) and mental

practice [77], continue to improve on this therapy. Unfortunately, CIMT relies on the

patient having enough motor strength to be able to execute a motor task with their

healthy limb constrained. Therefore, a stroke patient without any motor control cannot

participate in CIMT in this form.

2.4.5 Other Stroke Rehabilitation Therapies

Numerous stroke rehabilitation therapies exist with varying levels of technological in-

volvement. Some therapies, such as CIMT, Repetitive Task Training [78] or Bilateral

Training [79], are “low-tech”, involving little more than a specific action to be followed.

Some other therapies involve the use of some technology, such as Moving Platform

Training [80, 81] or Treadmill Training [82] (both for lower limb motor recovery). Re-

habilitation therapies may also utilise some advanced technologies, such as Robotics

[83] or Electrostimulation [84]. A review of these rehabilitation therapies and others is

available elsewhere [85].

Following stroke, much of the brain networks involved in motor control remain

active. As will be discussed in later chapters, post-stroke patterns of brain activation

can be observed with neuroimaging techniques, allowing us to observe the effects of

stroke on brain activation (section 5.2). For now, it’s important to highlight the fact

that much of the brain is still active when a stroke patient attempts to operate a

stroke-affected limb. Even in the case of complete paralysis, brain networks associated

with motor control are seen to be active [86]. An opportunity therefore exists to

utilise Hebbian learning: use recordings of brain activity to determine if a patient is

attempting to execute a motor task and provide biofeedback at the appropriate time,

thus encouraging the strength of new neural pathways. This high-tech rehabilitation

therapy is discussed in the following chapter.

2.5 Summary

Stroke is a complicated disorder, which can be studied and analysed from numerous

perspectives. Other fields of research may tackle stroke as a problem to be studied,

28



2.5 Summary

to be predicted or to be prevented. The perspective taken here in this chapter and in

the remainder of this thesis is that stroke is a problem to be fixed, the effects of which

are to be eradicated through healing and returning the sufferer to their pre-stroke lives

as well as possible. As such, the causes and mechanisms of stroke are not of utmost

importance here, only the lasting physical damage and opportunities for treatment and

for new knowledge. The next chapter describes modern methods which may provide

the best answer the brain has to healing itself.
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Chapter 3

Brain-Computer Interfacing for

Stroke Rehabilitation

3.1 Introduction

Traditional methods for stroke rehabilitation are still dominant. Despite the recent

leaps and bounds in rehabilitation technology advancement, these methods are shunned

in favour of the tried-and-tested low-tech methods or simple adjustment to the injury.

High-tech solutions, however, are not entirely absent from clinical settings; medical

professionals simply tend to be overly wary of new technology. One modern high-tech

method for stroke rehabilitation involves the use of Brain-Computer Interfacing (BCI),

where a stroke subject’s brain activity is measured and analysed in real-time to provide

appropriate feedback to encourage rehabilitation through Hebbian learning effects.

Rehabilitation BCI is complicated and can involve the use of multiple computers and

multiple signal measurement systems. It requires at least some operational knowledge

and possibly, in the case of more complicated systems, a dedicated operating technician.

Rehabilitation BCI has been the subject of significant research recently and may yet

prove to be a successful rehabilitation tool. While BCIs have advanced significantly

in recent times, rehabilitation BCI places extra restrictions on operation, particularly

with respect to ease of set up, financial cost and comfort of the subject during use. In

order for rehabilitation BCI to be accepted as the primary tool for stroke rehabilitation,

30
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it must not only perform well under research and therapy conditions, but must also not

discourage the stroke patient from engaging with it.

This chapter introduces the brain measurement systems in use for this thesis, elec-

troencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), and

their application for rehabilitation BCI. This chapter also briefly discusses other brain

imaging methods and discusses current challenges facing rehabilitation BCI.

3.2 Electroencephalography

An electroencephalogram (EEG) is a recording of the electrical activity of the brain

[87]. Electrodes are placed at various points on the scalp of a person to measure oscil-

latory differential voltages. These scalp-recorded oscillations are the result of electric

field disturbances produced during neuronal activation. EEG was first recorded in

1924 by German psychiatrist Hans Berger [88], who was interested initially in discov-

ering a physiological basis for psychic phenomena but, following disappointing results,

turned his research attention to the electrical activity of the brain and coined the term

electroencephalogram [89].

3.2.1 Recording

EEG is usually recorded using small silver/silver chloride (Ag/AgCl) electrodes (0.5–1.0

cm in diameter) placed almost in direct contact with the scalp. In order to electrically

couple the electrode to the scalp underneath, a conducting electrolyte gel is usually

placed between the electrode and scalp. EEG electrodes are commonly held in place

with the use of a flexible EEG cap (as shown in Figure 3.1) although other methods

of fixing electrode to scalp, such as straps, caps and adhesion, are also adequate pro-

vided that the electrode does not move during recording. In standard EEG recording,

electrode placement follows the International 10-20 System for 21 electrodes [90] (as

shown in Figure 3.2), the modified version, also known as the 10-10 System, for 75

electrodes [91, 92] and the 10-5 System, or five percent system, for placement of up to

128 electrodes [93]. This standardised nomenclature allows for easier communication

of electrode placement in literature.
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3.2 Electroencephalography

Figure 3.1: Example EEG cap. Source: EEG Recording Cap.jpg licensed under CC BY

2.0.

Figure 3.2: International 10-20 system for EEG electrode placement. Source: 21 elec-

trodes of International 10-20 system for EEG.svg, public domain.

Various traditional EEG measurement systems use electrodes for different purposes

but each require a ground electrode to be attached to the scalp. This electrode is re-

quired to serve as a common reference point for all voltages of the EEG system and

can be placed almost anywhere on the subject’s head. The desired number of Record-
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3.2 Electroencephalography

ing electrode or active electrodes are placed on the scalp. For a referential recording,

one or two reference electrodes are placed on the subject’s head, typically on one or

both mastoids or ear lobes. Each recorded EEG channel is then the voltage difference

between a recording electrode and the reference. For a bipolar recording, a dedicated

reference electrode is not used and each EEG channel is the voltage difference between

two adjacent recording electrodes.

Alternative reference-free EEG measurement methods are Common average refer-

encing (CAR) and Laplacian referencing [94]. In CAR, the average of all other EEG

channels is used as the reference voltage for a given EEG channel. A small Laplacian

reference is the average of only the closest neighbouring EEG channels while a large

Laplacian is the weighted average of further nearby EEG channels. These referencing

methods, along with bipolar recordings, effectively spatially filter the recorded EEG

as only EEG sources which are very local to the recording electrodes will result in a

differential voltage. Configurations of reference and recording electrode placement are

also referred to as electrode montages.

Some modern EEG measurement systems are capable of measuring reference-free

EEG data. For example, the BioSemi Active Two (BioSemi Inc., The Netherlands)

replaces the ground electrode with a Common Mode Sense (CMS) electrode and a

Driven Right Leg (DRL) electrode. These electrodes create a feedback loop which

drives the EEG subject’s common-mode voltage to the reference voltage of the EEG

measurement system, reducing interference. As reference-free EEG is recorded with

this system, the user may subsequently choose reference electrodes in software, rather

than being tied to a reference method during recording1.

3.2.2 Source

In subsection 2.2.2, neuronal activation was described in terms of time-varying voltages

but this activation also produces time-varying ionic currents. Transmembrane potential

is maintained by concentrations of ions (mainly Na+, K+ and Cl−) and any change to

the transmembrane potential is due to the transfer of ions across the cell membrane. As

described previously, the two main causes of deviation to the transmembrane potential

are the action potentials and PSPs. The action potential produces a large flow of ionic

1http://www.biosemi.com/faq/cms&drl.htm
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current while PSPs produce relatively low amplitude current. In general, EPSPs (post-

synaptic depolarisation) are caused by inflow of positive ions while IPSPs (postsynaptic

polarisation) are caused by inflow of negative ions or outflow of positive ions [95].

For both action potentials and PSPs, differing transmembrane voltages along the

length of a neuron generates local active current sinks and sources in the extracellular

medium. For an action potential, the generated current sinks and sources are transmit-

ted along the neuron. At the “front” of the action potential positive ions (mainly Na+)

flow into the cell while at the “tail” positive ions (mainly K+) flow out. For PSPs,

generated current sinks and sources are strongest at the synapse. EPSPs produce local

membrane current sinks at the synapse with distributed passive current sources along

the neuron while IPSPs produce local current sources and distributed passive current

sinks [23, p. 6]. The distributed passive sinks and sources are necessary as there is no

accumulation of charge in the medium [95].

The brain, surrounding meninges, skull and various layers of the skin are effectively

a non-homogeneous volume-conductor. Current sinks and sources generated along a

neuron produce a time-varying electric field within the volume of the head - each neuron

may be treated as a current dipole [95]. As with any current flow within a conducting

medium, the resulting electric field is measurable at all points in the medium. The

electric field produced by a single cortical neuron is too small to be measured on

the surface of the head but as neurons in cell assemblies act together as one and

all pyramidal cortical neurons are oriented perpendicular to the surface, the summed

electric field of all neurons of a cell assembly is strong enough to be measured on the

scalp. Individual neurons, or small cell assemblies, throughout the brain constantly

produce their own electric fields. However, since these neurons are not oriented in the

same direction and do not act together, a measurement of their summed electric field

appears as random background noise in all EEG recordings.

3.2.3 EEG Signals

A recorded EEG signal is oscillatory by nature and can be treated as a mixture of sine

wave components. Each of these components can be parametrised by their amplitude

(Anm), frequency (fnm), and phase (φnm), where n indicates frequency component and
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m indicates electrode pair. As a waveform may be expressed as a Fourier series i.e. by

the sum of its components, an EEG channel voltage Vm(t) can be expressed as

Vm(t) =

N∑
n=1

Anmsin(2πfnmt− φnm) (3.1)

EEG oscillations, also referred to as rhythms, are grouped into named categories, as

indicated in Table 3.1. The most important of these is the alpha rhythm, which appears

as a strong component of EEG in awake, alert people with eyes closed, particularly

when measured towards the posterior of the head. EEG activity of this and all other

rhythms has been related to various brain functions [87], as also indicated in Table 3.1.

EEG rhythm analysis is commonly used for diagnosis in a clinical setting but also has

use elsewhere. Particularly for this thesis, analysis of varying EEG rhythms is used

to decode the mental state of a subject and subsequently control an external system

(section 3.4).

3.2.4 Movement-Related EEG

Upper-band alpha rhythm (10–12 Hz) and lower-band beta rhythm (13–18 Hz) EEG

is desynchronised (blocked) during voluntary movement, localised over sensorimotor

areas. EEG rhythm blocking which occurs in relation to an action is referred to as

Event-Related Desynchronisation (ERD). Contralateral mu rhythm ERD begins ap-

proximately 2 seconds prior to movement onset and is interpreted to to be related

to priming or presetting of neurons in the primary sensorimotor area [87, p.958–960].

Event-Related Synchronisation (ERS) describes an increase in rhythmic EEG activ-

ity in relation to an action. After movement, beta rhythm ERS (or post-movement

beta synchronisation, PMBS ) is found in the contralateral sensorimotor areas, peaking

approximately 600 ms after movement offset [96]. These patterns also occur during

imagined and attempted movement (3.4.2).
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Frequency Range Name Notes

1–4 Hz Delta Usually unseen in healthy brain. Prominent

during deep sleep. Otherwise, used for clinical

diagnosis.

4–8 Hz Theta Stronger in young children than adults. Related

to emotional processes.

8–13 Hz Alpha (α) Detectable at all points on the scalp but weakest

in frontal regions. Attenuated by mental activ-

ity, open eyes and other stimuli.

8–13 Hz Mu (µ) Found over motor areas. Strongly related to all

motor function, including active, passive and re-

active movement. Not detectable in every sub-

ject.

13–30 Hz Beta (β) Related to the onset of movement.

Above 30 Hz Gamma Related to active information processing.

Table 3.1: EEG rhythms and physiological relationships.

3.3 Functional Near-Infrared Spectroscopy

Functional near-infrared spectroscopy (fNIRS) is an optical measurement method used

to record localised changing concentrations of oxygenated haemoglobin (HbO) and

deoxygenated haemoglobin (HbR) in cortical tissue [97, 98]. Light of a particular

wavelength is projected into the scalp of a subject. Due to the scattering effects of

tissue, photons diffuse into the subject’s head. Each photon then either is “absorbed”

at the atomic level or “bounces” around the head, undergoing multiple scattering events

as the photon collides with molecules until the photon exits the head again. By emitting

two wavelengths of light and measuring the intensity of light of each wavelength exiting

the scalp at a known location relative to the point of entry, changing concentrations of

HbO and HbR along the photon path can be deduced. This is explained in more detail

below.
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3.3.1 Cortical Haemodynamic Response

In subsection 2.2.3, the blood supply to the brain was introduced. This blood supply,

however, is not fixed and changes in response to neuronal activation. The relation-

ship between neuronal activation and the local haemodynamic response is referred to

as cerebrovascular coupling. A neuron requires oxygen for metabolism in order to re-

peatedly activate, which is supplied by the vascular system via haemoglobin. When

a neuron consumes the oxygen supplied by oxygenated haemoglobin, the haemoglobin

becomes deoxygenated. As neurons in the same region usually activate together, they

all can affect blood oxygenation levels when active. While a cortical region is at rest,

HbO is supplied and consumed at a steady rate. During neuronal cell assembly activity,

however, concentrations of both HbO and HbR follow a typical response pattern, as

seen in Figure 3.3.

Figure 3.3: Exaggerated haemodynamic response. Neuronal activation begins at t = t0

and stops at t = t1. (i) Initial increase in HbR. (ii) Elevation of HbO and reduction of

HbR during activation followed by post-activation response. (iii) Overshoot and return to

baseline.

Upon activation, the first response is an increase in HbR concentration, referred

to as the “initial dip”, due to the immediate consumption of oxygen. Following this,

oxygen-rich blood is rushed to the active region of cortex and surrounding regions.

Due to this massive inflow of HbO to the active region, concentration of HbO increases
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while concentration of HbR decreases. Following cessation of activation and a return

to neuronal rest, flow of HbO to the region is returned to baseline, resulting in an

overshoot of both HbO and HbR concentration signals.

3.3.2 fNIRS measurement

An fNIRS system consists of multiple light sources, multiple light detectors, fibre-optic

cables, a method for fixing the fibre-optic cable to the subject’s head and a computer

to control light sources and record electronic signals from the light detectors.

Various types of fNIRS light sources are available, such as light emitting diode

(LED), or laser light. Laser light supplies a very narrow bandwidth of light and so is

more favourable than LED but is also more expensive. If using laser light sources, an

fNIRS system will use fibre-optic cables to transport the source light to the scalp of the

subject. In the case of LED light sources, the LED may be placed close to the subject’s

scalp without requiring fibre-optics. However, as the LEDs heat up during use, care

must be taken to not hurt the subject with heat.

Laser light detectors are too cumbersome to attach to the subject’s scalp and so

fibre-optics must be used to transport light from the subject’s scalp and to the light

measurement device. Various types of photodetectors may be used, such as silicon

photodiodes, avalanche photodiodes, photomultiplier tubes and charge-coupled devices

[99].

The points at which light enters and exits the scalp, usually via fibre-optic cables, are

usually referred to as the source and detector positions (despite the actual light sources

and detectors being situated far away from the head). Together, a source and detector

are usually referred to as an optode. There is no standardised method for affixing the

sources and detectors to the subject’s scalp. Each fNIRS system manufacturer usually

designs their own method for use with their system.

3.3.3 Propagation of light in tissue

As mentioned above, a photon of light entering a transmission medium which is capable

of absorbing the photon will either pass through the material unaffected, be absorbed

by the material or be “scattered” through deflection at the molecular level. When
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transmitting numerous photons from a light source of a known intensity into the mate-

rial, the intensity of the light exiting the material at a certain point can be measured

with a photon detector. Due to the scattering and absorption effects of the material,

the intensity of the detected light leaving the head will be lower than the source light

entering the head. The relationship between incident light intensity entering the mate-

rial and transmitted light intensity exiting the material in a purely absorbing material

(no scattering effects) is given by the Lambert-Bouger law:

I = I0e
−µad (3.2)

where I = transmitted intensity, I0 = incident intensity, µa = absorption coefficient

of the material and d = distance between entry and exit points.

The absorbance, A, of a material (also called the optical density (OD)) may then

be expressed as:

A = ln(I0/I) = µad (3.3)

The Beer-Lambert law expresses this equation in terms of molecular concentration

of the absorbing material in a solution:

A = ln(I0/I) = εcd (3.4)

where ε = the specific absorption coefficient for unit absorber concentration (units:

mol−1m−1, indicates the probability of a photon being absorbed by the material) and

c = concentration of the absorbing material (units: mol). The Beer-Lambert law can

also be expressed with a base 10 logarithm instead of the natural logarithm:

A = log10(I0/I) = αcd (3.5)

where α = the specific extinction coefficient for unit absorber concentration (units:

mol−1m−1). This expression relating optical density to absorber type, absorber con-

centration and distance only accounts for one absorbing material in the transmission
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medium. When multiple absorbing materials with unique concentrations exist in the

transmission medium, the contribution of each material to the overall optical density

of the transmission medium must be accounted for:

A = log10(I0/I) =

n∑
i=1

αicid (3.6)

The optical density of the transmission medium is not only affected by absorp-

tion. As mentioned earlier, photons may undergo scattering effects. Scattering deflects

the direction of movement of the photon in a random direction and is a result of dif-

ferent materials with different refractive indices. Similar to Equation 3.3 above, the

absorbance of a transmission medium due purely to scattering effects can be expressed

as:

A = ln(I0/I) = µsd (3.7)

where µs = the scattering coefficient of the medium.

The Beer-Lambert law of Equation 3.5 can be modified to account for both absorp-

tion and scattering effects of a transmission medium. The absorption coefficient and

absorber concentration terms are unaffected by scattering effects but the distance term

is. Depending on the positions of light source and light detector on the transmission

medium, the length of the average path taken by photons which arrive at the detector

will be larger than the distance between the two points. In the adult human head,

the average path taken by transmitted light is roughly banana-shaped with a length

of approximately six times the source-detector separation [100, 101, 102]. Due to the

increased pathlength caused by scattering, more absorption events occur as photons

spend more time in the absorbing medium. The Modified Beer-Lambert law accounts

for these effects:

A = log10(I0/I) = αcLB +G (3.8)

where L = the distance between source and detector, B = differential pathlength

factor (DPF) and G = a geometric factor to account for scattering losses. This expres-

sion accounts for both the absorbing and scattering effects of a photon transmission

medium, such as the head.
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3.3.4 Transmission Medium Optical Properties

Clearly, the absorption and scattering qualities of the head are critically important to

fNIRS in order to calculate values for HbO and HbR concentration. Light for fNIRS

recording must penetrate multiple layers of tissue, including skin, skull bone, cere-

brospinal fluid and cortex. Each of these layers, and numerous smaller extra-cerebral

layers, introduce their own scattering and absorption properties to the transmission

medium. The scattering and absorption coefficients of these layers can be found else-

where [102, 103]. The main effect of the scattering property of biological tissue is the

shape of the photon path between source and detector but of more importance to fNIRS

is the absorption property.

A substance which can absorb a photon is referred to as a chromophore. A chro-

mophore has an extinction coefficient for each wavelength of photon, meaning that the

choice of fNIRS wavelengths is very important in order to maximise signal quality. For

fNIRS recording, the most common chromophores affecting recording are water, lipids,

melanin, haemoglobin and cytochrome-c-oxidase (a respiratory enzyme).

Water is abundantly present in living cells and constitutes 80% of brain tissue

[104]. The extinction coefficient of water is very low between 600 and 900 nm, as seen

in Figure 3.4 [105]. Above 900 nm, the large extinction coefficient of water results in

too much photon absorbtion for reliable fNIRS recordings. Lipids have low extinction

coefficients in the wavelength range allowed by water. Melanin, the colouring pigment

of the skin, has an unavoidable effect on fNIRS, where darker skin results in more

photon absorption and even photon reflection on the scalp. Cytochrome-c-oxidase has

a relatively high extinction coefficient spectrum but significantly lower concentration

than haemoglobin, so can be ignored.

The last chromophore is the substance of interest to fNIRS - haemoglobin. The

two forms of haemoglobin (oxygenated and deoxygenated) have unique extinction co-

efficient spectra, as shown in Figure 3.5 [106]. In order to measure HbO and HbR,

two unique wavelengths of light must be transmitted together but, importantly, nei-

ther wavelength may be near the isobestic point where both substances have the same

extinction coefficient (around 800 nm).
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Figure 3.4: Extinction spectrum of pure water.

Figure 3.5: Extinction spectra of HbO and HbR.

3.3.5 Derivation of Haemodynamic Activity

Using the Modified Beer-Lambert law of Equation 3.8, the objective is to obtain cHbO

and cHbR - concentration values of the chromophores HbO and HbR:
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A = (αHbOcHbO + αHbRcHbR)LB +G (3.9)

Where αHbO = the specific extinction coefficient of HbO and αHbR = the specific

extinction coefficient of HbR, cHbO = concentration of HbO and cHbO = concentration

of HbR, L = source-detector separation, B = differential pathlength factor and G

= geometric term to account for scattering losses. As G can be assumed to remain

constant for small time intervals then following differentiation, Equation 3.9 becomes:

∆A/(B · L) = (αHbO∆cHbO + αHbR∆cHbR) (3.10)

∆A can be measured for each fNIRS wavelength in use, L can be easily measured

and a value for B can be decided upon. In order to determine values for cHbO and cHbR,

at least two wavelengths of light (λ1 and λ2) must be used during fNIRS recording.

Following such a recording, Equation 3.10 becomes:

∆Aλ1/(B · L) = (αHbO,λ1∆cHbO + αHbR,λ1∆cHbR) (3.11)

∆Aλ2/(B · L) = (αHbO,λ2∆cHbO + αHbR,λ2∆cHbR) (3.12)

These simultaneous equations can be represented in matrix form as:

[
∆Aλ1

∆Aλ2

]
/(B · L) =

[
αHbO,λ1 αHbR,λ1

αHbO,λ2 αHbR,λ2

] [
∆cHbO ∆cHbR

]
(3.13)

And so to obtain delta concentration signals, the following equation is applied at

every data sample time:

[
∆cHbO ∆cHbR

]
=

[
αHbO,λ1 αHbR,λ1

αHbO,λ2 αHbR,λ2

]−1 [
∆Aλ1

∆Aλ2

]
/(B · L) (3.14)
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3.3.6 fNIRS Signal Components

The purpose of fNIRS is to measure changing concentrations of HbO and HbR in the

cortex of the subject. However, while cortical haemoglobin is the signal of interest and

the largest contributor to a fNIRS signal, haemoglobin in the skin also contributes. As

fNIRS light must pass through the skin twice, any HbO or HbR in the skin will have an

effect on the fNIRS signal. There are two main interference signals: the cardiac pulse

and a the Mayer wave [107, 108].

The cardiac pulse component is very similar to a photoplethsmograph (PPG) signal

[109] and is usually clear on a fNIRS signal recording. The frequency content of the

cardiac signal is higher than the cortical response and so band-pass filtering is usually

adequate to remove this interference. The Mayer wave is a very low-frequency (∼0.1

Hz) vascular pressure wave. This component may be visible when viewing a long time-

course of a fNIRS signal. Again, the frequency content of the Mayer wave is so low

that it may either be ignored or filtered out.

Other sources of fNIRS interference are noisy light detector electronics, other light

sources (such as sunlight from an open window) and movement artefact, which may

alter source-detector separation or increase blood-flow to one region [110].

3.4 Brain-Computer Interfacing

A Brain-Computer Interface (BCI) is a system for translating brain activity into control

signals for a device [111, 112]. Through measurement and analysis of brain signals,

the BCI user’s mental efforts may be decoded and control signals for another system

(e.g. computer or machine) may be generated. There are four main applications of

BCIs, as identified by Millán [112]: Communication and Control, Motor Substitution,

Entertainment and Motor Recovery . The differences between these types of BCI are

subtle and mainly lie in the type of output and the intended overall function.

3.4.1 Components of a BCI

The three main physical components of all BCIs are: the subject whose brain activity

is being recorded, a measurement device to record the subject’s brain activity, and a

computer to process the recorded brain activity signals and generate an output. The
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measurement device performs signal acquisition of the subject’s brain activity and signal

digitisation for the computer. The computer then performs numerous signal processing

operations, the most important of which are feature extraction and classification. This

is the stage at which the BCI decodes the subject’s mental efforts and decides on

the appropriate output. The BCI output may then produce control signals for some

internal function of the same computer or may generate output signals to control an

external device. An overview of a BCI system with these components is shown in

Figure 3.6. If the computer control signals produced by a BCI ultimately controls an

external machine, the entire system may sometimes be referred to as a Brain-Machine

Interface (BMI).

Figure 3.6: BCI system overview.

3.4.2 Mental Efforts for BCI Operation

There are different mental strategies that a subject may employ to operate a BCI. Mo-

tor imagery (MI) is the mental rehearsal of motor action without any movement [113].

This type of mental action involves much of the same brain activity as overt movement,

such as movement planning and processing, and so may be as easily detectable. Passive
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movement involves moving the subject’s body (typically the hand or arm) and measur-

ing the resulting brain activity. This activity is not used to then control a system but

does activate similar regions to overt movement and is useful for analysis (e.g. [114]).

Finally, overt movement may be used in BCI operation, where the subject performs a

motor action. This action is useful with assistive devices where the subject may not

be able to perform the motor action fully but a BCI and device may help the subject

perform the task.

3.4.3 Signal Acquisition

Signal Acquisition is simply the recording and digitisation of the subject’s brain ac-

tivity. The exact nature of the acquired signal(s) depends on the recording modality

used. EEG and fNIRS are both popular BCI signal acquisition methods but other

measurement modalities, such as magnetoencephalography (MEG) or electrocorticog-

raphy (ECoG), may also be used. Naturally, different signal acquisition methods have

different requirements for recording set-up. For example, EEG systems require that

the electrodes be placed on the subject’s head in the correct position and that elec-

trode gel be applied. fNIRS measurement requires attachment of large optical fibres to

the subject’s head and often requires that the subject wear laser safety goggles. Both

of these modalities, however, allow the subject to be standing, sitting or lying down.

Other modalities, such as MEG, functional magnetic resonance imaging (fMRI) and

positron emission tomography (PET), require that the subject remain very still inside

or under a large machine (see section 3.5). Despite the requirement that the subject

remain still, methods for measuring, reducing and eliminating movement artefact from

EEG and fNIRS signals have been developed recently [13, 110, 115, 115, 116].

3.4.4 Signal Processing

Following signal acquisition, the BCI computer next digitally processes the raw signal

input in order to determine the appropriate output. Signal processing may occur in

one or two stages, depending on BCI design. A näıve BCI is one in which no prior

data about the current subject is used to determine signal processing and so there is

only one stage - BCI operation. Alternatively, a recording of a subject’s brain activity
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may be used to calibrate the BCI before operation in order to determine BCI signal

processing parameters - trained BCI.

3.4.4.1 Preprocessing

The purpose of the preprocessing stage is to prepare the signals/data for further analy-

sis. Acquired data usually undergoes some relatively simple operations such as temporal

filtering, resampling, normalisation, scaling or splitting. The preprocessing steps used

depend on the signal type and signal condition. Further preprocessing may involve

artefact removal techniques. For example, Independent Component Analysis (ICA) is

commonly used to isolate and remove artefact components of EEG signals. As the ac-

quired fNIRS signals are optical intensity measurements, the signals must be converted

to ∆HbO and ∆HbR, by implementing the steps described above in subsection 3.3.5.

If the data is then to be used to train the BCI signal processing steps, the analysis

takes place off-line following data recording. Once the analysis is complete and the real-

time signal processing steps have been determined, the following feature extraction and

feature classification operate only on real-time recorded data.

3.4.4.2 Feature Extraction

Feature extraction is the process of translating an amount of measured data into some

number of values which represent a characteristic of that data. For example, some

simple derived features of a set of numbers might be the mean, variance and maximum

value. For BCI, feature extraction may be significantly more complicated, involving

significant signal processing. In this work, a “feature” is a multi-dimensional number

which represents some aspect or quality of brain activity for a given amount of time.

A feature of brain activity can be defined in many ways but the intention of the BCI

designer is that these features, which represent separate brain activation states, are

unique enough that they can be easily identified as belonging to their actual state. The

features represent the values either to train a classifier or to be classified by a classifier.

Following preprocessing, the acquired brain data can be further processed to extract

numbers which quantify some quality or aspect of the data. For example, a feature

may be a measure of the power of a range of frequencies in EEG data, or a measure of
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the change in amplitude of HbO signals in fNIRS. Further values may be combined to

obtain a multi-dimensional feature for classification.

3.4.4.3 Classification

In general, classification is the process of determining which category an observation

is a member of. For BCI, classification is the challenge of determining which type of

brain activation state a feature belongs to. A classifier usually applies decision rules to a

feature to conclude which brain activation state a feature represents. The complexity of

the decision boundary used by a classifier ranges from very simple Linear Discriminant

Analysis (LDA) up to very complex artificial neural networks. A BCI classifier should

accurately determine brain activation state while also not requiring too much computer

processing power. It is up to the BCI designer to decide on appropriate classification

methods. A more detailed introduction to EEG BCI classification methods is available

elsewhere [117].

3.4.5 Output

Following classification, the BCI responds to the classifier output. Depending on the

classifier result, the BCI may generate a control signal. The nature of the control

signal is dependent on the ultimate purpose of the BCI. For example, a BCI may be

used to control an on-screen computer pointer. Alternatively, a BCI output may be

used to control the movement of an external device, such as a motorised wheelchair.

The control signal generated simply depends on the result of signal processing.

3.4.6 Communication and Control BCI

Communication and Control BCI attempts to impart the most control of an external

device on the user. For healthy subjects, this type of BCI is merely interesting as it

offers mind-control of devices which could be controlled by motor actions which the sub-

ject is already capable of. For subjects who have suffered some severe disability, such

as tetraplegia, where motor ability is lost but brain function is normal, communication

and control BCIs impart control over external devices which would otherwise be im-

possible. For example, BCI-controlled virtual keyboards [118, 119] and BCI-controlled
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web browsers [120, 121] allow a disabled person to use a computer without the use of

any motor function.

3.4.7 Motor Substitution BCI

Motor Substitution BCI is similar to Communication and Control BCI but the de-

vice being controlled takes the place of a motor action. For example, BCI-controlled

wheelchairs have been developed to limited success [122, 123]. Through the correct

mental efforts, a BCI wheelchair user may direct wheelchair movement with differing

levels of control such that, rather than expecting the subject to precisely control every

movement of the wheelchair, some autonomy is used to keep the wheelchair moving in

the user-intended direction. In cases where a subject has suffered injury to their motor

nerves resulting in motor paralysis (as is the case with Spinal Cord Injury (SCI) [124],

for example), BCI-controlled functional electrical stimulation (FES) [125, 126] restores

some lost function. The paralysed muscles are electrically stimulated into contraction

when the BCI detects the correct brain activity of the subject.

3.4.8 Entertainment BCI

Entertainment BCI is again similar to Communication and Control BCI but the inten-

tion is to entertain the user. For example, BCIs have been used to control games (e.g.

pinball [127] and strategy [128]; see Marshall et. al. [129] for a full review), experience

movement in a virtual reality (VR) environment [130, 131] and compose and perform

music [132]. According to Wolpaw [111]: “Successful BCI operation requires that the

user develop and maintain a new skill, a skill that consists not of proper muscle control

but rather of proper control of specific electrophysical signals”. As such, BCI training

and practice is required to improve accurate BCI use. BCI-based entertainment allows

for a more encouraging and enjoyable BCI training experience, which is of importance

for those users who require BCI for important activities.

3.4.9 Rehabilitation BCI

Motor Recovery BCI, or Rehabilitation BCI, is the fourth application of BCI and also

the most unique. Whereas the previous applications all intend to impart the greatest

level of control over the output device as possible to the BCI user, a rehabilitation BCI
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aims to encourage recovery of lost function caused by damage to the brain. In this way,

a rehabilitation BCI should be viewed as a therapeutic device with particular use for

post-stroke motor rehabilitation [133, 134, 135]. Importantly, rehabilitation BCI is not

required for patients who still retain some motor function after stroke. In those cases,

other rehabilitation therapies which use that residual motor function, such as CIMT

(subsection 2.4.4), are more reliable. For the many stroke patients who lost all motor

function and cannot participate in motor activation therapy, their brain signals alone

must be used to drive rehabilitation BCI therapy. In one study, 30 out of 56 (54%)

of stroke patients screened for CIMT eligibility (who did not display aphasia) had no

motor function and so could not participate [75] while other estimates say 20–25% of

stroke patients are ineligible for CIMT [74, 136].

The objective of all rehabilitation therapy is to improve the quality of life of the

patient. With respect to stroke rehabilitation BCI, there are two main approaches to

this. Firstly, the stroke patient’s quality of life can be substantially improved by training

them to independently use a communication and control BCI, motor substitution BCI

or entertainment BCI. As mentioned above, BCI use is a skill. For subjects who

have suffered significant damage to the brain and have lost motor ability and brain

function which is usually used for BCI operation, learning this skill is significantly

more difficult. Secondly, BCI operation with haptic feedback might be able to restore

lost motor function [133]. This is discussed further in subsubsection 3.4.9.2.

3.4.9.1 Motor Imagery in Place of Motor Execution

Post-stroke functional recovery relies on the neuroplastic processes (described in sec-

tion 2.4) for reorganisation. Through representational plasticity, the brain recruits new

areas of the brain to take over from the stroke-damaged areas or to otherwise adapt

the brain to recover the lost function [137]. Previous studies have shown that active

movement therapy, such as CIMT, result in improved motor function as the representa-

tion area for the stroke-affected limb expands into neighbouring areas [138]. For those

patients who are unable to participate in stroke rehabilitation therapies which require

motor execution, alternative strategies are required. One such strategy is the use of

motor imagery to access and utilise motor function-related regions of the brain which

would otherwise remain idle [9, 139].
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Page et. al. [140] reported on the effectiveness of motor imagery for arm motor

rehabilitation. 32 chronic stroke patients with residual arm motor ability were separated

into two groups. The first group participated in physical practice therapy only, while

the second group participated in physical practice and mental imagery. The group

who performed mental imagery attained significantly higher measures of motor ability

after 6 weeks of therapy. While this result demonstrates the effectiveness of motor

imagery for encouraging motor rehabilitation, it’s important to note that there was

no assurance that the stroke patients fully complied with the motor imagery task,

potentially affecting the study outcomes. Motor imagery compliance is important for

effective rehabilitation therapy yet it is difficult to determine whether the subject is

truly engaging with the task. Some tools for assessing motor imagery compliance exist,

such as the Chaotic Motor Imagery Assessment Battery [141]. However, BCI may

be used to measure, quantify and feedback on stroke patient engagement with motor

imagery [142, 143], thus ensuring better rehabilitation outcomes.

3.4.9.2 Closing the Sensorimotor Loop: Biofeedback BCI

As a complement to traditional stroke rehabilitation therapy, the neuroplastic process

may be induced through BCI operation by providing the subject with real-time feed-

back on their current brain activity. Such real-time feedback provides the subject with

an experience that is directly related to their brain activity and may support represen-

tational plasticity for functional recovery [144]. Core to the concept of neuroplasticity

through BCI is Hebbian learning, as discussed in subsubsection 2.4.1.2. Assuming that

motor function has been lost due to a severed connection between the sensorimotor

cortex (combined sensory and motor areas) and the paretic muscles following stroke,

concurrent activation of both the motor and sensory area may help strengthen existing

connections [144]. Using a BCI, excitation of the sensory areas may be provided by

orthosis as the subject correctly activates the relevant motor areas.

There are a number of challenges and considerations facing such rehabilitation BCI,

as identified by Grosse-Wentrup et. al. [144]: (1) It is unclear yet which neural

states are optimal for biofeedback BCI rehabilitation, along with measurement modality

and measurement location. (2) Accuracy of feedback is naturally critically important

for Hebbian learning as even healthy subjects perform worse when given inaccurate
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feedback [145]. (3) The delay between motor area activation and sensory area excitation

is also important and neurons must fire almost simultaneously to induce LTP. (4)

Feedback modality is a concern as it’s not yet clear whether visual, haptic or direct

stimulation feedback is most effective. A comprehensive, reliable rehabilitation BCI

must take each of these concerns into consideration.

The concept of a biofeedback BCI to facilitate motor function recovery through in-

duction of neuroplastic processes has not yet been extensively studied but some recent

studies have shown promise. A recent rehabilitation BCI study by Ramos-Murguilday

et. al. [146] demonstrated improved motor ability in stroke patients with movement-

related biofeedback. The study consisted of thirty-two chronic stroke patients without

the ability to extend their fingers, separated into a control group and an experimen-

tal group. The subjects were instructed to desynchronise EEG-measured sensorimotor

rhythms (SMR) of the ipsilesional motor cortex by attempting to move their impaired

hand with a reaching and grabbing action. Upon determination of the correct SMR ac-

tivity in the experimental group, the subject’s hand was moved by an orthosis attached

to the subject’s hand. For the control group, orthosis movement was random. Fol-

lowing this therapy, the experimental group showed significantly improved hand motor

control as measured by combined Fugl-Meyer assessment (cFMA).

Another recent study by Ang et. al. [147] further suggests that biofeedback BCI

may be useful as a rehabilitation tool. This study investigated the effectiveness of BCI-

controlled Haptic Knob (HK) orthosis biofeedback (BCI-HK group) compared to HK

use without BCI (HK group) and Standard Arm Therapy (SAT group). During therapy

sessions, patients in the BCI-HK group performed motor imagery of their impaired

hand opening and closing. If the BCI determined that the subject was performing

the task correctly, the HK opened and closed their hand. For patients in the HK

group, their hand was moved by the orthosis without BCI control while the SAT group

underwent repetitive task training therapy. By the end of the study, motor abilities of

the BCI-HK group, as assessed by Fugl-Meyer motor assessment (FMMA), were shown

to be significantly higher than that of the SAT group. This result, along with the

above Ramos-Murguilday et.al. study result, suggests that BCI-mediated biofeedback

therapy may be a viable tool for stroke rehabilitation.
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3.5 Other Imaging Methods

3.5.1 fMRI

The brain imaging method Functional Magnetic Resonance Imaging (fMRI) is based on

atomic magnetic properties of various substances in the brain. In fMRI, a subject lies

inside a large magnetic device. When functional, a very strong static magnetic field is

formed to align nuclei in regions of the brain of interest before another magnetic field is

used to elevate the nuclei to a higher magnetisation level. When this second magnetic

field is removed, the nuclei return to their original magnetic states while also releasing

some energy. Measurements of this energy can locate its source in three dimensional

space in the subject’s head.

Oxygenated and deoxygenated haemoglobin present different magnetic output un-

der the same magnetic field activity. Therefore, fMRI can infer brain activation by

measurement of blood oxygenation, similar to fNIRS [148]. Such a measurement is

known as Blood Oxygenation Level Dependent (BOLD) contrast fMRI [149]. fMRI

systems are very large and expensive and are usually only found in hospitals as a

diagnostic tool. An example of a fMRI system is shown in Figure 3.7.

Figure 3.7: Example of an fMRI scanner. Source: Varian4T, public domain.
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3.5.2 PET

Positron emission tomography (PET) is an imaging method which can produce accu-

rate three-dimensional images of physiological function of the body [150]. To prepare

for a PET recording, a radioactive isotope (typically flourine-18 (F-18)) is tagged

(“molecularly attached”) to a molecule (typically, the sugar fluorodeoxyglucose (FDG))

and a solution with this molecule is introduced to the patient’s blood circulation. As

the molecule is transported around the circulatory system, the tagged molecules may

collect at certain points as the molecule is consumed. As the isotope tagged to the

molecule radioactively decays, it emits pairs of gamma rays. By placing the patient in

the PET machine, such as that seen in Figure 3.8, these gamma ray emissions can be

detected and used to reconstruct a three dimensional image of their source. Areas in

which the molecule has collected are easily visible in the resulting images, as seen in

Figure 3.9.

Figure 3.8: Example of a PET scanner. Source: PET scan licensed under CC BY 2.0.

3.5.3 MEG

Magnetoencephalography (MEG) is a brain imaging technique based on measurements

of the magnetic field produced during neuronal activity. As explained previously, neu-

ronal activation causes a potential difference to exist along the length of a neuron,

which causes a current to flow around the neuron and an electric field effect, which is
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Figure 3.9: Example PET image.

ultimately measurable on the scalp of the subject with an EEG system. Additional

to the electric field, a very weak magnetic field is produced by each neuron activation.

Closely-spaced synchronised neuronal activations together produce a measurable mag-

netic field. Although this magnetic field is very weak compared to background activity,

specialised MEG systems are capable of measuring cortical activity in this way [151].

MEG recordings have higher temporal resolution than fMRI and high spatial resolu-

tion than EEG. Similar to fMRI and PET systems, MEG systems are large and very

expensive. An example MEG system is shown in Figure 3.10.

55



3.6 Current Challenges Facing Rehabilitation BCI

Figure 3.10: Example of a MEG system. Source: NIMH MEG, public domain.

3.6 Current Challenges Facing Rehabilitation BCI

Challenges and considerations highlighted by Grosse-Wentrup et. al. [144] are not the

only concerns for rehabilitation BCI. Numerous publications have called for additional

development of rehabilitation BCI in other respects. Some of these challenges and

opportunities are highlighted here.

3.6.1 Patient Experience

Wolpaw et. al. [111] stress that the subject satisfaction with BCI use rests not only

on the speed and accuracy of BCI operation but also on the ease of use of the system.

The various physical requirements for operation of a BCI depend on the measurement

modality employed for signal acquisition. At one extreme, fMRI and PET require that

the subject lie still within an enclosed space of a large machine. In a study of the

experience of an fMRI procedure, Szameitat et. al. [152] reported that 87% of healthy

subjects and 77% of stroke patients rated the experience as acceptable to comfortable.

15 out of 70 healthy subjects (21.4%) and 6 out of 21 stroke patients (28.6%) reported
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something strange about their experience, such as tiredness, dizziness, disorientation or

in one case, claustrophobia. In a similar study, Hadidi et. al. [153] recently reported on

9 stroke patients who underwent two 1.5 hour-long fMRI procedures without any feeling

of claustrophobia. While all of the subjects in the Szameitat et. al. study reported

that they would participate again, 28.6% of stroke patients experiencing some level of

discomfort is discouraging for repeated use. EEG and fNIRS, however, offer a more

comfortable experience as the subject may sit upright in a chair during preparation

and during measurement. Despite movement artefact affecting both modalities, they

are more robust to movement than fMRI and so place fewer physical restrictions on the

subject. The experience of the subject when participating in BCI operation is critically

important as a negative experience deters the subject from participating in therapy.

Wolpaw et. al. [111] also highlight the importance of cosmesis - the aesthetic appeal

of the BCI system to look at and the cosmetic appeal when the subject uses it. While

this is quite a subjective concern, any rehabilitation system needs to encourage the

patient to use it, or at least not discourage them. According to Wolpaw et. al., “the

primary emphasis should be on identifying and providing those BCI applications most

desired by the user”. While aesthetic appeal is thus important for rehabilitation BCI

adoption, Daly and Wolpaw [133] highlight other considerations for long-term BCI use

including convenience, technical requirements, safety and reliability.

The convenience of a BCI is intrinsically related to its portability. At-home reha-

bilitation therapy means that a patient does not have to travel to a clinic or hospital

so for rehabilitation BCI, which requires a portable system, can be transported to the

patient. In this respect, rehabilitation BCI based on fMRI, PET or MEG cannot be

portable due to the size of such systems. Both EEG and fNIRS, however, are portable

enough to find use in at-home rehabilitation BCI system. Buch et. al. [154] reported

that while their MEG-based BCI for chronic stroke is not practical for long-term or

portable use, they suggest that EEG would perform to a similar level. Ang et. al.

[147] also highlighted the need for additional research and larger studies to enhance the

portability and usability of BCIs. The portability and usability of rehabilitation BCI

is addressed in section 7.5.
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3.6.2 Financial Cost of Research

The availability of BCI technology is naturally related to financial cost of the system.

fMRI, MEG and PET systems may easily cost upwards of e1,000,000 in hardware,

operational costs and maintenance costs (see Keppler [155] for a cost analysis of PET).

Due to high financial costs, such systems are primarily found in hospital settings. This

affects BCI research in two ways. First, a lack of access to measurement systems

means that interested research groups are unable to perform experiments with that

measurement system, thus stifling development. Secondly, higher costs and lower ac-

cess preclude adoption of rehabilitation BCI based on that technology. While fMRI,

MEG and PET are prohibitively expensive or otherwise inaccessible for most academic

research groups, it is still true that less expensive brain measurement systems, such as

EEG and fNIRS, are prohibitively expensive for some research groups or for interested

individual researchers. As long as a measurement modality is inaccessible to an inter-

ested researcher, development of systems based on that modality, such as rehabilitation

BCI, is stifled.

Millán et. al. [112] highlighted an opportunity for a significant decrease in the

financial cost of BCI hardware if BCI-based gaming ever becomes popular and reaches

the mass market. Assuming that such mass-market BCIs are reliable enough to con-

duct research or to adapt for widespread rehabilitation BCI use, then a significant price

drop can only facilitate BCI development. However, this is an unpredictable scenario

which should not be depended on. Instead, other efforts should be made to lowering

the financial cost of BCI research by lowering hardware costs so more researchers may

conduct their own experiments or by increasing access to appropriate datasets for in-

terested researchers. The financial cost of rehabilitation BCI is addressed in section 7.5

while easy access to datasets is addressed in section 4.5.

3.6.3 Signal Acquisition Alternatives

BCIs have been developed with a range of measurement modalities, including EEG

[156, 157], fNIRS [158, 159], MEG [154, 160], fMRI [161, 162, 163] and ECoG [164, 165].

Millán et. al. [112] discuss the incorporation of any BCI technology into existing as-

sistive products (APs; e.g. motorised wheelchair, prosthesis) as an additional channel.

Such APs, operated by residual motor function, may be enhanced by BCI technology
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to form a sort of hybrid BCI. These BCI modalities may also be combined with other

biosignals, such as Steady-State Visual Evoked Potential (SSVEP), EEG BCI combined

with heart rate variability [166], EEG BCI combined with forearm electromyography

(EMG) [167], and EEG BCI combined with eye gaze tracking [168]. Finally, Millán et.

al. suggest that hybrid BCIs could employ several measurement modalities simultane-

ously.

There is an opportunity for investigation and development of alternative measure-

ment modalities, particularly with respect to hybrid brain measurement. In accordance

with the above concerns of financial cost and portability for rehabilitation BCI appli-

cations, combining a low-cost and portable measurement modality with one that is

cumbersome and expensive results in a slightly more expensive and slightly more in-

convenient measurement system. Therefore, combining two (or more) low-cost, portable

systems is of interest to rehabilitation BCI. Hybrid EEG and fNIRS measurement for

BCI is addressed in section 4.3.

3.6.4 Non-Standardised fNIRS

Rehabilitation BCI development and widespread adoption may be impeded until op-

eration of such BCI becomes standardised and simplified to the point where operators

or users do not require significant training. Wolpaw et. al. [111] have stated that

“BCI success will hinge also on the extent to which operation is standardized” and

that “If BCIs are to function in homes or long-term care facilities, this dependence [on

skilled personnel for operation] must be greatly reduced.” EEG is comparatively more

standardised than fNIRS. For example, there is no consensus on optimal wavelengths

for fNIRS operation. Each manufacturer determines their preferred wavelengths which

are determined by hardware and so not adjustable by an operator. Similarly, there is

no standardised method for affixing fNIRS optodes to the subject’s scalp. Each man-

ufacturer again provides their own method. Some stages of fNIRS signal processing

are also not standardised. Perhaps, given that fNIRS for BCI has been a relatively

recent research interest, none of these points are surprising and it will only take more

publications before researchers adopt some operational standards. The topic of non-

standardised fNIRS image processing is addressed in section 4.4.
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3.6.5 Effects of Stroke on BCI Parameters

Stroke-affected brains are physically and functionally different to healthy brains and so

brain activity signals acquired from stroke patients are naturally significantly affected.

During BCI training, recorded brain signals are analysed to produce signal processing

parameters which attempt to optimise BCI accuracy. What has yet to be investi-

gated, however, is the effect of stroke on those learned parameters. While, effectively,

the parameter values appear to be inconsequential, providing that the BCI operates

accurately, an investigation may reveal some useful information for rehabilitation BCI

development. Such an investigation into the effects of stroke on learned BCI parameters

is described in chapter 6.

3.7 Summary

This chapter describes current technology for measuring brain activation data and how

such recordings can be used to control an external system via a BCI. There are numerous

applications of BCI technology including post-stroke rehabilitation. Rehabilitation BCI

works by either encouraging the stroke patient to engage motor areas, thus retaining

and improving motor abilities, or by encouraging neural recovery through simultaneous

activation of motor and sensory areas. Although described here is the operation of a

BCI in real-time, such systems can also be implemented to operate off-line and analyse

a set of pre-recorded data and produce classifier output. Using the technology described

in this chapter and analysis methods based on BCI operation, the following chapters

investigate improvements to EEG and fNIRS rehabilitation BCI systems.
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Chapter 4

Progressing Rehabilitation BCI

4.1 Introduction

Previous chapters have introduced the physiological and technological basis for devel-

opment of EEG and fNIRS rehabilitation BCI. As discussed in the previous chapter,

there remain many opportunities for exploration and investigation into fNIRS and EEG

rehabilitation BCI which have been identified by leading research groups. When ap-

proaching current challenges in a research topic, it is often best to begin with earlier,

more established stages of development rather than the latest discoveries, particularly

when investigating an inventive or exploratory concept. While incremental improve-

ments on BCI performance are important contributors to BCI development, investiga-

tions which may significantly alter or advance the current state should be performed

on an established base which is easily understood and not the focus of attention.

Whereas EEG BCI research has progressed rapidly, fNIRS BCI research is unfortu-

nately lacking. A cursory search on biomedical publication database PubMed 1 returned

1155 publications which included the terms “BCI” and “EEG” in the past ten years.

For that same time frame, the total number of publications with the terms “BCI” and

“fNIRS” or “NIRS” returned was 64. Numerous reasons for a lack of fNIRS BCI inter-

est may be speculated at, such as higher financial cost of NIRS hardware than EEG,

or the lack of standardised fNIRS operating systems, or simply that EEG is already

more popular and until fNIRS is shown to have a significant advantage over EEG it

1http://www.ncbi.nlm.nih.gov/pubmed/
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4.2 Early fNIRS BCI

will remain a relatively niche research interest. Despite fNIRS being a very interesting

measurement modality with BCI application, the relative lack of fNIRS development

may be off-putting to the majority of researchers.

As fNIRS BCI is a relatively young field of research, early developments may provide

a suitable launch pad for novel investigations. This chapter begins with early fNIRS

BCI and approaches arising concerns with novel solutions.

4.2 Early fNIRS BCI

In 2007, Coyle et. al. [158] developed a simplified fNIRS BCI - one of the first of

its kind. A single channel of fNIRS data was recorded, interrogating the subject’s

motor cortex contralateral to their dominant hand at 10-20 system locations C3 or C4.

This early BCI used LEDs with wavelengths of 760 nm and 880 nm placed directly in

contact with the subject’s scalp with the aid of a mechanical mounting system. Three

healthy subjects performed a motor imagery task to control a binary ‘Mindswitch’.

Subjects achieved an average classification accuracy of 80% with a range of 70-90%.

The authors suggest that BCI performance could be enhanced by integrating other brain

measurement modalities, such as EEG, noting that “optical signals are ideal for multi-

modal studies, as the light signal does not interfere with electrical or magnetic fields”.

The authors note too that fNIRS is limited by the slow nature of the haemodynamic

response, which limits the information transfer rate and they suggest that multiple

fNIRS channels may help overcome this issue.

Three novel approaches to improving the current state of fNIRS BCI were taken:

expanding fNIRS BCI with additional EEG measurement for hybrid BCI, novel imag-

ing of fNIRS activity using a Gaussian Process interpolation technique and a synthetic

fNIRS data generation algorithm for in silico testing. The first of these directly ad-

dresses the above author’s suggested enhancement to fNIRS BCI while the other two

address related concerns for fNIRS BCI development.

4.3 Additional fNIRS Channels with EEG Incorporation

Due to the fNIRS measurement set-up with source and detector not placed at the point

of cortical interrogation, it is possible to position an EEG electrode at the midpoint
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4.3 Additional fNIRS Channels with EEG Incorporation

of an fNIRS optode pair, thus sampling both haemodynamic and electrical activity

from approximately the same cortical region at the same time. Such concurrent and

co-locational fNIRS and EEG represents a sampling of neurovascular coupling - the

interaction of electrical activity and haemodynamic response in active cortex. As dis-

cussed previously, this interaction is well understood but typically only one signal type

is recorded from cortex for BCI operation. By recording both types of signal from the

same location, a BCI is afforded richer information about cortical activity than one

modality alone offers. This investigation involves using typical signal processing steps

for fNIRS and EEG separately. Following feature extraction, feature sets are combined

for classifier training and testing.

4.3.1 Novel Hybrid fNIRS/EEG Module Design

The custom-designed module to hold three fNIRS light sources, three fNIRS light de-

tectors and seven EEG electrodes in the array is shown in Figure 4.1. There are

seven fNIRS channels with the corresponding EEG electrodes located directly above

the centre point of each fNIRS channel. This centre point of an fNIRS channel is the

interrogated area of cortex, so electrical and haemodynamic activity is recorded from

approximately the same area of cortex. Thus, this module design provides seven co-

locational, dual-modality recording sites. Table 4.1 details the electrodes and optodes

used for each neuro-haemodynamic channel. fNIRS data was recorded using a TechEn

CW6 system (TechEn Inc., USA) with wavelengths of 690 nm and 830 nm and signals

sampled at a sample rate of 25 samples per second. EEG data was recorded using a

BioSemi Active-Two system (BioSemi Inc., The Netherlands) with DC-coupled data

recorded at a sample rate of 2048 samples per second.

4.3.2 Experimental Tests

To test this BCI sensor, a simple experimental protocol was designed for an offline BCI

test with two subjects. EEG and fNIRS data was processed according to the steps

described in subsection 3.4.4, with features extracted from both measurement types

separately. Classifier training and testing was carried out with the extracted features

from both EEG and fNIRS and classifier accuracy was recorded for analysis.
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E1

E4

E5

E7

E6

E2 E3

S1

S3

S2

D1

D2

D3

30 mm

30 mm

15 mm

15 mm

Figure 4.1: Design of the dual fNIRS/EEG recording module. S1-S3: fNIRS sources.

D1-D3: fNIRS detectors. E1-E7: EEG sensors

Channel EEG fNIRS Source fNIRS Detector

1 E1 S1 D1

2 E2 S1 D2

3 E3 S2 D1

4 E4 S2 D2

5 E5 S3 D2

6 E6 S2 D3

7 E7 S3 D3

Table 4.1: Neuro-haemodynamic channels with associated EEG electrode, fNIRS source

and fNIRS detector.
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4.3 Additional fNIRS Channels with EEG Incorporation

4.3.2.1 Subjects

Two subjects participated in two recording sessions each. Subject demographics are

shown in Table 4.2. Handedness of both subjects was self-reported. During recording,

the subject was seated in a comfortable chair facing a computer screen which presented

instructions.

Subject Gender Age Handedness

A Male 37 Left

B Male 26 Right

Table 4.2: Subject demographics

4.3.2.2 Experimental Protocol

Subjects were instructed to perform either self-paced finger-tapping or rest, according

to on-screen instructions which read either ‘Tap’ for an active trial or ‘Relax’ for a

rest trial. 20 alternating trials (10 of each class) were carried out per session. Each

trial lasted 20 seconds, resulting in total experimental recording time of 400 seconds.

Subjects performed 2 recording sessions, with a short break between sessions.

The central electrode, ‘E4’, of the fNIRS/EEG module was positioned directly over

the subject’s motor cortex contralateral to hand activity - at EEG position C4 for left-

handed Subject A and C3 for right-handed Subject B. Module position on Subject A’s

head is shown in Figure 4.2.

4.3.2.3 Signal Processing

fNIRS raw intensity measurement signals were processed according to the steps de-

scribed in subsection 3.4.4 with a differential pathlength factor of 6 to produce HbO

and HbR delta concentration signals. Feature extraction of HbO and HbR signals for

a single trial involved offsetting the trial data so the first sample value is zero, then

averaging all data samples for the trial, giving an average change in signal amplitude

over the full trial time.

ERD/ERS analysis was performed on the EEG, in accordance with the literature

[169]. EEG data was first analysed for spectral content to identify the frequencies at
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Figure 4.2: Dual fNIRS/EEG module positioned over Subject A’s motor cortex.

which ERS and ERD occurred in the µ and β frequency ranges respective to onset

of a movement instruction and a rest instruction. Raw EEG data was then bandpass

filtered with a 6th order Butterworth filter to the identified ERS/ERD ranges, squared

to obtain a power signal and then smoothed using a lowpass 6th order Butterworth

filter at 5 Hz.

The ERD/ERS reference window was chosen to be between 4.5 and 3.5 seconds

before instruction onset. For a movement instruction, the activity window was chosen

to be from 0 to 1 seconds after instruction onset. For a rest instruction, the activity

window was chosen to be from 0.5 to 1.5 seconds after instruction onset. These windows

were chosen to capture the expected timing of pre-movement µ-rhythm desynchroni-

sation and post-movement β-rhythm synchronisation. These windowed µ and β range

power signals were used for classification of EEG activity.

Therefore, for each instruction onset event, four features are extracted: change in

µ-range power, change in β-range power, average change in HbO amplitude (∆HbO)

and average change in HbR amplitude (∆HbR).
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4.3.2.4 Classification

Each of the seven electro-haemodynamic channels have EEG and fNIRS features ex-

tracted. As such, each event for each channel can be defined by a four-dimensional

feature (hybrid fNIRS/EEG) or by two two-dimensional features (EEG and fNIRS sep-

arately). To investigate classification accuracy of fNIRS and EEG acting in isolation,

classification of each channel with only EEG or fNIRS features is carried out first. Fol-

lowing that, classification of the four-dimensional hybrid fNIRS/EEG features is carried

out.

Linear Discriminant Analysis (LDA) is used for classifier training and testing with

Leave-one-out-cross-validation (LOOCV). Specifically, for N trials, N–1 trials are used

for classifier training and the remaining trial is used for classifier testing. This is

repeated N times with each trial used for testing once. Overall classification accuracy

is calculated as the number of correct classifications divided by N.

Example EEG and fNIRS feature spaces for Channel 2 from the first recording of

Subject A are shown in Figure 4.3 and Figure 4.4. Crosses indicate feature locations

for rest instructions while circles indicate feature locations for movement instructions.

4.3.2.5 Results

A table of classification results is presented in Table 4.3. Shown is the classification

accuracy for each channel when operating on fNIRS features alone, EEG features alone

and combined fNIRS/EEG features. A summary of average results is presented in

Table 4.4. Subject A demonstrated average pre-movement µ-rhythm ERD in the 9–11

Hz range and average post-movement β-rhythm ERS in the 19–22 Hz range over all

EEG channels. Subject B demonstrated average pre-movement µ-rhythm ERD in the

9–12 Hz range and average post-movement β-rhythm ERS in the 19–21 Hz range over

all EEG channels.

Presented in Figure 4.5 are scatter plots of the classification accuracy results of all

subjects, trials and channels from Table 4.3. Figure 4.5 (a) compares fNIRS results

to EEG results, Figure 4.5 (b) compares fNIRS results to Dual results, Figure 4.5 (c)

compares EEG results to Dual results. These plots also feature a linear regression to

the data. Figure 4.5 (d) is a 3-dimensional stem plot of fNIRS, EEG and Dual results.
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Figure 4.3: 2D EEG feature space for Channel 2 of Subject A, recording 1. Crosses

represent Rest instruction features while circles represent movement instruction features.

A table of Pearson’s r correlation coefficients for classification accuracies is presented

in Table 4.5.

4.3.3 Discussion

While only a low number of subjects and trials was used in this investigation, these

classification results suggest that by utilising both fNIRS and EEG features for classifi-

cation, an average increase in classification accuracy can be attained. Some analysis of

these results, however, shows slightly different outcomes for each subject. For Subject

A, classification with both modalities yielded better results than either fNIRS or EEG

individually. For Subject B, however, classification with EEG features alone performed

better than either fNIRS alone or combined fNIRS/EEG.

One possible explanation for this outcome for Subject B lies in the increased dimen-

sionality of the feature space. While the 2-dimensional EEG features may have been

easily separated by LDA, the 2-dimensional fNIRS features may not have been as easy

to classify, as indicated by relatively poor classification results for fNIRS. Increasing the
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4.3 Additional fNIRS Channels with EEG Incorporation

Figure 4.4: 2D EEG feature space for Channel 2 of Subject A, recording 1. Crosses

represent Rest instruction features while circles represent movement instruction features.

dimensionality of each EEG feature to include fNIRS, where the new dimension features

are not easily separated, appears to have negatively affected classifier performance.

Further analysis of these classification results reveals an interesting pattern. When

classification of one modality performs well but classification of the other modality

performs poorly, classification of both combined tends to perform about as well as

the better-performing modality. For example Subject B, Trial 1, Channel 1, fNIRS

classification is 47%, EEG classification is 79% and combined classification is 63%. In

most situations like this, classification of the combined modalities performs much better

than the worse performing modality. When classification of each modality performs

well, classification of the combined features tends to be more successful than either. For

example, Subject A, Trial 1, Channel 1, fNIRS classification is 84%, EEG classification

is 79% and combined classification is 90%. Lastly, when classification of both separate

modalities performs poorly, combined classification tends to also perform poorly. For

example, Subject B, Trial 1, Channel 5, fNIRS classification is 47%, EEG classification

is 68% and combined classification is 47%. This is the expected outcome for this
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4.3 Additional fNIRS Channels with EEG Incorporation

Figure 4.5: Scatter plots of hybrid fNIRS/EEG BCI classification accuracies. (a) fNIRS

results compared to EEG results (b) fNIRS results compared to Dual results (c) EEG

results compared to Dual results (d) 3D scatter plot of fNIRS, EEG and Dual results.

Dashed red lines in (a), (b) and (c) are linear regressions of the data.

scenario.

The linear regressions of the 2-dimensional scatter plots of classification accuracies

presented in Figure 4.5 (a)-(c) and the correlation coefficient results presented in Ta-

ble 4.5 appear to support these observations that BCI classification accuracy based on

either modality alone is improved by the inclusion of the other, particularly in the case

of fNIRS. The low correlation coefficient between fNIRS and EEG results suggests that

high fNIRS-based BCI performance does not predict high EEG-based BCI performance.

The implication of these results and analysis is that it appears that a hybrid

fNIRS/EEG BCI may perform better than either an EEG or fNIRS BCI with similar

channel density. Due to the low number of participants in this investigation, however,
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4.3 Additional fNIRS Channels with EEG Incorporation

no conclusions may be drawn and this may motivate further investigation. Should the

result hold following a more thorough investigation, it would appear that it’s not nec-

essary to include additional EEG or fNIRS sensors to a BCI system, and thus increase

set-up time and likelihood of subject fatigue, to improve BCI performance. It may

be possible that BCI performance is increased by either complementing an EEG BCI

with fNIRS or by complementing an fNIRS BCI with EEG. This novel sensor design

combines the advantages of EEG and fNIRS into one system to potentially improve

BCI use experience for a stroke rehabilitation patient.

However, due to the compact cortical area interrogated by this hybrid module and

the relatively low number of EEG channels, classification of stroke EEG may be difficult.

EEG classification was based here on ERD/ERS features but EEG rehabilitation BCI

typically uses a variation of the Common Spatial Patterns (CSP) algorithm (described

in detail in subsection 6.3.3) which requires sampling of a wide areas of the head.

The compact fNIRS sampling area also requires that the areas being interrogated will

reliably respond haemodynamically. For stroke patients, the haemodynamic response

may be significantly affected, rendering this compact fNIRS/EEG device unreliable.

Recent hybrid fNIRS/EEG BCI studies by Yu et. al. [170], Liu et. al. [171] and

Putze et. al. [172] have all employed full-head EEG and fNIRS measurement. While

the current investigation into compact hybrid fNIRS/EEG certainly suggests that BCI

performance can be improved, it may not be suitable for stroke rehabilitation BCI

without further investigation.
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Table 4.3: LDA classification results for fNIRS features only, EEG features only and

combined fNIRS/EEG features.
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Subject fNIRS EEG Dual

A 83.5% 79% 87.5%

B 66.5% 78.5% 75%

Average 75% 79% 81%

Table 4.4: Summary of classification results.

fNIRS EEG Dual

fNIRS 1 0.293 0.800

EEG 0.293 1 0.559

Dual 0.800 0.559 1

Table 4.5: Pearson’s r correlation coefficients of hybrid BCI classification accuracies.
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4.4 Novel Spatial Imaging for Multichannel fNIRS

Coyle et. al.’s original fNIRS BCI employed a single fNIRS channel and thus a single

spatial sampling point [158]. Increasing the number of fNIRS channels increases the

number of spatial sampling points, which may be mapped on a two-dimensional plane.

To make visual sense of spatially-sampled data, activity at non-sampled spatial loca-

tions may be approximated using any of a number of techniques. Previous attempts to

construct a two-dimensional image of fNIRS activity have included linear interpolation

[173] and a combination of nearest-neighbour and linear interpolation [174]. In contrast

with these mathematically simple interpolation methods, the gold standard for fNIRS

imaging uses a linear approximation to the photon diffusion equation [175], which is

mathematically far more complex. Between these two extremes of spatial interpolation

lie potentially useful techniques which if otherwise left unexplored may hinder future

fNIRS BCI development.

One such unexplored interpolation method for fNIRS data is based on the Gaussian

process (GP) model - a probabilistic, non-parametric black-box model. It differs from

most other black-box modelling approaches in that it does not try to approximate the

modelled system by fitting the parameters of selected basis functions but rather by

searching for the statistical relationship among measured data. GP models are closely

related to other machine learning approaches such as Support Vector Machines (SVM)

and Relevance Vector Machines (RVM) and have been explored for various applications

as a method for classification or regression and various interesting applications (e.g.

medicine [176] and bioengineering [177]). In the field of geostatistics, GP regression

models are used for probabilistic analysis of data and are more commonly known as

‘Kriging’. Kriging has previously been used to interpolate MRI data [178] for 3D

imaging of CT scans [179].

Here, a novel fNIRS imaging method based on GP model interpolation is investi-

gated and compared to fNIRS imaging obtained through the photon diffusion equation

method.

4.4.1 The Gaussian Process Model

The Gaussian process (GP) model is an example of the use of a flexible, probabilis-

tic, non-parametric model with uncertainty predictions [180]. It fits naturally in the
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Bayesian modelling framework in which, instead of parameterising a mapping function

f(x), a prior is placed directly on the space of possible functions f(x) which could

represent the nonlinear mapping from input x to output y. This prior represents the

modeller’s beliefs about the mapping, usually involving smoothness assumptions. This

prior is combined with the likelihood of the identification (training) set of N observed

input-output data pairs, {xi, yi}Ni=1, to provide the posterior distribution for model

predictions, where xi ∈ <D (such that X is the N ×D matrix of inputs) and yi ∈ R.

The simplest type of prior over functions is the Gaussian one.

A Gaussian process is a Gaussian random function, fully characterized by its mean

and covariance function. It can be viewed as a collection of random variables which

have a joint multivariate Gaussian distribution where, for simplicity, it is assumed to be

a zero-mean process f(x1), . . . , f(xn) ∼ N(0,ΣΣΣ), where Σpq = C(xp,xq) is a function of

the corresponding xp and xq which gives the covariance between f(xp) and f(xq). The

covariance function, C(., .), can be of any kind, provided that it generates a positive

definite covariance matrix ΣΣΣ. Assuming a stationary process, where the covariance

between two points depends only on the distance between them and is invariant to

translation in the input space, a common choice of covariance function is

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(x
p
d − x

q
d)

2

]
(4.1)

where D is the input dimension and v1, w1, . . . , wD are free parameters. Typically,

covariance functions such as Equation 4.1 are chosen so that points closer together in the

input space are more correlated than points farther apart (a smoothness assumption).

The parameter v1 controls the vertical scale of variation and the wi’s are inversely

proportional to the horizontal length-scale in dimension i (λi = 1/
√
wi). Other forms

of covariance functions not employed here are discussed elsewhere [180].

Let the input (target) relationship be y = f(x)+ε. Assuming an additive white noise

with variance v0, ε ∼ N(0, v0), a GP prior is put on f(.) with covariance function given

by Equation 4.1 with unknown free parameters. Within this probabilistic framework,

we have y1, . . . , yn ∼ N(0,KN+1) with KN+1pq = Σpq + v0δpq, where δpq = 1 if p = q,

0 otherwise.

Based on a set of N training data pairs, {xi, yi}Ni=1, the objective is to find the

predictive distribution of y∗ corresponding to a new given input x∗. It is necessary to
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estimate the unknown parameters of the covariance function, v1, w1, . . . , wD, as well as

the noise variance v0. This is done via maximization of the log-likelihood

log(p(y|X)) = −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π) (4.2)

where Θ is the vector of parameters, ΘΘΘ = [w1 . . . wD v0 v1]T and K is the N × N
training covariance matrix.

The predictive distribution of y∗ is p(y∗|y,X,x∗) = p(y,y∗)
p(y|X) . It can be shown that

this predictive distribution is Gaussian with mean and variance

µ(x∗) = k(x∗)T K−1 y (4.3)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗) (4.4)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is theN×1 vector of covariances between

the test and training cases and k(x∗) = C(x∗,x∗) is the covariance between the test

input and itself.

The vector k(x∗)T K−1 can be interpreted as a vector of smoothing terms which

weigh training outputs, y, to make a prediction at the test point, x∗. This is the reason

why GP model predictions can be used for interpolation of missing data of the function

of interest.

If the new input is far away from the data points, the term k(x∗)T K−1 k(x∗) will

be small and so σ2(x∗) will be large. This indirectly also means that GP models are

more suitable for interpolation of data than for extrapolation. Areas of the input space

where there is little data, where the data has high complexity or where the data is noisy

are highlighted through a high variance value at that interpolation point. This variance

measure is not available through simpler interpolation methods and may prove useful

in fNIRS spatial imaging.

4.4.2 GP Model fNIRS Imaging

The GP model described above was implemented in Matlab to process multichannel

fNIRS data using Ramussen and Williams’ Gaussian Processes for Machine Learning

(GPML) code [181] and custom code. For a desired sample time of fNIRS data and for
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a desired field of interpolation points, the GP model calculates a two-dimensional array

of Gaussian distributions with an estimated mean magnitude and estimated variance at

each interpolation point. These two-dimensional arrays were then plotted to produce

fNIRS spatial activity images.

GP interpolation requires that each fNIRS signal is assigned a precise spatial sample

point. Although fNIRS signals are, in reality, affected by photon absorption along the

full photon path between optode locations, the sample point is set at the midpoint

between source and detector locations as this is where the photon path interrogates

cortical tissue according to models [101]. The interpolation field is set to be a grid of

size 20× 20.

4.4.3 HomER fNIRS Imaging

HomER (Hemodynamic Evoked Response) [182] is software for analysis and imaging

of fNIRS signals, developed by The Center for Functional Neuroimaging Technologies

[183] and the Martinos Center’s Photon Migration Imaging Lab. The software, written

in Matlab, is freely available online [184]. HomER utilises the Photon Migration Imag-

ing (PMI) toolbox [185] to solve Diffuse Optical Imaging (DOI) forward and inverse

problems, which can be used to produce images of spatially resolved hemodynamic re-

sponses. HomER is widely used in fNIRS research and is trusted to provide the highest

available standard of fNIRS imaging.

For comparison of HomER imaging results to those obtained through GP model

interpolation, the HomER interpolation field was also set to 20 points.

4.4.4 fNIRS Data Source

A sample 4-channel fNIRS data set included with HomER software was processed by

both methods. This dataset was used because it features a large change in signal levels

for Channel 1, little change for Channel 4 and a medium amount of change for Channel

2 and Channel 3. The time-course of HbO of each channel is shown in Figure 4.6. This

explicit difference in responses of separate fNIRS channels facilitates easy comparison

of resulting images between both fNIRS imaging methods.

The simulated source-detector layout for the data is shown in Figure 4.7. The layout

consists of a single fNIRS light source at location A and four detectors at locations 1–4.
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Figure 4.6: HbO signals following fNIRS processing. Red lines indicate image sample

times at 3.5, 7.5 and 11.5 seconds for GP model interpolation and HomER.

The midpoint of each channel, which was also the spatial location of each channel,

is indicated by a small red dot. The fNIRS light transmitted was at wavelengths

of 690 nm and 830 nm. There are four paths of light for each detector and there

are two wavelengths of light each, so the data set consists of eight signals. fNIRS

signal processing steps described previously are applied to the raw 690 nm and 830 nm

intensity signals to produce HbO and HbR delta concentration signals.

4.4.5 Analysis

Of the two available fNIRS signals from the sample 4-channel dataset, HbO was chosen

over HbR for comparison between imaging methods as these signals exhibited greater

amplitude changes. Both HomER and GP model-based interpolation were applied to

the HbO data for comparison of fNIRS imaging output. GP model interpolation is

unique in that it not only produces an interpolated magnitude map but also produces

a variance map. The levels of variance at each interpolation point give an indication of

how reliable the estimated magnitude value is at that point. This is a novel approach

to fNIRS optical imaging and a novel application of GP models.

Three time samples, t = 3.5s, 7.5s, 11.5s (indicated in Figure 4.6), were selected to

compare imaging methods. GP model interpolation’s two images (one for magnitude,

one for variance) are used in conjunction to evaluate fNIRS activity and are compared

to HomER’s single image, for a given time sample. These time samples were selected
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Figure 4.7: Spatial locations of sample data fNIRS light source (A), light detectors (open

circles 1-4) and midpoints of each fNIRS channel (small circles).

because they contain three different levels of fNIRS activity.

4.4.6 Results

Output images of both methods are presented in Figure 4.8. (a)–(c) displays images

produced by HomER at the three sample times, (d)–(f) displays images of GP model

interpolation’s estimated magnitude values and (g)–(i) displays images of GP model

interpolation’s estimated variance values. The red line of Figure 4.8 (h) and (i) is a

contour of constant variance of 0.2x10−12. All variances below this arbitrarily selected

variance are shaded white, while variances above are shaded gradually from light grey

to black.

From Figure 4.6 it is known that there is low HbO activity in all four channels at

t = 3.5s. Accordingly, the HomER image (Figure 4.8 (a)) displays near-zero levels of

activity. The corresponding GP model interpolation magnitude (“GP: Magnitude”)

plot (Figure 4.8 (d)) similarly shows near-zero activity. The GP model interpolation

variance (“GP: Variance”) plot (Figure 4.8 (g)) shows very low variance values for the

entire image.
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Figure 4.8: fNIRS optical imaging output from HomER and GP model interpolation.

At t = 7.5s, there is increasing HbO signal activity, with highest signal level in

Channel 1, slight increase in signal level in Channel 4 and the some increased signal

level in Channel 2 and Channel 3. HomER’s imagining of these signals (Figure 4.8 (b))

accordingly shows increased HbO activity along each channel path. GP: Magnitude

(Figure 4.8 (e)) shows increased HbO signal levels in the region of Channel 1’s sample

point. GP: Variance (Figure 4.8 (h)) now shows increased variance values along some

of the outer edge of the image.
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At t = 11.5s, HbO signals have reached their maximum value. HomER’s imaging

of the four channels of fNIRS activity (Figure 4.8 (c)) clearly depicts the highest signal

value from Channel 1, the medium amplitudes for Channel 2 and Channel 3 and the

small amplitude of Channel 4. The GP: Magnitude image (Figure 4.8 (f)) similarly

depicts greatest signal amplitude in the direction of Channel 1, medium and similar

amplitudes of Channel 2 and Channel 3, and the small amplitude of Channel 4. The

GP: Variance image (Figure 4.8 (i)) indicates higher variance values than before around

the outer edges of the image

4.4.7 Discussion

The viability of this novel GP model interpolation method for fNIRS imaging is evalu-

ated by qualitative comparison to the current gold standard of fNIRS imaging, HomER.

At t = 3.5s, there is little difference between HomER and GP images since all channels

had near-zero amplitudes compared to the full magnitude scale. The little difference

in signal magnitudes results in low GP variance values - indicating that GP model

interpolation is very confident of the interpolated magnitude values obtained.

At t = 7.5s and 11.5s, differences in the images of both methods become more ap-

parent. HomER’s images depict fNIRS activity along the photon path of the channel,

in accordance with models of photon migration which HomER uses. This results in an

elongated shape of fNIRS activity with HomER fNIRS imaging. Of course, HomER,

or any other fNIRS signal processing software, does not know exactly where HbO was

concentrated along the photon path - it can only estimate according to the photon mi-

gration models. HomER fNIRS imaging makes an assumption that HbO concentration

is equal along the photon path.

Similarly, HomER’s images suggest reduced HbO activity at locations which do

not lie along a photon path. For example, in Figure 4.8 (c), at the upper-left of the

image, HomER suggests that there is no HbO activity in that region. HomER’s fNIRS

imaging suggests that there is no HbO response in that area with as much confidence

as it suggests that there is a high level of HbO activity at the midpoint of Channel 1.

In contrast, since GP model interpolation does not use any photon path information,

just like any other method that is based on interpolation and not photon migration

models, it does not assume a lack of activity outside of the photon path. Instead, this

81



4.5 Accommodating fNIRS Research and Development

method assumes that activity in such regions is related to activity at the sample points.

Although this is true for any interpolation method, GP model interpolation has the

added advantage of the variance measure.

The GP variance images used in conjunction with the GP magnitude images present

the “full picture” of GP model-estimated fNIRS activity. As Gaussian distribution

variance increases, the images can inform the user of their reduced reliability, allowing

the user to evaluate the images with more accuracy. HomER does not inform the user

that areas outside of the photon path may be unreliable but GP model interpolation

does. By only considering areas of GP: Magnitude that correspond with areas of GP:

Variance with low variance, or within the red contour, GP model interpolation fNIRS

imaging is qualitatively comparable to HomER.

The variance map is shown to be important for GP model interpolation. When there

is little difference between fNIRS channel data, variances of interpolated Gaussian dis-

tributions are low and the variance map suggests that the user can trust the interpolated

magnitude values. When the difference in magnitude between data sources increases,

the variance of the mean magnitudes also increases. In the case of extrapolation, the

variances can be very large. HomER remains the superior fNIRS imaging method, as

it is based on knowledge of the physics of fNIRS operation - the photon migration

model. By comparison, the mathematical models upon which GP-based interpolation

is built do not describe the physical operation of fNIRS measurement. While GP-based

imaging features the variance map which is not typical for an interpolation method,

HomER is still a more physically accurate method for fNIRS imaging. Future work on

GP-based fNIRS imaging may involve combining the variance map with the magnitude

map and a more comprehensive comparison to existing fNIRS imaging methods. It has

been shown here to be potentially useful and worth of further exploration.

4.5 Accommodating fNIRS Research and Development

In the introduction to their seminal fNIRS BCI paper, Coyle et. al. [158] noted that “At

present the measurement of electrical activity from the brain, using electroencephalog-

raphy (EEG) or electrocorticography (ECoG), is the favoured method for harnessing

such [cognitive and motor] tasks for BCI development”. In the years since, this situa-

tion has not changed, as evidenced by the aforementioned publication counts of fNIRS
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and EEG BCI research papers. The lack of access for researchers to fNIRS acquisition

systems or to fNIRS data sets is likely a contributing factor to this relatively lower

level of fNIRS research activity. EEG is an established brain signal acquisition method

which can be low-cost and existing hardware can often be found in research settings

and in clinical settings. Therefore, EEG is a very accessible signal acquisition method.

fNIRS, however, is a relatively recent brain signal acquisition method. fNIRS hardware

is relatively rare in research and clinical setting and is also relatively more expensive

than EEG hardware, although far less expensive than fMRI or MEG.

Access to fNIRS data is therefore a concern for future fNIRS BCI development as

potential researchers are prevented from developing fNIRS signal processing techniques

and ultimately improving fNIRS BCI. One solution to this problem of lack of access to

biomedical data is to simply make biomedical signal datasets freely available for any-

one to access. The website PhysioNet [186] provides such a service, offering datasets

of a wide range measurement modalities for free download, such as EEG, ECG, EMG,

respiration, electrodermal activity (previously known as galvanic skin response) and

many others. Currently, however, there is only one fNIRS dataset available, which

comes with EEG data recorded by Dr. Kevin Sweeney for an investigation into arte-

fact removal techniques [116, 187]. Therefore, fNIRS signal datasets are generally not

accessible without a direct request to a fNIRS researcher for their recorded data or

access to fNIRS hardware.

A secondary solution to the lack of access to biomedical datasets lies in synthetic

data - signals produced in software to replicate real signals. Synthetic biosignal gen-

eration has been investigated for modalities such as foetal phonocardiographic (fPCG)

recordings [188], EMG [189], ECG [190] and magnetoencephalography (MEG) [191].

This section describes the development of the first fNIRS synthetic signal generation

algorithm. The success of this fNIRS synthetic signal generation process is evaluated

by comparing synthetic fNIRS to real fNIRS.

4.5.1 Real fNIRS Data

Development of synthetic fNIRS data was based in part on real fNIRS data. This

real data, representative of typical fNIRS signals, guided model design for generating

synthetic data. This fNIRS data was recorded using a TechEn CW6 system (TechEn
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Inc., USA), which used 690 nm and 830 nm wavelength light and sampled data at a

sample rate of 25 Hz.

During fNIRS data recording, the subject was seated in a comfortable chair in front

of a computer monitor and followed instructions on a screen in front of them to engage

in a finger-tapping experimental protocol. 7 channels of fNIRS data were recorded

from the subject’s motor cortex contralateral to hand activity. The fNIRS channel

that was most easily classifiable following fNIRS signal processing, feature extraction

and classification was selected to guide the design of synthetic fNIRS signal generation.

Specifically, this selected fNIRS channel sampled location C3 of the 10-20 system.

Additionally, a “shallow” fNIRS channel was recorded, with source-detector sep-

aration of 1.5 cm. Due to this lower source-detector separation, the photon path of

this fNIRS channel passed only through the skin and did not interrogate the cortex.

Therefore, raw light intensity of this channel was modulated only by haemoglobin in

the superficial layers. This signal contains undesired interference which affects normal

fNIRS recordings and is used to model this interference.

4.5.2 Synthetic Data Process

A hybrid model of the fNIRS signal process, consisting of a physiological model of the

vascular response together with a spectrophotometric model relating haemodynamics

to optical properties, was developed to generate synthetic data. A typical fNIRS optical

intensity measurement contains the cortical haemodynamic response signal of interest

buried in the much stronger natural interference and noise components. The data gen-

erated by this algorithm is controlled by hand-tuned parameters, which control various

amplitudes and frequencies of the fNIRS signal components. While these parameters

are currently hand-tuned, a future version may produce parameters based on analysis

of a real fNIRS dataset, possibly optimising the parameters to closely match the real

data. The algorithm discussed here, however, simply used parameters set by the user.

Light emitted into the scalp passes through the superficial layers before and after

passing through the cortex [101]. These superficial layers contain blood vessels, which

affect the intensity of the transmitted light. The largest components of the superfi-

cial signal are due to the cardiac cycle and low-frequency oscillations known as Mayer
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waves [107, 108]. fNIRS measurement also contains broadband noise arising from envi-

ronmental optical background and instrumental noise. fNIRS light intensity measure-

ments have an associated offset due to non-varying aspects of the recording channel

such as skull thickness, skin thickness, hair and source-detector separation. Synthetic

raw intensity signals are therefore modelled as a sum of these separate components:

Φλ
s (t) = Φλ

b (t) + Φλ
c (t) + Φλ

m(t) + Φλ
n(t) + Φλ

o (4.5)

where Φλ
s (t) is the synthetic intensity signal for a given wavelength λ, Φλ

b (t) is the

raw intensity component as a result of the physiological response of interest, Φλ
c (t) is the

cardiac pulse component, Φλ
m(t) is the Mayer wave component, Φλ

n(t) is the broadband

noise component and Φλ
o is the offset.

4.5.2.1 Balloon Model Simulation

The haemodynamic response to activation is the primary component of the fNIRS

model. The Balloon model [192, 193] is a biomechanical model of haemodynamic

activity at the neuronal level in the cortex during activation. This is a well-known neu-

rophysiological dynamics model linking mental state of haemodynamics and is defined

by a differential equation [194] as

E(t) = 1− (1− E0)
1

fin(t) (4.6)

q̇(t) = fin(t)
τ0

[E(t)
E0
− q(t)

v(t) ] + 1
τv

[fin(t)− v
1
α ] q(t)v(t) (4.7)

v̇(t) = 1
τv

[fin(t)− v
1
α ] (4.8)

ṗ(t) = 1
τv

[fin(t)− v
1
α ]p(t)v(t) (4.9)

where E, q, v and p denote oxygen extraction factor, normalised dexoxygenated

haemoglobin concentration (∆cHbR(t)), normalised blood volume and normalised total

haemoglobin concentration respectively. Normalised oxygenated haemoglobin concen-

tration (∆cHbO(t)) is obtained by subtracting q from p. The fin(t) waveform (blood

flow into the “balloon”) is specified by the user and normally reflects the stimulation

sequence.
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Other parameter values of the Balloon model are: E0 = 0.4, τ0 = 2, τv = 30

and α = 0.4, similar to [194]. Non-normalised values of concentration can’t be found

without knowledge of initial concentrations or sample volume. The signals (∆cHbR(t))

and (∆cHbO(t)) are therefore scaled to an amplitude similar to real data before further

processing.

4.5.2.2 Conversion to Raw Intensity Signals

Following generation of modelled ideal HbO and HbR concentration signals (∆cHbO(t)

and ∆cHbR(t)), typical fNIRS signal processing steps are then carried out in reverse

order to obtain corresponding ideal raw intensity signals. The first step of this reverse

process is to utilise the Modified Beer-Lambert law to obtain modelled Optical Density

signals:

∆Aλ
b (t) = (ελHbR∆cHbR(t) + ελHbO∆cHbO(t))BL (4.10)

where ∆Aλ
b (t) is Optical Density signal of a wavelength (Absorbance Units (AU)),

ελHbR and ελHbO are the molar extinction coefficients of HbR and HbO for a particular

wavelength (cm−1mol−1 l), ∆cHbR(t) and ∆cHbO(t) are the changes in concentration

of HbR and HbO (mol l−1), B is the differential pathlength factor (unitless) and L is

source-detector separation (cm). Values for ε have been tabulated for a wide range of

wavelengths [195].

Obtaining an approximation of the raw intensity signal (Φλ
b (t)) requires an expo-

nential function (described in [182]):

Φλ
b (t) = exp(−∆Aλ

b (t)) (4.11)

Simulation of Equation 4.9 to Equation 4.11 produces an ideal raw intensity mea-

surement during activation. Interference, noise and offset are then added to this signal

to replicate real-world fNIRS raw intensity measurements. Figure 4.9 shows the signal

types from the Balloon model of haemodynamic response, to the scaled response, to

optical density signals, to raw light intensity signals.
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Figure 4.9: Signals at each stage of production of transmitted light intensity from ideal

haemodynamic response.

4.5.2.3 Cardiac Interference

Cardiac cycle interference is modelled as a function approximating the observed cardiac

signal component of the “shallow” fNIRS intensity signals as

Φλ
c (t) = Kλ

c f(k(t), R(t)) (4.12)

where Φλ
c is the cardiac pulse interference for a given wavelength, Kλ

c is the ampli-

tude of the cardiac interference, k(t) is a piecewise linear model of a single cardiac pulse

and R(t) is a time-varying heart rate signal. f(.) is the low-pass filtered, non-linear,

unity-amplitude, cardiac interference signal which is identical for all wavelengths. Fig-

ure 4.11 displays a section of this cardiac component of intensity signal interference for

both wavelengths.
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Figure 4.10: Piecewise-linear model of a single cardiac pulse component.

Figure 4.11: Section of cardiac component of intensity signal interference.

4.5.2.4 Mayer Wave Interference

Mayer waves are spontaneous changes in arterial blood pressure, oscillating at a fre-

quency near 0.1 Hz in most subjects [108]. Mayer wave interference impacts fNIRS
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measurements similarly to cardiac interference. The Mayer wave is modelled as a

low-frequency sinusoidal oscillation with time-varying frequency, similar to Coyle et.

al.[196], as

Φλ
m(t) = Kλ

m sin(2πfmt+ θm) (4.13)

where Φλ
m(t) is the Mayer wave interference for a specific wavelength, Kλ

m is the

amplitude of the interference, fm is the time-varying frequency of the Mayer wave and

θm is random phase shift. Figure 4.12 shows a section of Mayer wave interference signal

for both wavelengths.

Figure 4.12: Section of Mayer wave component of intensity signal interference.

4.5.2.5 Noise Interference

An fNIRS system records broadband noise due to environmental optical background

noise and instrumental noise. Based on observations of real fNIRS data, this interfer-

ence is modelled as a normally distributed random noise signal as

Φλ
n(t) = N(0, (σλn)2)
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where Φλ
n is the noise signal for a wavelength and σλn is the standard deviation of

the normal distribution, which is manually set before processing.

4.5.2.6 Offset

Raw light intensity measurements have an associated offset due to non-time-varying

aspects of the transmission medium of an fNIRS recording channel such as skin thick-

ness, skull thickness, hair follicles and source-detector separation. Values of offset (Φλ
o )

are wavelength-dependant and are manually set before processing.

4.5.3 Generating Synthetic Data

The fNIRS signal model was implemented in Matlab to generate synthetic fNIRS data.

Multiple parameters of the model, such as offset or noise amplitude, are set before

generating any data. These parameter values may be manually set to replicate a wide

range of signals. To test the effectiveness of this model, parameter values were chosen

based on the real fNIRS signals and then fine tuned to attempt to match that real data.

The synthetic data is compared visually to the real data.

The Balloon model produces individual ideal HbO and HbR activation responses.

For this, blood in-flow, fin(t), is modelled as a trapezoid with a rise time of 5 seconds,

plateau time of 5 seconds, fall time of 5 seconds, rest time of 5 seconds and a plateau

height of 1.7 for a 10 second active period followed by a 10 second rest period. This is

then repeated to match the number of active and rest periods of the real fNIRS data

and thus produce ideal HbO and HbR signals.

The HbO signal is scaled to an amplitude of 2e−5 and HbR is scaled to an amplitude

of 0.8e−5. The real fNIRS signals use light of wavelengths 690 nm and 830 nm so the

corresponding ideal Optical Density signals for these wavelengths is obtained using the

modified Beer-Lambert law. For this, the differential path-length factor (DPF), B, is

set to 5.93 in accordance with [195] and source-detector separation, L, is set to 3 cm, as

this is the source-detector separation of the real fNIRS signals. The ideal raw intensity

signals, Φ690
b (t) and Φ830

b (t) are then calculated from the ideal Optical Density signals.

To generate the cardiac interference intensity signals, Φ690
c (t) and Φ830

c (t), cardiac

signal amplitudes, K690
c and K830

c , are set to 70 and 700 respectively and the normally-

distributed heart rate parameter is set as R(t) = N(52, 5). To generate the Mayer
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wave interference intensity signals, Φ690
m (t) and Φ830

m (t), Mayer wave amplitudes, A690
m

and A830
m , are set to 25 and 160 respectively and the normally-distributed oscillation

frequency is set as fm = N(0.08, 0.01)Hz. Noise signals, Φ690
n (t) and Φ830

n (t), have

standard deviations σ690
n and σ830

n , set to 199.5. Finally, offset of the raw intensity

signals is set to match the average amplitude of the real data, so Φ690
o = 8053 and Φ830

o

= 33124.

Synthetic raw intensity signals which attempt to replicate a set of real fNIRS signals

are then generated by summing together each of these components, as in Equation 4.5.

At this point, the synthetic data can be compared visually to the real data. The

haemodynamic response of interest, however, is not easily seen in the raw intensity

signals. To observe this component, the synthetic signals undergo the same fNIRS

signal processing steps as a real fNIRS recording and individual responses are averaged.

4.5.4 Results

Following generation of synthetic fNIRS raw intensity signals, comparison to real fNIRS

raw intensity signals is first carried out by visual comparison of the temporal and

spectral signal content. The full time-course of both real and synthetic transmitted

light intensity signals is presented in Figure 4.13.

Figure 4.13: Entire real and synthetic fNIRS signals, highlighting signal offsets.
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Presented in Figure 4.14 is a comparison of a 20-second section of the real and

synthetic 690 nm and 830 nm intensity temporal signals. Presented in Figure 4.15

is a comparison of the spectral content of the real and synthetic 690 nm and 830

nm intensity signals with offset removed for clarity. Presented in Figure 4.16 are the

processed modelled HbO and HbR responses for active and rest events along with

average responses.

Figure 4.14: 20 second time-course of real and synthetic transmitted light intensity

signals.

The real and synthetic 690 nm and 830 nm signals may also be compared quanti-

tatively with statistics, as presented in Table 4.6. The values of this table have been

rounded for clarity.

4.5.5 Discussion

A visual comparison of the synthetic and real fNIRS raw intensity temporal signals in

Figure 4.14 shows that the synthetically generated signals are temporally similar to the

real signals. The synthetic 830 nm signal is more obviously similar to the real signal, as

the cardiac and noise components are clearly evident. The low-frequency Mayer wave

component is also evident, although this component of the real and synthetic signals

are out of phase. For the 690 nm signals, a visual comparison is more difficult as the
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Figure 4.15: Spectral content of real and synthetic transmitted light intensity signals.

Figure 4.16: Synthetic fNIRS individual and average haemodynamic responses during

rest and activity.
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nm Real Synthetic

Mean
690 8053 8128

830 33124 33177

Standard Deviation
690 385 200

830 476 307

Covariance(690 nm, 830 nm)

148520 42240

42240 226325

 40129 5559

5559 94486


Table 4.6: Statistics (rounded) of real and synthetic 690 nm and 830 nm signals.

dominating component of the real signal is the noise component. The synthetic 690 nm

signal also does not clearly show a cardiac or Mayer wave component and so is only

temporally similar in this lack of evident signal component.

A visual comparison of the spectral components of real and synthetic fNIRS raw in-

tensity signals in Figure 4.15 reveals similar similarities. The real 690 nm signal is again

dominated by noise with the Mayer and cardiac components relatively miniscule. The

synthetic 830 nm signal displays components that are evident in the real signal - par-

ticularly the cardiac component between 0.7 and 1.1 Hz. The haemodynamic response

of interest has a spectral response between 0.5 - 0.6 Hz but is almost indiscernible from

noise in the real 830 nm signal.

The largest difference between the real and synthetic 830 nm signals is at the low-

frequency end of the spectrum - below 0.2 Hz. The variable low-frequency Mayer-

wave component of the synthetic signal is evident around 0.1 Hz however the Mayer

wave component of the real signal is obscured by other low-frequency and near-DC

components. These low-frequency and near-DC component of the real signal are from

no known physiological source and so are not included in the model.

An interesting aspect of synthetic fNIRS data generation is the flexibility when

constructing the data - each parameter of the model can be fine-tuned to replicate a

real fNIRS signal. Similarly, any component of the model can be generated in isolation

or excluded entirely from the final signal. The statistical comparison of the real and

synthetic raw intensity signals in Table 4.6 is useful is guiding the design of a synthetic

fNIRS dataset. It should be noted that different real fNIRS signals may have very

94



4.6 Summary

different statistics and so the comparison in this table should only be seen as a point

of interest rather than as a measure of the success of the synthetic data generation

algorithm. One possible future expansion of this algorithm may be to use summary

statistics, such as those in Table 4.6 to optimise parameters of the algorithm, to attempt

to generate a synthetic dataset which matches a sample real dataset as closely as

possible.

A possible expansion for this model is to randomly produce model parameters,

producing any number of fNIRS datasets with unknown model parameters - potentially

useful for investigating and testing fNIRS signal processing techniques. Additionally,

other components such as the cardiac pulse component model of the Balloon model

could be replaced as desired. Certain model parameters which are assumed to remain

constant could be variable. For example, movement artefact could be modelled through

adjustment of the DPF or source-detector separation parameters.

This synthetic fNIRS algorithm allows interested researchers to generate limitless

realistic synthetic fNIRS data without access to real fNIRS data or an fNIRS measure-

ment system. Synthetic fNIRS data could be useful for development of signal processing

techniques or potentially as a learning tool. In any case, this algorithm allows for future

fNIRS research and may ultimately lead to significant progress in fNIRS BCI design.

4.6 Summary

This chapter highlighted a number of issues with rehabilitation BCI systems and pro-

vided solutions to those problems. The single fNIRS channel ‘Mindswitch’ BCI was

improved upon with the addition of more fNIRS channels and incorporation of EEG

to form a hybrid BCI. This hybrid BCI measured spatial haemodynamic activity and

so a novel fNIRS imaging method based on GP-model interpolation was presented.

As researchers who may be interested in fNIRS measurement may not have access to

fNIRS hardware or to fNIRS datasets, a synthetic fNIRS data generation algorithm

was developed to aid research but also exists as an educational tool.

These solutions together represent improvements to rehabilitation BCI as a whole.

However, each of these solutions were explored using exclusively healthy subjects. To

investigate more meaningful and critical rehabilitation BCI improvements, brain activ-

ity of stroke patients must be recorded and analysed.
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Chapter 5

Healthy and Stroke-Affected

Brain Activity

5.1 Introduction

Previous chapters have demonstrated how a biofeedback BCI for stroke rehabilitation

can be developed for use by healthy subjects who exhibit normal, healthy brain activity.

While development of BCIs for healthy brain activity is acceptable for communication

and control BCI, it is not appropriate for stroke rehabilitation BCI due to the effects

that the stroke has on brain activity patterns. As a stroke causes physical damage

to the brain, patterns of brain activity and patterns of interaction are adversely af-

fected, resulting in abnormal brain activity and abnormal signals recorded through

EEG, fNIRS or any other measurement modality.

Previous fMRI and PET studies have revealed the effect of stroke on patterns

of brain activity related to motor execution. Further fMRI and EEG studies have

investigated the effect of stroke on brain networks. If a rehabilitation BCI is based on a

measurement modality which is affected by the subject’s stroke, then the manifestation

of these effects in the recorded signals must be explored and understood in order to

design more effective rehabilitation BCIs. As such an exploration requires analysis of

both healthy and stroke-affected brain activity data, experimental recordings must be

performed.
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5.2 Effects of Stroke on Brain Activity

This chapter discusses the known effects of stroke on brain activity, as revealed

through fMRI, PET and EEG studies. While fMRI and PET are inappropriate mea-

surement modalities for portable rehabilitation BCI, they produce highly accurate

three-dimensional measurement data of brain activity and so are important for learning

about the effects of stroke. Information from such studies may then be used to guide

rehabilitation BCI design with other measurement modalities. Following this is a de-

scription of experimental recording sessions conducted with both healthy subjects and

stroke patients. EEG was recorded while the subjects performed a finger-tapping task.

Qualitative comparisons between healthy and stroke-affected EEG are made to attempt

to reveal unique aspects of stroke-affected EEG which may inform future rehabilitation

BCI design.

5.2 Effects of Stroke on Brain Activity

The effects of stroke on the functional operation of the brain have been investigated

previously with various high-accuracy measurement modalities. Chollet et. al. [197]

conducted a study using Positron Emission Tomography (PET) to measure regional

cerebral blood flow (rCBF) in six first-time hemiplegic stroke patients. As a result

of stroke, subjects had experienced unilateral upper-limb paralysis for at least two

days before recovery of motor function. For each subject, six PET scans in total were

conducted with two scans per each of three different conditions: subject at rest, finger

movement of the previously-paralysed hand and finger movement of the unaffected

hand.

Compared to rest, finger movement of the unaffected hand resulted in significantly

increased rCBF in the contralateral sensorimotor cortex (+24.4%), ipsilateral cerebel-

lar hemisphere (+14.0%), contralateral premotor cortex (+18.4%), contralateral sup-

plementary motor area (+9.2%) and ipsilateral supplementary motor area (+7.1%).

Compared to rest, finger movement of the previously-paralysed hand resulted in signif-

icantly increased rCBF in the contralateral sensorimotor cortex (+23.0%), ipsilateral

sensorimotor cortex (+10.1%), contralateral cerebellar hemisphere (+10.0%), ipsilat-

eral cerebellar hemisphere (+14.8%), contralateral premotor cortex (+12.6%), ipsilat-

eral premotor cortex (+9.5%), contralateral supplementary motor area (+9.8%) and

ipsilateral supplementary motor area (+7.9%). Significantly increased rCBF was also
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5.2 Effects of Stroke on Brain Activity

observed bilaterally in the insular cortex and inferior parietal cortex during finger move-

ment of the previously-paralysed hand, which was not observed during movement of

the unaffected hand. A summary of these rCBF results is presented in Table 5.1.

Location Stroke-affected hand Unaffected hand

Contralateral Sensorimotor Cortex +23.0% +24.4%

Ipsilateral Sensorimotor Cortex +10.1%

Contralateral Cerebellar Hemisphere +10.0%

Ipsilateral Cerebellar Hemisphere +14.8% +14.0%

Contralateral Premotor Cortex +12.6% +18.4%

Ipsilateral Premotor Cortex +9.5%

Contralateral Supplementary Motor Area +9.8% +9.2%

Ispilateral Supplementary Motor Area +7.9% +7.1%

Table 5.1: Significant changes in stroke subject rCBF during finger movement compared

to rest, as determined by Chollet et. al.

Of these results, increased ipsilateral sersorimotor cortex rCBF during stroke-affected

hand movement is most interesting as it demonstrates that the stroke subjects had

recovered motor function through recruitment of that area for motor recovery, as sug-

gested by the authors. The authors also conclude that various regions of the brain

involved in motor action, such as the inferior parietal cortex, premotor cortex, pri-

mary motor cortex and insula, may represent a route for activation of the ipsilateral

motor cortex. The authors summarise that cerebral motor regions behave primarily

unilaterally but can respond bilaterally to compensate for damage.

Similar results were found by Weiller et al. [198] who used PET to measure rCBF

in 10 healthy control subjects and 10 stroke patients during the same three condi-

tions. Stroke-affected hand movement produced similar significantly higher rCBF in

contralateral motor areas and ipsilateral cerebellum as hand movement of control sub-

jects. Compared to control subjects, stroke-affected hand movement also produced

significantly higher rCBF in ipsilateral premotor cortex, contralateral cerebellar hemi-

sphere and bilateral insular cortex, as found by Chollet et. al. [197]. Additionally,
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5.2 Effects of Stroke on Brain Activity

significantly increased rCBF was found during stroke-affected hand movement in the

inferior parietal cortex, prefrontal and anterior cingulate cortices and basal ganglia.

In a cross-sectional study, Ward et. al. [86] recorded fMRI with blood oxygenation

level dependant (BOLD) contrast from twenty-six healthy control subjects and twenty

stroke patients who had suffered their first ischaemic stroke at least 3 months previously,

resulting in at least two days of hand, wrist and finger weakness. Subjects took part

in a hand-grip task during scanning. Control subjects performed the task with both

dominant and non-dominant hands while stroke patients performed the task with their

stroke-affected hand. All subjects were right-handed.

For healthy control subjects, similar activity was found as in the above PET studies

[197, 198]. Specifically, activity was found in contralateral sensorimotor cortex, ipsi-

lateral superior cerebellum and then bilateral activity in dorsolateral premotor cortex,

ventrolateral premotor cortex, supplementary motor area, pre-supplementary motor

area, cingulate motor areas, inferior parietal cortex intrapareital sulcus, insula cortex,

cerebellar vermis and both inferior and superior cerebellar hemispheres.

In a similar investigation, Ward et. al. [199] carried out a longitudinal study

for neural correlates with motor recovery after stroke. fMRI with BOLD contrast

was recorded from four healthy control subjects and eight stroke patients who had

suffered their first stroke 10-14 days before first recording. Multiple scans of all subjects

took place over 12 months. During scanning, subjects performed a hand-grip task.

Stroke patients performed the task with their stroke-affected hand, two control subjects

performed the task with their dominant hand while the remaining two healthy control

subjects performed the task with their non-dominant hand.

A negative correlation between task-related regional activity and motor recovery

was found in all stroke patients, particularly in motor-related regions. Motor regions

presenting this negative correlation for various stroke patients were ipsilesional M1 (five

patients), contralesional M1 (four patients), dorsal premotor cortex (seven patients),

ventral premotor cortex (five patients), supplementary motor area (six patients), cin-

gulate motor regions (four patients) and cerebellum (seven patients).

In a group analysis, a negative correlation was found between task-related regional

activity and motor recovery in ipsilesional M1, inferior contralesional M1, bilateral

anterior and posterior dorsolateral premotor cortex, contralesional ventrolateral pre-

motor cortex, ipsilesional supplementary motor area, pre-supplementary motor area,
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prefrontal cotrex, and caudal cingulate sulcus. Additionally, similar negative corre-

lations were found in parietal, temporal and occipital lobes, as well as thalamus and

globus pallidus.

A review of PET and fMRI investigations into motor recovery after stroke conducted

by Calautti et. al. [200] revealed that stroke-affected brain activity patterns during

motor activity were quite consistent. Fully recovered patients who had suffered stri-

atiocapsular stroke consistently displayed enhanced bilateral motor pathway activity,

recruitment of sensory and secondary motor areas not normally related to movement

and extension of the SM1 area towards the face area. Patients with cortical stroke

consistently displayed over-activation of bilateral non-infarcted motor and non-motor

areas, strong peri-infarct activity and ipsilesional premotor cortex activity.

These PET and fMRI studies reveal how such strokes affect activity of various

regions of the brain and informs us of where to expect to observe increased brain activity

when recording from stroke patients during a hand motor task. While these studies

reveal brain activity, they unfortunately reveal nothing about how the stroke affects

neural pathways and how separate brain regions interact during attempted movement.

To investigate the effect of stroke on interaction between brain regions, a different type

of analysis is required.

5.3 Brain Networks and Connectivity

The brain may be modelled as temporally- and spatially-interacting elements of a highly

complex and organised system referred to as a brain network [201, 202, 203, 204, 205,

206]. This conceptual paradigm, based on graph theory, for analysing brain function

has proven to be useful for framing interactions between functional areas of the brain.

Brain imaging methods, such as fMRI, are capable of mapping anatomical regions of

the brain and their interconnections, resulting in a network map which describes the

the structural connectivity of the brain, known as the human connectome [207]. The

connectome comprises a complete map of the brain’s structural connections, which

shape large-scale neuronal dynamics [208].

Brain networks derived from anatomical observations result in a structural network

describing physical connections between regions while physiological measurements re-

sult in a functional network describing interactions between regions. Connectivity
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between brain regions can be described in three ways. Structural connectivity describes

anatomical connections between cortical and subcortical regions. Structural connec-

tivity is considered to be stable over time frames up to a few minutes but can alter

over longer time frames due to brain plasticity. Functional connectivity [209, 210, 211]

describes patterns of statistical dependence (e.g. correlation, coherence, mutual in-

formation) between neuronal population elements of the brain network. Functional

connectivity is highly time-dependent as functional connections between brain regions

continually react to current experience. Importantly, functional connectivity is strictly

a statistical relationship and does not imply or represent a causal relationship between

brain regions. Effective connectivity [209, 210, 211] attempts to represent causal rela-

tionships between neural population elements of a brain network and, as such, is the

most important type of connectivity for analysing brain networks. Causal relationships

between neuronal element populations, however, are difficult to accurately discern.

Most effective connectivity measures attempt to only estimate such connectivity with

varying success [212].

In graph theory, a network is comprised of a series of nodes, with edges connect-

ing the nodes. For a brain network, nodes represent neural element populations while

edges represent one of the above forms of connectivity, as shown in Figure 5.1. The

steps for brain network analysis are [203]: (1) Define the network nodes. Some possible

options are using EEG electrode locations, performing EEG source localisation, using

anatomical regions or derivation from fMRI imaging. (2) Estimate a continuous mea-

sure of association between nodes. This defines the edges of the network and can be

derived through a range of coupling metrics for functional and effective connectivity.

(3) Generate an association matrix to represent the strength of association between

nodes. (4) Calculate network parameters of interest, such as node degree (number of

connections), path length, connection cost or centrality (See Bullmore and Sporns [203]

for a review of brain networks with graph theoretical analysis). A review of functional

and effective connectivity measures for electrophysiological brain activity is available

from Greenblatt et. al. [213].
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Figure 5.1: Illustration of a brain network showing nodes and edges. Source: Brain

network.png licensed under CC BY-SA 3.0.

5.4 Effects of Stroke on Brain Connectivity

Grefkes et. al. [214] conducted an investigation into the effect of stroke on effective

connectivity in the brain. fMRI fluid-attenuated inversion recovery (FLAIR) images

were acquired from twelve healthy controls and twelve stroke patients as they performed

a hand-clench task with left, right or both hands. Stroke patients had suffered their

first subcortical stroke up to 5 weeks before recording resulting in unilateral upper

limb weakness. Effective connectivity analysis found that during movement of the

stroke-affected hand, stroke patients displayed increased effective connectivity between

primary motor areas, with contralesional M1 inhibiting activity in ipsilesional M1. This

was the only significant difference in effective connectivity between regions of interest

compared to healthy controls during movement of the stroke-affected hand.

De Vico Fallani et. al. [215] investigated the effects of stroke on brain functional
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5.4 Effects of Stroke on Brain Connectivity

organisation with full-head 128-channel EEG recorded from eight healthy subjects and

one stroke subject during a finger-tapping task. This study used a theoretical graph

approach to characterise task-related spectral coherence between EEG signals during

preparation and execution of the motor task. Results suggested that subcortical stroke

reduced the brain’s capacity to integrate the communication between distant brain

regions and lowered the modularity of brain networks. The overall connectivity of the

stroke patient’s brain network was found to be ruled by a lower number of brain regions

than healthy subjects.

A similar EEG-based investigation by Gerloff et. al. [216] with eleven well-recovered

chronic stroke patients found reduced EEG activity in the central region of the stroke-

affected hemisphere and a relative shift of EEG patterns from the ipsilesional hemi-

sphere to the contralesional hemisphere. EEG coherence analysis was used to assess

inter-regional cortical connectivity and found a shift in connectivity towards the con-

tralesional hemisphere. The authors concluded that the contralesional hemisphere is

functionally integrated in the reorganised cortical network for stroke-recovered hand

movement.

A review of investigations into the effects of stroke on cerebral networks [217] col-

lates the findings of five studies [214, 218, 219, 220, 221] and provides a summary

of the results. Stroke is found to affect a relatively large number of ipsilesional and

contralesional interactions. Effective connectivity in all ipsilesional regions relating to

stroke-affected hand movement may be affected. Inter-hemispheric interactions, partic-

ularly relating to ipsilesional primary motor cortex, are affected by stroke. Interaction

between ipsilesional and contralesional primary motor cortex is found to be the most

affected by stroke.

Without specific knowledge of the effect a subject’s stroke has on their brain net-

work, any significant differences discovered between brain activity data of healthy sub-

jects and that subject is likely a result of the stroke. BCIs use such recordings without

any prior knowledge of the subject’s potentially abnormal brain network. For rehabil-

itation BCI, the effect that a stroke has on BCI performance is not clear yet may be

important for future BCI development. Therefore, in order to explore what effects a

stroke has on BCI performance, new experimental data must be collected.

103



5.5 Recording of Healthy and Stroke-affected EEG

5.5 Recording of Healthy and Stroke-affected EEG

While the studies in the previous section reveal some of the functional effects of stroke

on brain activity during hand movement, their results are not directly relatable to

the operation of EEG or fNIRS rehabilitation BCI nor do they attempt to inform

rehabilitation BCI design. The signals utilised by stroke rehabilitation BCI are likely

affected by the stroke in a similar way to the data studied above but it is not yet

clear exactly how. In order to reveal exactly what effect the stroke has on those

signals, an analysis based on BCI operation must be carried out. Such an analysis

would not only reveal the effects of stroke on BCI operation but may also provide a

unique method for quantifying the effects of stroke following stroke onset and during

recovery. Such quantification of the effects of stroke on brain networks may be possible

through machine-learning parameters derived during BCI training. A comparison of

the parameters derived from stroke-affected data to those derived from healthy data

may be useful in observing the change in brain networks of a stroke patient and further

changes during recovery.

While fMRI and PET provide very high spatial resolution of brain activity, allow-

ing for precise identification of activated brain regions, these modalities are unsuitably

inconvenient for many typical stroke patients. fMRI and PET both require that the

subject lie down inside a large machine and remain very still - an undesirable require-

ment for many stroke patients. Additionally, fMRI and PET systems are large, quite

expensive and require a technical operator, further reducing their convenience as the

measurement modality of a stroke rehabilitation system. By comparison, EEG may

be a more suitable measurement modality for measuring and observing changing brain

networks in stroke patients during recovery. EEG does not require a technical operator,

is relatively simple to set up and the subject may be seated in a comfortable chair for

the duration of the recording. EEG is more robust to movement of the subject than

fMRI or PET although is not entirely unaffected.

In order for analyses of the effects of stroke on brain function to be carried out, a

dataset must first be obtained. There are no appropriate datasets available and so an

experimental recording session is required. For this recording from stroke patients, only

EEG is used while fNIRS is omitted. Due to the additional experimental requirement

of the wearing of laser safety goggles, the lower portability of fNIRS recording systems
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(and, thus, lower suitability for potential at-home rehabilitation therapy) and the un-

necessary extra experimental set up for hybrid fNIRS/EEG, fNIRS is not investigated

for suitability in a stroke effect evaluation system. Described here is the longitudi-

nal experimental recording of full-head EEG from healthy control subjects and stroke

patients during a finger-tapping motor task.

5.5.1 Subjects

10 healthy subjects and 5 stroke patients took part in experimental recording sessions.

Healthy subjects (8 men and 2 women, mean age 57.2±17.6 years) each participated in

one recording session. Stroke-affected subjects (3 men and 2 women, mean age 59.0±9.4

years) each participated in two recording sessions. The first (“Early”) recording session

for stroke subjects took place an average of 22.2±12.9 days after their stroke event. The

second (“Late”) recording session took place an average of 190.6± 26.1 days after the

first recording session. This period of time between early and late sessions was chosen

such that spontaneous recovery processes would have had time to run their course.

Healthy control subjects were recruited from Maynooth University. Demographic

information of healthy subjects is presented in Table 5.2. Stroke patients were recruited

from the Adelaide & Meath Hospital, Dublin. Inclusion criteria for the stroke patients

are summarised as: Patients must (1) be cognitively high functioning, (2) be able to

give informed consent and follow experimental instructions, (3) not suffer from a visual

field defect or visual neglect, and (4) have upper limb motor paresis in either their

dominant or non-dominant hand.

When possible, the Mini Mental State Exam (MMSE) [46] was used to ensure

absence of serious cognitive impairment in the stroke patients. One subject was unable

to conduct this test at the time of the first trial due to stroke-induced expressive

dysphasia, severely affecting their ability to produce speech. This subject was included

in the study following demonstration of cognitive requirements and consultation with

the patient’s stroke physician.

The Kapandji finger apposition test [222] was used to determine motor ability in

the stroke-affected hand. This test involves the subject attempting to touch the thumb

on their stroke-affected hand to 10 points on the same hand in order from points 0 to

10, as shown in Figure 5.2. Four of the stroke subjects scored at least 6/10, meaning
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ID Sex

Dominant

hand Age

H1 F Right 75.8

H2 M Left 43.5

H3 M Right 61.2

H4 F Left 67.4

H5 M Right 40.7

H6 M Right 71.0

H7 M Right 50.7

H8 M Right 21.2

H9 M Right 71.9

H10 M Right 68.6

Table 5.2: Healthy subject demographics

they were able to perform a finger-tapping action with all of their digits. One subject

had minimal motor ability in their stroke-affected hand and obtained a Kapandji score

of 0/10. Demographic information of stroke patients, including available MMSE and

Kapandji scores at the times of both recordings is presented in Table 5.3.

Early Session Late Session

ID Sex

Dominant

hand

Tested

hand Age

Time

from

stroke

Kapandji

score

MMSE

score

Time

from

Early

Kapandji

score

MMSE

score

S1 M Right Right 58.8 6w 0d 6/10 28/30 25w 6d 6/10 28/30

S2 M Right Right 56.3 3w 2d 6/10 28/30 25w 2d 10/10 28/30

S3 M Right Left 75.0 2w 5d 0/10 29/30 25w 1d 3/10 30/30

S4 F Right Right 51.9 0w 6d 6/10 27/30 26w 0d 8/10 27/30

S5 F Right Right 53.0 3w 0d 9/10 N/A 33w 6d 9/10 28/30

Table 5.3: Stroke subject demographics
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Figure 5.2: Kapandji thumb apposition scores.

For stroke subjects, the locations of brain tissue damage due to stroke were varied

and included both cortical and subcortical bilateral tissues: the left and right poste-

rior parietal cortex, left frontoparietal cortex, right temproparietal areas, right medial

temporal lobe, left thalami and internal capsules, periventricular white matter lesions

and centrum semiovale lesions. In all cases, the stroke was ischemic in nature. Subject-

specific lesion information can be found in Table 5.4.

In accordance with ethical requirements, participants were provided with a verbal

as well as a written description of the research and experimental protocol. Subjects pro-

vided written consent to the conduction of the experiment and the publication of their

details. In the cases of two stroke patients who were unable to give written consent

due to their stroke, verbal consent was accepted. Ethical approval for the experi-

ments was granted by the SJH/AMNCH Research Ethics Committee of the Adelaide

& Meath Hospital, Dublin and by the Ethics Committee of the Maynooth University.

The recording sessions were conducted at the Adelaide & Meath Hospital, Dublin.
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Stroke

subject

Lesion information

S1 Left frontoparietal cortex acute ischemia (left middle carotid

artery territory).

S2 Left parietal infarction, left thalami and internal capsule in-

farcts. Periventricular deep white matter change. Bilateral

lacunar infarcts in the centrum semiovale and basal ganglia.

1.5 cm acute infarct in left centrum semiovale.

S3 Area of acute infarction adjacent to the body of the right

lateral ventricle involving the right centre of semiovale.

S4 Right posterior parietal and temproparietal regions. Back-

ground periventricular ischemic changes involving left frontal

parietal region.

S5 Medial right temporal lobe focal infarct. Periventricular deep

white matter ischemic disease.

Table 5.4: Stroke subject clinical information

5.5.2 Experimental set-up and motor paradigm

During a recording session, the subject was seated in a comfortable chair in front of a

laptop computer which presented experimental instructions. The subject was instructed

to perform a finger-tapping task while the words “Move your fingers” were displayed

on-screen and to entirely rest their hand while the word “Relax” was displayed on-

screen. The finger-tapping task involved repeatedly touching the thumb to the tips

of the 2nd to 5th digits on the same hand at a self-paced speed. At the beginning of

the recording, the screen read “The experiment will begin shortly”. At the end of the

recording, the screen read “Experiment now over. Please stay still”. Healthy subjects

were instructed to perform the task with their dominant hand, while the stroke subjects

were instructed to perform the task with their stroke-affected hand.

A recording session consisted of 20 movement instruction trials and 20 rest in-

struction trials, beginning with activation and alternating until all 40 trials had been

108



5.6 Qualitative differences between healthy and stroke-affected EEG

completed. Each trial lasted 10 seconds with no rest time between trials, as indicated

in Figure 5.3.

Figure 5.3: Experimental protocol instruction timing

Stroke subject S3 is the only stroke subject whose stroke affected their non-dominant

hand and so was the only subject required to perform the task with their non-dominant

hand. Subject S3 also attained a Kapandji score of 0/10 at the early session, meaning

this subject couldn’t physically perform the task. In this case, the subject attempted

to perform the task. This subject fatigued during the first recording session and was

only able to complete 32 trials.

5.5.3 EEG data acquisition

32-channel EEG data was acquired using a BioSemi ActiveTwo system (BioSemi B.V.,

Amsterdam, Netherlands) with Ag/AgCl electrodes positioned according to the 10/20

system. The system also recorded analogue event signals received from the instruction

presentation laptop. Data was acquired at a sample rate of 1024 or 512 samples per

second.

5.6 Qualitative differences between healthy and stroke-

affected EEG

An initial qualitative analysis of the recorded datasets may reveal some similarities and

dissimilarities between healthy and stroke-affected data. The purpose of recording the

data is to investigate methods for observing the effects of stroke and so such an analysis

may reveal aspects of the EEG to guide further analysis. This initial analysis is carried

out in the EEGLAB [223] toolbox for MATLAB [224].
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Initially, all datasets are downsampled from the acquisition sampling rate to 256

samples per second. This facilitates faster processing of the datasets and lowers memory

requirements. As the EEG of interest is in the frequency range 2–30 Hz, the downsam-

pling process has no effect on analysis results [225]. Analysis of the spectral content

and of the independent components of the EEG signals then follows.

5.6.1 Spectral Components

The spectral content of the EEG signals is assessed using a simple FFT analysis. The

spectral content of each EEG channel of each dataset during motor execution is obtained

and presented in Table 5.5 and Table 5.6 (at the end of the chapter). Additionally

presented for illustration are topographic maps of the power distributions at three

frequencies: 6 Hz, 10 Hz and 22 Hz.

No differences between the spectral content of healthy and stroke-affected EEG are

obvious from these images. Eight out of ten healthy datasets (H1, H2, H3, H5, H6,

H8, H9 and H10), three out of five early session stroke datasets (S2E, S4E and S5E)

and three out of five late session stroke datasets (S1L, S2L and S5L) display a spectral

peak of power in the alpha range.

Topographically, 10 Hz power appears to be concentrated towards the posterior of

the brain, at the occipital and parietal lobes, for all datasets. No consistent pattern is

found for the topographical maps of 6 Hz and 22 Hz and so no more conclusions can

be made other than to highlight the unpredictable distribution of EEG spectral power

in both healthy and stroke-affected brain activity.

5.6.2 Independent Component Analysis

Blind source separation (BSS) is the separation of a set of source signals from a set of

mixed signals with the use of zero (or very little) information about the source signals

themselves [226]. The relationship between a set of recorded mixed signals and a set of

sources can be represented in matrix form as:
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
x1

x2
...

xP

 =
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...

...
. . .

...
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s1
...

sM
v1
...

vQ


+ N (5.1)

where si,vi,xi ∈ R1×L are the ith row vectors of length L of the source signals,

artefact signals and recorded signals, respectively. A is the unknown mixing matrix

and N represents error and noise values. Equation 5.1 can be simplified and expressed

algebraically as X = AS. The objective then of a BSS algorithm is to find a un-mixing

matrix W such that Ŝ = WX, where Ŝ is an estimation of the original sources and

artefact, as depicted in Figure 5.4. It is important to note that W-1 is an approximation

to A. BSS algorithms calculate W almost exclusively on the matrix of recorded data

X.

Figure 5.4: Simplified BSS process.

BSS methods are relevant to EEG data as each recorded EEG signal is a mix of all

electrical sources in the brain due to the volume conductor effect of the head. While

there may be millions of individual neurons firing at any given sample time, those

neurons which are acting together in a cell assembly will be represented relatively

strongly in multiple EEG channels. All other neuronal activity contributes to the noise
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matrix. Neuronal cell assemblies may be considered as sources for BSS. The amplitude

of each of these electrical sources in the recorded EEG signals may be represented by

the mixing matrix A.

One class of BSS algorithm for calculating an un-mixing matrix W is Independent

Component Analysis (ICA). ICA attempts to separate EEG signals into sources while

adhering to a number of assumptions [226]: (1) Sources are mixed linearly and instan-

taneously. (2) Sources are perfectly noiseless - noise is introduced at the sensors. (3)

The number of sources equals the number of recorded signals. (4) The mixing ma-

trix does not change over time. (5) Sources are independent such that each source is

generated by an unknown random process which is unique to that source. A detailed

description of ICA is available elsewhere [226, 227].

Following application of the ICA algorithm ‘FastICA’ [228, 229] to the recorded

EEG datasets, an un-mixing matrix W was obtained for each dataset. The rows of

W-1 approximate the rows of A, which describe the strength of each independent source

in the corresponding sensor signal of X. Accordingly, the columns of W-1 describe the

strength of each source in each sensor signal. As the location of each EEG sensor is

known, topographic maps of the contribution of an independent source to each sensor

signal may be plotted. Shown in Table 5.7 and Table 5.8 are such maps for four

independent sources for each movement-related EEG dataset. ICA is a useful method

for isolating an interference signal, such as EOG, or a noisy sensor, as such interfering

sources are independent of brain sources. Of the available topographies, only four

non-artefact maps are chosen for clarity.

No qualitative differences in ICA patterns are evident between groups of datasets,

as expected. The main purpose of ICA is to remove sensor and movement artefact ICs

from EEG. Topographic maps of remaining ICs, such as these, simply demonstrate dis-

tribution of independent EEG sources. A subject, or group of subjects, demonstrating

a noticeable and strong pattern would suggest that there may have been a problem

with EEG recording, pre-processing or any other issue with the recorded data. In this

way, this qualitative ICA analysis is a useful “sanity check” of the recorded EEG data.
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5.6 Qualitative differences between healthy and stroke-affected EEG

Subject Spectral components Subject Spectral components
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Table 5.5: Power v frequency plots of each EEG channel during motor execution of

healthy subjects with power contour plots at 6, 10 and 22 Hz

113



5.6 Qualitative differences between healthy and stroke-affected EEG

Subject Spectral components Subject Spectral components
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Table 5.6: Power v frequency plots of each EEG channel during motor execution of stroke

patients with power contour plots at 6, 10 and 22 Hz
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5.6 Qualitative differences between healthy and stroke-affected EEG

Subject 4 ICA components

H1

1 2 3 4

−

+

BOS ev5 ICA pruned

H2

1 2 3 4

−

+

RHe ev5 ICA pruned

H3

1 2 3 4

−

+

TCo ev5 ICA pruned

H4

1 2 3 4

−

+

MMcE ev5 ICA pruned

H5

1 2 3 4

−

+

CCa ev5 ICA pruned

H6

1 2 3 4

−

+

DHi ev5 ICA pruned

H7

1 2 3 4

−

+

JTr ev5 ICA pruned

H8

1 2 3 4

−

+

JHe ev5 ICA pruned

H9

1 2 3 4

−

+

GCu ev5 ICA pruned

H10

1 2 3 4

−

+

JOS ev5 ICA pruned

Table 5.7: Topographies of 4 healthy subject ICA components during motor execution
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5.6 Qualitative differences between healthy and stroke-affected EEG

Subject 4 ICA components

S1E

1 2 3 4

−

+

DBo_T1 ev5 ICA pruned

S1L

1 2 3 4

−

+

DBo_T2 ev5 ICA pruned

S2E

1 2 3 4

−

+

DBy_T1 ev5 ICA pruned

S2L

1 2 3 4

−

+

DBy_T2 ev5 ICA pruned

S3E

1 2 3 4

−

+

EOC_T1 ev5 ICA pruned

S3L

1 2 3 4

−

+

EOC_T2 ev5 ICA pruned

S4E

1 2 3 4

−

+

MMa_T1 ev5 ICA pruned

S4L

1 2 3 4

−

+

MMa_T2 ev5 ICA pruned

S5E

1 2 3 4

−

+

NCl_T1 ev5 ICA pruned

S5L

1 2 3 4

−

+

NCl_T2 ev5 ICA pruned

Table 5.8: Topographies of 4 stroke patient ICA components during motor execution

116



5.7 The Need for Further Analysis

5.7 The Need for Further Analysis

Clearly, in order to investigate fully the effects of stroke on brain activity and brain

networks and their manifestations in the operation of EEG-based rehabilitation BCI,

further analysis is required. These initial quantitative analyses are not adequate to

reveal the effects of stroke on the underlying brain networks but do at least indicate

that whatever effect the stroke has is not detectable through simple analysis of spectral

content or ICA.

In order to investigate fully the effect of stroke on rehabilitation BCI operation,

the recorded EEG datasets must be analysed from a BCI perspective utilising typical

BCI signal processing methods, including preprocessing, signal processing, feature ex-

traction, classification and statistical analysis. The advantages of such an analysis are

two-fold. Firstly, any unique aspects of stroke-affected EEG which may affect stroke

rehabilitation BCI may be revealed, informing future rehabilitation BCI development

and improving stroke rehabilitation therapy. Secondly, any differences found between

healthy and stroke-affected EEG following BCI analysis may potentially represent a

novel aspect for measuring the effects of stroke on underlying brain networks. As the

dataset features longitudinal stroke EEG data, any changing aspect of BCI operation

and analysis may be relatable to rehabilitation outcomes or changes in hand motor

control of the stroke patients.

Additionally, there are new EEG-based tools for measuring effective connectivity

which have not yet been applied to stroke-affected data. This dataset allows for fur-

ther investigation into the applicability of new EEG connectivity analysis methods for

quantification of the functional effects of stroke.

5.8 Summary

This chapter established that while the development of a biofeedback BCI is relatively

straightforward for healthy EEG data, a stroke affects brain activity and brain networks

in such a way that EEG produced by a stroke-affected brain is likely abnormal. A

rehabilitation BCI based on the abnormal EEG of a stroke patient may not function

in the expected way. In order to fully investigate the effects of stroke on EEG utilised
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5.8 Summary

by stroke rehabilitation BCI, a dataset of healthy and stroke-affected EEG must be

analysed from a BCI perspective.

As a suitable dataset for this analysis is not available, longitudinal EEG recordings

with healthy and stroke-affected subjects were carried out while the subjects performed

a finger-tapping task. Initial analysis of these datasets suggests that advanced analysis

is required in order to reveal measurable effects of stroke on recorded EEG and under-

lying brain networks. This dataset may also be used, however, for further analysis of

post-stroke functional connectivity. The following two chapters describe attempts to

perform such analyses.
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Chapter 6

Stroke Effects and Neuroplastic

Change Observed Through

Machine Learning

6.1 Introduction

As discussed in the previous chapters, stroke rehabilitation BCI cannot be progressed

though analysis of healthy brain activity data alone. The previous chapter described

experimental recordings to collect EEG data from healthy and stroke-affected sub-

jects while they performed a finger-tapping task with their dominant or stroke-affected

hand. Initial analysis of this EEG data revealed no obvious differences in EEG spectral

components, spectral maps or ICA components between healthy and stroke-affected

subjects. Therefore, a more in-depth analysis of this EEG data is required in order to

investigate the effects of stroke on BCI operation. Any unique aspects of BCI opera-

tion with stroke-affected subjects may be useful in the future design and development

of EEG-based stroke rehabilitation BCI.

This chapter broadly attempts to test the following three null hypotheses:

1. “There is no difference in EEG BCI performance between healthy subjects and

stroke-affected subjects 3 weeks post-stroke”.
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6.2 Study Objectives

2. “There is no difference in EEG BCI performance between healthy subjects and

stroke-affected subjects 7 months post-stroke”.

3. “There is no difference in EEG BCI performance between stroke-affected subjects

3 weeks post-stroke and stroke-affected subjects 7 months post-stroke”.

These hypotheses are tested for each possible BCI training configuration, as described

below. Should any null hypothesis be rejected then further investigations into those

differences are carried out.

This chapter describes an in-depth analysis into the effect of stroke on EEG BCI

performance by implementing an offline BCI. The BCI is a novel design, comprised

of Filter Bank Common Spatial Patterns (FBCSP), Marginal Relevance and Gaus-

sian Process-based classification. The effect of stroke on BCI performance is observed

through BCI classification accuracies with various BCI training and testing data and

additionally through BCI parameters derived through machine learning. While the

primary objective of this analysis is to discover the effect of stroke on EEG BCI perfor-

mance, these results also contribute toward an investigation into the most suitable pre-

recorded dataset for rehabilitation BCI training and also into the potential for utilising

machine-learned BCI parameters as a biomarker for post-stroke neurorehabilitation.

6.2 Study Objectives

6.2.1 Choice of Rehabilitation BCI Training Data

Before a BCI can be operated in real-time, as is naturally required for rehabilitation

BCI, various real-time signal processing parameters of the BCI must be set. Typi-

cally one (or more) pre-recorded datasets are analysed to determine the optimal BCI

parameters for classification of that training dataset. Once these parameters are deter-

mined, they are them used for real-time BCI operation. There are various possibilities

for training dataset, such as recording a training dataset for the subject immediately

before real-time BCI operation, or using one or more datasets recorded previously by

the subject, or using datasets recorded previously by other people. Part of the investi-

gation described in this chapter is into the optimal choice of BCI training dataset for

rehabilitation BCI.
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6.2 Study Objectives

This choice is particularly important for stroke rehabilitation BCI as stroke subject

fatigue may be a concern. Having a subject participate in a recording session before

every rehabilitation BCI therapy session will serve to reduce effective therapy time as

the subject tires and cannot engage in therapy. Therefore, if another choice of BCI

training data is acceptable, rehabilitation therapy will be improved.

6.2.2 Effect of Stroke on BCI Performance

The damage and disruption caused by a stroke to brain function may result in stroke-

affected subjects simply losing capability to use a BCI as well as healthy subjects. If

classification of stroke subject brain activity is less reliable than for healthy subjects,

future design of rehabilitation BCI should take this into consideration. Other differences

between healthy and stroke-affected EEG in the context of BCI operation are yet to

be discovered. BCI parameters, determined through machine learning methods on the

training dataset, may reveal differences between healthy and stroke-affected EEG.

6.2.3 A Biomarker for Post-Stroke Neurorehabilitation

The primary objective is to discover the differences between healthy and stroke-affected

EEG which concern rehabilitation BCI operation. This naturally leads to another

investigation: if such differences exist and are observable through BCI analysis, can

they be related to the stroke subject’s current state of neurorehabilitation? There

exist very few measures of stroke recovery and so this investigation may have clinical

application.

When training a BCI on healthy EEG, it may be possible to use classification

accuracy of stroke-affected EEG as a measure of the effect of stroke on brain activity.

Training and testing a BCI on the same data naturally results in perfect or near-

perfect classification accuracy. As the BCI testing dataset then differs from the training

dataset, classification accuracy may drop. Therefore, BCI classification accuracy may

have use as a measure of the similarity of a stroke-affected brain to a healthy brain.
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6.3 Offline BCI Analysis

6.3 Offline BCI Analysis

The dataset described previously in Chapter 5 was used for this investigation and is

repeated briefly here. 32-channel EEG was recorded from ten healthy subjects and

five stroke subjects while they participated in an overt finger-tapping task. Stroke

subjects participated in two recording sessions: an “early” recording session up to 3

weeks post-stroke and a “late” recording session approximately 7 months post-stroke.

Analysis of the EEG data involved implementation of an off-line BCI based on Filter

Bank Common Spatial Patterns (FBCSP) [230, 231] and illustrated in Figure 6.1. All

processing of EEG data and implementation of the BCI was carried out in Matlab

7 [224] using a combination of scripts from EEGLAB [232], Ramussen and Williams’

Gaussian Processes for Machine Learning (GPML) code [181] and custom scripts.

CSP
Feature 

Ranking and
Selection

Classifier 
Training

Filter
Bank

Train 
EEG

CSP Feature
Selection

Classifier 
Testing

Filter
Bank

Test 
EEG

CSP Model

BCI Training

BCI Testing

Feature 
Selection 
Decision

Classifier 
Model

Figure 6.1: Block diagram of the offline BCI model.

FBCSP is an adaptation of the Common Spatial Patterns (CSP) algorithm [233]

with the primary difference being a stage of temporal filtering of EEG through a mul-

tiple frequency range filter bank. The general steps of FBCSP are:

1. Filter the EEG into a number of frequency ranges.

2. Apply the CSP algorithm separately to each frequency range, decompose the

EEG and perform feature extraction.

3. Rank and/or select features.

4. Train or test the classifier.
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6.3 Offline BCI Analysis

A simple temporal filter was used for the filtering stage before the CSP algorithm

(described below) was applied to each filtered ‘Train EEG’ dataset. The CSP algorithm

analyses the filtered EEG data and produces a CSP model, which is then used to process

the filtered EEG. Feature extraction from the CSP output generates values which may

be then used for training a classifier. The CSP model is stored for later use in the BCI

Testing stage. Of those features extracted, only a subset are desired for classification.

To choose which subset of features to use for classification, each feature is ranked by

Marginal Relevance (MRelv) and the indices of those selected features (the “Feature

Selection model”) are stored for BCI Testing. The final stage of BCI Training is to train

a classifier model on the selected features. In this case, Gaussian Process Classification

(GPC) was implemented and a classifier was trained. Details on CSP, MRelv and GPC

are provided below.

Following BCI training, the BCI testing stage follows similar steps. First, the ‘Test

EEG’ dataset is temporally filtered with the same filter bank parameters as before.

Next, the CSP model from BCI Training is applied to the filtered EEG data. Feature

extraction produces features that may be used for classification. However, only the

features with the same indices as those selected in BCI Training are retained. Finally,

those selected features are classified by the previously-trained classifier.

Analysis of the EEG datasets amounted to the choice of EEG for training and

testing the BCI(‘Train EEG’/‘Test EEG’). A number of combinations of EEG data for

training and testing were to be used. The simplest implementation involved using one

single dataset to train the BCI, resulting in a CSP model, feature selection model and

classifier model for that dataset and then use those models to process a different dataset

and obtain a classification accuracy result. Another option was to use multiple datasets

to train the BCI and then use other individual datasets for BCI testing. Finally, it was

possible to use a subset of data from one dataset to train the BCI and another subset

of that same dataset to test the BCI.

EEG datasets are identified primarily by Subject ID as seen in Table 5.2 and Ta-

ble 5.3. Stroke subjects took part in an “early” (E) and a “late” (L) session and

the datasets from these sessions are labelled accordingly. Therefore, healthy subject

datasets are labelled H1–H10, early stroke datasets are labelled S1E–S5E and late

stroke datasets are labelled S1L–S5L. EEG was inspected for artefact using EEGLAB’s
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6.3 Offline BCI Analysis

automatic epoch rejection algorithm, which did not reject any trials of data and so all

data was retained for further processing.

6.3.1 Pre-processing

As some subjects performed the task with their right hand and some with their left,

brain activation patterns cannot be compared across all subjects. Therefore, all left-

handed EEG datasets were “mirrored” such that the EEG sensor locations of those

datasets were laterally swapped. Following this, hemispheres were identified as either

contralateral or ipsilateral to hand activity.

6.3.2 Temporal Filtering

EEG data was then temporally filtered with a filter bank made up of 9 frequency

ranges. A zero-phase 4th-order Butterworth filter was used to filter the EEG signals

into the frequency ranges 4–8, 8–12, 12–16, 16–20, 20–24, 24–28, 28–32, 32–36 and

36–40 Hz, producing an EEG dataset for each frequency range. The filtered EEG was

then epoched into time segments for each trial of rest and activity. Segments began 2

seconds following trial onset and lasted 6 seconds, as shown in Figure 6.2.

0 10 20 30
t (s)

2 8 12 18 22 28
CSP window

"Move" "Move""Rest"

Figure 6.2: Experimental protocol with indicated “CSP window” - the portion of a trial

used for CSP

6.3.3 Common Spatial Patterns

Common Spatial Patterns (CSP) [233, 234, 235, 236] is a method for analysing multi-

channel EEG which has been recorded during two classes of activity e.g. ‘movement’

versus ‘rest’ or ‘left hand movement’ versus ‘right hand movement’. The CSP algorithm

operates on a set of windowed sensor space EEG trials, E, to produce a data-driven
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6.3 Offline BCI Analysis

supervised set of spatial filters, W , which are used to project E to “CSP space” signals

a.k.a. “CSP signals”, Z, as follows:

Zi = W>Ei (6.1)

where Ei ∈ Rct×t is the ith trial of multi-channel EEG, W ∈ Rct×ct is a CSP

projection matrix a.k.a. “CSP model”, Zi ∈ Rct×t is the ith trial of decomposed CSP

signals, ct is the total number of EEG channels, t is the number of time samples per

trial and > denotes the transpose operator.

Each column of W is a spatial filter and defines the proportion of each EEG signal

in Ei to use when generating the new CSP signals of Zi. The dimensions of Zi are

the same as Ei i.e. the number of channels of Zi equals the number of channels of Ei,

which also equals the number of spatial filters of W . Each row of W−1 is a spatial

pattern and can be seen as a time-invariant EEG source distribution vector. Plotting

this vector produces an image that illustrates this presumed source of EEG activity.

The objective of the CSP algorithm is to produce a set of spatial filters which, when

used to decompose EEG signals, will produce a new set of signals whose variances are

optimally distinct for two classes of activity. These variances may then be used for

classifier training and classifier testing.

6.3.3.1 The CSP algorithm

The method by which the CSP algorithm produces these spatial filters is based on the

simultaneous diagonalisation of two covariance matrices [234]. The normalised spatial

covariance of EEG data of the ith trial, Ei, is obtained as:

Ci =
EiE

>
i

trace(EiE>i )
(6.2)

where trace(EiE
>
i ) is the sum of the diagonal elements of Ei. For each of the two

classes of activity to be separated, spatial covariance C is calculated by averaging the

normalised spatial covariances of trials belonging to each group (e.g. group 1 and group

2 ). The composite spatial covariance is then obtained as:
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Cc = C1 + C2 (6.3)

The matrix Cc can be factorised as Cc = UcλcU
>
c , where Uc is the matrix of eigen-

vectors and λc is the diagonal matrix of eigenvalues. Eigenvalues are assumed to be

sorted in descending order.

The whitening transformation

P =

√
λ−1
c U>c (6.4)

equalises the variances in the space spanned by Uc, meaning all eigenvalues of

PCcP
> are equal to one. By transforming the spatial covariances C1 and C2 as

S1 = PC1P
> (6.5)

S2 = PC2P
> (6.6)

then S1 and S2 share common eigenvectors i.e. if S1 = Bλ1B
> then S2 = Bλ2B

>

and λ1 + λ2 = I where I is the identity matrix.

Since the sum of two corresponding eigenvalues across λ1 and λ2 is 1, then the

eigenvector with the largest eigenvalue for S1 must have the smallest eigenvalue for S2,

and vice-versa

Finally, the CSP projection matrix is composed as:

W = (B>P )> (6.7)

6.3.3.2 Feature extraction

Following generation of the CSP model, W , the EEG signals E are decomposed into

CSP signals Z with application of Equation 6.1. The variances of the CSP signals are

extracted as features to create a feature set. A subset of these will be selected for

classifier training and testing. Feature extraction proceeds as:
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6.3 Offline BCI Analysis

vi = log

(
var(Zi)∑it
i=1 var(Zi)

)
(6.8)

V =


v>1
v>2
...
v>it

 (6.9)

y =


y1

y2
...
yit

 (6.10)

where vi ∈ Rct×1 is the set of features for the ith trial, V ∈ Rit×ct is the feature set

for all trials, y ∈ Rit×1 is the true class label vector, it is the total number of trials and

ct is the total number of channels.

The next stage of the BCI training involves ranking and selection of a subset of

features from the full feature set to be used for classifier training. At this stage in

BCI testing, the subset of features to select would be predetermined. However, this

description of BCI operation and CSP in particular does not apply to FBCSP.

6.3.3.3 CSP with multiple frequency ranges

The crucial difference in FBCSP is that the CSP algorithm is not applied to only

one set of EEG data. Since, in FBCSP, the EEG data has been temporally filtered

into b frequency ranges, a CSP model must be obtained for EEG of each frequency

range. The CSP algorithm operates on EEG data from the bth frequency range, Eb,

producing a CSP model for that frequency range, Wb. As before, this CSP model is

used to project the trials of EEG data onto CSP signal space to produce CSP signals

for the bth frequency range, Zb. The set of all CSP models for all frequency ranges is

referred to as the FBCSP model.

Feature extraction using variances is similar to before, however, formation of the

feature set is different. This new feature set uses features from each frequency range

as follows:
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vb,i = log

(
var(Zb,i)∑it
i=1 var(Zb,i)

)
(6.11)

v̄i =
[
v>1,i, v>2,i, · · · , v>bt,i

]
(6.12)

V̄ =


v̄1

v̄2
...
v̄it

 (6.13)

ȳ =


ȳ1

ȳ2
...
ȳit

 (6.14)

where vb,i ∈ Rct×1 is the set of features for each trial i and frequency range b,

v̄i ∈ R1×(bt·ct) is the features for each frequency range ordered into a single feature

vector for each trial, V̄ ∈ Rit×(bt·ct) is the full feature set for all trials, ȳ ∈ Rit×1 is

the true class label vector, it is the total number of trials, bt is the total number of

frequency ranges and ct is the total number of channels.

The “feature set”, V̄ , is thus formed by calculating the variance of trials of CSP

signals for all frequency ranges. Each row of V̄ is the features for a single trial of data

while each column of V̄ is the values of a single feature for each trial. Each trial, or

event, has bt × ct features that represent that event. Each feature is an additional

dimension to the event, resulting in event having a large number of dimensions. This

high dimensionality of the events is too large for effective classification. Some features

of an event are more useful for defining class membership so only a subset need to be

used for effective classification. By taking a subset of features, the dimensionality of

the events is also reduced, improving classifier performance.
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6.3.4 Marginal Relevance

To choose which subset of features (i.e. columns of V̄ ) to retain for classifier training,

the method of Marginal Relevance (MRelv) was used to rank each feature. Following

feature ranking, feature selection took place based on MRelv scores. MRelv uses the

true class label vector, ȳ, to identify the group (or class of activity) that each trial

belongs to i.e. Active or Rest.

The MRelv score for each feature (each column of V̄ ) is the ratio of their between-

group to within-group sum of square differences. Features whose values for one class

of activity differ greatly from the values for the other class are awarded higher MRelv

scores. This idea underpins statistical methodologies such as ANOVA and is explained

in more detail elsewhere [237], where it was used to screen out features when a large

number of spurious features are present.

To see how Marginal Relevance is calculated, take the following example feature

from a set (Table 6.1). In this example, there are four events with feature value and

group/class label for that event. The objective is to calculate a simple score measuring

how separated feature from each group are.

Event Value Group

1 3 0

2 0 1

3 4 0

4 2 1

Table 6.1: Sample feature for Marginal Relevance calculation.

The group 0 average value is 3.5 while the group 1 average value is 1. Using this

information, the next step is to calculate the squared difference of each feature value to

the average value of their own group (within-group) and to the other group (between-

group), as seen below in Table 6.2.

For this feature, the within-group sum of square differences is 0.25+1+0.25+1 = 2.5

while the between-group sum of square differences is 4 + 12.25 + 9 + 2.25 = 27.5. The

Marginal Relevance score for this feature then is the ratio of within-group sum of square

129



6.3 Offline BCI Analysis

Event Value Group

Group

Average

Within-group

difference

Within-group

difference

squared

Between-group

difference

Between-group

difference

squared

1 3 0 3.5 -0.5 0.25 +2 4

2 0 1 1.0 -1 1 -3.5 12.25

3 4 0 3.5 +0.5 0.25 +3 9

4 2 1 1.0 +1 1 -1.5 2.25

Table 6.2: Additional columns for calculating Marginal Relevance.

differences to between-group sum of square differences 27.5/2.5 = 11. This process is

carried out for each feature in a feature set to assign a MRelv score and rank features.

Due to the nature of CSP and the method by which the CSP model, W , is produced,

CSP signals are taken in pairs for classification. Each CSP signal corresponds to another

on the opposite side of the CSP signal matrix Z. For example, the 1st and last CSP

signals (those produced by the first and last rows of the spatial filter W ) should be taken

together for classification. Similarly, the 3rd and 3rd-from-last should be used together

for classification. Accordingly, following feature ranking, the top four ranked features

and their corresponding features were retained for classifier training and testing [230].

The indices of the selected features were recorded for BCI testing and formed a feature

selection model. During BCI testing there is no feature ranking and only the features

predetermined by the feature selection model are used for classifier testing.

6.3.5 Gaussian Process classification

The Gaussian process model has been described earlier in this thesis in subsection 4.4.1

with application in regression. Beside regression, GP models can also be used for

probabilistic classification [180, 238, 239]. In the case of classification, the output data,

y, are no longer connected simply to the underlying function, f , as in the case of

regression but are discrete. Since the classification is binary, variable y can have one

value for one class and another for the other class, e.g. y ∈ {1,−1}. The classification

of a new data point x∗ involves two steps instead of one. In the first step, a latent

function f , which models qualitatively with a GP model how the likelihood of one class

versus the other changes over the x axis, is evaluated. In the second step, the output of

the latent function f is squashed onto the range {0, 1} using any sigmoidal function, e.g.
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π(f) = prob(y = 1|f). This means that the squashed output of GP model represents

the probability of a data point belonging to one of two types.

The result then, after this Gaussian process classification (GPC) during the BCI

testing stage, is that each feature to be classified is assigned a probability value in the

range {0, 1}, where a score of 0 indicates complete confidence that the event belongs

to one class and a score of 1 indicates complete confidence that the event belongs to

the other class. In practice, the majority of events take intermediate values. As the

probability score for each event lies on a range, a decision threshold must be applied

to these scores to make the final decision on binary class membership. A decision

threshold of 0.5 is used as it is the mean value of the range of possible GPC scores.

GPC is the chosen classification method because, in comparison to the more com-

monly used method of Naive Bayesian classification for BCI, GPC makes no assump-

tions about the underlying class boundary between regressors - including allowing for

non-linear class boundaries. As this analysis is concerned with stroke-affected EEG,

this is a more robust classification method to use when there are uncertainties of the

class space. At the other extreme, neural networks would provide the most detailed

class boundary but GPC requires optimization of relatively few parameters.

6.3.6 Analyses

The signal processing steps above describe how separate EEG datasets are processed

for BCI training and BCI testing. BCI analysis then continues through the choice of

data for training and testing. Numerous combinations of training and testing data are

used for investigation, as described below.

6.3.6.1 Single dataset 10-fold cross validation

Trials of a single dataset at a time are split into ten subgroups, separated in temporal

order. Nine of the subgroups are used as data for training the BCI (i.e. “Train EEG”),

meaning they are used for: (1) training the FBCSP model, (2) selection of the top

ranking features using MRelv and (3) training the GPC model. For the remaining

subgroup, the previously trained FBCSP model is applied, the same MRelv-determined

subset of features are retained and those features are then classified by the previously-

trained GPC model. This process is then repeated with each of the ten subgroups
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used to test the BCI and the other nine used to train the BCI. The purpose of this

analysis is to establish the consistency of the EEG responses and the classification

features derived during processing of a single dataset. Classification results of each

subset are averaged together. A poor average classification result would indicate that

the responses recorded in a dataset were inconsistent and thus possibly unsuitable for

deriving a general response.

6.3.6.2 Individual healthy dataset models applied to all data

A single healthy dataset is used to train the BCI (“Train EEG”), producing the FBCSP

model, feature selection model and GPC model. Each other dataset, stroke and healthy,

is then used in turn to test the BCI (“Test EEG”). This resulted in a set of one-

on-one BCIs where one subject’s EEG patterns were classified against each healthy

subject’s EEG patterns. Classification accuracy here may represent a level of similarity

of EEG patterns between individual subjects. Although this is an atypical BCI modality

approach, it allows investigation of the variability of classification rates when comparing

healthy and stroke subject EEG.

6.3.6.3 Grouped healthy dataset model applied to stroke data

A “general” BCI is trained on the 10 healthy subject datasets. Trials from all healthy

datasets are collated into one dataset, E, producing a general FBCSP model, W , and

CSP signals, Z. Following feature extraction, the feature set, V̄ , is much larger as it

now contains events from all healthy datasets but the number of features per event

is the same as before. After feature ranking and selection, the general GPC model

is produced. Such a BCI modality is common in communication and control BCI as

healthy subjects may use this trained BCI without having to record a training set

themselves. Each stroke dataset is then used to test the BCI, resulting in classification

accuracy scores that may be viewed as measures of the similarity of stroke EEG to

healthy EEG.

6.3.6.4 Leave-one-out cross-validation of healthy datasets

As before, a general healthy BCI is trained on all healthy datasets but one. The

remaining healthy dataset is then used to test the BCI and this process is repeated for
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each healthy dataset. This approach produces classification results that are useful for

comparison to the previous stroke classification results on general healthy BCI.

6.3.6.5 Early Stroke datasets used to classify corresponding Late Stroke

datasets

Each stroke subject recorded an “Early” and “Late” dataset. For each stroke subject,

their early dataset is used to train the BCI and their late dataset is used to test.

Classification accuracy of the late dataset represents a measure of the similarity of the

EEG patterns of each stroke subject between recording sessions. A high classification

accuracy indicates little change while a relatively low classification accuracy indicates

significant change in EEG patters - presumably due to neuroplastic change during

stroke recovery.

6.3.6.6 Frequency ranges of selected CSP features

Another result of interest is the frequency ranges of selected CSP features for each

dataset. To investigate this, the frequency ranges of the selected CSP features is

recorded. For each group of Healthy, Early Stroke and Late Stroke, a histogram of se-

lected frequency ranges is generated to investigate which frequency ranges were favoured

and to highlight any differences between groups.

6.4 Results

6.4.1 Single dataset 10-fold cross validation

Classification results following 10-fold cross-validation on each dataset are shown in

Table 6.3. 8/10 healthy subject datasets scored 100% classification accuracy and the

remaining 2/10 scored 97.5% while only 5/10 stroke datasets scored 100% and the re-

maining 5/10 scored between 85% and 97.5%. 2/5 early stroke datasets scored 100%

while 3/5 late stroke datasets scored 100%. A range of k values for k-fold cross valida-

tion of k = 2, 4, 6... 16 were tested but no significant changes in these results compared

to k = 10 were seen and so are not presented here.
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Wilcoxon Rank Sum tests were used to test statistical differences between subject

groups. There were no significant differences found between Healthy (Median = 100)

and All Stroke (Median = 98.75) (Z = 1.64, p < 0.05, r = 0.37), between Healthy

(Median = 100) and Early Stroke (Median = 97.5) (p < 0.05), between Healthy (Median

= 100) and Late Stroke (Median = 100) (p < 0.05) or between Early Stroke (Median

= 97.5) and Late Stroke (Median = 100) (p < 0.05).

Dataset S1E S1L S2E S2L S3E S3L S4E S4L S5E S5L

Accuracy 97.50 100.00 100.00 87.50 93.75 100.00 100.00 85.00 95.00 100.00

Dataset H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Accuracy 100.00 100.00 97.50 97.50 100.00 100.00 100.00 100.00 100.00 100.00

Table 6.3: Single dataset 10-fold cross-validation classification accuracy %

6.4.2 Individual healthy dataset models applied to all data

A table of individual classification accuracies when training the models and classifier

on each healthy dataset and then testing on all other datasets is presented in Table 6.4.

Wilcoxon Rank Sum tests were used to evaluate statistical differences between these

classification results for the Healthy, All Stroke, Early Stroke and Late Stroke groups.

There were significant differences found between Healthy (Median = 82.5) and All

Stroke (Median = 70.0) (Z = 5.55, p < 0.05, r = 0.40), between Healthy (Median =

82.5) and Early Stroke (Median = 71.25) (Z = −3.97, p < 0.05, r = 0.34) and between

Healthy (Median = 82.5) and Late Stroke (Median = 61.25) (Z = −5.18, p < 0.05,

r = 0.44). There was no significant difference found between Early Stroke (Median =

71.25) and Late Stroke (Median = 61.25) (Z = 1.75, p < 0.05, r = 0.17).

6.4.3 Grouped healthy dataset model applied to stroke data

Classification accuracies of each stroke dataset when the BCI is trained on all of the

healthy EEG datasets grouped together is presented in Table 6.5.

Wilcoxon Signed Rank tests were used to test for statistical significance in the

change in classification accuracy when using grouped healthy datasets to train the

BCI as compared to the average results when using individual healthy datasets to train

BCIs. No significant change (p < 0.05) in classification accuracy was found for datasets
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Train EEG dataset

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Avg SD

T
es

t
E

E
G

d
a
ta

se
t

S1E 62.5 75.0 97.5 85.0 72.5 47.5 87.5 90.0 87.5 72.5 77.8 14.9

S1L 75.0 70.0 80.0 75.0 42.5 77.5 57.5 70.0 82.5 67.5 69.8 11.9

S2E 70.0 62.5 60.0 77.5 50.0 62.5 70.0 50.0 87.5 65.0 65.5 11.5

S2L 57.5 50.0 55.0 55.0 40.0 55.0 60.0 52.5 62.5 57.5 54.5 6.2

S3E 75.0 53.1 81.3 75.0 62.5 78.1 84.4 78.1 81.3 75.0 74.4 9.5

S3L 77.5 60.0 87.5 72.5 52.5 85.0 70.0 80.0 92.5 90.0 76.8 13.1

S4E 70.0 57.5 40.0 65.0 60.0 65.0 67.5 52.5 62.5 72.5 61.3 9.5

S4L 52.5 70.0 40.0 50.0 55.0 70.0 47.5 55.0 60.0 57.5 55.8 9.4

S5E 90.0 55.0 65.0 90.0 75.0 80.0 55.0 72.5 65.0 72.5 72.0 12.5

S5L 82.5 57.5 60.0 77.5 80.0 55.0 47.5 85.0 70.0 95.0 71.0 15.4

H1 72.5 75.0 92.5 97.5 97.5 87.5 100.0 97.5 100.0 91.1 10.6

H2 62.5 37.5 62.5 80.0 55.0 67.5 90.0 55.0 82.5 65.8 16.3

H3 95.0 65.0 85.0 80.0 65.0 87.5 95.0 80.0 90.0 82.5 11.3

H4 80.0 72.5 77.5 57.5 65.0 77.5 82.5 90.0 90.0 76.9 10.7

H5 85.0 72.5 55.0 52.5 52.5 65.0 80.0 60.0 85.0 67.5 13.5

H6 100.0 65.0 65.0 97.5 87.5 80.0 70.0 95.0 87.5 83.1 13.7

H7 92.5 65.0 92.5 82.5 87.5 72.5 92.5 92.5 65.0 82.5 11.9

H8 100.0 80.0 60.0 90.0 90.0 80.0 72.5 90.0 92.5 83.9 12.1

H9 95.0 55.0 67.5 97.5 80.0 92.5 65.0 100.0 97.5 83.3 17.0

H10 87.5 67.5 80.0 85.0 85.0 87.5 70.0 95.0 100.0 84.2 10.5

Healthy datasets 80.1 14.4

All Stroke datasets 67.9 13.7

Early Stroke datasets 70.2 12.8

Late Stroke datasets 65.6 14.3

Table 6.4: Cross-dataset classification accuracy %

S1E, S1L, S2L, S3E and S4E. A significant increase (p < 0.05) in classification accuracy

for datasets S3L, S4L, S5E and S5L was found and a significant decrease (p < 0.05) for

dataset S2E was found.
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Test dataset Accuracy

S1E 87.5

S1L 62.5

S2E 52.5

S2L 55.0

S3E 75.0

S3L 87.5

S4E 65.0

S4L 65.0

S5E 82.5

S5L 90.0

All average 72.3± 14.1

Early average 72.5± 14.0

Late average 72.0± 15.8

Table 6.5: Grouped healthy classification accuracy %

6.4.4 Leave-one-out cross-validation of healthy datasets

Classification accuracies of each healthy dataset when the BCI is trained on all other

healthy datasets grouped together is presented in Table 6.6.

Wilcoxon Rank Sum tests were used to evaluate statistical differences between these

classification results for the Healthy, All Stroke, Early Stroke and Late Stroke groups

when grouped healthy datasets were use to train the BCI. There was a significant

difference found between Healthy (Median = 94) and All Stroke (Median = 70) (Z =

3.04, p < 0.05, r = 0.68), between Healthy (Median = 94) and Early Stroke (Median

= 75) (p < 0.05) and between Healthy results (Median = 94) and Late Stroke results

(Median = 65) (p < 0.05). There was no significant difference found between Early

Stroke results (Median = 75) and Late Stroke results (Median = 65) (p < 0.05). The

Z and r statistics were not calculated when very few data points were available. These

between-group significant difference results are the same as those obtained when using

individual BCIs trained on healthy datasets.

136



6.4 Results

Test dataset Accuracy

H1 100.0

H2 90.0

H3 95.0

H4 80.0

H5 87.5

H6 97.5

H7 92.5

H8 95.0

H9 95.0

H10 85.0

Average 91.8± 6.1

Table 6.6: Leave-one-out cross-validation of healthy data classification accuracy %

6.4.5 Early Stroke datasets used to classify corresponding Late Stroke

datasets

Classification results of each Late Stroke dataset when training the BCI with the cor-

responding Early Stroke dataset are shown in Table 6.7. Classification accuracy of the

five Late Stroke datasets ranged from 62.5% to 95% with a median of 75.0%. We can

compare these classification accuracy results to those obtained when training the BCI

on individual healthy datasets and those obtained when training on grouped healthy

datasets.

Wilcoxon Signed Rank tests were used to compare these longitudinal classification

results to those obtained when using BCIs trained on individual Healthy datasets. A

significant (p < 0.05) increase was seen for S1L, S2L and S3L while there was no

significant change (p < 0.05) found for S4L and S5L.

Comparing the longitudinal classification accuracies to those obtained when training

the BCI on grouped healthy datasets, we see that S1L improved from 62.5% to 82.5%,

S2L improved from 55% to 72.5%, S3L improved from 87.5% to 95%, S4L reduced from

65% to 62.5% and S5L reduced from 90% to 75%.
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Train EEG dataset Test EEG dataset Accuracy

S1E S1L 82.5

S2E S2L 72.5

S3E S3L 95.0

S4E S4L 62.5

S5E S5L 75.0

Average 77.5± 12.1

Table 6.7: Longitudinal classification accuracy %

6.4.6 Comparison of all BCI training methods for stroke

A table of collated classification results of each BCI training method for each stroke

dataset is presented in Table 6.8.

6.4.7 Frequency ranges of selected CSP features

Presented in Table 6.9 are the frequency ranges of the CSP features selected for clas-

sifier training for each full dataset. A corresponding histogram of this data grouped

for Healthy, Stroke Early and Stroke Late datasets in presented in Figure 6.3. This

histogram suggests that, for healthy EEG, the frequency ranges of the CSP features

in the 16–20 Hz and 20–24 Hz are most frequently selected. Early stroke datasets

display some of the healthy datasets’ preference for selection of features in the 16–24

Hz range however there is also increased selection of features in the 8–16 Hz range.

Late stroke datasets appear to shift towards further selection of CSP features in lower

frequency ranges, with a noticeable increase in selection in the 4–16 Hz range and a

relative decrease in selection from 16 Hz upwards.
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Dataset Individual Healthy Grouped Healthy Early Stroke

Avg StDev

S1E 77.8 14.9 87.5

S1L 69.8 11.9 62.5 82.5

S2E 65.5 11.5 52.5

S2L 54.5 6.2 55.0 72.5

S3E 74.4 9.5 75.0

S3L 76.8 13.1 87.5 95.0

S4E 61.3 9.5 65.0

S4L 55.8 9.4 65.0 62.5

S5E 72.0 12.5 82.5

S5L 71.0 15.4 90.0 75.0

All average 67.9± 8.3 72.3± 14.1

Early average 70.2± 6.7 72.5± 14.0

Late average 65.6± 9.9 72.0± 15.8 77.5± 12.1

Table 6.8: Comparison of BCI training methods for stroke classification
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Rank of selected features

Dataset 1st 2nd 3rd 4th

S1E 16-20 12-16 8-12 16-20

S1L 8-12 4-8 8-12 4-8

S2E 8-12 8-12 12-16 20-24

S2L 36-40 32-36 32-36 12-16

S3E 12-16 8-12 16-20 20-24

S3L 12-16 12-16 16-20 12-16

S4E 24-28 8-12 16-20 20-24

S4L 24-28 12-16 20-24 16-20

S5E 16-20 12-16 24-28 16-20

S5L 4-8 4-8 8-12 4-8

H1 16-20 20-24 16-20 16-20

H2 24-28 36-40 20-24 24-28

H3 36-40 16-20 24-28 36-40

H4 16-20 16-20 20-24 16-20

H5 20-24 24-28 20-24 16-20

H6 12-16 8-12 12-16 12-16

H7 12-16 16-20 16-20 12-16

H8 20-24 16-20 20-24 24-28

H9 12-16 16-20 8-12 16-20

H10 20-24 16-20 20-24 16-20

Table 6.9: Frequency ranges (Hz) of selected CSP features for each dataset
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Figure 6.3: Marginal Relevance Selected frequency ranges.
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6.5 Discussion

6.5.1 Effect of Stroke

The results of statistical analysis of single dataset 10-fold cross-validation classification

accuracies suggest that stroke-affected EEG data is no more likely to contain misclassi-

fied trials than healthy EEG. Given that even with healthy subjects engaging success-

fully in a motor task, flawless classification is not always possible, then it would not

be unreasonable to expect similar or even worse consistency in stroke-affected brains.

This analysis suggests that there is no difference between the consistency of healthy and

stroke-affected EEG patterns. It is important to note, however, the very low statistical

power of this test due to the low number of data points available for comparison (5

for each of late and early stroke subject data, 10 for healthy subject data). Therefore,

other factors, such as a lapse in concentration on the part of the subject, a restless hand

movement, an involuntary leg twitch or possibly the effects of fatigue could reasonably

cause a change in the event-related EEG, confounding the efforts of the classifier. A

similar analysis with a larger cohort would be required before drawing a conclusion on

this topic.

It is assumed that each subject performed the task correctly and to the best of

their ability. Visual supervision of the subjects did not reveal any movement incidents

and neither did artefact analysis of trial data. Subject S3 reported being fatigued

during their early experimental session, resulting in only 36 out of the potential 40

trials being completed. Dataset S3E also scored the 2nd lowest 10-fold cross-validation

classification rate of all datasets at 93.75%. This may suggest a link between fatigue

and low k-fold cross-correlation results but that the lowest scoring dataset was S4L,

where no fatigue was reported. This illustrates the difficulty of describing the processes

which underlie the variable EEG features identified.

Classification accuracy results of cross-dataset BCI analysis with training the BCI

on each healthy dataset and testing on each other dataset provided another perspec-

tive on the differences between healthy and stroke-affected EEG patterns. While this

BCI method is not practical and would not be used for a real rehabilitation BCI, the

differences between the classification scores attained by each type of dataset does bear

some discussion. As seen in Table 6.4, the average classification accuracy for Healthy

datasets is 80.1± 14.4%, for Early Stroke datasets is 70.2± 12.8% and for Late Stroke
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datasets is 65.6 ± 14.3%. Statistical tests revealed significant differences between the

Healthy and Stroke Datasets overall. Average stroke classification accuracy by individ-

ual healthy dataset-trained BCIs is significantly lower than healthy. This suggests that,

although some individual classification results between datasets were quite variable and

unexpected (training on H4 resulted in 90% accuracy for S5E but 52.5% for H5, for

example) there appears to be, on average, a difference in EEG patterns between stroke

data and healthy data. These cross-dataset EEG classifications are important because

the reasons for such varying classification successes may be important for advancing

rehabilitation BCI and our understanding of stroke-affected EEG, yet these are not

results that we would see if we restricted ourselves to the more typical general BCI

method.

Aggregating and analysing classification results in the previous manner is useful

for exploring aspects of stroke-affected EEG for BCI but does not represent a typical

zero-training BCI implementation. By training the BCI on all healthy datasets and

testing on individual stroke datasets, stroke datasets are analysed in a more typical

way for zero-training BCI. The results presented in Table 6.5 can be seen as a measure

of the similarity of the EEG patterns of each stroke dataset to general healthy EEG

patterns. By taking the leave-one-out cross-validation results of healthy datasets in

Table 6.6 as a baseline for expected results with healthy EEG patterns, the stroke

dataset classification results suggest, through the lower classification accuracy of 72.3%

on average than 91.8% for healthy, that a difference in EEG patterns has been quantified

and observed.

6.5.2 Rehabilitation BCI Training Data

Table 6.8 collates the BCI classification accuracies of each stroke dataset with each

method described above. This table is useful when discussing which method is best for

training a rehabilitation BCI with focus on the Late Stroke datasets - S1L, S2L, S3L,

S4L and S5L. The ‘Individual Healthy’ column does not represent an actual rehabilita-

tion BCI training option and so is not considered here. ‘Grouped Healthy’ represents a

zero-training BCI while ‘Early Stroke’ represents a BCI which had been trained many

months previously. Together, these results represent BCIs which, at the time of late

recording session require no training session before BCI testing. For three out of the
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five Late Stroke datasets, higher classification accuracy was obtained when training

the BCI on the subject’s own Early Stroke dataset. The remaining two datasets, S4L

and S5L obtained higher classification accuracy when the BCI was trained on grouped

Healthy data. Thus, there is no definitive conclusion on which of these two options is

better.

The third option for training a rehabilitation BCI is for the subject to participate

in a BCI training recording session immediately before real-time BCI use. While no

such separate dataset had been recorded, as long as we can assume that a subject’s

EEG patterns do not change significantly between BCI training and immediate testing,

then the 10-fold cross validation results of Table 6.3 indicate how successfully such a

BCI could operate. In this case, each stroke subject attained higher classification

accuracy than the zero-training or one-time-training options above. This suggests that

performing a BCI training session immediately before BCI testing produces the most

accurate results. This result, however, does not account for extra fatigue induced by

extra time the subject spends participating in BCI operation.

Therefore, the decision to record a training session of EEG activity for each subject

may depend on a trade-off between improved classification accuracy and any possible

negative effects of subjecting a stroke patient to an EEG recording session. Possible

negative effects include anxiety (as many stroke patients are elderly and may have ap-

prehension about participating in an EEG recording session), loss of therapy time (as

time spent training leads to a reduction in time spent using the BCI in a therapeutic

mode) and fatigue (because a stroke patient may become fatigued as a result of train-

ing, leaving little energy for the therapeutic interaction). In these patients where the

above factors are prevalent the BCI may have to be trained using healthy data. The

disadvantage of this approach from a therapy perspective is that the inferior perfor-

mance of the classifier may lead to frustration on the part of the patient and a potential

rejection of the therapy.

6.5.3 CSP Plots

Presented in Figure 6.4 and Figure 6.5 are CSP plots of the highest ranked CSP features

for both classes of activity for all datasets. There are too few datasets available for these
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plots to provide any more than a qualitative analysis of the differences between stroke-

affected and healthy CSP plots. These plots demonstrate more left/right asymmetry

in the common spatial patterns of healthy datasets than stroke-affected datasets. As

the differences between the two groups is not strong enough to draw any conclusions,

these plots merely suggest that stroke-affected CSP plots are not dissimilar to healthy

CSP plots.

6.5.4 Biomarker for Neurorehabilitation

Marginal Relevance rankings of CSP features presented in Table 6.9 and Figure 6.3

reveal that the particular BCI implemented here selected features of varying frequency

ranges for each group of subject data. For healthy data, EEG activity in the frequency

ranges of 6–20 Hz and 20–24 Hz was favoured. For early stroke data, lower frequency

ranges, particularly 8–12 Hz, were selected more than healthy data. Finally, for late

stroke data, the lowest frequency ranges were selected more than others. Therefore,

this data and histogram demonstrates a shift in BCI parameters following stroke and

stroke recovery.

BCI classification accuracy may be treated as a measure of the similarity of one

EEG dataset to another. In this way, the BCI analyses described here may quan-

tify the deviation of stroke-affected EEG patterns from typical healthy EEG patterns.

Additionally, as data was recorded soon after the stroke subject suffered their stroke

and again data was recorded months later, these classification results may be viewed

as a measure of the change in EEG patterns over that time. The usefulness in these

numbers may lay in their relation to the measures of each subject’s motor control, the

Kapandji score (Table 5.3). However, the classification accuracies and the change in

classification accuracies of stroke datasets when the BCI is trained on grouped healthy

data bare little relation to the subject’s Kapandji score or change in Kapandji score.

Additionally, there is no relation between each subject’s Kapandji scores and their late

dataset classification accuracy with a BCI trained on their early data. It would only

be speculative to try to relate these terms. It is possible that a link may be found

with a similar analysis and a much larger dataset. It is also likely that changing EEG

patterns, effect of the stroke and rate of recovery are dependant on clinical factors, such
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as lesion location, or on environmental factors, such as subject engagement with tradi-

tional rehabilitation therapy. Perhaps a link between these factors and BCI parameters

may be uncovered in the future.

Given the changes in the EEG pattern in stroke compared to the stereotypical

patterns for healthy subjects and their evolution over time it appears that there is

scope for improved machine learning techniques which can work from short session

data and continually adapt to the user. There is some recent work in this area for

healthy subjects using passive movement approaches [240] and data space adaptation

techniques [241]. However, it is incredibly important to note the tension between

using machine learning to adapt the interface to the EEG patterns on one hand and

forcing the patient to adapt to a classifier which is targeting the appropriate cortical

networks for healthy movement on the other. To understand this somewhat subtle

point, it is worth noting that natural recovery in stroke is often suboptimal (spasticity,

abnormal muscle synergies, etc.) and these neurological symptoms can be related

to pathophysiological motor and compensatory networks that have arisen from the

reorganization process. It is these changes which are most likely reflected in the EEG

measurements reported here. If a machine learning algorithm consistently adapts to

the patient to optimize communication with the feedback interface the therapy may

well lead to reinforcement of these maladaptive changes. It may be better that the

patient adapts to a classifier which is set up to expect EEG features which are more

typically associated with engagement of those areas of cortex more associated with

healthy movement. The catch is that such a classifier may be far too frustrating to use

and therefore some trade-off between encouraging engagement and directing recovery

will have to be met for an effective BCI instrument in this use case scenario. This issue

should be contrasted with the corresponding case for communication and control BCI

which instead adapts to whatever aspects of a subject’s EEG is under volitional control

requiring less adaptation on the part of the user.

The classification accuracy and BCI parameters results here suggest that offline

BCI analysis may potentially have utility as a clinical tool to produce a biomarker of

neruorehabilitation. While this is currently a proof-of-concept, the analysis results here

suggest that differences between healthy and stroke-affected brains are measurable in

this way. Significant further development of this concept would be required before real

application to assist in rehabilitation therapy efforts.
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CSP Plots

Dataset Hand Active Rest
Frequency
Range

H1 L

H1 16−20 Hz Channel1 (Activation) H1 16−20 Hz Channel32 (Rest)H1 16−20 Hz Channel1 (Activation) H1 16−20 Hz Channel32 (Rest)

16-20 Hz

H2 R

H2 24−28 Hz Channel1 (Activation) H2 24−28 Hz Channel32 (Rest)H2 24−28 Hz Channel1 (Activation) H2 24−28 Hz Channel32 (Rest)

8-12 Hz

H3 R

H3 36−40 Hz Channel1 (Activation) H3 36−40 Hz Channel32 (Rest)H3 36−40 Hz Channel1 (Activation) H3 36−40 Hz Channel32 (Rest)

8-12 Hz

H4 L

H4 16−20 Hz Channel2 (Activation) H4 16−20 Hz Channel31 (Rest)H4 16−20 Hz Channel2 (Activation) H4 16−20 Hz Channel31 (Rest)

36-40 Hz

H5 R

H5 20−24 Hz Channel1 (Activation) H5 20−24 Hz Channel32 (Rest)H5 20−24 Hz Channel1 (Activation) H5 20−24 Hz Channel32 (Rest)

12-16 Hz

H6 R

H6 12−16 Hz Channel2 (Activation) H6 12−16 Hz Channel31 (Rest)H6 12−16 Hz Channel2 (Activation) H6 12−16 Hz Channel31 (Rest)

12-16 Hz

H7 R

H7 12−16 Hz Channel1 (Activation) H7 12−16 Hz Channel32 (Rest)H7 12−16 Hz Channel1 (Activation) H7 12−16 Hz Channel32 (Rest)

24-28 Hz

H8 R

H8 20−24 Hz Channel1 (Activation) H8 20−24 Hz Channel32 (Rest)H8 20−24 Hz Channel1 (Activation) H8 20−24 Hz Channel32 (Rest)

24-28 Hz

H9 R

H9 12−16 Hz Channel1 (Activation) H9 12−16 Hz Channel32 (Rest)H9 12−16 Hz Channel1 (Activation) H9 12−16 Hz Channel32 (Rest)

16-20 Hz

H10 R

H10 20−24 Hz Channel2 (Activation) H10 20−24 Hz Channel31 (Rest)H10 20−24 Hz Channel2 (Activation) H10 20−24 Hz Channel31 (Rest)

4- 8 Hz

1

Figure 6.4: Plots of healthy subject data CSP.
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CSP Plots

Dataset Hand Active Rest
Frequency
Range

S1E R

S1E 16−20 Hz Channel1 (Activation) S1E 16−20 Hz Channel32 (Rest)S1E 16−20 Hz Channel1 (Activation) S1E 16−20 Hz Channel32 (Rest)

16-20 Hz

S1L R

S1L1 8−12 Hz Channel2 (Activation) S1L1 8−12 Hz Channel31 (Rest)S1L1 8−12 Hz Channel2 (Activation) S1L1 8−12 Hz Channel31 (Rest)

8-12 Hz

S2E R

S2E 8−12 Hz Channel1 (Activation) S2E 8−12 Hz Channel32 (Rest)S2E 8−12 Hz Channel1 (Activation) S2E 8−12 Hz Channel32 (Rest)

8-12 Hz

S2L R

S2L 36−40 Hz Channel1 (Activation) S2L 36−40 Hz Channel32 (Rest)S2L 36−40 Hz Channel1 (Activation) S2L 36−40 Hz Channel32 (Rest)

36-40 Hz

S3E R

S3E 12−16 Hz Channel3 (Activation) S3E 12−16 Hz Channel30 (Rest)S3E 12−16 Hz Channel3 (Activation) S3E 12−16 Hz Channel30 (Rest)

12-16 Hz

S3L R

S3L 12−16 Hz Channel1 (Activation) S3L 12−16 Hz Channel32 (Rest)S3L 12−16 Hz Channel1 (Activation) S3L 12−16 Hz Channel32 (Rest)

12-16 Hz

S4E L

S4E 24−28 Hz Channel2 (Activation) S4E 24−28 Hz Channel31 (Rest)S4E 24−28 Hz Channel2 (Activation) S4E 24−28 Hz Channel31 (Rest)

24-28 Hz

S4L L

S4L 24−28 Hz Channel3 (Activation) S4L 24−28 Hz Channel30 (Rest)S4L 24−28 Hz Channel3 (Activation) S4L 24−28 Hz Channel30 (Rest)

24-28 Hz

S5E R

S5E 16−20 Hz Channel1 (Activation) S5E 16−20 Hz Channel32 (Rest)S5E 16−20 Hz Channel1 (Activation) S5E 16−20 Hz Channel32 (Rest)

16-20 Hz

S5L R

S5L 4−8 Hz Channel1 (Activation) S5L 4−8 Hz Channel32 (Rest)S5L 4−8 Hz Channel1 (Activation) S5L 4−8 Hz Channel32 (Rest)

4- 8 Hz

1

Figure 6.5: Plots of stroke-affected subject data CSP.
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6.6 Summary

This chapter investigated the effect of stroke on EEG BCI performance through an

offline BCI analysis but also produced other interesting outcomes. BCI classification

accuracies were investigated as a measure of the difference in brain activation patterns

between the BCI training dataset and the BCI testing dataset. Classification of stroke

subject EEG when the BCI was trained on either individual or grouped healthy EEG

was lower than when healthy subject EEG was tested. These classification accura-

cies may have application as a biomarker of post-stroke neurorehabilitation following

a larger-scale investigation. Additionally, machine-learned BCI parameters were in-

vestigated as a biomarker of neurorehabilitation with the frequency range of selected

features showing a progressive change from healthy, to 3 weeks post-stroke, to 6-7

months post-stroke. It appears that BCI classification accuracy and machine-learned

BCI parameters may have utility in a clinical setting for assessing post-stroke recovery.

However, due to the relatively low number of subjects and recording sessions, these

findings merely serve as a first look into this utility. A significantly larger amount of

data and analysis is required for conclusive outcomes.

Rehabilitative BCIs must take these differences in EEG patterns between healthy

subjects and stroke-affected subjects into account in order for the system to be effective

and to aid in recovery. The ideal scenario of a zero-training rehabilitative BCI is possible

using healthy EEG but the classification accuracy is lower than for healthy subjects

which could be excessively frustrating for patients. Classification accuracy of stroke

EEG is improved significantly through subject-specific BCI training sessions even 6

months prior however this comes with a cost in terms of loss of rehabilitation time and

potentially over-adaptation to the user, which may be detrimental in terms of optimal

recovery. It is clear that a rehabilitative BCI must have different technical requirements

to those for a communication and control BCI and these differences must be considered

when developing the appropriate machine learning scheme for this use case.

While BCI classification accuracies and BCI parameters may have utility as biomarker

of neurorehabilitation, they are not direct representations of the stroke-affected brain

network. For an explicit biomarker of neurorehabilitation, another analysis is required

which attempts to directly measure the effect of stroke on a brain. Attempts to discover

such a biomarker are the subject of the next chapter.
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Chapter 7

Post-Stroke Connectivity

Analysis and a Portable Stroke

Rehabilitation BCI

7.1 Introduction

The previous chapter achieved two objectives: to explore the effect of stroke on EEG

BCI parameters in order to inform future rehabilitation BCI design and to investigate

a potential implicit biomarker of post-stroke neuroplastic change based on those pa-

rameters. The biomarker results are particularly interesting because they are directly

affected by the stroke patient’s brain network. However, while the effect is direct, the

representation is not because the post-stroke brain network is represented in BCI pa-

rameters which have no direct relation to the subject’s functional neurophysiological

condition. Essentially, BCI parameters are poor representations of functional activity

and are likely of little use in a clinical setting.

An explicit biomarker of neuroplastic change is far more desirable - one that di-

rectly represents that functional state of a stroke-affected brain, which is interpretable

and relatable to a stroke survivor’s functional neurophysiological condition. Such a

biomarker is desirable because of potential utility in a clinical setting, where it may

be used to inform and guide stroke rehabilitation therapy. Such a biomarker may be

150



7.2 Connectivity Measurement

attainable through connectivity analysis, as described in section 5.3.

In the previous chapter, analysis involved the automatic extraction of the best signal

features for classification but these features did not explicitly represent brain activity

- they are not easily interpretable by a human. This chapter expounds the use of

an analysis method which is designed to uncover interactions between regions of the

brain. Activity in a region of the brain produces an electrical signal which passes along

a neural pathway and may contribute to the induction of activity in another region of

the brain. If activity is induced, this electrical interaction can be seen as the movement

of information from the “driver” region to the “recipient” region and is referred to as

information flow [209, 211] - a term originating in Information Theory to describe the

transfer of information between two variables in a process. Information flow refers to

effective connectivity - “the influence that one neuronal system exerts over another”

[242] - and the terms are used here interchangeably.

This chapter begins with a description of efforts to derive an explicit measure of

neuroplastic change, based on connectivity analysis of the recorded healthy and stroke

subject EEG dataset through application of a recent information flow estimation algo-

rithm, followed by a discussion of future directions in this research space. This chapter

then ends with a description of the design and development of a low-cost, portable

biofeedback EEG BCI which may be used for rehabilitation BCI research and serves as

a proof-of-concept for at-home stroke rehabilitation.

7.2 Connectivity Measurement

The simplest method for estimating functional connectivity between two zero-mean

variables x and y appears to be covariance, the measure of how much two random

variables change together, defined as cov(x, y) = E(xy), cov(x, y) ∈ R or the normalised

covariance ρ(x, y) = E(xy)/(|E(x)||E(y)|), ρ ∈ (−1, 1), where E(·) is the expected

value operator and | · | is the absolute value operator. However, for scalp-recorded

EEG time series, these are not appropriate due to the volume conductor effect of the

head where brain sources are expressed in multiple EEG recordings and due to the fact

that correlation is an instantaneous operation which cannot identify the direction of

information flow. An obvious improvement to deal with the instantaneous nature of

the correlation operation is to employ a time-lagged normalised correlation operation
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7.2 Connectivity Measurement

ρ(x, y, τ) = E(x(t)y(t − τ))/(|E(x(t))||E(y(t))|) for a range of time delays τ . These

correlation methods have been employed previously in the analysis of EEG [243] data

and data of another near-infrared measurement modality, Event-Related Optical Signal

(EROS) [244]. As correlation is unable to determine the direction of information flow

between two variables, or time series, other methods which are capable of measuring

directional interactions are favoured for connectivity analysis.

7.2.1 Granger Causality

With respect to brain networks, Granger causality refers to the concept that interactions

between two brain sources, or nodes of a brain network, can be identified and measured.

In 1956, Weiner [245] proposed that a causal relationship exists between two time

series is measurable if statistical information of one time series improves prediction

accuracy of the other time series. In 1969, Granger [246] adapted this idea and those

of other similar papers to provide a definition of causality which has come to be known

as Granger causality. The central tenet of Granger causality is that time series X

Granger-causes time series Y if past values of X predict future values of Y better

than past values of Y alone. This idea can then be expanded to include past values

of multiple additional time series, to measure the causal relationship between all time

series available.

Various tools have been developed to measure Granger causality between time series.

The Multivariate autoregressive (MVAR) model method estimates the linear combina-

tion of past values of each time series which best predict the current values of each of

those time series. Methods based on signal entropy and information, such as quasi-

causal information (QCI) [247] and correntropy [248]. A full review on connectivity

measures for EEG data can be found elsewhere [213].

7.2.2 Phase Slope Index

Brain network connectivity may also be estimated from non-Granger causality-based

methods. As mentioned previously, the two main paradigms for studying brain activity

are brain networks and brain rhythms. The rhythmic activity of the brain can be

analysed to infer connectivity in the brain network using a suite of space-frequency

and space-time-frequency methods applied to scalp EEG time series. Phase Slope
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Figure 7.1: Frequency-dependent phase difference.

Index (PSI) was first investigated as one such method by Nolte et. al. in 2008 [249],

who reported that this method performed much better than Granger causality-based

methods. PSI performed better by only paying attention to the phase information

and ignoring information affected by volume conduction. The central tenet of PSI is

that if two sources of EEG are interacting as “cause-and-effect”, where activity in one

region of the brain drives activity in another region, then some components of the

recorded “cause” signal will appear delayed and attenuated in the recorded “effect”

signal. Interactions between brain regions require time and if the propagation speed

is always the same, then the phase difference between activity at interacting regions

increases with frequency of oscillation. The concept of phase difference increasing with

frequency is illustrated in Figure 7.1.

Coherence is a statistical measure of the relation between two time series yi(t) and

yj(t), which may also be used to find the causality between EEG signals. Coherence

between two time series is a complex number, defined as:

Sij(f) = 〈yi(f)y∗j (f)〉 (7.1)

where 〈·〉 denotes the expectation value. The phase spectrum Φ(f) between the two

time series is linear and proportional to the time delay τ . The slope of Φ(f) can be
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estimated, where a positive slope indicates a causal direction from yi(t) to yj(t) and a

negative slope indicates a causal relation in the reverse direction.

Using the above cross-spectral density operation, the coherence is defined as:

Cij(f) = Sij(f)/
√
Sii(f)Sjj(f) (7.2)

where Sii(f) and Sjj(f) are the auto-spectral densities of yi(t) and yj(t), respec-

tively. The “phase slope index” between the two time series is then defined as

Ψ̃ij = =
(∑
f∈F

C∗ij(f)Cij(f + δf)
)

(7.3)

where δf is the frequency resolution, =(·) denotes taking the imaginary part and F

is the set of frequencies over which the slope is summed. Ψ̃ vanishes if the imaginary

part of coherence vanishes, so PSI is insensitive to mixtures of non-interacting sources

[250, 251]. Therefore, unlike other methods for calculation of connectivity, PSI is robust

to EEG’s natural volume conduction of mixed sources [212]. Finally, the “PSI scores”,

Ψ̃, are normalised with their standard deviation, which is estimated using the Jackknife

method:

Ψ = Ψ̃/std(Ψ̃) (7.4)

The disadvantage of PSI is that it estimates net information flow rather than ab-

solute. Should two sources transmit equal amounts of information to each other at

the same time, then the average phase slope of the sources over the frequency range

of interest will be zero. In this way, PSI is at a disadvantage to Granger causality-

based methods for connectivity analysis. However, due to PSI’s reported robustness to

volume conduction, there is no need to perform source localisation prior to analysis.

7.3 Connectivity Analysis of Acquired Dataset with PSI

The Healthy and Stroke-affected EEG data was analysed in Matlab [224] using a com-

bination of EEGLAB [232], PSI code1 and custom scripts to attempt to estimate con-

nectivity in each subject’s brain networks during each class of activity. The resulting

1http://doc.ml.tu-berlin.de/causality/
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normalised PSI scores would be analysed to determine if there are any statistically

significant differences between PSI-estimated information flow of healthy and stroke-

affected subjects.

7.3.1 PSI with Common Average Referencing

7.3.1.1 Processing Steps

In order to compare active hand EEG activity across all subjects, left-handed EEG

data was “mirrored”. As a result, EEG signals are no longer referred to by their

location on the 10-20 system but rather by “Contralateral” and “Ipsilateral”, to describe

the side of the brain opposite to the side of hand movement and on the same side

as hand movement, respectively. EEG data was then re-referenced using common

average referencing before being epoched into 10 second-long trials of data beginning

at instruction onset. Each trial of data was labelled appropriately as either “rest” or

“active”.

Finally, signals were assessed for movement artefact. 40 datasets were created:

“rest” and “active” for each of the ten healthy subject datasets, for the five early

stroke datasets and for the five late stroke datasets. Stroke datasets are labelled SXE

or SXL where X indicates subject number, E indicates “early” and L indicates “late”.

The PSI algorithm operates on a set of trials of epoched data, such as one of the 40

EEG datasets described above. For each trial of data in each dataset, the Ψ matrix of

size 32 × 32 is produced, as there are 32 EEG channels and so a matrix of interactions

between each of those channels is obtained. The diagonal of the PSI matrix is always

undefined, as there is no information flow from a signal to itself. It is important to

note that, as PSI estimates net information flow, the magnitude of PSI score between

any two signals is always of the same but with opposite sign.

PSI is capable of estimating information flow for any frequency range - allowing for

information of any frequency range to be estimated. Rather than limiting this initial

investigation into the method to narrow frequency ranges, the frequency range 5 to 30

Hz was chosen. As the 40 datasets contained 20 trials of EEG data, 20 Ψ matrices

were obtained for each dataset. Each of these matrices contained 32 × 32 = 1,024

elements. 32 of those matrix elements along the diagonal are null, leaving 1,024 - 32

= 992 PSI scores for each trial of data, describing net information flow between each
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scalp-recorded EEG channel. As there were 20 trials per dataset, there were 992 ×
20 = 19,840 PSI scores per dataset available for subsequent statistical analysis. Each

EEG channel pair had 20 PSI values representing net information flow between them.

These PSI scores will next be statistically analysed.

7.3.1.2 Statistical Analysis

Two-sided t-tests with a significance level of 5% were employed in order to determine

significant differences between the PSI scores of different datasets. To determine if

stroke had caused a statistically significant difference in information flow between two

EEG sensor locations, the PSI scores for a particular source-destination sensor pair for

all healthy subjects would be compared to the corresponding PSI scores for a stroke

subject. The statistical test would indicate any significant increase of decrease in PSI

scores.

Unfortunately, two immediate issues stand out. Firstly, there is no guarantee that

the EEG sensors are in precisely the correct location for each recording. Should the

EEG sensors have not been positioned in the exact same location across recording

sessions and across subjects, statistically significant differences may be found with no

relevance to brain networks, due to differing recording locations. Secondly, such an

approach would produce results displaying the statistical analysis results of 992 source-

destination pairs. As one of the stated goals of this investigation is to produce an

analysis method that is relatively simple for clinicians to observe brain networks in

patients, 992 separate statistical results are not simple to read.

In an attempt to reduce the sensitivity of this analysis to imprecise EEG sensor

positioning and to reduce the complexity of the statistical results, EEG sensors were

grouped into broad functional areas. The EEG sensor groups chosen were Contralateral

Motor Area, Ipsilateral Motor Area, Anterior/Frontal, Occipital/Parietal, Fz and Cz.

EEG sensors Fz and Cz are positioned over the Supplementary Motor Area, are area

of cortex involved in the planning of motor movements [252]. A table of these EEG

groupings, with the EEG locations in each group, is shown in Table 7.1.

As a result of this EEG sensor grouping, the PSI scores did not represent information

flow between sensors but between groups. Although, within a group of PSI scores, there

may be information flow in opposite directions between areas, a statistical analysis of
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EEG Group EEG sensors in group

Anterior/Frontal (A/F) Fp1, Fp2, AF3, AF4, F7, F8

Contralateral Motor Area (CoM) F3, FC1, FC5, T7, C3,CP1, CP5, P7, P3

Ipsilateral Motor Area (IpM) F4, FC2, FC6, T8, C4, CP2, CP6, P8, P4

Fz Fz

Cz Cz

Parietal/Occipital (P/O) PO3, PO4, O1, O2, Oz

Table 7.1: EEG sensor groups

the PSI scores would reveal any significant differences in information flow between

areas when comparing individual stroke subjects to healthy subjects. Any statistically

significant differences can be compared to established knowledge about the effects of

stroke, can be compared to the demographic details of a stroke subject and can be

compared to the motor control recovery seen in a stroke subject between recording

sessions.

The first statistical test involved comparing the PSI scores from all healthy subjects

to individual stroke subject datasets. All PSI scores for a particular source-destination

area pair for all healthy subjects were collected and statistically compared to the PSI

scores of the same source-destination area pair for each stroke subject. The second

statistical test involved comparing the PSI scores of a stroke subject’s early recording

session to their late recording session PSI scores. In both cases, the results indicated a

significant increase, a significant decrease or no significant difference in PSI scores.

7.3.1.3 Results

Figure 7.2 displays significant differences in information flow between healthy and stroke

datasets during motor activity. Figure 7.3 displays significant differences in information

flow between stroke early session datasets and corresponding late session datasets, for

both rest and active conditions. Each square on these grids represents a single source-

destination group pair. The source EEG group (“EEG From”) is found along the

horizontal axis while the destination EEG group (“EEG To”) is found on the vertical

axis. As there are 6 EEG groups (Table 7.1) there are 36 small squares on each grid.
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Squares along the diagonal are ignored, as information flow from an area to itself is not

considered.

For a particular grid position, a blue square indicates significantly higher PSI values

for the former dataset while a red square indicates significantly higher PSI values for

the latter dataset. A white square indicates no statistically significant difference in PSI

scores of the two datasets. Due to the nature of PSI, a significantly higher PSI score

in one direction is equal to a significantly lower PSI score in the reverse direction, so

these images are diagonally symmetrical with opposite colours.

Information on the datasets being statistically compared is found in the title of each

grid. For Figure 7.2, the average healthy data dataset is the “former” while each stroke

dataset is the “latter”. For Figure 7.3, the early dataset is the “former” while the late

dataset is the “latter”.

These result images indicate significant differences in PSI values between healthy

and stroke-affected EEG during motor activity and significant differences in PSI values

between same-subject stroke early and stroke late datasets during both rest and motor

activity. Based on these images, it appears that stroke-affected differences in brain

networks have been identified in the stroke subjects. For stroke subjects, there appears

to be increased information flow out of Cz to all other locations, as indicated by the red

squares in the Cz column of Figure 7.2. There also appears to be increased information

flow into Fz, as indicated by the blue squares in the Fz column of Figure 7.2. Signifi-

cant differences in PSI scores when comparing stroke early and stroke late datasets of

Figure 7.3 could only be attributed to neuroplastic change and so these results suggest

an explicit biomarker of plasticity has been uncovered, which is easy to implement with

EEG equipment and is easy to read and comprehend for a clinician. Unfortunately,

before coming to such conclusions, the results must be validated.

7.3.1.4 Validation

To ensure that these results are truly meaningful, they must be validated. Unfortu-

nately, due to the limited amount of subject data, it’s not possible to average results

across all stroke subjects and so results can only be considered in isolation. Without

the ability to average across a substantial amount of similar subjects/conditions, the

results can only serve as encouragement for further investigation. Also, the stroke early
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Figure 7.2: PSI score significant differences in Healthy v Stroke data. Blue indicates

higher PSI score for Healthy, red indicates higher PSI score for Stroke.
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Figure 7.3: PSI score significant differences in Stroke Early v Stroke Late data. Blue

indicates higher PSI score for Stroke Early, red indicates higher PSI score for Stroke Late.
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v stroke late results cannot be validated against healthy subjects as the healthy sub-

jects only participated in a single recording session. Therefore, other steps must be

taken to validate these results.

To validate these analysis results, statistical significance tests are applied to each

individual dataset by splitting the trials of a dataset in two and testing against each

other. Since the EEG sensors have not moved over the course of a single recording,

then there is no need to group EEG sensors together. Additionally, trials are separated

into odd- and even-numbered, so that any non-stationarities which manifest over the

course of a recording have an influence. The expectation is that no significant difference

is found between PSI scores of one half of a dataset against the other half.

Following processing of the datasets as before to obtain PSI scores, significant dif-

ferences between halves of a dataset are shown in Figure 7.4 and Figure 7.5. EEG

sensors have not been grouped here, so each plot is of a 32× 32 grid, with each square

representing the information flow from one EEG channel to another. For visual com-

parison, the results of non-grouped inter-dataset significant difference testing are shown

in Figure 7.6 and Figure 7.7.

These results from Figure 7.4 and Figure 7.5 show that, within a single dataset for

the same motor activity, statistically significant differences are found when, conceptu-

ally, there should be no difference and the plots should be clear. Ideally, at the same

time as the validation results being clear, the cross-dataset plots should be populated.

Although they are populated, they are still very similar to the validation plots.

Clearly, these test results invalidate the earlier healthy v stroke and stroke early v

stroke late results. There should be no significant difference in PSI values between one

half of a dataset and the other when the subject is performing the same action during

the same recording session when the EEG sensors have not moved. Therefore, some

aspect of the signal processing procedure is incorrect.

The reason for this outcome is that common average referencing can severely dis-

rupt coherence calculations, which are used to calculate PSI values. Fein et. al. [253]

concluded that “Phase relationships dramatically influence common reference data co-

herence” and that “coherence computed from common reference recordings must be

interpreted very cautiously”. Guevara et. al. [254] demonstrated that the choice of

EEG reference has a significant effect on synchronisation patterns and concluded that

common average referencing provides no better results than using noisy reference-free

161



7.3 Connectivity Analysis of Acquired Dataset with PSI

EEG data, which itself performs poorly. The results obtained here with common aver-

age referencing corroborate these works.

As suggested in the 2012 review paper by Greenblatt et. al [213] of connectivity

measures applied to electrophysiological data, the Laplacian operator may be of use

as an alternative referencing method. A Laplacian reference for an EEG channel is a

weighted sum of a number of nearest EEG channels [255]. To test whether Laplacian

referencing results in valid PSI analysis outcomes, this referencing method is applied

to the raw EEG data in place of common average referencing. For each EEG channel,

a “Small Laplacian” reference is applied, using only up to four nearest EEG channels

and weighted proportional to their distance [255]. Following referencing, the same

processing steps as before were applied.

Unfortunately, the Laplacian referencing results were no better than common aver-

age referencing results. Again, significant differences were seen between trials of a single

dataset. Therefore, despite recommendations from various works, Laplacian referencing

resulted in invalid PSI results with sensor-space EEG.

7.3.2 Latest EEG Connectivity Analysis Knowledge

The reason for poor performance of PSI applied to sensor-space EEG recordings, despite

Laplacian referencing, is revealed in a 2013 paper by Haufe et. al. [212] which assessed

connectivity measures for EEG data. By simulating two interacting EEG sources inside

a head model volume and the resulting scalp-recorded EEG signals, it was concluded

that “even for measures robust to volume conduction the interpretation of EEG sensor-

space connectivity is difficult”. The paper demonstrates that the choice of reference

electrode is critical to the outcome of connectivity analysis. Wildly different results

are found when utilising EEG locations TP9, TP10 and the nose for reference, for

example. This paper also demonstrates that the EEG channel signal-to-noise ratio

affects connectivity analysis outcomes and that the scalp Laplacian does not, in fact,

solve the problems of volume conduction in EEG affecting connectivity analysis.
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Figure 7.4: Healthy subject data: Same-subject, same-event PSI score significant differ-

ences for common average reference results. Blue/Red is not important as dataset order is

arbitrary.
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Figure 7.5: Stroke-affected subject data: Same-subject, same-event PSI score significant

differences for common average reference results. Blue/Red is not important as dataset

order is arbitrary.
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Figure 7.6: Healthy subject data: Same-subject, cross-event PSI score significant differ-

ences for common average reference results. Blue indicates higher PSI score for Rest, red

indicates higher PSI score for Active.
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Figure 7.7: Stroke-affected subject data: Same-subject, cross-event PSI score significant

differences for common average reference results. Blue indicates higher PSI score for Rest,

red indicates higher PSI score for Active.
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7.4 Future Stroke Connectivity Analysis

There is still potential for EEG-based connectivity analysis to become a useful, trusted

clinical tool to assist in post-stroke rehabilitation. Unfortunately, as demonstrated here,

it’s not possible with PSI analysis of sensor-space EEG data. In their paper on EEG

connectivity analysis, Haufe et. al. [212] also concluded that “In order to obtain better

interpretable results, it is helpful to conduct connectivity analysis on source estimates”

and that, following testing of three methods, the inverse source reconstruction method

known as sparse basis field expressions (S-FLEX) [256] performed best. The authors

finally concluded that “the assumptions made by a source estimation algorithm must

match the properties of the sources to be constructed”. Other work has concluded that

source localisation loses accuracy and reliability when fewer than 128 EEG sensors are

used and that when 32 full-head EEG sensors are used, average source localisation error

is 1.3 mm compared to 0.6 mm when using 128 or 192 full-head EEG sensors [257].

Despite this disadvantage compared to high-density EEG, source localisation with only

32 EEG channels is still possible and may yet prove useful for analysis of stroke EEG

following an investigation with significantly more experimental subjects than used in

this work.

The future of a clinical tool for producing a biomarker of neuroplastic recovery

therefore rests on the reliability and accuracy of EEG source reconstruction algorithms.

Assuming that such a reliable method is found then, as described above, the sources of

brain activation may be estimated and their location and interactions may be analysed.

The effects of stroke on brain activation patterns has been established through fMRI,

PET and EEG studies, as described in section 5.2. The objective now is to investigate

whether connectivity analysis of scalp-recorded EEG reveals clear differences in brain

networks between healthy and stroke-affected brains.

Since activation patterns are known to change following stroke, it is safe to assume

that, following source localisation, at least some estimated sources of stroke patients

will differ from those of healthy subjects. For any estimated sources of stroke-affected

brains which remain in similar locations to those of healthy brains, connectivity analy-

sis will reveal any significant changes which will hopefully support current knowledge.

Longitudinal studies may reveal shifting brain networks as the subject recovers. Ul-

timately, in this way, a clinical tool could possibly be developed to track post-stroke
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neurorehabilitation which is more comfortable, less expensive and more portable than

fMRI, PET or MEG.

7.5 Portable and Inexpensive Biofeedback BCI

Of fNIRS and EEG, it appears that the latter is currently superior brain measurement

modality for rehabilitation BCI. EEG is significantly more developed than fNIRS while

also being less expensive. In the author’s experience, it is more difficult to set up

an fNIRS recording than EEG while fNIRS performs less reliably, has a much slower

response time and may introduce additional safety concerns to a subject’s eyesight with

the use of lasers. Until fNIRS is further developed, EEG is the more suitable choice for

rehabilitation BCI.

As discussed in section 3.6, some concerns for rehabilitation BCI include the patient

experience and the financial cost of research. Numerous factors may affect a stroke

patient’s engagement with therapy, such as the subject’s mood, fear or other cognitive

issues [258]. Another possibility is that the therapy itself is off-putting to the subject

in some manner, perhaps by making the subject physically uncomfortable. Patient

engagement with rehabilitation therapy is an important topic, which can be addressed

in a variety of ways, including virtual reality [259] and video games [129, 260].

The problem of a stroke patient having to travel to therapy could be eliminated with

at-home rehabilitation therapy. At-home stroke rehabilitation therapy has been shown

to improve rehabilitation outcomes in terms of activities of daily living and also reduces

risk of deterioration [261]. Advocates of home-based stroke rehabilitation suggest that

there are several other advantages to moving towards home-based rehabilitation [262],

such as freeing up hospital beds, reducing the risk of nosocomially-acquired illnesses

and reducing the risk of distress from prolonged stay as an inpatient.

Currently, biofeedback BCI systems are too expensive and cumbersome for at-home

deployment, particularly due to a robotic biofeedback component (e.g. [147, 263, 264,

265, 266, 267]). Widespread deployment of at-home rehabilitation BCI devices also

depends on the financial cost of each system. As this cost lowers, such devices may be

utilised more. Finally, the financial cost of biofeedback BCI systems is a deterrent to

potential researchers interested in performing their own experiments and collecting their

own data. This section describes a proof-of-concept design of a low-cost, portable EEG
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rehabilitation BCI which uses a lightweight inflatable glove to supply haptic feedback

to the subject.

7.5.1 Pneumatic Glove

The haptic feedback component of the system is a pneumatically-controlled hand ther-

apy glove which provides finger and wrist extension to a limp or uncontrolled hand.

The glove is lined with air bladders along the back of the glove and along each digit.

The hand is attached to the glove by velcro straps at the wrist and at each digit while

the glove is full deflated, as shown in Figure 7.8. As the air bladders fill with air,

they become rigid and the hand is encouraged to conform to the shape of the glove, as

shown in Figure 7.9. The glove utilised here is re-purposed and is no longer in produc-

tion. However, a similar pneumatic glove, the PneuGlove, has been described elsewhere

[268, 269] and would be a suitable low-cost replacement.

Figure 7.8: Hand in pneumatic glove when fully deflated.

A 12 V DC diaphragm vacuum pump supplies positive and negative air pressure

to the system. Two electro-mechanic 3/2 solenoid valves control the supply of either

positive or negative pressure to the glove from the air pump. An Arduino Uno (Ar-

duino, Ivrea, Italy), which has been programmed to receive instruction over a serial

communication link from a PC, controls the valves by controlling their power supply.
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Figure 7.9: Hand in pneumatic glove when fully inflated.

Depending on the instruction received over serial link, the Arduino Uno will control

the supply of positive or negative air pressure to the glove, thus inflating and deflating

the glove. The pneumatic control system of air pump, valves, power supply, Arduino

Uno and tubes is shown in Figure 7.10.

The time taken for the glove to move a subject’s hand from minimal to maximal

deflection is 12 seconds. The time taken to return from maximal to minimal deflection

is 10 seconds. Therefore, the total time taken to move a subject’s hand through the

full range of possible movement is 22 seconds. More powerful air pumps could decrease

this time, if desired.

7.5.2 EEG Brain-Computer Interface

A typical EEG BCI system was implemented using g.tec (g.tec Medical Engineering

GMBH, Austria) EEG hardware and software. 27-channel EEG was recorded from

positions FCz, FC1 - FC8, Cz, C1 - C8, CPz and CP1 - CP8 of the 10-20 system for

electrode placement, covering the motor and central areas, with a g.USBamp amplifier

sampling data at a rate of 256 samples per second. This g.tec system was used for this

investigation because it is relatively easy to set up and works well almost out-of-the-

box. Compared to BioSemi EEG systems, g.tec system hardware and software is easier
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Figure 7.10: Pneumatic control system.

to use, which is important for portable rehabilitation systems potentially operated by

therapists without expert EEG skills.

A modified version of g.tec BCI software was used to implement a real-time Common

Spatial Patterns (CSP) BCI [270]. CSP is a typical BCI signal processing stage which

involves deriving an optimal set of EEG spatial filters from a set of training data which,

when applied to incoming real-time EEG, produces new signals whose variance can be

used to discern between two classes of EEG activity. The operation of CSP is explained

in more detail elsewhere [233, 236] and also in this thesis in subsection 6.3.3. An LDA

classifier boundary is also trained from the set of training data for subsequent real-time

classification.

All sampled EEG was band-pass filtered to the 0.5-30 Hz frequency range and had

an additional 50 Hz notch filter applied. EEG was then filtered again to the 8-30 Hz

range before CSP processing. The g.tec software [271] was used to exclude artifact-

affected trials and noisy channels, to then perform CSP analysis and to finally train

the LDA classifier on CSP signal variance for subsequent real-time testing.

During real-time operation, EEG was temporally filtered as before, spatially filtered
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by the pre-trained CSP filters and then the variances of the top and bottom two CSP

channels were classified to determine which class of activity the real-time EEG belonged

to. The classifier produced a constant 1-dimensional output which was low-pass filtered

with a moving-average filter of length 0.5 seconds to produce a smooth output. At a

particular time after instruction onset, determined during BCI training, the classifier

output was sampled. The value of this sampled classifier output determined which class

of activity the subject was performing. Depending on which class of activity the subject

was deemed to be performing, a control signal may have been sent to the Arduino to

instruct that the glove be inflated then deflated. An overview of the full rehabilitation

BCI system is presented in Figure 7.11.

Figure 7.11: Full rehabilitation BCI system overview.

7.5.3 Subjects

Three subjects (all male, aged 24–28) participated in a system test. Subjects were all

self-reported right handed and gave oral consent before participation. Subjects were

recruited from Maynooth University.

7.5.4 Experimental Protocol

To demonstrate the operation and feasibility of this stroke rehabilitation BCI platform,

subjects participated in the training and testing of an overt movement BCI. During
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training and testing sessions, subjects were seated in a comfortable chair, had their

hand affixed to the glove and followed instructions presented on a PC monitor in front

of them at eye level. The subjects wore the pneumatic glove during both sessions. 20

rest trials and 20 active trials were presented in a randomized order in each session.

During an active trial, the subject was instructed to perform self-paced dominant-hand

digit contraction and extension, as this action resembles the movement induced by glove

inflation and deflation.

For the training session, each trial lasted 8 seconds. At 0 s, the screen went blank.

At 2 s, a fixation cross appeared on-screen. From 3 s to 4.5 s, an instruction arrow

appeared, pointing right to indicate a movement instruction or pointing left for a rest

instruction. From 4.5 s to 8 s, the fixation cross remained on-screen. The subjects were

instructed to perform the action (rest or movement) as soon as the arrow appeared and

to rest when the cross disappeared. For each subject, the recorded EEG was analysed

to produce optimal CSP filters, to train the LDA classifier and to determine the optimal

delay after instruction onset to sample the smoothed classifier output.

For the test session, each event lasted 30 seconds. Instruction presentation was the

same as before except that the fixation-cross remained on-screen from 4.5 s to 30 s.

During these 25.5 s, feedback of the classifier output was also presented on-screen in

the form of a bar extending to the left or right of the centre of the screen. The sign of

the sampled classifier output determines the decision to inflate then deflate the glove

or to let it remain deflated. A positive sample value indicates movement classification

while a negative sample value indicates rest classification. As inflation and deflation

of the glove takes 22 seconds, there is sufficient time per trial for full range of hand

movement induced by the glove.

7.5.5 Results

A table of classification accuracy results of the BCI test sessions is shown in Table 7.2.

Presented in Figure 7.12 is a representative section of the time course of classifier output

with timings for active and rest instruction onset, classifier sample times, classifier

sample points and an illustration of the changing air pressure in the glove over time as

it reacts to the classifier output.
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Subject Classification Accuracy

A 92.5%

B 90.0%

C 80.0%

Table 7.2: Rehabilitation BCI classification accuracy results.

Figure 7.12: Time-course of classifier output with indicated event timings and illustrated

glove air pressure.

7.5.6 Discussion

The focus of this work is not on the accuracy or performance of this BCI system.

Instead, the focus here is on the viability of this portable, inexpensive BCI system as a

real at-home solution for stroke rehabilitation therapy. The BCI software implemented

here is relatively uncomplicated and, with some development or replacement, could

easily perform much better. This BCI software demonstrably decoded the subject’s

actions with a good level of success and, though quite simple in hardware design,

provided somatosensory feedback to the user, as is required to induce Hebbian learning

174



7.6 Summary

effects in a stroke patient.

By comparison to current state-of-the-art rehabilitation BCI systems, the custom

pneumatic glove system here is considerably cheaper, considerably more portable and

considerably easier to operate, particularly with respect to the haptic feedback device.

The financial cost of rehabilitation robotics discourages and prevents some researchers

from developing the field. This design proves that a biofeedback BCI system is accessi-

ble to more researchers and also provides a step towards at-home stroke rehabilitation

systems.

The suitability of this system for at-home therapy use lies not only in the portability

and usability of the system but also in the materials chosen. The pneumatic glove used

is comfortable to wear and uses adjustable velcro straps, allowing it to fit different size

hands. It is easy to don and doff therefore it is entirely possible for a family carer or even

the user to use the system without technical assistance. The glove design inherently

minimises movement restrictions placed on the user as there are no stiff mechanical

parts. The pneumatic control system was designed with portability in mind, weighing

less than 2 kg and is housed in a compact case. The system can be used with any PC,

requiring only installation of the software.

This proof-of-concept work is based on a small number of trials with a small number

of healthy test subjects. While a larger investigation, possibly with stroke-affected

subjects, may provide more reliable BCI performance results, there is no reason to

believe that the BCI will not perform well as the hardware and software are standard

or minimally modified. It may be interesting to see how easily this system can be used

by stroke patients. Further to this, it would be very interesting to see how well this

system performs in a BCI-based stroke rehabilitation investigation.

7.6 Summary

This chapter describes concluding work on two applications of BCI for stroke: as a

potentially useful clinical tool and as a portable at-home rehabilitation therapy device.

The first part of this chapter describes attempts to perform connectivity analysis on

sensor-space EEG which may reveal an explicit biomarker of post-stroke neuroplastic-

ity. Such a biomarker, if adequately reliable, could be used in a clinical setting to assist

in evaluation of post-stroke recovery. The advantage of such a tool is that it is based on
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EEG measurement - a relatively cheap, comfortable and portable measurement modal-

ity. Connectivity analysis purported to be robust to the volume conduction effects of

scalp EEG was investigated using standard EEG processing techniques. Following fail-

ure to obtain meaningful results, further investigation into EEG connectivity analysis

literature revealed that connectivity analysis with sensor-space EEG is unreliable and

that source localisation must be performed first. While an explicit biomarker of neu-

rorehabilitation is not found here, this chapter serves as an example of how PSI-based

connectivity analysis of sensor-space EEG is unsuitable and describes future direction

of research on this topic. The description of the design and development of a low-cost,

portable biofeedback BCI demonstrates a possible future for stroke rehabilitation in

the community. Systems similar to the one described here may improve the lives of

stroke survivors in the near future with more development.
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Chapter 8

Conclusion

8.1 Summary and Discussion

The work described in this thesis has contributed toward the improvement of EEG

and fNIRS-based methods for stroke rehabilitation. Two main approaches were taken

towards this objective: improvement of current EEG and fNIRS rehabilitation BCI

research tools, and investigation of novel tools for clinical evaluation of stroke rehabili-

tation. After introducing the physiological and technological basis for EEG and fNIRS

rehabilitation BCI in chapter 2 and chapter 3, various challenges and opportunities for

advancement of EEG and fNIRS rehabilitation BCI were identified and investigated

in chapter 4. fNIRS BCI is a relatively young research topic and has not experienced

the level of development of EEG. This is likely due to the popularity of EEG as a

brain measurement modality and the relatively low financial cost of EEG hardware.

While fNIRS is perfectly feasible as a brain measurement modality, hardware is more

expensive, less commonly found in clinical or research setting and thus less accessible

for research. fNIRS has some disadvantages compared to EEG in that skin tone, hair

colour and hair thickness can make fNIRS measurement difficult. Additionally, due

to the slow nature of the haemodynamic response, fNIRS has limited use as the sole

measurement modality for rehabilitation BCI, which requires rapid action for feedback

to the user. Despite this, fNIRS still has prospects in rehabilitation BCI.

By incorporating EEG and additional fNIRS channels to the simplified 1-channel

fNIRS ‘Mindswitch’, both haemodynamic and electric brain activity was measured for
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the motor cortex for BCI operation. The results of this test suggested that this hybrid

fNIRS/EEG BCI approach results in improved BCI performance over either modality

acting in isolation. The area covered by the designed fNIRS/EEG patch, however, was

relatively small, precluding the use of some EEG processing techniques, such as CSP.

Recent hybrid fNIRS/EEG work conducted by Fazli et. al. [272], Putze et. al [172]

and by Yu et. al. [170] utilised either full-head or wide-area measurement. It may be

more prudent to advance full-head hybrid fNIRS/EEG BCI and, once it is developed

to a reliable state, begin to investigate a reduction in measurement channels to the

advantage of the stroke patient’s experience. On the topic of hybrid measurement,

Pfurtscheller et. al. [273] suggest investigating the use of three measurement modalities.

This would certainly be an exciting and interesting advancement of hybrid BCI.

GP-based spatial interpolation provided an interesting approach to fNIRS imaging.

The spatial variance information was unfortunately not tested with any more than four

fNIRS channels but results were encouraging enough to warrant further investigation

with additional channels. As rehabilitation BCI is ideally portable, it may be necessary

to employ image processing algorithms which are less intensive that the gold standards

for accuracy. fNIRS imaging may be useful for tracking haemodynamics during cortical

healing and GP-model interpolation may be useful in producing those images.

Synthetic fNIRS data generation has multiple uses. As a research tool, it may be

useful for “sanity checking” a biosignal processing method or to produce a large amount

of pseudo-random fNIRS data to compare signal processing methods. As an educational

tool, observing the effect of each fNIRS component on signal processing output may

be very valuable. There is significant room for development of this algorithm. For

example, the effect of the subject’s breathing pattern is not included, nor is a component

for movement artefact. Further development of the algorithm may result in a tool for

testing artefact removal techniques.

The biofeedback glove BCI is an example of how low the barrier of entry to re-

habilitation BCI research currently is. This system was built using an inexpensive

commercial EEG system, simple modifications to the included hardware and some in-

expensive hardware. The system is very portable and will hopefully inspire researchers

to construct a similar system of their own for research. It’s important that a researcher

who is interested in a particular topic be able to contribute. This system shows that

conducting rehabilitation BCI research does not have to be a very expensive endeavour.
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This system also serves as a basis for further improvements. For example, EEG signal

processing could be upgraded to perform more accurately, more powerful air pumps

could be used or the use of dry electrodes could be investigated. As rehabilitation BCI

aims to improve the subject’s experience, dry EEG electrodes reduce set-up time and

so improve subject engagement.

The investigations which took place over chapter 5 and chapter 6 drew numerous

conclusions. Firstly, despite stroke causing significant damage to the brain and alter-

ing its patterns of activation, EEG measured from healthy and stroke-affected brains

is not noticeably different from spectral content or ICA investigations. As further in-

vestigation was warranted, the EEG was analysed from a BCI perspective in order to

determine whether offline BCI analysis could determine differences between healthy and

stroke-affected EEG, and, if such differences exist, determine the utility of those differ-

ences. Following the investigation with a BCI comprised of FBCSP, marginal relevance

and GP classification, some conclusions were drawn. Firstly, classifying stroke-affected

EEG with a BCI trained on healthy EEG may be useful as a biomarker of stroke re-

covery. Classification accuracies of healthy EEG were significantly higher than those

of stroke EEG with a BCI trained on healthy data. Secondly, the effects of a stroke

were observable through the frequency range of the selected features - another pos-

sible biomarker of stroke rehabilitation. As a subject suffered a stroke, the selected

frequency range for classification decreased. What is yet to be determined, however, is

whether the selected frequency ranges eventually return to those of healthy subjects,

or whether selected frequency range is related to motor ability. Unfortunately, due to

the small cohort size, these results do not provide conclusive proof of the utility of

this biomarker. These results provide encouragement for a similar investigation with

a larger number of stroke patients, conducted over a longer period of time, and with

various BCI designs tested.

The stroke rehabilitation biomarker obtained through offline BCI is implicit by na-

ture. BCI parameters and classification accuracies are not direct measures of neuronal

activity but rather are only influenced by that activity. An explicit biomarker of stroke

rehabilitation, one directly affected by neuronal activity, was the subject of attention

in chapter 7. Investigations into the differences between healthy, early stroke and late

stroke EEG were carried out through PSI connectivity analysis of the EEG sensor
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data. Unfortunately, EEG sensor data was shown to be inappropriate for PSI connec-

tivity analysis. However, there remains ample opportunity for a similar investigation

with source localisation applied to the sensor data first. A clinical tool based on scalp

recorded EEG, source localisation and PSI-estimated information flow is a possibility.

Such a biomarker of stroke rehabilitation, presented in a clear manner, could be a useful

tool to guide rehabilitation therapy in a clinical setting.

This thesis discusses rehabilitation BCI which utilises primarily haptic feedback.

Each of the topics discussed here are equally as applicable to other stimulus methods,

such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct

current stimulation (tDCS) [274, 275, 276, 277] to improve rehabilitation outcomes.

Additionally, the BCIs discussed here may be used in conjunction with functional elec-

trical stimulation (FES) [278, 279] to further assist stroke patients. As a research topic,

rehabilitation BCI exemplifies the best of biomedical engineering - using technology to

improve the lives of those who need it most. This thesis contributes some solutions to

problems faced by rehabilitation BCI and encourages further investigation.

8.2 Concluding Remarks

This thesis describes advances in knowledge of the effects of stroke on brain networks

and in the design of stroke rehabilitation BCI systems. Novel investigations into the

representation of stroke recovery in machine learned BCI parameters and connectivity

measures were carried out and results of these investigations encourage potential use

as a clinical tool to aid in stroke rehabilitation efforts. Other work improved stroke

rehabilitation systems by exploring novel hybrid BCI designs and imaging methods.

Finally, the barrier to EEG and fNIRS rehabilitation BCI was lowered through devel-

opment of a software-based fNIRS dataset generator and design of a simple, low-cost

biofeedback BCI system. The work described in this thesis has advanced the prospects

EEG and fNIRS stroke rehabilitation brain-computer interfacing by improving system

design, understanding of the effects of stroke and facilitating further rehabilitation BCI

research. The author hopes that his work contributes to the alleviation of suffering in

stroke survivors.
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