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The security of systems is often predicated on a user or application selecting an object,

a password or key, from a large list. If an inquisitor who wishes to identify the object

in order to gain access to a system can only query each possibility, one at a time,

then the number of guesses they must make in order to identify the selected object is

likely to be large. If the object is selected uniformly at random using, for example,

a cryptographically secure pseudo-random number generator, then the analysis of the

distribution of the number of guesses that the inquisitor must make is trivial.

Since the earliest days of code-breaking, deviations from perfect uniformity have been

exploited. For example, it has long since been known that human selected passwords

are highly non-uniform, e.g. [36], and this forms the basis of dictionary attacks. In

information theoretic security, uniformity of the string source is typically assumed on

the basis that the source has been compressed. Recent work has cast some doubt on the

appropriateness of that assumption by establishing that fewer queries are required to

identify strings chosen from a typical set than one would expect by a näıve application

of the asymptotic equipartition property. This arises by exploitation of the mild non-

uniformity of the distribution of strings conditioned to be in the typical set [11].

If the string has not been selected perfectly uniformly, but with a distribution that is

known to the inquisitor, then the quantification of security is relatively involved. Assume

that a string, W , is selected stochastically from a finite list, A = {0, . . . ,m − 1}. An

inquisitor who knows the selection probabilities, P (W = w) for all w ∈ A, is equipped

with a method to test one string at a time and develops a strategy, G : A 7→ {1, . . . ,m},
that defines the order in which strings are guessed. As the string is stochastically selected,

the number of queries, G(W ), that must be made before it is identified correctly is also a

random variable, dubbed guesswork. Analysis of the distribution of guesswork serves as

a natural a measure of computational security in brute force determination. Guesswork

is the subject of this thesis, both in the original setting described above as well as in

generalized scenarios.

Motivated by both lossless compression and brute force searching, in a brief paper in

1994 it was Massey [39] who first framed this question of guesswork. If W is uniformly

distributed, all guesswork orders G result in the same stochastic properties of G(W ) and

no more than elementary algebra is required to study the guesswork distribution. If W

is not uniformly distributed, however, the choice of G does matter. Massey introduced

the natural guesswork ordering, G, of inquiring about characters from most likely to
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least likely, breaking ties arbitrarily, and analysed it. To put this in more mathematical

terms, G is such such that G(w) < G(w′) implies that P (W = w) ≥ P (W = w′) for all

w and w′ ∈ A. Later in the thesis, we place a formal meaning on the optimality of this

guesswork strategy in terms of stochastic dominance.

The Shannon entropy of a random variable, e.g. [14],

H(W ) := −
∑
w∈A

P (W = w) logP (W = w),

is a commonly appearing measure of variability. Massey asked if the average guesswork

E(G(W )) could be characterized in terms of the Shannon entropy of W , H(W ), and

demonstrated that this was not the case. He established the following lower bound on

the expected guesswork

E(G(W )) =

m∑
i=1

iP (G(W ) = i) ≥ 1

4
2H(W ) + 1,

but found is there is no similar upper bound. This discrepancy is most readily understood

by the following example.

Consider the distribution of W with a single likely element and the rest of the probability

distributed uniformly amongst the remaining letters,

P (W = i) =


m− 2

m
if i = 0

2

(m− 1)m
if i ∈ {1, . . . ,m− 1}

For this distribution, shown in Figure 1.1 with |A| = m = 5, E(G(W )) = 2 for all m,

but the Shannon entropy of W tends to 0 as m becomes large. The Shannon entropy of

W is dominated by P (W = 0), while the average guesswork depends heavily on the fact

that if W 6= 0, then a large number of guesses will, on average, be required to identify

it. A comparison of the average guesswork, E(G(W )), and the Shannon entropy of W

is shown in Figure 1.2 for a range of alphabet sizes, m.

As Shannon entropy is not a good measure of average guesswork, what is the appropriate

measure? In 1996, this is the question that Arikan [1] addressed, introducing regularity

into the analysis by considered a sequence of guesswork problems with increasing string

lengths. He considered a sequence of string distributions {Wk}, where Wk maps to Ak,
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Figure 1.1: Probability mass function for
P (W = 0) = (m − 2)/m and
P (W = i) = 2/(m2 − m) for
i ∈ {1, . . . ,m− 1} with m = 5.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

m

 

 
Average Guesswork
Shannon entropy

Figure 1.2: Comparison between the Shan-
non entropy, H(W ), and the
average guesswork, E(G(W )),
for the distribution of P (W =
0) = (m − 2)/m and P (W =
i) = 2/(m2 − m) for i ∈
{1, . . . ,m−1}, shown as a func-
tion of m.

consisting of independent and identically distributed characters (i.i.d.), and analysed the

moments of the guesswork distribution in the long string-length limit, i.e. as k becomes

large. As k increases, the number of strings |A|k = mk grows exponentially and so the

appropriate scaling to capture the dominant behaviour of the moments of guesswork is

1

k
logE(G(Wk)

α), for α > 0.

In this i.i.d. character setting, Arikan established that

lim
k→∞

1

k
logE(G(Wk)

α) = αR1

(
1

1 + α

)
, for α > 0, (1.1)

where R1(β) is the Rényi entropy, e.g. [14], of a single character W1 given by

R1(β) =
1

1− β
log
∑
w∈A

P (W1 = w)β, for β > 0.

In particular, for α = 1, E(G(Wk)) ≈ exp(kR1(1/2)) and the expected guesswork grows

with exponent R1(1/2), the Rényi entropy of a character with a parameter 1/2, a value

that is necessarily no smaller than the Shannon entropy of W1.
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The i.i.d. character assumption made by Arikan was subsequently significantly relaxed,

proving the robustness of this result, with analogous deductions made replacing the

Rényi entropy of a single character with the Rényi rate, also known as specific Rényi

entropy,

R(β) = lim
k→∞

1

k
Rk(β), where Rk(β) =

1

1− β
log

∑
w∈Ak

P (Wk = w)β.

The ultimate result being that

lim
k→∞

1

k
logE(G(Wk)

α) = αR

(
1

1 + α

)
, for α > 0.

in greater generality than strings made of i.i.d. characters.

This work began with a paper by Malone and Sullivan [37] in 2004 which extended

Arikan’s result to the case where the characters of each Wk are formed a stationary,

irreducible Markov chain, e.g. Billingsley [5]. Employing the tools of Ergodic Theory [54],

in the same year, Pfister and Sullivan [46] relaxed Arikan’s i.i.d. assumption significantly

further still. In that paper, the process {Wk} is constructed via an ergodic measure v

on AN where A is equipped with the discrete topology and its Borel σ−algebra. Let vk

represent v’s restriction to Ak, vk(wk) = v(A(w, k)) where A(w, k) := {w′ ∈ AN : [w′]k =

wk} and [w]k denotes the first k characters of w. Then this setup relates to previous

work by defining the string distributions as P (Wk = wk) = vk(wk) for all wk ∈ Ak. The

Shannon entropy of any shift invariant probability measure ρ on AN is defined to be

h(ρ) := − lim
k→∞

1

k

∑
wk∈Ak

ρk(wk) log ρk(wk).

Two conditions are imposed on the string source v in [46]. The first is that for all shift

invariant probability measures ρ on Σv = ∩k{w ∈ AN : v([w]k) > 0}, for any open

neighbourhood U of ρ and given ε > 0, there exists an ergodic shift invariant probability

measure ρ∗ ∈ U such that h(ρ∗) ≥ h(ρ)− ε. The second is that there exists a continuous

nonnegative function ev : AN → R that satisfies

lim
k→∞

sup
{w∈Ak:vk(w)>0}

1

k
| log vk(w) + ev(w)| = 0.

As well as generalizing the i.i.d. and Markovian character assumptions, they also showed

that equation (1.1) holds for α > −1. Pfister and Sullivan (private communication)
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suggested that this latter extension, which appears unusual in considering the scaling

limits of E(G(Wk)
α), was done solely for mathematical generality as their arguments

did not require α to be greater than 0. This extension will, however, prove crucial to

the developments in this thesis.

Finally, we mention one last generalization of Arikan’s source assumptions. Hanawal

and Sundaresan [25] showed that

lim
k→∞

1

k
logE(G(Wk)

α)

exists for α > 0 if and only if the Rényi rate R(β) exists for β > 0, but that it is unknown

if the former corresponds to αR(1/(1 + α)) in all such cases.

All of the work described so far relates to results on the moments of guess-

work, but it does not provide a direct approximation to the guesswork distribution,{
P (G(Wk) = n) : n ∈ {1, . . . ,mk}

}
, which is the initial aim in this thesis. In doing so,

we will develop a new set of tools for studying guesswork that allow us to substanially

extend its remit.

The work presented in this thesis begins with the simplest of observations: the scaling

of the moments in equation (1.1) can be rewritten as

lim
k→∞

1

k
logE(G(Wk)

α) = lim
k→∞

1

k
logE

(
eα logG(Wk)

)
= Λ(α)

demonstrating that these earlier results can, in fact, be considered as identifying the

scaled Cumulant Generating Function (sCGF), Λ, [16] of the process {k−1 logG(Wk)}
for α > −1. This suggests leveraging the results in [1, 37, 46, 25] to prove a Large

Deviation Principle (LDP) for the process {k−1 logG(Wk)} from which estimates on the

guesswork distribution can be developed. Due to the covariance of the LDP, this provides

us with a new tool that we use to extend the guesswork remit to guessing over noisy

channels as well as multi-user systems. In the latter case, the resulting rate functions

are typically non-convex, which explains why approaches via the sCGF would not suffice

to obtain answers.

The key contributions to the study of guesswork that can be found in this thesis are:

• Chapter 3 extends equation (1.1) to α ≤ −1 in order to fully characterize the sCGF
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and proves, with little more than the assumptions of [46], that {k−1 logG(Wk)}
satisfies a large deviations principle. We identify the rate function, which need not

be strictly convex, in terms of the Legendre-Fenchel transform of the sCGF. This

is then used to get direct estimates on the probability mass function of guesswork.

Returning to Massey’s original observations, we show that the expectation of the

logarithm converges to the specific Shannon entropy of the string selection pro-

cess. This work, performed in collaboration with K. Duffy, was published in IEEE

Transactions on Information Theory in 2013, [10] and provides insights into both

brute force searching and lossless coding.

• Chapter 4 uses guesswork to show that a commonly used approximation in Infor-

mation Theoretic Security [6], which is suggested by the Asymptotic Equipartition

Property and source compression, that every string inside a typical set is uniformly

distributed is ill advised. Most importantly we prove that the expected guesswork

for a source conditioned to create strings in the typical set grows at a lower ex-

ponential rate than that of the uniform approximation. The case of independent

and identically distributed characters is published in the proceedings of the IEEE

International Symposium on Information Theory in 2013 [11], based on work per-

formed in collaboration with K. Duffy as well as F. du Pin Calmon and M. Médard

(MIT). A more general version is presented here.

• Chapter 5 examines the case of guessing the missing characters of a string sent

across a binary erasure channel, again establishing a LDP for the resulting guess-

work. This provides an unusual result in the world of wiretap channels as it can be

easier, on average, to guess a string over a channel that is, on average, noisier. This

work appears in the proceedings from the 2013 Asilomar Conference on Signals,

Systems, and Computers [12] and was work performed in collaboration with K.

Duffy as well as F. du Pin Calmon and M. Médard (MIT).

• Chapter 6 significantly extends the guesswork question to multi-user systems. In

particular, it studies the case of strings being selected independently by V users,

with the inquisitor wishing to identify U of them. It is assumed that the inquisitor

can guess (user, word) combinations one at a time. We show that, unlike the

single-user setting, an optimal strategy does not always exist, but that there is a

strategy that is optimal in an asymptotic sense. We prove a LDP for the guesswork

process in this setting, establishing that the rate function may, in general, be non-
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convex which explains why this would not have been possible prior to the work

in Chapter 3. In the restricted setting where user’s string statistics are the same,

the rate function is necessarily convex and we find that the average guesswork

growth-rate is R((V − U + 1)/(V − U + 2)), generalizing the single user case.

The results contained in this chapter informs the security of multi-user and cloud-

based systems from both a system designer and hacker’s point of view. This

work performed in collaboration with K. Duffy as well as F. du Pin Calmon and

M. Médard (MIT), and has been accepted at IEEE Transactions on Information

Theory. The submitted version can be found on the ArXiV [13].

• The thesis comes to a close in Chapter 7 with some speculative, partial results

and a conjecture. On studying the process {k−1 logG(Wk)}, it becomes appar-

ent that the scaling provides a good approximation to the guesswork distribution

P (G(Wk) = n) for small n, but becomes increasingly approximate for larger n.

This suggests considering reversing the order of G, which we denote GR, guessing

from the least likely string to the most likely string, to get better approximations

at the other end of the guesswork distribution. Establishing results for the LDP

of {k−1 logGR(Wk)} appear fraught, but we establish the LDP for the simplest

case, strings made of i.i.d. binary characters, establishing that the resulting large

deviations rate function is strictly concave. This estimate is then combined with

the estimate from [10] to create a conjectured, more accurate approximation to the

guesswork distribution. This work has not yet been submitted for publication.

Before providing, in Chapter 2, a review of the tools in Large Deviations that are relevant

in this thesis, we end this introduction by summarizing other developments in the study

of guesswork that are related, but somewhat tangential, to work developed here.

Arikan and Merhav [3] altered the framework of Arikan [1] by saying that the inquisitor

stops guessing once they identify the chosen string within a distance D ∈ [0,∞) of

W , based on a metric d : Ak × Ak → [0,∞). Assuming that strings are created from

i.i.d. characters, the scaling of guesswork moments is identified for all α > 0. Those

results are further expanded upon by Merhav, Roth and Arikan [43] by considering a

successive round of guessing. In the first round, as above, the inquisitor is informed

when W is found within some distance D. In the next round, the resolution is increased

and the inquisitor is alerted when the string is identified within a distance D′, possibly

using a different metric d′ : Ak × Ak → [0,∞). Assuming that strings are created from
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i.i.d. characters, the scaling of guesswork moments is lower bounded for all α > 0, but

achievability of this lower bound was left as an open problem. Ghazaryan and van der

Meulen [22] subsequently showed that the minimal exponent for the average guesswork

can be achieved if d = d′.

The closest piece of work to our multi-user analysis is that of Merhav and Arikan [42].

They consider a string picked with i.i.d. characters from a finite alphabet and encrypted

using a key of the same length chosen perfectly uniformly, potentially using a different

sized alphabet. It is assumed that the inquisitor knows everything needed to decrypt

the message except the message and the key. Thus the inquisitor has the choice of either

guessing the string directly or the key and using it to decrypt the string. The authors

identify how the moments of guesswork scale in this case. We demonstrate, however, that

this is one of the situations where the rate function for the associated LDP is non-convex

and so the LDP could not be deduced by their methodology.

The results in [42] have been extended in several ways. In [28] Hayashi and Yamamoto

examined the case where there is an additional i.i.d. source correlated to the first used for

coding purposes. Harountunian and Ghazaryan [27] operate in the setting of Arikan and

Merhav [3] so that an inquisitor need only identify the string within a certain distance,

but allow the second string to not necessarily be uniform and consider only expected

guesswork. Hanawal and Sundaresan [26] returned to the bounds of [1] showing that

they are tight for Markovian and unifilar sources.

Sundaresan [49] studies the case where the inquisitor does not know the distribution of

W , but believes they do. Therefore they might not be asking in decreasing order of

string-likelihood. In this case all that can be found are bounds on the amount of guesses

required from the inquisitor. Altering that model slightly, what if the inquisitor knows

that they don’t know the process used to pick the string? In [49] Sundaresan shows

that, from an asymptotic point of view, if the inquisitor knows the strings were created

in an i.i.d. fashion, there still exists an ordering for universal guessing that minimises

the exponent of the average guesswork. To achieve that ordering, the set of all possible

strings are divided into types. Two strings are in the same type if they contain the same

number of characters of each type. The ordering is defined by guessing from the type

containing the least amount of strings to the type containing the most, breaking any ties

arbitrarily.

Sundaresan [50] used length functions to show the link between guesswork and compres-
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sion. A length function is a function L : A→ N that satisfies the Kraft inequality∑
w∈A

e−L(w) ≤ 1.

Length functions allow Sundaresan connect guesswork and Campbell’s coding problem

[9]. This comparison is extended by Hanawal and Sundaresan [24] to compare guesswork

and compression with a countably infinite alphabet.

Malone and Sullivan [38] provide an experimental study related to Massey’s original

work. Taking passwords from leaked datasets and treating them as single characters,

they compare the average guesswork to the Shannon entropy, providing a practical il-

lustration of Massey’s results.

Boztas [7] and Dragomir [18] established tighter bounds in the finite string length case

than Arikan’s [1]. Boztas [8] examines strategies where the inquisitor has no memory

and so guesses in a randomized order, potentially repeating queries, and identifies a

strategy that minimizes the expected guesswork exponent.

Lundin and Lindskog, [34] and [35], examined the average guesswork required as an

entropy. By considering a two-character word, they showed that it satisfies entropy-like

properties, but it does not satisfy the natural generalization of the entropy chain rule.

In [2], Arikan and Boztas changed the original guesswork framework by allowing some

uncertainty in whether or not the inquisitor has found W . To model this, if an inquisitor

guesses any string that is not W , they are told they have not guessed W . If the inquisitor

correctly guesses W , then the inquisitor is told that they have found W with some non-

zero probability, but are told they have not have guessed W the rest of the time. To

finish guessing the inquisitor must guess W and be told that they have done so. This

implies that an inquisitor may have to repeat guesses to finish guessing. They study the

case where the string length is fixed and find bounds for the expected guesswork as well

as providing an order of guessing that minimizes the expected guesswork.
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2 Large Deviations
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2.1 Introduction

Large Deviation Theory is the study of the asymptotic likelihood of rare events. This

is relevant in the study of Guesswork as the likelihood of any individual string being

selected in a large collection decays as the string length becomes long. In this chapter

we recap some of the results from Large Deviation Theory that will be used in later

chapters. It is a well established subject, not all of which will be repeated here and,

instead, this chapter focuses on the parts that are relevant to the rest of this thesis.

This chapter serves as a brief recap of work that has already been done and so no proofs

are provided. This chapter is based on material available in Dembo and Zeitouni’s book

[16].

2.2 Large Deviations

We restrict most of our discussion to the following setting: Let {Zk}, k ∈ N, be a

stochastic process whose random variables take values in the real line, R. All of the

results recounted here have, however, versions where the random variables take values

in general topological spaces.

Definition 2.1 (Cumulant Generating Function) The Cumulant Generating

Function, Λk : R→ R ∪ {∞}, of Zk is defined by

Λk (α) = logE (exp (αkZk)) ,

with the scaled Cumulant Generating Function (sCGF) of the process {Zk} defined by

Λ (α) := lim
k→∞

1

k
Λk (α) , (2.1)

if it exists as an extended real number, i.e. in R ∪ {−∞,∞}.

The sCGF can be defined in greater generality, but the definition given above is sufficient

for our purposes. In this chapter we adopt the standard notation that if Γ is a set in R
then Γ̄ is its closure, Γo is its interior and Γc is its complement.

16



Definition 2.2 (Level sets) The level sets of a function f : X → R are defined for

λ ∈ R by

Ψf (λ) := {x ∈ X : f (x) ≤ λ}.

Definition 2.3 (Semi-continuity) A function f : R → R is upper semicontinuous at

x0 ∈ R if

lim sup
x→x0

f (x) ≤ f(x0)

and f is lower semicontinuous at x0 if

lim inf
x→x0

f (x) ≥ f(x0).

A function is lower semicontinuous if it is lower semicontinuous at all x ∈ R, with a

similar definition for upper semicontinuous.

Definition 2.4 (Rate function) A function I : X → [0,∞] is called a rate function

if it is lower semicontinuous such that the level sets ΨI (λ) are closed subsets of X and

are compact for all λ ∈ [0,∞).

The Large Deviations Principle (LDP) associates a rate function to a process {Zk} and

governs the exponential decay rate of the probability of Zk being in a given set as k

increases.

Definition 2.5 (Large Deviations Principle) The process {Zk} satisfies a Large

Deviations Principle with a rate function I if for all Γ ⊂ R,

− inf
x∈Γo

I (x) ≤ lim inf
k→∞

1

k
logP (Zk ∈ Γ) ≤ lim sup

k→∞

1

k
logP (Zk ∈ Γ) ≤ − inf

x∈Γ̄
I (x) . (2.2)

This definition shows us the importance of a LDP as it bounds how the probabilities

decay as the sequence progresses. In the case of Guesswork this happens as the strings

become longer. In Chapter 3 this will be used to gain direct estimates on the nth most

likely word.
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A common candidate for the rate function is the Legendre Fenchel transform of the

sCGF, Λ (·), given in equation (2.1).

Definition 2.6 (Legendre Fenchel) Define the Legendre Fenchel transform, Λ∗ of Λ

by

Λ∗ (x) := sup
α∈R
{αx− Λ (α)}.

One property of the Legendre Fenchel transform of any function that is important for

us is that it is convex (see e.g. [16][Lemma 2.2.5]).

If it is the case that the Legendre Fenchel transform, Λ∗ of Λ is to be the rate function

governing an LDP, there are two significant definitions: exposed points; and essentially

smooth. The definition of exposed points can be thought of heuristically as points whose

derivative lies tangent to the function.

Definition 2.7 (Exposed point) Let x, y ∈ R, then y is an exposed point of Λ∗ if for

some α ∈ R and all x 6= y,

αy − Λ∗ (y) > αx− Λ∗ (x) ,

and α is called an exposed hyperplane.

Definition 2.8 (Effective domain) The effective domain of Λ is DΛ := {α ∈ R :

Λ (α) <∞} with its interior denoted by Do
Λ.

Definition 2.9 (Essentially Smooth) A function Λ : R → R ∪ {∞} is essentially

smooth if

• Λ (·) is convex

• Do
Λ is non-empty

• Λ (·) is differentiable throughout Do
Λ

18



• the absolute value of the derivative of Λ (·) converges to ∞ over any sequence of

points that converge to the boundary of Do
Λ.

Next we state the Gärtner-Ellis theorem, which provides sufficient, though not necessary,

conditions for {Zk} to satisfy a LDP. This is important as we will see later that the sCGF

of {k−1 logG(Wk)} does not satisfy all of the conditions of the Gärtner-Ellis theorem.

We state it here as it is the basis so that we can use a more general version known as

Baldi’s Theorem as part of the proof that {k−1 logG(Wk)} satisfies a LDP and to show

and illustrate why other proof techniques are necessary.

Theorem 2.1 (Gärtner-Ellis Theorem [16](Theorem 2.3.6)) Let {Zk} be a

stochastic process whose random variables take values in R. Assume the origin belongs

to Do
Λ. For any set Γ ⊂ R,

lim sup
k→∞

1

k
logP

(
Zk ∈ Γ̄

)
≤ − inf

x∈Γ̄
Λ∗ (x)

and

lim inf
k→∞

1

k
logP (Zk ∈ Γo) ≥ − inf

x∈Γo∩F
Λ∗ (x) ,

where F is the set of exposed points of Λ∗ (x) whose exposing hyperplanes belong to Do
Λ.

If Λ (·) is an essentially smooth, lower semicontinuous function, then the LDP holds with

the rate function Λ∗ (·).

Definition 2.10 (Exponentially tight) A stochastic process {Zk} is exponentially

tight if for every α <∞, there exists a compact set Kα ⊂ R such that

lim sup
k→∞

1

k
logP (Zk ∈ Kc

α) < −α.

A more general version of the Gärtner-Ellis Theorem is Baldi’s Theorem.

Theorem 2.2 (Baldi’s Theorem [16](Theorem 4.5.20),[4]) Assume that {Zk} is
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a stochastic process of exponentially tight random variables on R. For every set Γ ⊂ R,

lim sup
k→∞

1

k
logP

(
Zk ∈ Γ̄

)
≤ − inf

x∈Γ̄
Λ∗ (x) .

Let F be the set of exposed points of Λ∗ (x) with Λ (ξα) <∞ for some ξ > 1. Then, for

every set Γ ⊂ R,

lim inf
k→∞

1

k
logP (Zk ∈ Γo) ≥ − inf

x∈Γo∩F
Λ∗ (x) .

If for every set Γo,

inf
x∈Γo∩F

Λ∗ (x) = inf
x∈Γo

Λ∗ (x) ,

then {Zk} satisfies a LDP with the rate function Λ∗ (x).

The sCGF approach is not the only method available to prove a LDP. One that does

not rely on exposed points appears in both Lewis and Pfister [31], which attributed it

to Ruelle and Lanford, and Dembo and Zeitouni [16]. Here we give a restricted version

of that result, suitable for the needs of later chapters.

Theorem 2.3 ([31], [16](Theorem 4.1.11)) Let {Zk} be a stochastic process and as-

sume that Zk takes values in X , a compact subset of R. If for all x ∈ X and some rate

function I,

−I(x) ≤ lim
ε→0

lim inf
k→∞

1

k
logP (Zk ∈ (x− ε, x+ ε))

≤ lim
ε→0

lim sup
k→∞

1

k
logP (Zk ∈ (x− ε, x+ ε)) ≤ −I (x)

then {Zk} satisfies a LDP with the rate function I.

The Contraction Principle establishes that the Large Deviation Principle is a covariant

notion. If {Zk} satisfies a LDP and f is a continuous function, then it states that

{f (Zk)} also satisfies a LDP.

Theorem 2.4 (Contraction Principle [16](Theorem 4.2.1)) Let X and Y be

Hausdorff topological spaces and f : X → Y be a continuous function. Assume the
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process {Zk} on X satisfies a LDP with the rate function I : X → [0,∞], then {f(Zk)}
satisfies the LDP in Y with the rate function

J (y) := inf{I (x) : x ∈ X , y = f (x)}.

One final well-known theorem that we shall employ is Varadhan’s lemma. In our setting,

the Zk will all take values in a compact subset of R and so the required condition will

be automatically satisfied.

Theorem 2.5 (Varadhan’s Lemma [16](4.3.1)) Let {Zk} satisfy a LDP with a rate

function I : X → [0,∞], and let φ : X → R be any continuous function. Assume either

the tail condition

lim
n→∞

lim sup
k→∞

1

k
logE

(
exp (kφ (Zk)) 1{φ(Zk)≥n}

)
= −∞

or the following moment condition for some ξ > 1,

lim sup
k→∞

1

k
logE (exp (ξkφ (Zk))) <∞.

Then

lim
k→∞

1

k
logE (exp (kφ (Zk))) = sup

x∈X
{φ (x)− I (x)}.
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3 Single User Guesswork

22



3.1 Introduction

Let A = {0, . . . ,m − 1} be a finite alphabet and for each k ≥ 1 let Wk : Ω 7→ Ak

be a random string of length k. For each k, an inquisitor knows the probability mass

function {P (Wk = w) : w ∈ Ak} and wishes to identify the random variable Wk. The

inquisitor can make one guess of the sort “Is Wk = w?” at a time, and keeps guessing

until Wk is correctly identified. We assume that the inquisitor guesses in such a way

as to minimise the expected number of guesses required to identify Wk, which means

guessing from the most likely string to the least likely string as in Massey [39] and Arikan

[1]. This guesswork ordering is codified by a function G : Ak → {1, . . . ,mk} such that

P (Wk = w) > P (Wk = w′) implies that G(w) < G(w′).

The main content of this chapter is the proof that {k−1 logG(Wk)} satisfies a Large

Deviations Principle (LDP), the determination of the accompanying rate function, and

an examination of the properties of the accompanying rate function. The LDP gives

us a handle on how the probability of k−1 logG(Wk) being in a given set decays as the

string length increases, from which we get an estimate on the probability mass function

of the guesswork distribution {P (G(Wk) = n) : n ∈ {1, . . . ,mk}} itself.

As a corollary, the LDP is used to prove a conjecture by Arikan and Merhav [3] and

Sundaresan [49] that limk→∞E(k−1 logG(Wk)) is the specific Shannon entropy of the

source. Aside from the results in this chapter being a significant development in their

own right, proving that {k−1 logG(Wk)} satisfies a LDP with a certain rate function is

a necessary stepping stone for work in later chapters.

3.2 A Large Deviation Principle

We introduce the assumption on the process creating strings to give us some regularity.

Assumption 3.1 For α > −1, the scaled cumulant generating function, Λ(α), for
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{k−1 logG(Wk)} exists, has a continuous derivative and

lim
k→∞

1

k
logE(G(Wk)

α) = αR

(
1

1 + α

)

= lim
k→∞

1

k
(1 + α) log

mk∑
i=1

P (G(Wk) = i)1/(1+α). (3.1)

Note that in Assumption 3.1 the limits are also assumed to exist. Assumption 3.1 is

satisfied, for example, by the processes considered by Pfister and Sullivan [46].

Consider the sequence of random variables {k−1 logG(Wk)}. Our starting point is the

observation that the left hand side of (3.1) is equal to the sCGF of this sequence:

Λ(α) = lim
k→∞

1

k
logE (exp(α logG(Wk))) for α ∈ R.

A reasonable supposition is that should {k−1 logG(Wk)} satisfy a LDP, the rate function

will be the Legendre-Fenchel transform of Λ,

Λ∗(x) := sup
α∈R
{αx− Λ(α)}.

Thus we first need to determine Λ(α) for α ≤ −1.

Lemma 3.1 (Existence of the sCGF) Under assumption 3.1, for all α ≤ −1

Λ(α) = lim
k→∞

1

k
logP

(
1

k
logG(Wk) = 0

)
= lim

β↓−1
Λ(β).

and that the above limits exist.

Proof: Let α ≤ −1 and note that

logP

(
1

k
logG(Wk) = 0

)
≤ log

mk∑
i=1

P (G(Wk) = i)iα

= logE (exp(α logG(Wk))) ≤ logP

(
1

k
logG(Wk) = 0

)
+ log

mk∑
i=1

iα.

We know from Assumption 3.1 that limα↓−1 Λ(α) exists. So by the above equa-
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tion lim supk→∞ k
−1 logP (k−1 logG(Wk) = 0) ≤ Λ(−1) and similarly we know that

lim infk→∞ k
−1 logP (k−1 logG(Wk) = 0) + log

∑mk

i=1 i
α ≥ Λ(−1) Taking limits while

using the Principle of the Largest Term [16, Lemma 1.2.15] in conjunction with usual

estimate that the harmonic series,
∑n

i=1 n
−1, is approximately log n (e.g. [29], Chapter

7, Theorem 10) if α = −1 and boundedness of the sum if α < −1, we have that the limit

limk→∞ k
−1 logP (k−1 logG(Wk) = 0) exists and

lim
k→∞

1

k
logE(exp(α logG(Wk))) = lim

k→∞

1

k
logP

(
1

k
logG(Wk) = 0

)
for all α ≤ −1.

As Λ is the limit of a sequence of convex functions and is finite everywhere, it is contin-

uous and therefore limβ↓−1 Λ(β) = Λ(−1).

�

Thus the sCGF Λ exists and is finite for all α, with a potential discontinuity in its

derivative at α = −1. This discontinuity, when it exists, will have a bearing on the

nature of the rate function governing the LDP for {k−1 logG(Wk)}. Indeed, the following

quantity will play a significant role in our results:

γ := lim
α↓−1

d

dα
Λ(α). (3.2)

The derivative on the right hand side of equation (3.2) has the interpretation of a tilted

measure. As α ↓ −1 this measure will, in an appropriate sense, converge to the uniform

measure on the set of strings with asymptotically maximal probability. In particular, we

will prove that the number of strings with approximately equally highest probability is

close to exp(kγ). In the special case where the {Wk} are constructed of i.i.d. characters

this is exactly true and the veracity of the following Lemma can be verified directly.

Lemma 3.2 (The number of most likely strings) If {Wk} are constructed of i.i.d.

characters, then

γ = lim
α↓−1

d

dα
αR1((1 + α)−1) = log |{w : P (W1 = w) = P (G(W1) = 1)}|,

where | · | indicates the number of elements in the set.
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Proof: This follows as

d

dα
αR1

(
1

1 + α

)
= log

∑
w∈A

P (W1 = w)(1/(1+α)) −
∑

w∈A P (W1 = w)(1/(1+α)) logP (W1 = w)

(1 + α)
∑

w∈A P (W1 = w)(1/(1+α))

= log max
w′∈A

P (W1 = w′)1/(1+α)
∑
w∈A

P (W1 = w)(1/(1+α))

maxw′∈A P (W1 = w′)1/(1+α)

−
∑

w∈A P (W1 = w)(1/(1+α)) logP (W1 = w)

(1 + α)
∑

w∈A P (W1 = w)(1/(1+α))

= log
∑
w∈A

P (W1 = w)(1/(1+α))

maxw′∈A P (W1 = w′)1/(1+α)

+
1

1 + α
log max

w′∈A
P (W1 = w′)−

∑
w∈A P (W1 = w)(1/(1+α)) logP (W1 = w)

(1 + α)
∑

w∈A P (W1 = w)(1/(1+α))
.

Examining P (W1 = w)/(maxw′∈A P (W1 = w′)) we see that for |{w : P (W1 = w) =

P (G(W1) = 1)}| elements it is 1 and for every other element of A it is < 1 and tends to

0 as α ↓ −1. This implies that

lim
α↓−1

log max
w′∈A

P (W1 = w′)1/(1+α)
∑
w∈A

P (Wk = w)(1/(1+α))

maxw′∈A P (W1 = w′)1/(1+α)

= log |{w : P (W1 = w) = P (G(W1) = 1)}|.

Then taking∑
w∈A P (W1 = w)(1/(1+α))(log maxw′∈A P (W1 = w′)− logP (W1 = w))

(1 + α)
∑

w∈A P (W1 = w)(1/(1+α))

as α decreases to −1 achieves the desired result.

�

This i.i.d. result doesn’t extend directly to the non-i.i.d. case and in general Lemma 3.2

can only be used to establish a lower bound on γ defined in equation (3.2):

γ ≥ lim sup
k→∞

1

k
lim
α↓−1

d

dα
αRk

(
1

1 + α

)
, (3.3)
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(e.g [48, Theorem 24.5]). This lower bound can be loose, as can be seen with the following

example. Consider the sequence of distributions for some ε > 0

P (Wk = i) =

m−k(1 + ε) if i = 1

m−k(1− ε(mk − 1)−1)) otherwise.

For each fixed k there is one most likely string and we have log(1) = 0 on the right

hand side of equation (3.3) by Lemma 3.2. The left hand side, however, gives logm.

Regardless, this intuition guides our understanding of γ, but the formal statement of it

approximately capturing the number of most likely strings will transpire to be

lim
α↓−1

R(1/(1 + α)) = lim
k→∞

1

k
log inf
{w:G(w)<exp(kγ)}

P (Wk = w).

The candidate rate function is the Legendre-Fenchel [48, Chapter 26] transform of the

sCGF

Λ∗(x) = sup
α∈R
{xα− Λ(α)}

=


−x− Λ(−1) if x ∈ [0, γ]

supα∈R{xα− Λ(α)} if x ∈ (γ, logm],

+∞ if x /∈ [0, logm].

(3.4)

The graphical illustrations of examples of Λ∗(x) is shown in Figure 3.1 showing the

three possible shapes of linear, linear then strictly convex or strictly convex, in each case

Λ∗(x) = ∞ if x < log(1) or x > logm. The LDP cannot be proved directly by Baldi’s

version of the Gärtner-Ellis theorem, [4], Theorem 2.2 or [16, Theorem 4.5.20], as Λ∗

does not have exposing hyper-planes for x ∈ [0, γ]. Instead we use a combination of

Baldi’s theorem with the methodology described in detail in [31] where, as our random

variables are bounded 0 ≤ k−1 logG(Wk) ≤ logm, in order to prove the LDP it suffices

to show that the following exist in [0,∞] for all x ∈ [0, logm] and equals −Λ∗(x):

lim
ε↓0

lim inf
k→∞

1

k
logP

(
1

k
log(G(Wk)) ∈ Bε(x)

)
= lim

ε↓0
lim sup
k→∞

1

k
logP

(
1

k
log(G(Wk)) ∈ Bε(x)

)
, (3.5)

where Bε(x) = (x− ε, x+ ε).
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Figure 3.1: Illustration of equation (3.4). Shows the different possible shapes for Λ∗(x)
with γ = log(1), γ ∈ (log(1), logm), in this case γ = log(φ) with φ =
(1 +

√
5)/2, and γ = logm, in this example γ = log(2).

Theorem 3.3 (The large deviations of guesswork) Under assumption 3.1, the se-

quence {k−1 logG(Wk)} satisfies a LDP with rate function Λ∗.

Proof: To establish (3.5) we have separate arguments depending on x. We divide

[0, logm] into two parts: [0, γ] and (γ, logm]. Baldi’s upper bound holds for any x ∈
[0, logm]. Baldi’s lower bound applies for any x ∈ (γ, logm] as Λ∗ is continuous and, as

Λ(α) has a continuous derivative for α > −1, it only has a finite number of points without

exposing hyper-planes in that region. For x ∈ [0, γ], however, we need an alternate lower

bound.

Consider x ∈ [0, γ] and define the sets

Kk(x, ε) :=
{
w ∈ Ak : k−1 logG(w) ∈ Bε(x)

}
,

letting |Kk(x, ε)| denote the number of elements in each set. We have the bound

|Kk(x, ε)| inf
w∈Kk(x,ε)

P (Wk = w) ≤ P
(

1

k
logG(Wk) ∈ Bε(x)

)
. (3.6)
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As bexp(k(x− ε))c ≤ |Kk(x, ε)| ≤ dexp(k(x+ ε))e, we have that

x = lim
ε→0

lim
k→∞

1

k
log |Kk(x, ε)|. (3.7)

By either the complementary upper bound to equation (3.6) or by Baldi’s upper bound,

we have that

lim
ε↓0

lim sup
k→∞

1

k
logP

(
1

k
logG(Wk) ∈ Bε(x)

)
≤ |Kk(x, ε)| sup

w∈Kk(x,ε)
P (Wk = w)

≤ x+ lim
α↓−1

R(1/(1 + α))

as

P

(
1

k
logG(Wk) ∈ Bε(x)

)
≤ |Kk(x, ε)| sup

w∈Kk(x,ε)
P (Wk = w) ≤ |Kk(x, ε)|P (G(Wk) = 1).

Thus to complete the argument, for the complementary lower bound it suffices to show

that for any x ∈ [0, γ]

lim
ε↓0

lim inf
k→∞

inf
w∈Kk(x,ε)

1

k
logP (Wk = w) ≥ lim

α↓−1
R(1/(1 + α)).

If Λ∗(x) < ∞ for some x > γ, then for ε > 0 sufficiently small let x∗ be such that

Λ∗(x∗) <∞ and x∗ − ε > max(γ, x+ ε). Then by Baldi’s lower bound, which applies as

x∗ ∈ (γ, logm], we have

− inf
y∈Bε(x∗)

Λ∗(y) ≤ lim inf
k→∞

1

k
logP

(
1

k
logG(Wk) ∈ Bε(x∗)

)
.

Now

P

(
1

k
logG(Wk) ∈ Bε(x∗)

)
≤ |Kk(x

∗, ε)| sup
w∈Kk(x∗,ε)

P (Wk = w)

≤ |Kk(x
∗, ε)| inf

w∈Kk(x,ε)
P (Wk = w),

where in the last line we have used the monotonicity of guesswork and the fact that

x∗ − ε > x + ε. Taking lower limits and using equation (3.7) with |Kk(x
∗, ε)|, we have

that

− inf
y∈Bε(x∗)

Λ∗(y) ≤ x∗ + lim inf
k→∞

inf
w∈Kk(x,ε)

1

k
logP (Wk = w)
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for all such x∗, x. Taking limits as ε ↓ 0 and then limits as x∗ ↓ γ we have

− lim
x∗↓γ

Λ∗(x∗) ≤ γ + lim
ε↓0

lim inf
k→∞

inf
w∈Kk(x,ε)

1

k
logP (Wk = w),

but limx∗↓γ Λ∗(x∗) = −γ − limα↓−1R(1/(1 + α)) so that

lim
ε↓0

lim inf
k→∞

inf
w∈Kk(x,ε)

1

k
logP (Wk = w) = lim

α↓−1
R(1/(1 + α)),

as required.

Only one case remains. If Λ∗(x) = ∞ for all x > γ, then we require an alternative

argument to ensure that

lim inf
k→∞

inf
w∈Kk(x,ε)

1

k
logP (Wk = w) ≥ lim

α↓−1
R(1/(1 + α)).

Note that in this case γ = logm and as Λ′(α) ≤ logm for all α it implies that Λ′(α) = γ

for all α > −1. Then as Λ(0) = 0 and Λ′(α) = γ for all α, using equation (3.4) we have

that limα↓−1R(1/(1 + α)) = −γ. Let x < γ. This situation happens if, in the limit, the

distribution of strings is near uniform on the set of all strings with positive probability.

To see this note that H(W ) = Λ′(0) = logm. Consider

l = lim sup
k→∞

sup
w∈Kk(x+2ε,ε)

1

k
logP (Wk = w) ≤ lim inf

k→∞
inf

w∈Kk(x,ε)

1

k
logP (Wk = w).

We shall assume that l < limα↓−1R(1/(1 + α)) and show this results in a contradic-

tion. Let ε > 0, then there exists Nε such that for all k ≥ Nε, P (G(Wk) = i) ≤
exp(k(limα↓−1R(1/(1 + α)) + ε)), for all i ∈ {1, . . . ,mk},

P (G(Wk) = i) ≤ exp(k(l + ε)), for all i ∈ {exp(k(x+ ε)), . . . ,mk}

and P (G(Wk) ≥ exp(k(γ + ε))) ≤ exp

(
−k
ε

)
.

Let 0 < ε < min(limα↓−1R(1/(1 + α)) − l, γ − x)/2 be given, then, using a potentially
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gross overestimate that suffices for our purposes, we have that

∑
w∈Ak

P (Wk = w) =

mk∑
i=1

P (G(Wk) = i)

≤ exp(k(x+ ε)) exp

(
k( lim
α↓−1

R(1/(1 + α)) + ε)

)
+ exp (k(γ + ε)) exp(k(l + ε)) + exp

(
−k
ε

)

for all k > Nε, but as l < limα↓−1R(1/(1 + α)) = −γ this is strictly less than 1 for k

sufficiently large and thus l = limα↓−1R(1/(1 + α)). Finally, for x = γ, and ε > 0, note

that we can decompose [0, logm] into three parts, [0, γ− ε]∪ (γ− ε, γ+ ε)∪ [γ+ ε, logm],

where the scaled probability of the guesswork being in either the first or last set is

decaying, but

0 = lim
k→∞

1

k
logP

(
1

k
logG(Wk) ∈ [0, logm]

)
and so the result follows from an application of the principle of the largest term.

Thus for any x ∈ [0, logm],

lim
ε↓0

lim inf
k→∞

1

k
logP

(
1

k
log(G(Wk)) ∈ Bε(x)

)
= lim

ε↓0
lim sup
k→∞

1

k
logP

(
1

k
log(G(Wk)) ∈ Bε(x)

)
= −Λ∗(x)

and the LDP is proved.

�

In establishing the LDP, we have shown that the rate function in equation (3.4) must

have the form of a straight line in [0, γ] with a slope of −1 followed by a strictly convex

section. The initial straight line comes from all strings that are, in an asymptotic sense,

of greatest likelihood.

Theorem 3.3 uses Assumption 3.1 in its proof, however the proof of Theorem 3.3 does

not show that Assumption 3.1 is required for the theorem to hold. The following lemma
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shows that assuming αR(1/(1+α)) = Λ(α) for α > −1 is not sufficient to prove Theorem

3.3.

Lemma 3.4 Theorem 3.3 no longer holds if Λ′(α) is not continuous for α > −1.

Proof: For this we just require a counter example, the one we use here is a four letter

alphabet where 2k of the strings have probability 0.5/2k and the remainder of the prob-

ability is divided equally across the remaining strings so they each have 0.5/(4k − 2k)

probability of being the chosen string.

To show that this example is a counter example we have two conditions that need to be

satisfied, first we need that the continuity of Λ′(α) is the only condition that is broken

and second that Theorem 3.3 is not true for this example. Here we check the rest of

Assumption 3.1 to hold so that αR(1/(1 + α)) = Λ(α) for α > −1. The Rényi entropy

for our example is,

αR

(
1

1 + α

)
= (1 + α) lim

k→∞

1

k
log

(
2k
(

0.5

2k

)(1/(1+α))

+ (4k − 2k)

(
0.5

4k − 2k

)(1/(1+α))
)

= (1 + α) lim
k→∞

1

k
log((2k)(α/(1+α)) + (4k − 2k)(α/(1+α))),

which by the principle of largest term, [16, Lemma 1.2.15],

αR

(
1

1 + α

)
=

α log 2 if α ∈ (−1, 0)

α log 4α > 0.

For the sCGF
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Λ(α) = lim
k→∞

1

k
log

 1

2k

2k∑
i=1

iα +
1

4k − 2k

4k∑
i=2k+1

iα


≥ lim

k→∞

1

k
log

(
1

2k

∫ 2k

0
xαdx+

1

4k − 2k

∫ 4k−2k

0
xαdx

)

= lim
k→∞

1

k
log

(
1

2k
(2k)1+α

1 + α
+

1

4k − 2k
(4k − 2k)1+α

1 + α

)

=

α log 2 if α ∈ (−1, 0)

α log 4α > 0.

This is using the Principle of Largest Term again for the last line. For the lower bound

lim
k→∞

1

k
log

 1

2k

2k∑
i=1

iα +
1

4k − 2k

4k∑
i=2k+1

iα


≤ lim

k→∞

1

k
log

(
1

2k
(2k)α +

1

4k − 2k
(4k)α

)
=

α log 2 if α ∈ (−1, 0)

α log 4α > 0.

simply by taking the largest term for each entry in the sums and the Principle of Largest

Term.

This shows that the sCGF is described by Rényi entropy for α > −1. Figure 3.2 shows

the shape of the sCGF for this specific example. While Λ∗(x) may not be the rate

function in this example, a LDP can be established using other means and we label the

rate function I(x) instead. To calculate the rate function, I(x), if x ∈ (log 2, log 4) we

need to find

lim
ε↓0

lim
k→∞

1

k
logP

(
1

k
logG(Wk) ∈ (x− ε, x+ ε)

)
= lim

ε↓0
lim
k→∞

1

k
log |Kk(x, ε)| inf

w∈Kk(x,ε)
P (Wk = w)

= x+ lim
k→∞

1

k
log

1

4k − 2k

= −x+ log 4.

The rate function for any other x can be worked out, using Baldi’s theorem [4][16,

Theorem 4.5.20] to be I(x) =∞ if x < 0, x > log 4 and I(x) = log 2− x if x ∈ [0, log 2].
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Figure 3.2: Illustration of Lemma 3.4. Shows the sCGF, Λ(α), if characters are chosen
from A = {0, 1, 2, 3} and 2k of the possible strings have probability 0.5(2−k)
and the remaining 4k−2k have probability 0.5(4k−2k)−1. The discontinuity
in the derivative at α = 0 can clearly be seen.
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Figure 3.3: Illustration of Lemma 3.4. Shows the rate if characters are chosen from
A = {0, 1, 2, 3} and 2k of the possible strings have probability 0.5(2−k) and
the remaining 4k − 2k have probability 0.5(4k − 2k)−1. It compares this rate
function, I(x), to the Legendre Fenchel transform, Λ∗(x), of the sCGF of the
same process showing that they agree on [0, log 2] but not on (log 2, log 4].
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We compare I(x) to the Legendre Fenchel transform of the sCGF, Λ∗(x), in Figure 3.3.

Obviously these can be seen to be different showing that the assumption that Λ′(α) be

continuous for α > −1 is needed for Theorem 3.3 .

�

While the LDP is for the sequence {k−1 logG(Wk)}, it can be used to develop the direct

estimate of the distribution of G(Wk) given by

P (G(Wk) = n) � 1

n
exp(−kΛ∗(k−1 log n)). (3.8)

which can’t be derived from previous results. The next corollary provides a rigorous

statement, but an intuitive, non-rigorous argument for understanding the result therein

is that from the LDP we have the approximation that for large k

dP

(
1

k
logG(Wk) = x

)
≈ exp(−kΛ∗(x))dx.

As for large k the distribution of k−1 logG(Wk) and G(Wk)/k are ever closer to having

densities, using the change of variables formula gives

dP

(
1

k
G(Wk) = x

)
=

1

kx
dP

(
1

k
logG(Wk) = x

)
≈ 1

kx
exp

(
−kΛ∗

(
1

k
log(kx)

))
dx.

Finally, the substitution kx = n gives the approximation in equation (3.8). To make

this heuristic precise requires distinct means, explained in the following corollary.

Corollary 3.1 (Direct estimates on guesswork) Recall the definition

Kk(x, ε) :=
{
w ∈ Ak : k−1 logG(w) ∈ Bε(x)

}
.

Under assumption 3.1, for any x ∈ [0, logm) we have

lim
ε↓0

lim inf
k→∞

1

k
log inf

w∈Kk(x,ε)
P (Wk = w) = lim

ε↓0
lim sup
k→∞

1

k
log sup

w∈Kk(x,ε)
P (Wk = w)

= − (x+ Λ∗(x)) .

Proof: We show how to prove the upper bound as the lower bound follows using anal-
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ogous arguments, as do the edge cases. Let x ∈ (0, logm) and ε > 0 be given. Using the

monotonicity of guesswork

lim sup
k→∞

1

k
log sup

w∈Kk(x,ε)
P (Wk = w) ≤ lim inf

k→∞

1

k
log inf

w∈Kk(x−2ε,ε)
P (Wk = w).

Using the estimate found in Theorem 3.3 and the LDP provides an upper bound on the

latter:

(x− 3ε) + lim inf
k→∞

1

k
log inf

w∈Kk(x−2ε,ε)
P (Wk = w)

≤ lim inf
k→∞

1

k
logP

(
1

k
log(G(Wk)) ∈ Bε(x− 2ε)

)
≤ lim sup

k→∞

1

k
logP

(
1

k
log(G(Wk)) ∈ [x− 3ε, x− ε]

)
≤ − inf

x∈[x−3ε,x−ε]
Λ∗(x).

Thus

lim sup
k→∞

1

k
log sup

w∈Kk(x,ε)
P (Wk = w) ≤ −x+ 3ε− inf

x∈[x−3ε,x−ε]
Λ∗(x).

As Λ∗ is convex, it is continuous where finite, and thus the upper-bound follows taking

ε ↓ 0.

�

Unpeeling limits, this corollary shows that when k is large the probability of the nth guess

being correct is approximately 1/n exp(−kΛ∗(k−1 log n)), without the need to identify

the string itself. This justifies the approximation (3.8), whose complexity of evaluation

does not depend on k. We demonstrate its merit by example in Section 3.3.

Before that, as a corollary to the LDP we find the following role for the specific Shannon

entropy. Thus, although Massey established that for a given string length the Shannon

entropy is only a lower bound on the guesswork, for growing string length the specific

Shannon entropy determines the linear growth rate of the expectation of the logarithm

of guesswork (c.f [3] and [49]).

36



Corollary 3.2 (Shannon entropy and guesswork) Under assumption 3.1,

lim
k→∞

1

k
E(logG(Wk)) = lim

k→∞

1

k
H(W ),

the specific Shannon entropy.

Proof: As both Λ(α) and αRk((1+α)−1) are finite and differentiable in a neighborhood

of 0, by [48, Theorem 25.7]

Λ′(0) = lim
k→∞

1

k

d

dα
αRk((1 + α)−1)|α=0 = lim

k→∞

1

k
H(W ).

Note that Λ∗(x) = 0 if and only if x = Λ′(0) = lim k−1H(W ). Thus the weak law

then follows by concentration of measure (e.g. [32] Theorem 2.1 taking f(x) as the

identity function on logG(Wk) and Bk as the entire set in conjunction with the fact that

limk k
−1 logP (k−1 logBε(H(W ))) = 0 for all ε > 0).

�

This also provides proof analogous to that of Massey’s result that the Shannon entropy

only provides a lower bound on the average guesswork. By Jensen’s inequality [14,

Lemma 2.6.2],

lim k−1 logE(G(Wk)) ≥ lim
1

k
E(logG(Wk))

Λ(1) ≥ lim
1

k
H(W ).

3.3 Examples

These examples will allow us to clarify some of the properties of the rate function for

the guesswork. They also allow us to explore properties of specific instances such as the

appearance of the golden ratio as the number of asymptotically most likely strings.
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Figure 3.4: Illustration of Corollary 3.1. Strings constructed from i.i.d characters with
P (W1 = 0) = 0.6, P (W1 = 1) = 0.4. For k = 15 comparison of the probabil-
ity of nth most likely string and the approximation 1/n exp(−kΛ∗(k−1 log n))
versus n ∈ {1, . . . , 315}.

3.3.1 I.i.d characters

.

Assume strings are constructed of i.i.d. characters. Let W1 take values in A = {1, . . . ,m}
and assume P (W1 = i) ≥ P (W1 = j) if i ≤ j. Then from [1, 46] and Lemma 3.1 we

have that

Λ(α) =


(1 + α) log

∑
w∈A

P (W1 = w)1/(1+α) if α > −1

logP (W1 = 1) if α ≤ −1.

From Lemma 3.2 we have that

γ = lim
α↓−1

Λ′(α) ∈ {0, log(2), . . . , logm}

and no other values are possible. Unless the distribution of W1 is uniform, Λ∗(x) does

not have a closed form for all x, but is readily calculated numerically. With |A| = 3

and k = 15, Figure 3.4 compares the exact distribution P (Wk = w) versus G(w) with

the approximation found in equation (3.8). As there are 315 ≈ 1.4 million strings, the
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Figure 3.5: Illustration of Corollary 3.1. Strings constructed from i.i.d characters with
P (W1 = 0) = 0.6, P (W1 = 1) = 0.4. For k = 10, 20 and 100, comparison of
k−1 times the logarithm of the probability of nth most likely string versus
k−1 times the logarithm of n, as well as the approximation −x−Λ∗(x) versus
x.

likelihood of any one string is tiny, but the quality of the approximation can clearly be

seen. Rescaling the guesswork and probabilities to make them comparable for distinct k,

Figure 3.5 illustrates the quality of the approximation as k grows. By k = 100 there are

3100 ≈ 5.1 times 1047 strings and the underlying combinatorial complexities of the ex-

plicit calculation become immense, yet the complexity of calculating the approximation

has not increased.

3.3.2 The Golden Ratio

The golden ratio arises in many different areas of mathematics. For guesswork, it enters

via the quantity γ, defined in equation (3.2), and binary Markov sources.

As an example of strings constructed of correlated characters, consider {Wk} where the

characters are chosen via a process a Markov chain with transition matrix P and some

initial distribution on |A| = 2. Define the matrix Pα by (Pα)i,j = p
1/(1+α)
i,j , then by
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Figure 3.6: Illustration of rate functions in Theorem 3.3. Strings constructed from
Markov characters on |A| = 2. Three rate functions illustrating only val-
ues of γ possible, log(1), log(φ) ≈ 0.48 and log(2), from Lemma 3.5.

[37, 46] and Lemma 3.1 we have that

Λ(α) =

(1 + α) log ρ(Pα) if α > −1

log max(p0,0, p1,1,
√
p0,1 p1,0) if α ≤ −1,

where ρ is the spectral radius operator. In the two letter alphabet case, with β = 1/(1+α)

we have that ρ(P(1−β)/β) equals

pβ0,0 + pβ1,1
2

+

√
(pβ0,0 − p

β
1,1)2 + 4(1− p1,1)β(1− p0,0)β

2
.

As with the i.i.d. characters example, apart from in special cases the rate function Λ∗(·)
cannot be calculated in closed form, but is readily evaluated numerically. Regardless,

we have the following, perhaps surprising, result on the exponential rate of growth of

the size of the set of almost most likely strings.

Lemma 3.5 (The Golden Ratio and Markovian characters) For {Wk} con-

structed of Markovian characters with |A| = 2,

γ = lim
α↓−1

Λ′(α) ∈ {0, log(φ), log(2)},
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where φ = (1 +
√

5)/2 is the Golden Ratio, and no other values are possible.

This lemma can be proved by directly evaluating the derivative of Λ(α) with respect

to α. Note that here exp(kγ) definitely only describes the number of strings of equal

highest likelihood when k is large as the initial distribution of the Markov chain plays

no rôle in γ’s evaluation.

The case where γ = log(2) occurs when p0,0 = p1,1 = 1/2. The most interesting case is

when there are approximately φk approximately equally most likely strings. This occurs

if p0,0 =
√
p0,1p1,0 > p1,1. For large k, strings of near-maximal probability have the form

of a sequence of 0s, where a 1 can be inserted anywhere so long as there is a 0 between

it and any other 1s. A further sub-exponential number of aberrations are allowed in

any given sequence and the starting distribution is ultimately irrelevant. For example,

with an equiprobable initial distribution and k = 4 there are 8 most likely strings (0000,

0001, 0010, 0100, 0101, 1000, 1010, 1001) and φ4 ≈ 6.86. Note that the golden ratio also

appears in the analysis of the trapdoor channel [45], but there it is directly as a result

of the appearance of the Fibonacci sequence. The case of γ = log(1) occurs if we only

have one or two most likely strings. So that one of p0,0 6=
√
p0,1p1,0 and p1,1 6=

√
p0,1p1,0.

Figure 3.6 gives plots of Λ∗(x) versus x illustrating the full range of possible shapes that

rate functions can take: linear, linear then strictly convex, or strictly convex, based on

the transition matrices(
0.5 0.5

0.5 0.5

)
,

(
0.6 0.4

0.9 0.1

)
and

(
0.85 0.15

0.15 0.85

)

respectively.
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4 Guesswork, the Asymptotic Equipartition

Property and Typical Sets
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4.1 Introduction

Consider the problem of identifying the value of a discrete random variable by only asking

questions of the sort: is its value X? That this is a time-consuming task is a cornerstone

of computationally secure ciphers [41]. In computational security it is tempting to appeal

to the Asymptotic Equipartition Property (AEP) [14], and the resulting assignment of

code words only to elements of the Typical Set of the source, to justify restriction to

consideration of a uniform source, e.g. [47, 19, 51]. This assumed uniformity has many

desirable properties, including maximum obfustication and difficulty for the inquisitor,

e.g. [20].

In Typical Set coding it is necessary to generate codes for strings whose logarithmic

probability is within a small distance of the string length times the specific Shannon

entropy. As a result, while all these strings have near-equal likelihood, the distribution

is not precisely uniform. It is the consequence of this lack of perfect uniformity that

we investigate here by proving that results on Guesswork mentioned in earlier chapters

extend to this setting. The results in this chapter establish that for a variety of sources, as

a function of string length, it is exponentially easier to guess strings conditioned to be in

the source’s Typical Set in comparison to the corresponding equipartition approximation.

This suggests that appealing to the AEP to justify sole consideration of the uniform

distributions for cryptanalysis is ill-advised and provides alternate results in their place.

4.2 The Typical Set and Guesswork

Let A = {0, . . . ,m−1} be a finite alphabet and consider a stochastic sequence of words,

{Wk}, where Wk is a word of length k taking values in Ak. The process {Wk} has specific

Shannon entropy

HW := − lim
k→∞

1

k

∑
w∈Ak

P (Wk = w) logP (Wk = w),

and we shall take all logs to base e. For ε > 0, the Typical Set of strings of length k is

T εk :=
{
w ∈ Ak : e−k(H(W )+ε) ≤ P (Wk = w) ≤ e−k(H(W )−ε)

}
. (4.1)
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For most reasonable sources [14], P (Wk ∈ T εk) > 0 for all k sufficiently large and Typical

Set encoding results in a new source of strings of length k, W ε
k , with statistics

P (W ε
k = w) =


P (Wk = w)

P (Wk ∈ T εk)
if w ∈ T εk ,

0 if w /∈ T εk .
(4.2)

Appealing to the AEP, these distributions are often substituted for their more readily

manipulated uniformly random counterpart, U εk,

P (U εk = w) :=


1

|T εk |
if w ∈ T εk ,

0 if w /∈ T εk ,
(4.3)

where |T εk | is the number of elements in T εk . While the distribution of W ε
k is near-uniform

for large k, it is not perfectly uniform unless the original Wk was uniformly distributed

on a subset of Ak. Is a string selected using the distribution of W ε
k easier to guess than

if the string was selected uniformly, U εk?

For fixed k it is shown in [39] that the Shannon entropy of the underlying distribu-

tion bears little relation to the expected guesswork, E(G(Wk)), the average number of

guesses required to guess a word chosen with distribution Wk using the optimal strat-

egy. In a series of subsequent papers [1, 37, 46, 25], under ever less restrictive stochastic

assumptions from words made up of i.i.d. letters to Markovian letters to sofic shifts, an

asymptotic relationship as word length grows between scaled moments of the guesswork

and specific Rényi entropy was identified:

lim
k→∞

1

k
logE(G(Wk)

α) = αRW

(
1

1 + α

)
, (4.4)

for α > −1, where RW (β) is the specific Rényi entropy for the process {Wk} with

parameter β > 0,

RW (β) := lim
k→∞

1

k

1

1− β
log

∑
w∈Ak

P (Wk = w)β

 .

In Chapter 3 we build built on those results to prove that {k−1 logG(Wk)} satisfies

a Large Deviation Principle (LDP), e.g [16]. Define the scaled Cumulant Generating
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Function (sCGF) of {k−1 logG(Wk)} by

ΛW (α) := lim
k→∞

1

k
logE

(
eα logG(Wk)

)
for α ∈ R

and make the following assumption.

Assumption 4.1 For α > −1, the sCGF ΛW (α) exists, is equal to αRW (1/(1 + α))

and has a continuous derivative in that range.

Should Assumption 4.1 hold, Theorem 3.3 establishes that ΛW (α) =

limα↓−1RW (α/(1 + α)) for all α ≤ −1 and that the sequence {k−1 logG(Wk)}
satisfies a LDP with a rate function given by the Legendre Fenchel transform of the

sCGF, Λ∗W (x) := supα∈R{xα − ΛW (α)}. Assumption 1 is motivated by equation (4.4).

With

γW := lim
α↓−1

d

dα
ΛW (α), (4.5)

where the order of the size of the set of maximum probability words of Wk is exp(kγW )

[10], Λ∗W (x) can be identified as

=


−x− limα↓−1RW (α/(1 + α)) if x ∈ [0, γW ]

supα∈R{xα− ΛW (α)} if x ∈ (γW , log(m)],

+∞ if x /∈ [0, log(m)].

Corollary 3.2 of Chapter 3 uses this LDP to prove a result suggested in [3, 49], that

lim
k→∞

1

k
E(log(G(Wk))) = HW , (4.6)

making clear that the specific Shannon entropy determines the expectation of the loga-

rithm of the number of guesses to guess the word Wk. The growth rate of the expected

guesswork is a distinct quantity whose scaling rules can be determined directly from the

sCGF in equation (4.4),

lim
k→∞

1

k
logE(G(Wk)) = ΛW (1).

From these expressions and Jensen’s inequality, it is clear that the growth rate of the

expected guesswork is more than HW . Finally, as a corollary to the LDP, Chapter 3
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provides the following approximation to the guesswork distribution for large k:

P (G(Wk) = n) ≈ 1

n
exp

(
−kΛ∗W (k−1 log n)

)
for n ∈ {1, . . . ,mk}. Thus to approximate the guesswork distribution, it is sufficient to

know the specific Rényi entropy of the source and the decay-rate of the likelihood of the

sequence of most likely words.

The rest of this chapter is split into three parts.

• The first establishes that if {Wk} is constructed from i.i.d. letters, then both of the

processes {U εk} and {W ε
k} also satisfy Assumption 4.1 so that, with the appropriate

rate functions, the approximation in equation (3.8) can be used with U εk or W ε
k in

lieu of Wk. This enables us to compare the guesswork distribution for Typical Set

encoded words with their assumed uniform counterpart. Even in the simple binary

alphabet case we establish that, apart from edge cases, a word chosen via W ε
k is

exponential easier in k to guess on average than one chosen via U εk.

• The second part, found in Section 4.4, provides an example to illustrate those

results.

• The final part, beginning in Section 4.5, generalises the source assumptions to

the setting of Pfister and Sullivan [46], establishing the robustness of the i.i.d.

deductions.

4.3 Statement of main i.i.d. results

Assume that the strings {Wk} are made of i.i.d. characters, defining p = (p0, . . . , pm−1)

by pa = P (W1 = a). We shall employ the following short-hand: h(l) := −
∑

a la log la

for l = (l0, . . . , lm−1) ∈ [0, 1]m, la ≥ 0,
∑

a la = 1, so that H(W ) = h(p), and D(l‖p) :=

−
∑

a la log(pa/la), the KL-Divergence of the source. Furthermore, define l− ∈ [0, 1]m

and l+ ∈ [0, 1]m by

l− ∈ arg max
l
{h(l) : h(l) +D(l‖p)− ε = h(p)}, (4.7)

l+ ∈ arg max
l
{h(l) : h(l) +D(l‖p) + ε = h(p)}, (4.8)
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should they exist. For α > −1, define lW (α) as (lW 0(α), . . . , lWm−1(α)), with lWa(α)

and η(α) are defined by

lWa(α) :=
p

(1/(1+α))
a∑

b∈A p
(1/(1+α))
b

for all a ∈ A and (4.9)

η(α) := −
∑
a

lWa(α) log pa = −
∑

a∈A p
1/(1+α)
a log pa∑

b∈A p
1/(1+α)
b

. (4.10)

Assume that h(p) + ε ≤ log(m). If this is not the case, log(m) should be substituted in

place of h(l−) for the {U εk} results.

Lemma 4.1 Assumption 4.1 holds for {U εk} and {W ε
k} with

ΛUε(α) := αh(l−)

and

ΛW ε(α) = αh(l∗(α))−D(l∗(α)‖p),

where

l∗(α) =


l+ if α > −1, η(α) < h(p)− ε,

lW (α) if η(α) ∈ [h(p)− ε, h(p) + ε],

l− if η(α) > h(p) + ε.

(4.11)

Thus by direct evaluation of the sCGFs at α = 1,

lim
k→∞

1

k
logE(G(U εk)) = h(l−) and lim

k→∞

1

k
logE(G(W ε

k)) = ΛW ε(1).

As the conditions of Theorem 3.3 are satisfied

lim
k→∞

1

k
E(log(G(U εk)) = Λ′Uε(0) = h(l−) and lim

k→∞

1

k
E(log(G(W ε

k)) = Λ′W ε(0) = h(p),
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and we have the approximations

P (G(U εk) = n) ≈ 1

n
exp

(
−kΛ∗Uε(k

−1 log n)
)

and

P (G(W ε
k) = n) ≈ 1

n
exp

(
−kΛ∗W ε(k−1 log n)

)
.

The proof of Lemma 4.1 is deferred until after some preliminary results. Note that by

the definition of T εk as a Typical Set, P (Wk ∈ T εk) > 1− ε for all k sufficiently large and

thus

lim
k→∞

1

k
logP (Wk ∈ T εk) = 0.

The proportion of the character a ∈ A in a string w = (w1, . . . , wk) ∈ Ak is given by

nk(w, a) :=
|{1 ≤ i ≤ k : wi = a}|

k
.

The number of strings in a type l, where la ∈ [0, 1] for all a ∈ A and
∑

a∈A la = 1, is

given by

Nk(l) := |{w ∈ Ak such that nk(w, a) = la ∀a ∈ A}|.

The set of all types, those just in the Typical Set and smooth approximations to those

in the Typical Set are denoted

Lk := {l : ∃w ∈ Ak such that nk(w, a) = la ∀a ∈ A},

Lε,k := {l : ∃w ∈ T εk such that nk(w, a) = la ∀a ∈ A},

Lε :=

{
l :
∑
a

la log pa ∈ [−h(p)− ε,−h(p) + ε]

}
,

where it can readily seen that Lε,k ⊂ Lε for all k.

For {U εk} we need the following Lemma.
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Lemma 4.2 The exponential growth rate of the size of the Typical Set is

lim
k→∞

1

k
log |T εk | =

 logm if logm ≤ h(p) + ε

h(l−) otherwise.

where l− is defined in equation (4.7).

Proof: For fixed k, by the union bound

max
l∈Lε,k

k!∏
a∈A(kla)!

≤ |T εk | ≤ (k + 1)m max
l∈Lε,k

k!∏
a∈A(kla)!

.

For the logarithmic limit, these two bounds coincide so consider the concave optimization

max
l∈Lε,k

k!∏
a∈A(kla)!

.

We can upper bound this optimization by replacing Lε,k with the smoother version, its

superset Lε. Using Stirling’s bound we have that

lim sup
k→∞

1

k
log sup

l∈Lε

k!∏
a∈A(kla)!

≤ sup
l∈Lε

h(l) =

log(m) if h(p) + ε ≥ log(m)

h(l−) if h(p) + ε < log(m).

For the lower bound, we need to construct a sequence {l(k)} such that l(k) ∈ Lε,k for all

k sufficiently large and h(l(k)) converges to either log(m) or h(l−), as appropriate. Let

l∗ = (1/m, . . . , 1/m) or l− respectively, letting c ∈ arg max pa and define

l(k)
a =


k−1bkl∗ac+ 1−

∑
b∈A

1

k
bkl∗bc if a = c,

k−1bkl∗ac if a 6= c.

Then l(k) ∈ Lε,k for all k > −m log(pc)/(2ε) and h(l(k))→ h(l∗), as required.

�
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Proof: Proof of Lemma 4.1. Considering {U εk} first,

αRUε

(
1

1 + α

)
= α lim

k→∞

1

k
log |T εk | = αh(l−),

by Lemma 4.2. To evaluate ΛUε(α), using that for n ∈ N and α > 0

n∑
i=1

iα ≥
∫ n

0
xαdx,

we use Lemma 4.2 again and we have

αh(l−) = lim
k→∞

1

k
log

1

1 + α
|T εk |α ≤ lim

k→∞

1

k
logE(eα logG(Uεk))

= lim
k→∞

1

k
log

1

|T εk |

|T εk |∑
i=1

iα ≤ lim
k→∞

1

k
log |T εk |α = αh(l−).

The reverse of these bounds holds for α ∈ (−1, 0], giving the result.

We break the argument for {W ε
k} into three steps. Step 1 is to show the equivalence

of the existence of ΛW ε(α) and αRW ε(1/(1 + α)) for α > −1 with the existence of the

following limit

lim
k→∞

1

k
log max

l∈Lε,k

{
Nk(l)

1+α
∏
a∈A

pklaa

}
. (4.12)

Step 2 then establishes this limit and identifies it. Step 3 shows that Λ′W ε(α) is continuous

for α > −1. To achieve steps 1 and 2, we adopt and adapt the method of types argument

employed in the elongated web-version of [37].

Step 1: Two changes from the bounds of [37, Lemma 5.5] are necessary: the consideration

of non-i.i.d. sources by restriction to T εk ; and the extension of the α range to include

α ∈ (−1, 0] from that for α ≥ 0 given in that document. Adjusted for conditioning on
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the Typical Set we get

1

1 + α
max
l∈Lε,k

{
Nk(l)

1+α

∏
a∈A p

kla
a∑

w∈T εk
P (Wk = w)

}
≤ E(eα logG(W ε

k)) ≤ (4.13)

(k + 1)m(1+α) max
l∈Lε,k

{
Nk(l)

1+α

∏
a∈A p

kla
a∑

w∈T εk
P (Wk = w)

}
.

The necessary modification of these inequalities for α ∈ (−1, 0] gives

max
l∈Lε,k

{
Nk(l)

1+α

∏
a∈A p

kla
a∑

w∈T εk
P (Wk = w)

}
≤ E(eα logG(W ε

k)) ≤ (4.14)

(k + 1)m

1 + α
max
l∈Lε,k

{
Nk(l)

1+α

∏
a∈A p

kla
a∑

w∈T εk
P (Wk = w)

}
.

To show the lower bound holds if α ∈ (−1, 0] let

l∗ ∈ arg max
l∈Lε,k

{
Nk(l)

1+α

∏
a∈A p

kla
a∑

w∈T εk
P (Wk = w)

}
.

Taking lim infk→∞ k
−1 log and lim supk→∞ k

−1 log of equations (4.13) and (4.14) estab-

lishes that if the limit (4.12) exists, ΛW ε(α) exists and equals it. For the Rényi entropy

see that

lim
k→∞

1 + α

k
log max

l∈Lε,k

Nk(l)

( ∏
a∈A p

kla
a∑

w∈T εk
P (Wk = w)

)1/(1+α)


≤ lim
k→∞

(1 + α)

k
log

∑
w∈Ak

P (Wk = w)1/(1+α)

≤ lim
k→∞

1 + α

k
log(k + 1)m max

l∈Lε,k

Nk(l)

( ∏
a∈A p

kla
a )∑

w∈T εk
P (Wk = w)

)1/(1+α)
 .

Here the first inequality follows by taking only the maximal type from the sum and the

second by taking each type to have the same value as the maximal type the function

above. Then take limits to obtain the desired result.
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Step 2: The problem has been reduced to establishing the existence of

lim
k→∞

1

k
log max

l∈Lε,k

{
Nk(l)

1+α
∏
a∈A

pklaa

}

and identifying it. The method of proof is similar to that employed in Lemma 4.1: we

provide an upper bound for the limsup and then establish a corresponding lower bound.

If l(k) → l with l(k) ∈ Lk, then using Stirling’s bounds we have that

lim
k→∞

1

k
logNk(l

(k)) = h(l).

This convergence occurs uniformly in l and so, as Lε,k ⊂ Lε for all k,

lim sup
k→∞

1

k
log max

l∈Lε,k

{
Nk(l)

1+α
∏
a∈A

pklaa

}
≤ sup

l∈Lε

(
(1 + α)h(l) +

∑
a

la log pa

)
= sup

l∈Lε
(αh(l)−D(l‖p)) . (4.15)

This is a concave optimization problem in l with convex constraints. Not requiring

l ∈ Lε, the unconstrained optimizer over all l is attained at lW (α) defined in equation

(4.9), which determines η(α) in equation (4.10). Thus the optimizer of the constrained

problem (4.15) can be identified as that given in equation (4.11). Thus we have that

lim sup
k→∞

1

k
log max

l∈Lε,k

{
Nk(l)

1+α
∏
a∈A

pklaa

}
≤ αh(l∗(α)) +D(l∗(α)‖p),

where l∗(α) is defined in equation (4.11).

We complete the proof by generating a matching lower bound. To do so, for given

l∗(α) we need only create a sequence such that l(k) → l∗(α) and l(k) ∈ Lε,k for all

k. If l∗(α) = l−, then the sequence used in the proof of Lemma 4.2 suffices. For

l∗(α) = l+, we use the same sequence but with floors in lieu of ceilings and the surplus

probability distributed to a least likely character instead of a most likely character. For

l∗(α) = lW (α), either of these sequences can be used.
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Step 3: As ΛW ε(α) = αh(l∗(α))−D(l∗(α)‖p), with l∗(α) defined in equation (4.11),

d

dα
ΛW ε(α) = h(l∗(α)) + ΛW ε(α)

d

dα
l∗(α).

Thus to establish continuity it suffices to establish continuity of l∗(α) and its derivative,

which can be done readily by calculus.

�

4.4 Example

Consider a binary alphabet A = {0, 1} and strings {Wk} constructed of i.i.d. characters

with P (W1 = 0) = p0 > 1/2. In this case there are unique l− and l+ satisfying equations

(4.7) and (4.8) determined by:

l−0 = p0 −
ε

log(p0)− log(1− p0)
,

l+0 = p0 +
ε

log(p0)− log(1− p0)
.

Selecting 0 < ε < (log(p0)− log(1− p0)) min(p0 − 1/2, 1− p0) ensures that the Typical

Set is growing more slowly than 2k and that 1/2 < l−0 < p0 < l+0 < 1.

With lW (α) defined in equation (4.9), we have that

ΛW (α) =

log(p0) if α < −1,

αh(lW (α))−D(lW (α)‖p), if α ≥ −1.

=


log(p0) if α < −1,

(1 + α) log

(
p

1
1+α

0 + (1− p0)
1

1+α

)
if α ≥ −1,

From Lemma 4.1 we obtain

ΛUε(α) =

−h(l−) if α < −1,

αh(l−) if α ≥ −1,
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and

ΛW ε(α) = αh(l∗(α))−D(l∗(α)‖p),

where l∗(α) is defined in equation (4.11) and η(α) defined in equation (4.10).

With γ defined in equation (4.5), we have γW = 0, γUε = h(l−) and γW ε = h(l+) so

that, as h(l−) > h(l+), the ordering of the growth rates with string length of the set of

most likely strings from smallest to largest is: unconditioned source, conditioned source

and uniform approximation.

From these sCGF equations, we can determine the average growth rates and estimates

on the guesswork distribution. In particular, we have that

lim
k→∞

1

k
E(log(G(Wk))) = Λ′W (0) = h(p),

lim
k→∞

1

k
E(log(G(W ε

k))) = Λ′W ε(0) = h(p),

lim
k→∞

1

k
E(log(G(U εk))) = Λ′Uε(0) = h(l−).

As h(x) is monotonically decreasing for x > 1/2 and 1/2 < l−0 < p0, the expectation of

the logarithm of the guesswork is growing faster for the uniform approximation than for

either the unconditioned or conditioned string source. The growth rate of the expected

guesswork reveals more features. In particular, with A = η(1)− (h(p) + ε),

lim
k→∞

1

k
logE(G(Wk)) = 2 log(p

1
2
0 + (1− p0)

1
2 ),

lim
k→∞

1

k
logE(G(W ε

k)) =

2 log(p
1
2
0 + (1− p0)

1
2 ), A ≤ 0

h(l−)−D(l−‖p), A > 0

lim
k→∞

1

k
logE(G(U εk)) = h(l−).

For the growth rate of the expected guesswork, from these it can be shown that there

is no strict order between the unconditioned and uniform source, but there is a strict

ordering between the the uniform approximation and the true conditioned distribution,

with the former being strictly larger.

With ε = 1/10 and for a range of p0, these formulae are illustrated in Figure 4.1. The
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top line plots

lim
k→∞

1

k
E(log(G(U εk))− log(G(Wk)))

= lim
k→∞

1

k
E(log(G(U εk))− log(G(W ε

k))) = h(l−)− h(p),

showing that the expected growth rate in the logarithm of the guesswork is always higher

for the uniform approximation than both the conditioned and unconditioned sources.

The second highest line in Figure 4.1 plots the difference in growth rates of the expected

guesswork of the uniform approximation and the true conditioned source

lim
k→∞

1

k
log

E(G(U εk))

E(G(W ε
k))

=

h(l−)− 2 log(p
1
2
0 + (1− p0)

1
2 ) if η(1) ≤ h(p) + ε

D(l−‖p) if η(1) > h(p) + ε.

That this difference is always positive, which can be readily established analytically,

shows that the expected guesswork of the true conditioned source is growing at a slower

exponential rate than the uniform approximation. The second line in Figure 4.1 and the

lowest in Figure 4.1 line, the growth rates of the uniform and unconditioned expected

guesswork

lim
k→∞

1

k
log

E(G(U εk))

E(G(Wk))
= h(l−)− 2 log(p

1
2
0 + (1− p0)

1
2 ),

initially agree. It can, depending on p0 and ε, be either positive or negative. It is negative

if the Typical Set is particularly small in comparison to the number of unconditioned

strings.

For p0 = 8/10, the Typical Set is growing sufficiently quickly that a string selected from

the uniform approximation is easier to guess than for unconditioned source. For this

value of p, we illustrate the difference in guesswork distributions between the uncon-

ditioned, {Wk}, conditioned, {W ε
k}, and uniform, {U εk}, string sources. If we used the

approximation in Chapter 3, (3.8) directly, the graph would not be informative as the

range of the unconditioned source is growing exponentially faster than the other two.

Instead Figure 4.2 plots −x − Λ∗(x) for each of the three processes. That is, using

equation (3.8) and its equivalents for the other two processes, it plots

1

k
logG(w), where G(w) ∈ {1, . . . , 2k},
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Figure 4.1: Bernoulli(p0, 1− p0) source. Difference in exponential growth rates of guess-
work between uniform approximation, unconditioned and conditioned dis-
tribution with ε = 0.1. Top curve is the difference in expected logarithms
between the uniform approximation and both the conditioned and uncondi-
tioned string sources. Bottom curve is the log-ratio of the expected guesswork
of the uniform and unconditioned string sources, with the latter harder to
guess for large p0. Middle curve is the log-ratio of the uniform and condi-
tioned string sources, which initially follows the lower line, before separating
and staying positive, showing that the conditioned source is always easier to
guess than the typically used uniform approximation.
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Figure 4.2: Bernoulli(8/10, 2/10) source, ε = 0.1. Guesswork distribution approxima-
tions. For large k, x-axis is x = 1/k logG(w) for G(w) ∈ {1, . . . , 2k} and the
y-axis is the large deviation approximation 1/k logP (X = w) ≈ −x−Λ∗X(x)
for X = Wk,W

ε
k and X = U εk.

against the large deviation approximations to

1

k
logP (Wk = w),

1

k
logP (W ε

k = w) and
1

k
logP (U εk = w),

as the resulting plot is unchanging in k. The source of the discrepancy in expected

guesswork is apparent, with the unconditioned source having substantially more strings

to cover (due to the log x-scale). Both the unconditioned source and the true conditioned

sources having higher probability strings that skew their guesswork. The first plateau

for the conditioned and uniform distributions correspond to those strings with maximum

highest probability (slowest exponential decay-rate).

4.5 Generalisation

In the third and final part of this chapter we show that the result is not confined by the

i.i.d. assumption. This section closely follows the proof of Pfister and Sullivan [46].

Let A := {0, . . . ,m − 1} equiped with the discrete topology and Ω = AN. Define

Xk : AN → Ak to be the projection w ∈ AN → (w1, . . . , wk) ∈ Ak. We let M denote the

space of Borel probability measures on Ω and define S : Ω→ Ω to be the shift operator

(S(w))j := wj+1 for each j ∈ N. Let MS ⊂M denote the the shift invariant probability
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measures, so ν ∈MS implies ν(w) = ν(Sw) for all w ∈ Ω. Define

Σν
k := {wk ∈ Ak : νk(wk) > 0}, Σν :=

⋂
k

X−1
k (Σν

k).

Then Mν denotes the set of Borel probability measures on Σν , Mν
S the shift invariant

probability measures on Σν . Assume that for ν ∈MS , a string is chosen with probability

ν(w) and a string wk of length k is chosen with probability P (Wk = wk) = νk(wk) =

ν({w : Xk(w) = wk}). Use Lk(w) to denote the empirical measure

Lk(w) :=
1

k

(
δw + δS(w) + . . .+ δSk−1(w)

)
where δSj(w) denotes the measure concentrated on the point Sj(w) = (wj+1, wj+2, . . .)

and δw = δS0(w). The number of guesses that has to be made to guess wk is labeled

G(wk) and G : Ak → {1, . . . ,mk} that has the properties that G(wk) < G(w′k) if and

only if νk(w
′
k) < νk(wk), and that G(wk) = G(w′k) implies wk = w′k. Using the notation

of [46], the specific Shannon Entropy of ν is

hsh(ν) := − lim
k→∞

1

k

∑
wk∈Ak

νk(wk) log νk(wk).

We make three assumptions on ν, the first two of which are taken from [46].

Assumption 4.2 For any neighbourhood U of ρ ∈ Mν
S and for any ε > 0, there exists

an ergodic ρ′ ∈ U ∩Mν
S such that

hsh(ρ′) ≥ hsh(ρ)− ε.

Assumption 4.3 The given reference probability measure ν is shift invariant. There

exists a continuous nonnegative function eν : Ω→ R satisfying

lim
k→∞

sup
w:Xk(w)∈Σνk

∣∣∣∣1k log νk(Xk(w)) + eν(w)

∣∣∣∣ = 0.

Assumption 4.3 implies that the probability, νk(Xk(w)), is approximately determined

by the first k characters of w. This gives us some regularity on the system allowing us

to break the space into types. There is no assumption that there is only one possible
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eν that satisfies Assumption 4.3 but any such function will be sufficient as long as the

reader is consistent.

For the final assumption we need to define the specific Rényi entropy in terms of our

current notation. The specific Rényi entropy is defined for β > 0, β 6= 1,

RW (β) := lim
k→∞

1

k(1− β)
log

∑
wk∈Ak

νk(wk)
β, (4.16)

with RW (1) := hsh(ν).

Assumption 4.4 The shift invariant measure ν is ergodic and the function RW (β) has

a continuous derivative for β ∈ (0,∞).

Given ε > 0, strings of length k the Typical Set, equation (4.1), can be written as

T εk :=

{
wk ∈ Ak :

1

k
log νk(wk) ∈ (−hsh(ν)− ε,−hsh(ν) + ε)

}
.

Define

Mν,ε := {ρ ∈Mν : eν(ρ) ∈ (hsh(ν)− ε, hsh(ν) + ε)}.

Conditioning on the Typical Set provides a new source of strings of length k:

νεk(wk) =


νk(wk)

νk(T
ε
k)

if wk ∈ T εk

0 otherwise.

(4.17)

Now we will define some statistics of these processes so we have something concrete to

compare what happens to the guesswork when the two different processes, {νk}, {νεk},
are used.

The sCGF of the original process, {νk}, is defined for α ∈ R,

ΛW (α) := lim
k→∞

1

k
log

∑
wk∈Ak

ν(wk)(exp(α logG(wk))).
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The equivalent for the process conditioned on the Typical Set is

ΛW ε(α) := lim
k→∞

1

k
log

∑
wk∈T εk

νεk(wk)(exp(α logG(wk))).

The specific Rényi entropy of the process conditioned on being in the Typical Set is

denoted by RW ε(β) and is obtained by replacing νk(wk) with νεk(wk) in (4.16).

The condition needed for Theorem 3.3 in Chapter 3 to hold is that ΛW (α) exists, for all

α > −1 that,

ΛW (α) = αRW

(
1

1 + α

)
and that Λ′W (α) is continuous for α > −1. The continuity of the derivative is true by

Assumption 4.4 as

d

dα

(
αRW

(
1

1 + α

))
= RW

(
1

1 + α

)
+ α

d

dα
RW

(
1

1 + α

)
which is continuous as RW and (1 + α)−1 are continuous. The rest of the condition is

proven by Pfister and Sullivan [46].

4.5.1 Main Theorems

To use Theorem 3.3 in Chapter 3 for the measure as defined in equation (4.17), νεk, we

need to establish that ΛW ε(α) exists, for all α > −1, that

ΛW ε(α) = αRW ε

(
1

1 + α

)
and that Λ′W ε(α) is continuous for α > −1.

Establishing that condition holds is achieved by the following three theorems, whose

proofs follow later.
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Theorem 4.3 Let ν ∈MS satisfy Assumptions 4.2, 4.3 and 4.4. If β > 0, β 6= 1 then

lim
k→∞

1

k(1− β)
log

∑
wk∈T εk

(νk(wk))
β =

1

1− β
sup

ρ∈Mν,ε
S

[hsh(ρ)− βeν(ρ)] .

With

lim
β↑1

lim
k→∞

1

k(1− β)
log

∑
wk∈T εk

(νk(wk))
β = lim

β↓1
lim
k→∞

1

k(1− β)
log

∑
wk∈T εk

(νk(wk))
β = hsh(ν).

Theorem 4.4 Let ν ∈MS satisfy Assumptions 4.2, 4.3 and 4.4. If α > −1, then

ΛW ε(α) = lim
k→∞

1

k
log

∑
wk∈T εk

νεk(wk)(G(wk)
α) = sup

ρ∈Mν,ε
S

[(1 + α)hsh(ρ)− eν(ρ)].

Theorem 4.5 Let ν ∈ MS satisfy Assumptions 4.2, 4.3 and 4.4. Then the sCGF,

ΛW ε(α) has a continuous derivative for α ∈ (−1,∞].

It can be quickly seen that for α ≥ 0

sup
ρ∈Mν,ε

S

[(1 + α)hsh(ρ)− eν(ρ)] ≤ sup
ρ∈Mν

S

[(1 + α)hsh(ρ)− eν(ρ)]

so that conditioning on the Typical Set will never increase the rate at which the average

guesswork increases at.

On the other hand

ΛUε(1) = log |T εk | = sup
ρ∈Mν

S

hsh(ρ) = sup
α∈R

( sup
ρ∈Mν

S

[(1 + α)hsh(ρ)− eν(ρ)])′

with equality only if W is uniformly distributed. This in conjunction with ΛUε(0) =

ΛW ε(0) = 0 and Λ′W ε(0) = supρ∈Mν
S
hsh(ρ) ≥ hsh(ν) = Λ′W ε(0) means that ΛUε(1) >

ΛW ε(1) if W is not uniformly distributed again showing that assuming that all strings

inside the Typical Set are uniform is ill advised.
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4.5.2 Proofs

To prove the theorems in the main results section we are going to state two interim

propositions that will be proved first.

Proposition 4.1 Let ν ∈MS satisfy Assumption 4.3. Let F be a closed subset of Mν,ε.

Then

lim sup
k→∞

1

k
log

ν({w ∈ AN : Xk(w) ∈ T εk , Lk(w) ∈ F})
νk(T

ε
k)

≤ sup
ρ∈F∩Mν

S

−h(ρ|ν).

Proposition 4.2 Let ν ∈MS satisfy Assumption 4.2 and Assumption 4.3. Let D be a

open subset of Mν,ε. Then

lim inf
k→∞

1

k
log

ν({w ∈ AN : Xk(w) ∈ T εk , Lk(w) ∈ D})
νk(T

ε
k)

≥ sup
ρ∈D∩Mν

S

−h(ρ|ν).

These give us a lower bound and an upper bound on the probability the chosen string

has Lk in a certain set, this is an abstraction of the notion of types used in [37] and the

proof in the first part of this chapter.

For the proof we will approximate eν with a local function f which we need to define

some notation for next. Let f : Ω → R, ‖f‖ := supw∈Ω |f(w)|. Then let Fk denote the

σ-algebra generated by Xk. Write f ∈ Fk to mean that the function f is Fk measurable.

To divide up the possible string space into more manageable blocks we use the following

notation.

For B ⊂M ,

Γ̂εk,B = {wk ∈ T εk : ∃w ∈ Ω with Xk(w) = wk and Lk(w) ∈ B}.

For B ⊂M ,

Γ̃εk,B = {wk ∈ T εk : Xk(w) = wk ⇒ Lk(w) ∈ B}.
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We need to prove some smaller results first before we prove Proposition 4.1 and 4.2.

The following lemma allows us to show the effect of conditioning the strings on being in

the Typical Set.

Lemma 4.6 Let ν satisfy Assumptions 4.2, 4.3 and 4.4. Then limk→∞ k
−1 log νk(T

ε
k) =

0.

Proof: By Cover & Thomas, Theorems 3.1.2 and 15.7.1 [14], using the fact that A is

finite, the ergodicity and stationarity of ν.

�

The following lemma is similar to Lemma 4.1 in Pfister and Sullivan [46] but we replace

Γ̂ and Γ̃ with Γ̂ε and Γ̃ε. The following Lemmas give us the tools we require for operating

with Γ̂ε and Γ̃ε.

Lemma 4.7 Let F ⊂ D ⊂M with F closed and D open. Then there exists k′ ∈ N such

that for all k ≥ k′, Γ̂εk,F ⊂ Γ̃εk,D.

Proof: If there were no such k′ then we could find a sequence {(wkn , w′kn)} ∈ AN2
with

Xkn(wkn) = Xkn(w′kn) and k−1 log vk(Xkn(wkn)) ∈ (hsh(ν)− ε, hsh(ν) + ε) such that

Lkn(wkn) ∈ F,Lkn(w′kn) 6∈ D

lim
kn→∞

Lkn(wkn) = ρ∗ ∈ F, lim
kn→∞

Lkn(w′kn) = ρ′ 6∈ D. (4.18)

If f ∈ Fb and Xk(w) = Xk(w
′), then

|f(Lk(w))− f(Lk(w
′))| ≤ 2‖f‖b− 1

k
, (4.19)

so f(ρ∗) = f(ρ′). As equation (4.19) holds for all local f which implies ρ∗ = ρ′ which

contradicts (4.18). The inequality comes from 2‖f‖ being the largest possible gap be-

tween them not taking into account Xk(w) = Xk(w
′). (b − 1)/k is the fraction of the

string that f(Lk(w)) depends on that where both strings are not exactly equal due to

Xk(w) = Xk(w
′).
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The following lemma lower bounds the exponential rate at which |Γ̃εk,D| increases.

Lemma 4.8 Let D be an open set in Mν . Let ρ ∈ D be an ergodic probability measure

on Σν . Then

lim inf
k→∞

1

k
log
∣∣∣Γ̃εk,D∣∣∣ ≥ hsh(ρ).

Proof: Let {fi} be a sequence of local functions that determines the topology of M .

The open set D ⊂Mν,ε can be expressed as D = D′ ∩Mν,ε, with D′ open in M and has

the property that ρ′ ∈ D′ ⇒ eν(ρ′) ∈ (hsh(ν)− ε, hsh(ν) + ε) using the continuity of eν .

As we are using the weak topology on AN, there exists {δ1 > 0, . . . , δm > 0} such that

N := {ρ′ ∈M : |fi(ρ′ − ρ)| ≤ δi, i = 1, . . . ,m} ⊂ D′. (4.20)

By Lemma 4.7, for all sufficiently large k

Γ̂εk,N ⊂ Γ̃εk,D′ = Γ̃εk,D.

As ρ is assumed to be ergodic, there exists a Borel set B ∈ Σv so that ρ(B) = 1 and

w ∈ B ⇒ limk→∞ fi(Lk(w)) = fi(ρ), i = 1, . . . ,m.

Any element ρ′ ∈ N , N defined in equation (4.20), will have the property that eν(ρ′) ∈
(hsh(ν)− ε, hsh(ν) + ε) as N ⊂ D′, which there exists K such that for k > K, for w ∈ Ω,

Lk(w) ∈ N ⇒ Xk(w) ∈ T εk using Assumption 4.3. This part is the main difference to

the Pfister and Sullivan version as we must make sure that we do not include elements

outside of the Typical Set.

It follows that for each w ∈ B there exists kw so that k > kw implies Lk(w) ∈ N , hence

lim
k→∞

ρk(Γ̃
ε
k,D) = 1.

The lemma, with the additional ergodicity assumption, follows by noting that Γ̃εk,D is a

supporting set which gives lower bounds on the sizes of supporting sets in terms of the

Shannon Entropy as detailed in Lemma 2.1 [33].
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Lemma 4.9 Let D be an open set in Mν . Let ρ ∈ D be an probability measure on Σν .

Then

lim inf
k→∞

1

k
log
∣∣∣Γ̃εk,D∣∣∣ ≥ hsh(ρ).

Proof: Let C = {ρ ∈ D∩Mν
S : ρ is ergodic}. To expand Lemma 4.8 past the assumption

of ergodicity we use Assumption 4.2 which implies for open D ⊂Mν ,

sup
ρ∈D∩Mν

S

hsh(ρ) = sup
ρ∈C

hsh(ρ).

�

The following lemma and corollary are Lemma 4.3 and Corollary 4.1 from Pfister and

Sullivan [46] and are reprinted for ease of reference of the user.

Lemma 4.10 Let ν ∈ MS be a probability measure satisfying Assumption 4.3. Then

for each δ > 0 there exist mδ, Nδ ∈ N and fδ which is Fmδ measurable, so that ∀k ≥ Nδ,

∀w ∈ T εk , |eν(w)− fδ(w)| ≤ δ/2 and∣∣∣∣fδ(Lk(w)) +
1

k
log νk(Xk(w))

∣∣∣∣ < δ.

Corollary 4.1 Let ν ∈ MS be a probability measure verifying Assumption 4.3. For

ρ ∈Mν,ε
S we have

− lim
k→∞

1

k

∑
wk∈Σνk

ρk(wk) log νk(wk) = eν(ρ).

In Pfister and Sullivan [46], Lemma 4.4 they cover Mν however for our needs it is

sufficient to cover Mν,ε.

Lemma 4.11 For δ > 0 and fδ,mδ, Nδ as in Lemma 4.10, there exists an integer,

numbers 0 ≤ a0 . . . < aKδ with aj − aj−1 < δ, j = 1, . . . ,Kδ and sets {Dδ
j ⊂ F δj ⊂Mν,ε :
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j = 1, . . . ,Kδ} so that each Dδ
j is open and each F δj is closed and

Nδ⋃
j=0

Dδ
j = Mν,ε

ρ ∈ Dδ
j ⇒ |fδ(ρ)− aj | < δ

ρ ∈ F δj ⇒ |fδ(ρ)− aj | ≤ δ.

Proof: Define K ′δ, a
′
j , D

δ
j and F δj by

K ′δ :=

⌈
1 + ‖fδ‖

δ

⌉
, a′j :=

j

Kδ
‖fδ‖.

Then select a0 = hsh(ν) − ε + δ, then take all the a′j satisfying a′j ∈ (hsh(ν) − ε +

δ, hsh(ν) + ε− δ). Denote the number of such aj ’s as Kδ − 1 and set a1, . . . , aKδ−1 to be

these values, then set aKδ to be hsh(ν) + ε− δ.

Take the sets

Dδ
j := {ρ ∈Mν : |fδ(ρ)− aj | < δ}

F δj := {ρ ∈Mν : |fδ(ρ)− aj | ≤ δ}.

�

Two definitions are needed for the next lemma. For B ⊂M ,

Γ̂k,B = {wk ∈ Ak : ∃w ∈ Ω with Xk(w) = wk and Lk(w) ∈ B}.

For B ⊂M ,

Γ̃εk,B = {wk ∈ Ak : Xk(w) = wk ⇒ Lk(w) ∈ B}.

Lemma 4.12 For each closed F ⊂Mν,ε

lim sup
k→∞

1

k
log
∣∣∣Γ̂εk,F ∣∣∣ ≤ sup

ρ∈F∩Mν
S

hsh(ρ). (4.21)
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Proof: Pfister and Sullivan [46] proved equation (4.21) in Theorem II.2, [46] for each

F ′ ⊂ Mν . As F ⊂ Mν,ε ⊂ Mν their proof still holds. If F is closed in Mν,ε but not in

Mν then take B = F̄ and then B is closed in Mν so that

lim sup
k→∞

1

k
log
∣∣∣Γ̂εk,F ∣∣∣ ≤ lim sup

k→∞

1

k
log
∣∣∣Γ̂k,F ∣∣∣ ≤ lim sup

k→∞

1

k
log
∣∣∣Γ̂k,B∣∣∣ ≤ sup

ρ∈F∩Mν
S

hsh(ρ).

�

The following proposition is merely repeating Proposition 2.1 from Pfister and Sullivan

[46] for the reader.

Proposition 4.3 Let ν ∈MS satisfy Assumption 4.3. Then for each ρ ∈Mν
S ,

h(ρ|ν) := lim
k→∞

1

k

∑
wk∈Σνk

ρk(wk) log
ρk(wk)

νk(wk)

exists and equals eν(ρ)− hsh(ρ).

Proof: Proof of Proposition 4.1. Breaking the F into the sets F δj from Lemma 4.11,

and using Lemma 4.12 we have

lim sup
k→∞

1

k
log
∣∣∣Γ̂εk,F∩F δj ∣∣∣ ≤ sup

ρ∈F δj ∩F∩Mν
S

hsh(ρ).

Also

1

k
log

νk(Xk(w) : Lk(w) ∈ F ∩ F δj )

νk(T
ε
k)

≤ 1

k
log
∣∣∣Γ̂εk,F∩F δj ∣∣∣+ max

wk∈Γ̂ε
Fδ
j
∩F

1

k
log

νk(wk)

νk(T
ε
k)
.

from Lemma 4.10 we deduce that for k > Kδ, ρ ∈ F δj ∩Mν
S and wk ∈ Γ̂ε

k,F δj

1

k
log

νk(wk)

νk(T
ε
k)
≤ −aj + 2δ − 1

k
log νk(T

ε
k), eν(ρ) ≤ aj + 2δ.
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Using Proposition 4.3 to get

sup
ρ∈F∩F δ∩Mν

S

hsh(ρ) ≤ sup
ρ∈F∩F δj ∩Mν

S

−h(ρ|ν) + aj + 2δ.

Then

1

k
log

νk(Xk(w) : Lk(w) ∈ F ∩ F δj )

νk(T
ε
k)

equals the maximum over the corresponding lim sup’s with F replaced with F ∩ F δj .

This gives us

lim sup
k→∞

1

k
log

νk({Xk(w) : Lk(w) ∈ F})
νk(T

ε
k)

≤ max
0≤j≤Kδ

sup
ρ∈F∩F δj ∩Mν

S

−h(ρ|ν) + 4δ − lim sup
k→∞

1

k
log νk(T

ε
k).

The proof follows by Lemma 4.6, so lim sup k−1 log νk(T
ε
k) = 0 and as δ is arbitrarily

close to 0.

�

Proof: Proof of Proposition 4.2. First let D =
⋃
j(D

δ
j ∩D). If ρ ∈ D ∩Mν,ε then there

exists j such that ρ ∈ D ∩Dδ
j . By Lemma 4.8 we have for sufficiently large k,

1

k
log
∣∣∣Γ̃εk,D∩Dδj ∣∣∣ ≥ hsh(ρ)− ε.

Then by an argument similar to Proposition 4.1,

−h(ρ|ν) ≤ hsh(ρ)− eν(ρ) + 2δ

and

1

k
log

νk(wk)

νk(T
ε
k)
≥ −aj − 2δ − 1

k
log νk(T

ε
k).
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Finally

1

k
log

νk

(
Γ̃ε
k,D∩Dδj

)
νk(T

ε
k)

≥ hsh(ρ)− ε− aj − 2δ − 1

k
log νk(T

ε
k)

≥ −h(ρ|ν)− ε− 4δ − 1

k
log νk(T

ε
k).

As ε and δ are arbitrary, νk(Xk(L
−1
k (D))) ≥ νk

(
Γ̃ε
k,D∩Dδj

)
and by Lemma 4.6, the

proposition follows.

�

The following proof is similar to the proof of Lemma 2.3 in Pfister and Sullivan except

we only sum over values in the Typical Set instead of all strings in Ak.

Proof: Proof of Theorem 4.3. We use the covers {Dδ
j} and {F δj } introduced in Lemma

4.11. For α ≥ 0, ρ ∈ F δj ∩Mν
S , and n ≥ Nδ, arguing as above we deduce that

wk ∈ Γ̂ε
k,F δj
⇒ 1

k
log(νk(wk))

β ≤ β(−eν(ρ) + 4δ)

and

lim sup
k→∞

1

k
log
∣∣∣Γ̂εk,F δj ∣∣∣ ≤ sup

ρ∈F δj ∩Mν
S

hsh(ρ)

by Proposition 4.1, so

lim sup
k→∞

1

k
log

∑
w∈Γ̂ε

k,Fδ
j

(
νk(wk)

νk(T
ε
k)

)β
≤ sup

F δj ∩Mν
S

[hsh(ρ)− βeν(ρ)− 4βδ].

The theorem follows by noting that
⋃

Γ̃ε
k,Dδj
⊂ T εk =

⋃
Γ̂ε
k,F δj

, that the lim inf and lim sup

of the total sum is the same as the maximum over all the sets and δ is arbitrary.

�
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The following proof follows the same argument as Pfister and Sullivan in Theorem 2.4

the only difference being our notation, all the differences between their case and ours

being handled by previous the lemmas and propositions.

Proof: Proof of Theorem 4.4. Set hj :=

∣∣∣∣Γ̂εk,F δj
∣∣∣∣ , g0 := 0, gj+1 := gj + hj select the

ranking functions {rnkj} so that

rnkj : Γ̂ε
k,F δj
→ {gj + 1, . . . , gj + hj}

and define the injection rnk : T εk → {1, . . . , gKδ+1}

rnk(w) := min
j
{rnkj(w) : w ∈ Γ̂ε

k,F δj
}.

The properties of rnk imply that if α ≥ 0

∑
wk∈T εk

νεk(wk)G(wk)
α ≤

∑
wk∈T εk

νk(wk)

νk(T
ε
k)

rnkα(wk).

This inequality reverses if α ≤ 0.

For α ≥ 0

∑
wk∈Γ̂ε

k,Fδ
j

νk(wk)

νk(T
ε
k)
G(wk)

α ≤
hj∑
i=1

(gj + i)α max
wk∈Γ̂ε

k,Fδ
j

νk(wk)

νk(T
ε
k)

by the bound

(g + h)βh ≥
g+h∑
i=g+1

iα ≥
∫ h

0
xβdx =

h1+β

1 + β
. (4.22)

Equation (4.22) allows us to deduce

lim sup
k→∞

1

k
log

Kδ∑
j=0

hj∑
i=1

(gj + i)α max
w∈Γ̂ε

k,Fδ
j

νk(wk)

νk(T
ε
k)

≤ max
j=0,...,Kδ

[
lim sup
k→∞

1

k
(log hj + α log(gj+1))− aj

]
+ 2δ.
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Define Bj ,

Bj := lim sup
k→∞

1

k
log hj .

Choose j∗ so that

(1 + α)Bj − aj ≤ (1 + α)Bj∗ − aj∗ , j = 0, . . . , Nδ. (4.23)

Remember gj+1 =
∑j

0 hj , we have

max
j=0,...Kδ

lim sup
k→∞

1

k
(log hj + α log(gj+1))− aj

≤ max
j=0,...,Kδ

[
Bj + max

k≤j
αBk − aj

]
= (1 + α)Bj∗ − aj∗ .

Using the same techniques as before, we get

lim sup
k→∞

1

k
logE(G(wk)

α) ≤ sup
ρ∈Mν,ε

S

(1 + α)hsh(ρ)− eν(ρ) + 4δ.

Next we use the second inequality in (4.22) to deduce

∑
wk∈Γ̂ε

k,Fδ
j

νk(wk)G(wk)
α ≥

h1+α
j

1 + α
min

w∈Γ̂ε
k,Fδ

j

νk(wk)

νk(T
ε
k)

for each j.

Since Γ̃ε
k,Dδj
⊂ Γ̂ε

k,F δj
, we have

lim inf
k→∞

1

k
log

∑
wk∈T εk

ν(wk)G(wk)
α ≥ sup

ρ∈Mν,ε
S

(1 + α)hsh(ρ)− eν(ρ)− 4δ.

This covers the α ≥ 0 case. The inequality in equation 4.22 reverses to

(g + h)βh ≤
g+h∑
i=g+1

iβ ≤
∫ h

0
xβdx =

h1+β

1 + β

From this, the upper bound is easy to find. For the lower bound, if −1 < α < 0, note
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that

gj+hj∑
i=gj+1

iα ≥ (gj + hj)
αhj

We have

∑
wk∈T εk

νεk(wk)
α ≥ min

wk∈Γ̂ε
k,Fδ

j

νk(wk)

νk(T
ε
k)

(
j∑
i=0

hi

)α
hj .

We redefine Bj := lim infk→∞ k
−1 log hj and choose j∗ so that (4.23) is obtained. Then

lim inf
k→∞

1

k
log

∑
wk∈T εk

νεkG(wk)
α ≥ Bj∗ + αmax

i≤j∗
Bi − aj∗ − 2δ.

This means i < j∗ ⇒ aj∗ − ai > 0, so

(1 + α)Bi ≤ (1 + α)Bj∗ − (aj∗ − ai)⇒ Bi < Bj∗ . (4.24)

Equation (4.24) means that

lim inf
k→∞

1

k
log

∑
wk∈T εk

νεk(wk)G(wk)
α ≥ max

j=0,...,Kδ
[(1 + α)Bj − aj ]− 2δ.

As before, using the fact that Γ̃k,Dδj
⊂ Γ̂ε

k,F δj
,

max
j=0,...,Kδ

[(1 + α)Bj − aj ]− 2δ ≥ sup
ρ∈Mν,ε

S

(1 + α)hsh(ρ)− eν(ρ)− 4δ

giving us the lower bound.

�

Lemma 4.13 Let ν satisfies Assumptions 4.2, 4.3 and 4.4 and IW (x) be the rate

function with which {k−1 logG(Wk)} (if the strings are chosen using the measure

νk as opposed to νεk) satisfies a Large Deviations Principle. If x is in the region
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{x′ : supx∈R[αx− IW (x)] = αx′− IW (x′) for some α > −1} then there exists an α > −1

and a sequence (ρ1, . . .), with ρj ∈Mν
S , that satisfies limj→∞ hsh(ρ′j) = x and

sup
ρ∈Mν

s

[(1 + α)hsh(ρ)− eν(ρ)] = lim
j→∞

[(1 + α)hsh(ρ′j)− eν(ρ′j)].

Proof: By Varadhan’s Lemma (see e.g. [16] Section 4.3) on the process ν,

sup
ρ∈Mν

s

[(1 + α)hsh(ρ)− eν(ρ)] = ΛW (α) = sup
x∈R

[αx− IW (x)].

So if the left and right hand sides are satisfied by (ρ1, . . .) and (x1, . . .) respectively then

lim
j→∞

((1 + α)hsh(ρj)− eν(ρj))

and

lim
j→∞

(αxj − IW (xj))

describe tangents to ΛW at α. As ΛW is continuous at α by Assumption 4.4, by [48]

Theorem 26.1, they must be equal. This implies that there exists a sequence (ρ′1, . . .)

such that limj→∞ hsh(ρ′j) = x and

lim
j→∞

((1 + α)hsh(ρj)− eν(ρj)) = sup
ρ∈Mν

s

[(1 + α)hsh(ρ)− eν(ρ)].

�

Proof: Proof of Theorem 4.5. Solving the problem

sup
ρ∈Mν,ε

S

[(1 + α)hsh(ρ)− eν(ρ)]

has similarities to solving

sup
ρ∈Mν

S

[(1 + α)hsh(ρ)− eν(ρ)]. (4.25)

For α such that equation (4.25) is maximised by ρ : eν ∈ (hsh(ν) − ε, hsh(ν) + ε) the

differentiability of ΛW ε at α follows by Assumption 4.4. If eν(ρ) < hsh(ν)− ε at α′ then
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we will show

sup
ρ∈Mν,ε

[(1 + α)hsh(ρ)− eν(ρ)]

is linear for α < α′. To show this take the sequences B := (ρ1, . . .) ∈Mν,ε
S such that

lim
i→∞

hsh(ρi) = sup
ρ∈Mν,ε

S

hsh(ρ).

Out of these sequences pick (ρ′1, . . .) that satisfies

lim
j→∞

−esh(ρ′j) = sup
(ρ1,...)∈B

lim
j→∞

−esh(ρj)

By Lemma 4.13 there exists an α∗:

lim
j→∞

((1 + α∗)hsh(ρ′j)− eν(ρ′j)) = sup
ρ∈Mν,ε

S

((1 + α∗)hsh(ρ)− eν(ρ)).

As α ↓ −1,

sup
ρ∈Mν,ε

S

((1 + α)hsh(ρ)− eν(ρ))→ sup
ρ∈Mν,ε

S

(−eν(ρ)) = lim
j→∞

(−eν(ρ′j)).

This means that the choice of (ρ′1, . . .) in the function limj→∞(1+α)hsh(ρ′j)−eν(ρ′j) gives

a straight line between α ↓ −1 and α = α∗, achieving the supremum at both. By the

convexity of the sCGF, it must therefore achieve the supremum at all points in between.

A similar argument holds if equation (4.25) is satisfied by ρ : eν(ρ) ≥ hsh(ν) + ε.

�
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5 Guesswork for a Wiretap Erasures

Channel
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5.1 Introduction

A string is sent over a noisy channel that erases some of its characters. Knowing the

statistical properties of the string’s source and which characters were erased, a listener

that is equipped with an ability to test the veracity of a string, one string at a time,

wishes to fill in the missing pieces. Here we characterize the influence of the stochastic

properties of both the string’s source and the noise on the channel on the distribution

of the number of attempts required to identify the string, its guesswork. In particular,

we establish that the average noise on the channel is not a determining factor for the

average guesswork and illustrate simple settings where one recipient with, on average,

a better channel than another recipient, has higher average guesswork. These results

stand in contrast to those for the capacity of wiretap channels and suggest the use

of techniques such as friendly jamming with pseudo-random sequences to exploit this

guesswork behavior.

As a concrete example in advance of the mathematical abstraction, consider a proximity

card reader where an electronic signature, a password, is wirelessly transmitted when

the card is near the reader. An unintended recipient is eavesdropping, but overhears the

card’s transmission via a noisy channel that erases certain characters. If the eavesdropper

knows the string’s source statistics and which characters were erased, how many guesses

must he make before identifying the one that causes the card reader to notify success?

For i.i.d. character sources and noise that is independent of the string, but possibly

correlated, Theorem 5.1 answers this question, providing an asymptotic approximation

to the guesswork distribution as the string becomes long. Corollary 5.1 establishes that

the mean number of erasures on the channel and the Shannon entropy of the character

source determine the growth rate of the expected logarithm of the number of guesses

required to identify the erased sub-string. The exponential growth rate of the average

number of guesses, however, is determined by the scaling of the asymptotic moment

of the number of erasures evaluated at the Rényi entropy, with parameter 1/2, of the

character distribution.

As a consequence of these results, we provide examples illustrating that the average

guesswork can be smaller on a channel that is, on average, noisier demonstrating that

average noise is not a useful statistic for guesswork. This conclusion may seem counter-

intuitive in the context of capacity results for Wyner’s wire-tap [55] that, when applied
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to an erasure channel, indicate that secrecy capacity is non-zero only if the probability

of erasure of the intended party is lower than that of the eavesdropper. Results in which

a first receiver, with more erasures (on average) than a second receiver, can better re-

cover a message than the second receiver are few. One recent exception is [15], which

also considers the effect of randomness of erasures in message recovery. In contrast to

our work, the authors consider secret message capacity in a specific setting that uses

feedback to provide causal channel state information for the intended receiver, allowing

the sender to transmit in a way that is advantageous to the intended receiver. In the

case of two parties with an erasure, their scheme relies on the fact that the secret key

agreement by public discussion from common information developed by [40] reduces to

requiring only the channel state be shared over a public channel.

5.2 Guesswork and erasure channels

We begin with summarizing material on the mathematical formulation for guesswork

and results from Chapter 3 that shall be needed here, followed by a brief overview of

the relevance of erasure channels as models of wireless communication, as this material

is not encountered elsewhere in this thesis.

Let A = {0, . . . ,m−1} be a finite alphabet and consider a stochastic sequence of words,

{Wk}, where Wk is a string of length k taking values in Ak. Assume that a word is

selected and an inquisitor is equipped with a device, such as a one-way hash function,

through which a word can be tested one at a time. With no information beyond the

string length and the source statistics, their optimal strategy to identify the word is to

generate a partial-order of the words from most likely to least likely and guess them in

turn. That is, for each k the attacker generates a function G : Ak → {1, . . . ,mk} such

that G(w′) < G(w) if P (Wk = w′) > P (Wk = w). For a word w the integer G(w) is the

number of guesses until the string w is guessed, its guesswork. The results in Chapter 3

prove that {k−1 logG(Wk)} satisfies a Large Deviation Principle (LDP).

In the present chapter we restrict to i.i.d. letter sources, but include noise sources

that could potentially be correlated. This enables us to consider the erasures as a

subordinating process for the guesswork, as will become clear.

Assumption 5.1 The string Wk is constituted of independent and identically distributed
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characters with probability mass function {P (W1 = i) : i ∈ A}.

Under this assumption, if one must guess the entire word Wk, the following result is

known.

Proposition 5.1 ([1, 46, 10]) The scaled Cumulant Generating Function (sCGF) of

{k−1 logG(Wk)} exists

ΛG(α) = lim
k→∞

1

k
logE(exp(α log(G(Wk)))) =

αR
(

1

1 + α

)
if α > −1

−R(∞) if α ≤ −1,

(5.1)

where R(α) is the Rényi entropy with parameter α,

R(α) =
1

1− α
log

(∑
i∈A

P (W1 = i)α

)
R(∞) = −max

i∈A
logP (W1 = i).

Moreover, the process {k−1 logG(Wk)} satisfies a Large Deviation Principle with rate

function

ΛG
∗(x) = sup

α∈R
(xα− ΛG(α)).

As in [1], setting α = 1 equation (5.1) gives

ΛG(1) = lim
k→∞

1

k
logE(G(Wk))

= R(1/2) = 2 log

(∑
i∈A

P (W1 = i)1/2

)
,

establishing that the exponential growth rate of the average guesswork as the string gets

longer is governed by Rényi entropy of the character distribution with parameter 1/2,

which is greater than its Shannon entropy, with equality if and only if the character

source is uniformly distributed. The LDP gives the following approximation [10] for
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large k and n ∈ {1, . . . ,mk},

P (G(Wk) = n) ≈ 1

n
exp

(
−kΛG

∗
(

1

k
log n

))
.

Erasure models are common for coded communications. They arise for systems where

an underlying error-correcting code can fail to correct the errors, but error-detection

mechanisms will lead to detection of the failure to correct. While it is possible for errors

to remain uncorrected in such a way that the receiver cannot detect the failure to correct.

That traditional algebraic codes with n symbols of redundancy can correct up to n errors

but detect up to 2n − 1 errors justifies the common assumption that failures to detect

errors may be neglected, whereas failures to correct may not. Failure to correct errors

may be a design goal in certain systems. In wiretap channels, codes are deliberately

constructed in such a way that, under channel conditions less favorable than those of

the intended receiver, codes fail to decode (e.g. [6]).

Both intended and unintended recipients may observe the transmitted string through

parallel channels or through a common channel where there exists a dependence in the

proportion of erasures at different receivers. Such scenarios mirror those that have been

considered for secrecy capacity, with the latter having been extensively studied as a

model for wireless channels in which the unintended recipients are inquisitors (e.g. [6])

and the former considered less often [56, 57, 58].

In wireless erasure channels, there exist several means of achieving differentiated channel

side information between intended receivers and inquisitors. Consider, for example, a

fading channel, where fades lead to erasures and where fading characteristics permit

prediction of future fades from current channel measurements. A receiver that actively

sounds the channel, or receives channel side information from a sender, may know,

perfectly or imperfectly, which erasures will occur over some future time.

Friendly jamming instantiates different channel side information between intended and

unintended recipients by actively modifying the channel. Friendly jamming has been

proposed and demonstrated to modify secrecy regions in wiretap-like settings [23, 53].

A notion related to friendly jamming is that of cooperative jamming [52] where multiple

users collude in their use of the shared channel in order to reduce an inquisitor’s ability.
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5.3 Subordinated Guesswork - general results

We wish to consider the guesswork required to identify a string, Wk, sent over a stochas-

tic, noisy channel that erases characters. We assume that a listener is equipped with an

ability to test the veracity of each missing sub-string and wishes to fill in the missing

piece. As the string Wk is made up of i.i.d. characters, if Nk ∈ {1, . . . , k} is the number

of characters erased by the noise, the listener must effectively guess a word of Nk char-

acters in length. Thus we are interested in properties of the the guesswork of the word

subordinated by the erasures process, G(WNk), wishing to understand the influence of

the properties of the string source and the noise on the channel on the distribution of

the number of attempts required to identify the missing sub-string.

While in this chapter we assume that the string is made up of i.i.d. characters, the erasure

process can be correlated and we make the following assumption, which encompasses,

for example, Markovian erasure processes.

Assumption 5.2 The erasure process is such that {Nk/k}, where Nk is the number of

erasures in a string of length k, satisfies a LDP with convex rate function ΛN
∗ : R 7→

[0,∞] such that ΛN
∗(y) =∞ if y /∈ [0, 1].

That is, the number of erasures satisfies Cramér’s Theorem (e.g [16][2.1.24]). Loosely

speaking, this implies that P (Nk ≈ yk) � exp(−kΛN
∗(y)).

The main theorem in this chapter is the following.

Theorem 5.1 The subordinated guesswork process {k−1 logG(WNk)} satisfies a LDP

with convex rate function

Λ∗NG(x) = inf
y∈[0,1]

(
yΛG

∗
(
x

y

)
+ ΛN

∗(y)

)
. (5.2)

The sCGF for {k−1 logG(WNk)}, the Legendre-Fenchel transform of Λ∗NG, is given by

the composition of the sCGF for the erasures with the sCGF for the non-subordinated

guesswork

ΛNG(α) = lim
k→∞

1

k
logE (exp(α log(G(WNk)))) = ΛN (ΛG(α)).
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Proof: The method of proof of the LDP is akin to that used in Chapter 3, establishing

that the upper and lower deviation functions coincide, followed by an application of the

contraction principle. With Bε(x) = (x− ε, x+ ε). We first show that

lim
ε↓0

lim inf
k→∞

1

k
logP

(
1

k
logG(WNk) ∈ Bε(x),

Nk

k
∈ Bε(y)

)
= lim

ε↓0
lim sup
k→∞

1

k
logP

(
1

k
logG(WNk) ∈ Bε(x),

Nk

k
∈ Bε(y)

)
= yΛG

∗
(
x

y

)
+ ΛN

∗(y) for all x ≥ 0, y ∈ [0, 1].

For example, for y ∈ (0, 1], consider

1

k
logP

(
1

k
logG(WNk) ∈ Bε(x),

Nk

k
∈ Bε(y)

)
≥1

k
logP

(
1

k
logG(Wbk(y−ε)c) ∈ Bε(x)

)
+

1

k
logP

(
Nk

k
∈ Bε(y)

)
.

Taking lim infk→∞, using the LDPs for {k−1 logG(Wk)} and {Nk/k} followed by limε↓0

gives an appropriate lower bound. An equivalent upper bound follows similarly.

For y = 0, if x > 0 we can readily show that the upper deviation function takes the value

−∞ as G(Wbεyc) ≤ myε. If x = 0, then the lim sup bound is achieved by solely consid-

ering the erasure term, while for the lim inf consider the ball G(WNk) ≤ exp(kε log(m)),

which has probability 1 and so the upper and lower deviation functions again coincide.

As the state space is compact, the LDP for {(k−1 logG(WNk), Nk/k)} follows (e.g.

[31, 16]) with the rate function yΛG
∗(x/y) + ΛN

∗(y). From this LDP, the LDP for

{(k−1 logG(WNk)} via the contraction principle [16] by projection onto the first co-

ordinate.

To prove that Λ∗NG(x) is convex in x, first note that yΛG
∗(x/y) is jointly convex in x and

y, with y > 0, by the following argument. For β ∈ (0, 1), set η = βy1/(βy1 +(1−β)y2) ∈
[0, 1] and note that

(βy1 + (1− β)y2)ΛG
∗
(
βx1 + (1− β)x2

βy1 + (1− β)y2

)
= (βy1 + (1− β)y2)ΛG

∗
(
η
x1

y1
+ (1− η)x2y2

)
≤ βy1ΛG

∗
(
x1

y1

)
+ (1− β)y2ΛG

∗
(
x2

y2

)
,
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where we have used the convexity of ΛG
∗. As the sum of convex functions is convex,

yΛG
∗ (x/y) + ΛN

∗(y) is convex and as the point-wise minimum of a jointly convex func-

tion is convex, Λ∗NG(x) is convex.

To see that the point-wise minimum of a jointly convex function is convex take a function

f(a, b) that satisfies

f(βa1 + (1− β)a2, βb1 + (1− β)b2) ≤ βf(a1, b1) + (1− β)f(a2 + b2)

and as such is jointly convex. To show that infa f(a, b) is convex we need to show that

inf
a
f(a, βb1 + (1− β)b2) ≤ β inf

a
f(a, b1) + (1− β) inf

a
f(a, b2).

Let a∗ = arg infa f(a, b1) and a′ = arg infa f(a, b2) then

inf
a
f(a, βb1 + (1− β)b2) ≤f(βa ∗+(1− β)a′, βb1 + (1− β)b2)

≤ β inf
a
f(a, b1) + (1− β) inf

a
f(a, b2)

where the first inequality holds by the nature of an infinum and the second by joint

convexity.

An application of Varadhan’s Lemma (Theorem 4.3.1 [16]) identifies the sCGF for the

subordinated process as the Legendre Fenchel transform of Λ∗NG, supx∈R(αx−Λ∗NG(x)).

To convert this into an expression in terms of ΛN and ΛG observe that

sup
x∈R

(αx− Λ∗NG(x)) = sup
x∈R

sup
y∈R

(
αx− yΛG

∗
(
x

y

)
− ΛN

∗(y)

)
= sup

y∈R

(
y sup
z∈R

(αz − ΛG
∗(z))− ΛN

∗(y)

)
= sup

y∈R
(yΛG(α)− ΛN

∗(y))

= ΛN (ΛG(α)).

�

Theorem 5.1, in particular, identifies the growth rate of the average subordinated guess-

work. By the duality of the Legendre Fenchel transform and the convexity of Λ∗NG
implies that Λ∗NG = supα∈R(αx− ΛN (ΛG(α))).
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Corollary 5.1 The growth rate of the average of the logarithm of the subordinated guess-

work is determined by the average proportion of erasures and the Shannon entropy of

the character source

lim
k→∞

1

k
E (logG(WNk)) =

d

dα
ΛN (ΛG(α))|α=0

= µNHG,

where

µN = lim
k→∞

E(Nk)

k
and HG = −

∑
i∈A

P (W1 = i) logP (W1 = i)

are the long run average proportion of erasures and the Shannon entropy of the charac-

ters distribution respectively. The growth rate of the average subordinated guesswork is,

however, given by the sCGF of the erasures evaluated at the character Rényi entropy at

1/2,

lim
k→∞

1

k
logE (G(WNk)) = ΛN (ΛG(1)) = lim

k→∞

1

k
logE (exp (R(1/2)Nk)) .

Thus the determining factor in the average guesswork is not the average proportion of

erasures, but the scaling of the cumulant of the erasure process determined by the Rényi

entropy with parameter 1/2. This result is further illustrated in the next section.

These results have ramifications for wiretap models where there is an intended recipient

with one channel and an unintended recipient receiving over another. On receipt of a

noise corrupted string, both need to guess the erased piece. In this setting, the following

corollary proves that if both channels have i.i.d. erasures, then the expected result that

having more erasures on average implies having a higher average guesswork holds. In

the Examples section that follows we establish this is not true in general.

Corollary 5.2 Assume the erasures processes in both the intended receiver’s and the

unintended recipient’s channels are i.i.d. with the probabilities of any given character

being erased as p and q respectively. Let the number of characters erased by the intended

receiver’s and the unintended recipient’s channel be N I
k and NU

k respectively. If p < q
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then

lim
k→∞

1

k
logE(G(WNI

k
)α) < lim

k→∞

1

k
logE(G(WNU

k
)α)

for α > 0, the inequality reverses for α ∈ (−1, 0) with equality at α = 0.

Proof: We assume that α > 0, with the proofs for α ∈ (−1, 0] being similar. By

Corollary 5.1,

lim
k→∞

1

k
logE(G(WNI

k
)α) = ΛNI

(
R

(
1

1 + α

))
= log

(
1− p+ p exp

(
αR

(
1

1 + α

)))
and lim

k→∞

1

k
logE(G(WNU

k
)α) = ΛNU

(
R

(
1

1 + α

))
= log

(
1− q + q exp

(
αR

(
1

1 + α

)))
.

Thus

exp(ΛNI (ΛG(α)))− exp(ΛNU (ΛG(α))) =

(
exp

(
αR

(
1

1 + α

))
− 1

)
(p− q).

As (αR (1/(1 + α))) > 0 and p − q ≤ 0, (exp (αR (1/(1 + α))) − 1)(p − q) < 0 proving

the corollary.

�

5.4 Examples

Corollary 5.1 tells us the growth rate of the average guesswork depends on both the

distribution of the strings and the distribution of the erasures. We start with the case

where the unintended recipient has an i.i.d. channel with an erasure probability of p while

the intended receiver has a deterministic channel with a proportion µ of the characters

erased. For the unintended recipient this gives

ΛN (β) = log(1− p+ p exp(β)).

Thus his average subordinated guesswork growth rate is

ΛN (R(1/2)) = log

(
1− p+ p exp

(
R

(
1

2

)))
≥ pR(1/2),
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Figure 5.1: Binary source alphabet, A = {0, 1}, with P (W1 = 0) = 1/2. Average
guesswork growth rate for deterministic channel with proportion p charac-
ters erased compared to a memoryless i.i.d. p erasure channel. For a given
average number of erasures, the deterministic channel has a lower average
guesswork.

where the latter follows by Jensen’s inequality with equality if and only if p = 0 or 1.

As the intended receiver has a deterministic channel with a proportion µ of characters

erased, the growth rate of its average subordinated guesswork is µR(1/2). In particular,

if p < µ < R(1/2)−1 log(1 − p + p exp(R(1/2))) then even though the channel of the

unintended recipient is, on average, less noisy than the intended recipient, the average

guesswork of the latter is smaller.

This also works in reverse, so if the intended receiver has an i.i.d. channel with erasure

probability p and the unintended recipient has a deterministic channel with a proportion

µ of characters erased then the average guesswork of the unintended recipient is smaller,

for large enough strings, than the average guesswork of the intended receiver even though

they may feel safe as their channel is, on average, less noisy.

Figures 5.1 and 5.2 show the potential difference in the asymptotic growth rate of the

average guesswork if one channel is i.i.d. and the other is deterministic even if, on average,

both channels have the same number of erasures. Both of these graphs assume that that

the message is picked from a binary alphabet with P (W1 = 0) = P (W1 = 1) = 0.5.
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Figure 5.2: Binary source alphabet, A = {0, 1}, with P (W1 = 0) = 1/2. Similar to
Figure 5.1, but plotting the difference between the i.i.d. p average guesswork
growth rate and the deterministic p average guesswork.

For p ∈ [0, 1], Figure 5.1 plots the average guesswork growth rate for the deterministic

channel pR(1/2) and for the i.i.d. channel log(1− p+ p exp(R(1/2))). If p 6= 0 or 1, the

i.i.d. channel has a higher average guesswork. Thus the intended recipient could have,

on average, a less noisy channel, yet have a lower average guesswork. For clarity, Figure

5.2 plots the difference between these growth rates.

Figures 5.1 and 5.2 highlight the influence of the channel statistics on the average guess-

work growth rate, but Figure 5.3 demonstrates the confounding influence of the source

statistics. Here we assume that one channel is deterministic with 12% of characters

erased while the other channel is i.i.d. with an average of 10% characters erased. Figure

5.3 plots the difference in average guesswork growth rate between these two channels as

the source statistics change. If the source is less variable, the deterministic channel has a

higher average guesswork, but as the source statistics become more variable, this reverses

and the i.i.d. channel has higher average guesswork growth rate. In other strings, even

though the average number of erasures on the deterministic channel is worse, dependent

upon the source statistics its average guesswork may be lower than an i.i.d. channel with

lower average number of erasures.

Between them, these examples indicate the trade-off in influence of the source and erasure

statistics on the guesswork. While we have assumed the simplest erasure channels, these
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Figure 5.3: Binary source alphabet, A = {0, 1}. Difference in average guesswork growth
rate, as a function of P (W1 = 0), between a deterministic channel with 12%
characters erased and an i.i.d. channel with 10% chance that each character
is deleted. If the character source is less variable, the deterministic channel
has a higher growth rate, but as the character source becomes more variable,
it has a lower growth rate.

results are characteristic of the system. As a demonstration of that, a more realistic

model of bursty type erasures would be that of a Markov chain governed by a transition

matrix (
1− a a

b 1− b

)
,

where a, b ∈ (0, 1). The first state corresponds to not erasing the character and the

second state corresponds to erasing the character. As we are interested in asymptotic

behaviour and our matrix is irreducible the starting distribution plays no role in our

result. The stationary distribution is (b/(a+ b), a/(a+ b)) so that the latter is the long

run average number of erasures. The second largest eigenvalue, 1−a− b, is a measure of

correlation, with the chain being positively correlated if it is greater than 0, negatively

correlated if it is less than 0 and i.i.d. if it is 0.

The sCGF of the number of erasures ΛN (θ) can be calculated using the techniques
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described in [16], with the related rate-function given in [21],

ΛN (θ) = log

(
1− a+ (1− b) exp(θ) +

√
4ab exp(θ) + (1− a− (1− b) exp(θ))2)

2

)
.

(5.3)

To simplify matters, assume from here on that a = b, so that the long run average

number of erasures is a/(a + b) = 0.5. Evaluation for any other average proportion of

erasures is similar. We will use the notation Nb to signify this dependence on b = a.

The growth rate of the average guesswork, as determined from Corollary 5.1, is

ΛNb(ΛG(1)) =

log

(
(1− b)

(
1 + exp

(
αR

(
1

2

))))
− log 2

+ (1− b)

√4b2 exp

(
αR

(
1

2

))
+

(
(1− b)

(
1− exp

(
αR

(
1

2

))))2
 .

To understand how the average guesswork growth rate changes as b changes, we evaluate

the first and second derivative with respect to b. The second derivative is

d2

db2
ΛNb(ΛG(1)) =

4 exp
(
R
(

1
2

))
(exp

(
R
(

1
2

))
− 1)2

(4b2 exp
(
R
(

1
2

))
+ (1− b)2 exp

(
R
(

1
2

))
− 1)2)3/2

,

which is positive as R(1/2) ≥ 0 so dΛNb(ΛG(1))/db is increasing in b. The first derivative

is given by

d

db
ΛNb(ΛG(1)) =

1

2

(b− 1) exp
(
2R
(

1
2

))
+ 2(b+ 1) exp

(
R
(

1
2

))
+ b− 1√

4b2 exp
(
R
(

1
2

))
+ (1− b)2 exp

(
R
(

1
2

))
− 1)2

− exp

(
R

(
1

2

))
− 1

 ,
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Figure 5.4: Binary source alphabet, A = {0, 1} with P (W1 = 0) = P (W1 = 1) = 0.5 and
Markovian erasures with, on average, 50% erasures. Here we plot the growth
rate of the average guesswork against the second largest eigenvalue of the
transition matrix, 1− 2b, illustrating that two channels can have Markovian
noise with the same average proportion of erasures and have different growth
rates for the expected guesswork.

and, by taking b→ 1, we find

4 exp
(
R
(

1
2

))
2
√

exp
(
R
(

1
2

)) − exp

(
R

(
1

2

))
− 1 = − exp

(
R

(
1

2

))
+ 2

√
exp

(
R

(
1

2

))
− 1

= −

(√
exp

(
R

(
1

2

))
− 1

)2

< 0

and so is negative for all b.

Figure (5.4) illustrates the previous example, showing how the average guesswork grows

if we have Markovian erasures given by the transition matrix(
1− b b

b 1− b

)
.

This calculation shows that if b > 0.5, so erasures are more likely followed by non erasures

and vice versa, then the expected guesswork growth rate is reduced in comparison to
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that for the i.i.d. channel. If b < 0.5 then the expected guesswork is higher than for

i.i.d. erasures.

5.5 Conclusions

We have characterized the asymptotic distribution of the guesswork required to reconsti-

tute a string that has been subject to symbol erasure, as occurs on noisy communication

channels. The scaled Cumulant Generating Function of the guesswork subordinated by

the erasure process has a simple characterization as the composition of the sCGF of

the noise with the sCGF of the unsubordinated guesswork. This form is redolent of the

well-known result for the moment generating function for a random sun of random sum-

mands, but is an asymptotic result for guesswork. These results suggest that methods

inspired from the secrecy capacity literature, such as the use of differentiated channel

or source side information between the intended receiver and the eavesdropper, can be

used in the context of guesswork. Indeed, numerical examples show that deterministic

erasures can lead to lower average guesswork than Bernoulli erasures with a lower mean

number of erasures. In further work, one may consider the behavior of guesswork in

different settings that have been explored in the wiretap and cognate literature.

One may also envisage generalizing this analysis to the case where there are retransmis-

sions of the entire string or of the symbols that have not been received by the intended

receiver. Retransmissions are commonly employed in several protocols to enable relia-

bility and, in the case of an erasure channel with perfect feedback, taking the form of

acknowledgments, uncoded retransmission is capacity-achieving.

90



6 Multi-User Guesswork
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6.1 Introduction

In the present Chapter we address a natural extension in this investigation of brute force

searching: the quantification for multi-user systems. We are motivated by both classical

systems, such as the brute force entry to a multi-user computer where the inquisitor

need only compromise a single account, as well as modern distributed storage services

where coded data is kept at distinct sites in a way where, owing to coding redundancy,

several, but not all, servers need to be compromised to access the content [44, 20].

Assume that V users select strings independently from Ak. An inquisitor knows the

probabilities with which each user selects their string, is able to query the correctness of

each (user, string) pair, and wishes to identify any subset of size U of the V strings. The

first question that must be addressed is what is the optimal strategy, the ordering in

which (user, string) pairs are guessed, for the inquisitor. For the single user system, since

the earliest investigations [39, 1, 42, 47] it has been clear that the strategy of ordering

guesses from the most to least likely string, breaking ties arbitrarily, is optimal in any

reasonable sense. Here we shall give optimality a specific meaning: that the distribu-

tion of the number of guesses required to identify the unknown object is stochastically

dominated by all other strategies. Amongst other results, for the multi-user guesswork

problem we establish the following:

• If U < V , the existence of optimal guessing strategies, those that are stochastically

dominated by all other strategies, is no longer assured.

• By construction, there exist asymptotically optimal strategies as the strings be-

come long.

• For asymptotically optimal strategies, we prove a large deviation principle for their

guesswork. The resulting large deviations rate function is, in general, not convex

and so this result could not have been established by determining how the moment

generating function of the guesswork distributions scale.

• The non-convexity of the rate function shows that, if users’ string statistics are

distinct, there may be no fixed ordering of weakness amongst users. That is,

depending on how many guesses are made before the U users’ strings are identified,

the collection of users whose strings have been identified are likely to be distinct.
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• If all V strings are chosen with the same statistics, then the rate function is convex

and the exponential growth rate of the average guesswork as string-length increases

is the specific Rényi entropy of the string source with parameter

V − U + 1

V − U + 2
∈
{

1

2
,
2

3
,
3

4
,
4

5
,
5

6
, . . .

}
.

• For homogeneous users, from an inquisitor’s point of view, there is a law of dimin-

ishing returns for the expected guesswork growth rate in excess number of users

(V − U).

• For homogeneous users, from a designer’s point of view, coming full circle to

Massey’s original observation that Shannon entropy has little quantitative rela-

tionship to how hard it is to guess a single string, the specific Shannon entropy of

the source is a lower bound on the average guesswork growth rate for all V and U .

These results generalize both the original guesswork studies, where U = V = 1, as

well as some of the results in [42, 26] where, as a wiretap model, the case U = 1 and

V = 2 with one of the strings selected uniformly, is considered and scaling properties of

the guesswork moments are established. Interestingly, we shall show that that setting

is one where the LDP rate function is typically non-convex, so while results regarding

the asymptotic behavior of the guesswork moments can be deduced from the LDP, the

reverse is not true. To circumvent the lack of convexity, we prove the main result using

the contraction principle, Theorem 4.2.1 [16], and the LDP established in [10], which

itself relies on earlier results of work referenced above.

6.2 Optimal strategies

In single-user guesswork, a strategy, S : Ak 7→ {1, . . . ,mk}, is a one-to-one map that

determines the order in which guesses are made. That is, for a given strategy S and

a given string w ∈ Ak, S(w) is the number of guesses required before w is queried.

In the multi-user setting, this generalises to an ordering of all (user, string) pairs

S : {1, · · · , V } × (Ak)V → {1, · · · , (mk)V }. Here we allow an inquisitor to adapt their

strategy in that they will stop guessing strings for a user once they have guessed that

user’s chosen string. However the analysis does not rely on this fact and so the results
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would remain the same in either case. In all earlier work on single-user guesswork, or-

dering strings from most likely to least likely was intuitively wise. In order to discuss

optimality of strategies when guessing U out of V strings, we must first revisit the ques-

tion for U = V = 1, providing a precise definition. We do this by assigning optimality

a precise meaning in terms of stochastic dominance [30, 17], which we show is satisfied

by the previously studied single-user guesswork order.

Let ~Wk = (W
(1)
k , . . . ,W

(V )
k ) be a random vector taking values in AkV with independent,

not necessarily identically distributed, components. Each component W
(v)
k corresponds

to the string of length k chosen by user v ∈ {1, . . . , V } of which the inquisitor wishes to

identify U . This means that GS(U, ~W ) is the number of guesses until the the inquisitor

has guessed U elements of ~W using the strategy S. However we will need more definitions

to describe it mathematically.

Definition 6.1 A strategy S is optimal for ~W if, for all strategies S′ the random variable

GS(U, ~W ) is stochastically dominated by GS′(U, ~W ). That is, if P (GS(U, ~W ) ≤ n) ≥
P (GS′(U, ~W ) ≤ n) for all strategies S′ and all n ∈ {1, . . . ,mk}.

This definition captures the stochastic aspect of guessing, stating that an optimal strat-

egy is one where the stopping time of identification is probabilistically smallest. One

consequence of this definition that explains its appropriateness is that for any monotone

function φ : {1, . . . ,mk} → R, it is the case that E(φ(S(Wk))) ≤ E(φ(S′(Wk))) for an

optimal S and any other S′ (e.g. Proposition 3.3.17, [17]), so that G(Wk) has the least

moments possible over all strategies.

Lemma 6.1 If V = U = 1, the optimal strategies are those that guess from most likely

to least likely.

Proof: Consider a strategy G of guessing from most likely to least likely, breaking ties

arbitrarily, and any other strategy S. By construction, for any n ∈ {1, . . . ,mk}

P (G(Wk) ≤ n) =
n∑
i=1

P (G(Wk) = i)

= max
w1,...,wn

(
n∑
i=1

P (Wk = wi)

)
≥

n∑
i=1

P (S(Wk) = i) = P (S(Wk) ≤ n).
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In the multi-user case, a strategy is now a one-to-one map S : {1, . . . , V } × Ak 7→
{1, . . . , V mk} that orders the guesses of (user, string) pairs. The expression for the

number of guesses required to identify U strings is a little involved as we must take into

account that we stop making queries about a user once their string has been identified.

For a given strategy S, let NS : {1, . . . , V }× {1, . . . , V mk} 7→ {1, . . . ,mk} be defined by

NS(v, n) = |{w ∈ Ak : S(v, w) ≤ n}|,

which computes the number of queries in the strategy up to query n that correspond to

queries regarding user v.

The final query number made if only U strings need be identified is

S(U, ~w) := U-min
(
S(1, w(1)), . . . , S(V,w(V ))

)
,

where U-min : RV → R and U-min(~x) gives the U th smallest component of ~x. The

number of guesses required to identify U components of ~w = (w(1), . . . , w(V )) is then

GS(U, ~w) =

V∑
v=1

NS

(
v,min

(
S(v, w(v)),S(U, ~w)

))
. (6.1)

This apparently unwieldy object counts the number of queries made to each user cur-

tailed either when their own string is identified or when U strings of other users are

identified.

As an aside, note that if U = V , then min
(
S(v, w(v)),S(U, ~w)

)
= S(v, w(v)) for all

v ∈ {1, . . . , V } and so equation (6.1) becomes

GS(V, ~w) =
V∑
v=1

NS

(
v, S(v, w(v))

)
,

the sum of the individual guesswork of each string. Thus, using Lemma 6.1 repeatedly,

if U = V , again there are optimal strategies, ones stochastically dominated by all others,

which is to employ individual optimal strategies in any order.
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The formula (6.1) will be largely side-stepped when we consider asymptotically optimal

strategies, but is needed to establish that there is, in general, no stochastically dominant

strategy if V > U . With ~Wk = (W
(1)
k , . . . ,W

(V )
k ) being a random vector taking values in

AkV with independent, not necessarily identically distributed, components, we are not

guaranteed the existence of an S such that P (GS(U, ~Wk) ≤ n) ≥ P (GS′(U, ~Wk) ≤ n) for

all alternate strategies S′.

Lemma 6.2 If V − U > 0, a stochastically dominant strategy does not always exist.

Proof: Let k = 1, V = 2, U = 1 and A = {0, 1, 2}. Let the distributions of W
(1)
1 and

W
(2)
1 be

User 1 User 2

P
(
W

(1)
1 = 0

)
= 0.6 P

(
W

(2)
1 = 0

)
= 0.5

P
(
W

(1)
1 = 1

)
= 0.25 P

(
W

(2)
1 = 1

)
= 0.4

P
(
W

(1)
1 = 2

)
= 0.15 P

(
W

(2)
1 = 2

)
= 0.1

If a stochastically dominant strategy exists, its first guess must be user 1, string 0, i.e.

S(1, 0) = 1, so that P (GS(1, ~W1) = 1) = 0.6. Given this first guess, if it is right the

inquisitor will stop guessing but if it is wrong then P
(
W

(1)
1 = 1|W (1)

1 = 1
)

= 5/8 while

P
(
W

(2)
1 = 0

)
= 0.5 so to maximize P (GS(1, ~W1) ≤ 2), the second guess must be user

1, string 1, S(1, 1) = 2, so that P (GS(1, ~W1) ≤ 2) = 0.85.

An alternate strategy with S(2, 0) = 1 and S(2, 1) = 2, however, gives P (GS′(1, ~W1) =

1) = 0.5 and P (GS′(1, ~W1) ≤ 2) = 0.9. While P (GS(1, ~W1) = 1) > P (GS′(1, ~W1) = 1),

P (GS(1, ~W1) ≤ 2) < P (GS′(1, ~W1) ≤ 1) and so there is no strategy stochastically

dominated by all others in this case.

�

Despite this lack of optimal strategy, we will prove that as string-length grows, the

asymptotic performance of any strategy can be lower bounded and that this lower bound

is obtained by an explicit strategy.
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6.3 Asymptotically optimal strategies

Let { ~Wk} be a sequence of random strings, with ~Wk taking values in AkV , with in-

dependent components, W
(v)
k , corresponding to strings selected by users 1 through V ,

although each user’s string not be constructed from i.i.d. characters. For each individual

user, v ∈ {1, . . . , V } let G(v) denote its optimal strategy. We will show that following is

a stochastically dominated lower bound on the guesswork distribution of all strategies:

Gopt(U, ~Wk) = U-min
(
G(1)

(
W

(1)
k

)
, . . . , G(V )

(
W

(V )
k

))
. (6.2)

This can be thought of as allowing the inquisitor to query, for each n in turn, the nth

most likely string for all users while only accounting for a single guess and thus it does

not correspond to a valid strategy.

Lemma 6.3 For any strategy S and any U ∈ {1, . . . , V }, Gopt(U, ~Wk) is stochastically

dominated by GS(U, ~Wk). That is, for any any U ∈ {1, . . . , V } and any n ∈ {1, . . . ,mk}

P (Gopt(U, ~Wk) ≤ n) ≥ P (GS(U, ~Wk) ≤ n).

Proof: For any strategy S,

GS(U, ~wk) ≥ U-min
(
NS

(
1, S

(
1, w

(1)
k

))
, . . . , NS

(
V, S

(
V,w

(V )
k

)))
.

As for each v ∈ {1, . . . , V }, G(v)(W
(v)
k ) is stochastically dominated by all other strategies,

P
(
G(v)

(
W

(v)
k

)
≤ n

)
≥ P

(
NS

(
v, S

(
1,W

(v)
k

))
≤ n

)
,

which, using equation (6.2), implies that

P (Gopt(U, ~Wk) ≤ n) ≥ P (U-min(NS(1, S(1,W
(1)
k )), . . . , NS(V, S(V,W

(V )
k ))) ≤ n)

≥ P (GS(U, ~Wk) ≤ n)

as required.

�
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The strategy that we construct that will asymptotically meet the performance of the

lower bound is to query the most likely string of each user in a round-robin fashion,

followed by the second most likely, and so on. An upper bound on this strategy’s

performance is to consider only stopping at the end of a round of such queries, even if

they reveal more than U strings, which gives

V Gopt(U, ~Wk), (6.3)

where Gopt(U, ~Wk) is defined in (6.2).

In large deviations parlance the stochastic processes {k−1 logGopt(U, ~Wk)} and

{k−1 log(V Gopt(U, ~Wk))} arising from equations (6.2) and (6.3) are asymptotically equiv-

alent, e.g. Section 4.2.2 [16], as limk→∞ k
−1 log V = 0. As a result, if one satisfies the

LDP then the other does and thus it proves sufficient to establish the large deviation

properties of behavior of {k−1 logGopt(U, ~Wk)} in order to determine those of this asymp-

totically optimal strategy.

6.4 Asymptotic performance

We begin by assuming that the guesswork of individual users possess properties that

have been established to hold in substantial generality.

For each individual user v ∈ {1, . . . , V }, denote the specific Rényi entropy by R(v)(β).

For each v ∈ {1, . . . , V }, the scaled Cumulant Generating Function (sCGF) of

{k−1 logG(v)(W
(v)
k )} exists and can be identified in terms of specific Rényi entropy:

Λ
(v)
G (α) = lim

k→∞

1

k
logE

(
exp

(
α logG(v)(W

(v)
k )
))

=

αR
(v)

(
1

1 + α

)
if α > −1

−R(v)(∞) if α ≤ −1.

(6.4)

If, in addition, R(v)(β) is differentiable and has a continuous derivative, it is established

in Chapter 3 that the process {k−1 logG(v)(W
(v)
k )} satisfies a Large Deviation Principle
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with a convex rate function

Λ
(v)
G

∗
(x) = sup

α∈R

(
xα− Λ

(v)
G (α)

)
. (6.5)

This LDP is used to deduce the the following approximation

P (G(v)(W
(v)
k ) = n) ≈ 1

n
exp

(
−kΛ

(v)
G

∗
(

1

k
log n

))
(6.6)

for large k and n ∈ {1, . . . ,mk}.

The following theorem establishes the fundamental analogues of these results for an opti-

mal strategy in the setting where user strings may have distinct probabilistic properties.

Theorem 6.4 Assume that the components of { ~Wk} are independent and that for each

v ∈ {1, . . . , V } R(v)(β) exists for all β > 0, is differentiable and has a continuous

derivative, and that equation (6.4) holds. Then the process {k−1 logGopt(U, ~Wk)}, and

thus any asymptotically optimal strategy, satisfies a large deviation principle. Defining

δ(v)(x) =

Λ
(v)
G

∗
(x) if x ≤ R(v)(1)

0 otherwise,

and γ(v)(x) =

Λ
(v)
G

∗
(x) if x ≥ R(v)(1)

0 otherwise,

the rate function is

IGopt(U, V, x) = min
v1,...,vV

(
Λ

(v1)
G

∗
(x) +

U∑
i=2

δ(vi)(x) +
V∑

i=U+1

γ(vi)(x)

)
, (6.7)

which is lower semi-continuous and has compact level sets, but may not be convex. The

sCGF capturing how the moments scale is

ΛGopt(U, V, α) = lim
k→∞

1

k
logE(exp(α logGopt(U, ~Wk)))

= sup
x∈[0,V m]

(
αx− IGopt(U, V, x)

)
. (6.8)
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Proof: Under the assumptions of the theorem, for each v ∈ {1, . . . , V },
{k−1 logG(v)(W

(v)
k )} satisfies the LDP with the rate function given in equation (3.4).

As users’ strings are selected independently, the sequence of vectors{(
1

k
logG(1)(W

(1)
k ), . . . ,

1

k
logG(V )(W

(V )
k )

)}

satisfies the LDP in RV with rate function I(y(1), . . . , y(V )) =
∑V

v=1 Λ
(v)
G

∗
(y(v)), the sum

of the rate functions given in equation (3.4).

Within our setting, the contraction principle, e.g. Theorem 4.2.1 [16], states that if a

sequence of random variables {Xn} taking values in a compact subset of RV satisfies a

LDP with rate function I : RV 7→ [0,∞] and f : RV 7→ R is a continuous function, then

the sequence {f(Xn)} satisfies the LDP with rate function inf~y{I(~y) : f(~y) = x}.

Assume, without loss of generality, that ~x ∈ RV is such that x(1) ≤ x(2) < · · · ≤ x(V ),

so that U-min(~x) = x(U). Next define |~x − ~y| = mini|x(i) − y(i)|. Note that ~y may not

have the same ordering as ~x. Now |~x− ~y| < δ implies that y(1), . . . , y(U) ≤ U-min(~x) + δ

so that U-min(~y) ≤ U-min(~x) + δ. Similarly y(U), . . . , y(V ) ≥ U-min(~x) − δ so that

U-min(~y) ≥ U-min(~x) − δ. This implies that for any ε > 0 there exists a δ such that

|~x − ~y| < δ implies that |U-min(~y) − U-min(~x)| < ε. Hence U-min : RV → R is a

continuous function and that a LDP holds follows from an application of the contraction

principle, giving the rate function

IGopt(U, V, x) = inf

{
V∑
v=1

Λ
(v)
G

∗
(yv) : U-min(y1, . . . , yV ) = x

}
.

This expression simplifies to that in equation (6.7) as there has to be U − 1 of the yis

such that yv ≤ x, to minimise Λ
(v)
G

∗
(yv) under the condition that yv ≤ x we set to 0 if

possible under this condition or if not we use the fact that Λ
(v)
G

∗
(yv) is decreasing if a

such that Λ
(v)
G

∗
(a) = 0 has a > x. This gives the δ(v)(x) while a similar argument holds

for γ(v)(x). Next we need at least one i such that yi = x. Finally as each user may be

picking using a different process we take the minimum over all possible combinations.

The sCGF result follows from an application of Varahadan’s Lemma, e.g [16, Theorem

4.3.1].

�
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The expression for the rate function in equation (6.7) lends itself to a useful interpreta-

tion. In the long string-length asymptotic, the likelihood that an inquisitor has identified

U of the V users’ strings after approximately exp(kx) queries is contributed to by three

distinct groups of identifiable users. For given x, the argument in the first term (v1)

identifies the last of the U users whose string is identified. The second summed term is

contributed to by the collection of users, (v2) to (vU ), whose strings have already been

identified prior to exp(kx) queries, while the final summed term corresponds to those

users, (vU+1) to (vV ), whose strings have not been identified.

The reason for using the notation IGopt(U, V, ·) in lieu of Λ∗Gopt
(U, V, ·) for the rate func-

tion in Theorem 6.4 is that IGopt(U, V, ·) is not convex in general, which we will demon-

strate by example, and so is not always the Legendre-Fenchel transform of the sCGF

ΛGopt(U, V ·). Instead

Λ∗Gopt
(U, V, x) = sup

α

(
αx− ΛGopt(U, V, α)

)
forms the convex hull of IGopt(U, V, ·). In particular, this means that we could not have

proved Theorem 6.4 by establishing properties of ΛGopt(U, V, ·) alone, which was the

successful route taken for the U = V = 1 setting, and instead needed to rely on the LDP

proved in Chapter 3.

The potential lack of convexity in the rate function of Theorem 6.4, equation (6.7), only

arises if users’ string statistics are asymptotically distinct. The significance of this lack

of convexity on the phenomenology of guesswork can be understood in terms of the

asymptotically optimal round-robin strategy: if the rate function is not convex, there

is no single set of users whose strings are most vulnerable. That is, if U strings are

recovered after a small number of guesses, they will be from one set of users, but after a

number of guesses corresponding to a transition from the initial convexity they will be

from another set of users. This is made explicit in the following corollary to Theorem

6.4.

Corollary 6.1 If IGopt(U, V, x) is not convex in x, then there is there is no single set of

users whose strings will be identified in the long string length asymptotic.

Proof: We prove the result by establishing the converse: if a single set of users is always

most vulnerable, then IGopt(U, V, x) is convex. Recall the expression for IGopt(U, V, x)
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given in equation (6.7)

IGopt(U, V, x) = max
v1,...,vV

(
Λ

(v1)
G

∗
(x) +

U∑
i=2

δ(vi)(x) +
V∑

i=U+1

γ(vi)(x)

)
,

As explained after Theorem 6.4, for given x the set of users {(v1), . . . , (vU )} corresponds

to those users whose strings, on the scale of large deviations, will be identified by the

inquisitor after approximately exp(kx) queries. If this set is unchanging in x, i.e. the

same set of users is identified irrespective of x, then both of the functions(
Λ

(v1)
G

∗
(x) +

U∑
i=2

δ(vi)(x)

)
and

V∑
i=U+1

γ(vi)(x)

are sums of functions that are convex in x, and so are convex themselves. Thus the sum

of them, IGopt(U, V, x), is convex.

�

This is most readily illustrated by an example that falls within the two-user setting

considered in [42, 26] with U = 1, V = 2 and one of the strings is chosen uniformly,

while the authors directly identify ΛGopt(1, 2, α) for α > 0, one cannot establish a full

LDP from this approach as the resulting rate function is not convex.

For an explicit illustration, that falls within the setting in [42], let A = {0, . . . , 7}, U = 1

and V = 2. Assume both sources are i.i.d., with

P (W
(1)
1 = i) =

1/2 if i ∈ {0, 1}

0 otherwise

and P (W
(2)
1 = i) =


0.55 if i = 0

0.1 if i ∈ {1, 2}

0.05 if i ∈ {3, . . . , 7}

For these values, Figures 6.1 and 6.2 plot the rate functions for guessing each of the

user’s strings individually as well as the rate function for guessing one out of two, which

is simply the minimum of the two rate function when they are finite. Taking the Legendre

Fenchel transform of the sCGF results in the convex hull of this non-convex function
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Figure 6.1: User 1 picks a string uniformly using the alphabet {0, 1} and User 2 picks
each character of a string in an i.i.d. fashion using P (W1 = 0) = 0.55,
P (W1 = 1) = P (W1 = 2) = 0.1 and P (W1 = 3) = P (W1 = 4) = P (W1 =
5) = P (W1 = 6) = P (W1 = 7) = 0.05. The figure displays the rate function
for guessing each user’s strings individually.
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Figure 6.2: User 1 picks a string uniformly using the alphabet {0, 1} and User 2 picks
each character of a string in an i.i.d. fashion using P (W1 = 0) = 0.55,
P (W1 = 1) = P (W1 = 2) = 0.1 and P (W1 = 3) = P (W1 = 4) = P (W1 =
5) = P (W1 = 6) = P (W1 = 7) = 0.05. The figure displays IGopt(1, 2, x).
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and so, while the sCGF correctly captures how the asymptotic moments scale, it does

not contain sufficient information to establish the LDP, explaining the necessity for the

distinct approach taken here.

Convexity is ensured, however, if all users select using the same stochastic properties.

Indeed, the results in Theorem 6.4 simplify greatly and we have the following corollary.

Corollary 6.2 If, in addition to the assumptions of Theorem 6.4, Λ
(v)
G (·) = ΛG(·) for all

v ∈ {1, . . . , V } with corresponding Rényi entropy R, then the rate function in equation

(6.5) simplifies to the convex function

Λ∗Gopt
(U, V, x) =

UΛG
∗(x) if x ≤ R(1)

(V − U + 1)ΛG
∗(x) if x ≥ R(1)

(6.9)

where R(1) is the specific Shannon entropy, and the sCGF in equation (6.8) simplifies

to

ΛGopt(U, V, α) =


UΛG

(α
U

)
if α ≤ 0

(V − U + 1)ΛG

(
α

V − U + 1

)
if α ≥ 0.

(6.10)

In particular, with α = 1 we have

lim
k→∞

1

k
logE

(
Gopt(U, ~Wk)

)
= ΛGopt(1) (6.11)

= (V − U + 1)ΛG

(
1

V − U + 1

)
= R

(
V − U + 1

V − U + 2

)
,

which is a convex, decreasing function of V − U .

Proof: The simplification follows readily from equation (6.7). To establish convexity,

using equation (6.11) it suffices to show that xΛG(1/x) is convex for x > 0. This can be

seen by noting that for any a ∈ (0, 1) and x1, x2 > 0,

(ax1 + (1− a)x2)ΛG

(
1

ax1 + (1− a)x2

)
= (ax1 + (1− a)x2)ΛG

(
η

1

x1
+ (1− η)

1

x2

)
≤ ax1ΛG

(
1

x1

)
+ (1− a)x2ΛG

(
1

x2

)
,

where η = ax1/(ax1 + (1 − a)x2) ∈ (0, 1) and we have used the convexity of ΛG. That
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R(x) ↓ R(1) as x ↑ 1 is a general property of specific Rényi entropy, and so the mono-

tonicity follows.

�

As the growth rate, R((V − U + 1)/(V − U + 2)), is convex and decreasing in V − U ,

there is a law of diminishing returns where the greatest decrease in the average guesswork

growth rate is through the provision of one additional user. Note that in these results

we cannot take the limit as (V − U) → ∞ as to do so would involve an interchange

of limits. As R (x) is greater than the specific Shannon entropy of the source for all

x < 1, however, in the multi-user setting the specific Shannon entropy of the source is a

universal lower bound on the exponential growth rate of the expected guesswork that is

tight for large V − U .

Regardless of whether the rate function IGopt(U, V, ·) is convex, the following lemma

justifies the approximation

P (Gopt(U, ~Wk) = n) ≈ 1

n
exp

(
−kIGopt

(
U, V,

1

k
log n

))
(6.12)

for large k and n ∈ {1, . . . ,mk}. Equation (6.12) is analogous to that in equation (6.6)

in Chapter 3, but there are additional difficulties that must be overcome to establish

it. In particular, if U = V = 1, the likelihood that the string is identified is decreasing

per guess, but this is not true in the more general case. As a simple example, consider

U = V = 2, A = {0, 1}, strings of length 1 and strings chosen uniformly. Here the

probability of guessing both strings in one guess is 1/4, but at the second guess the

probability is 3/4. Despite this lack of monotonicity, the approximation still holds in

the following sense.

Lemma 6.5 Under the assumptions of Theorem 6.4, for any x ∈ [0, log(m)) we have

lim
ε↓0

lim inf
k→∞

1

k
log inf

n∈Kk(x,ε)
P (Gopt(U, ~Wk) = n)

= lim
ε↓0

lim sup
k→∞

1

k
log sup

n∈Kk(x,ε)
P (Gopt(U, ~Wk) = n)

= −IGopt(U, x)− x,
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where

Kk(x, ε) = {n : n ∈ (exp(k(x− ε)), exp((k(x+ ε)))}

is the collection of guesses made in a log-neighborhood of x.

Proof: The proof follows the ideas in Chapter 3, Corollary 3.1, but with the added

difficulty resolved. The trick being to isolate the last string that is likely to be guessed

and to use the monotonicity of its individual likelihood of being identified.

Consider for x ∈ (0, log(m))

sup
n∈Kk(x,ε)

P (Gopt(U, ~Wk) = n) = sup
n∈Kk(x,ε)

∑
(v1,...,vV )

P (G(v1)(W
(v1)
k ) = n)

u∏
i=2

P (G(vi)(W
(vi)
k ) ≤ n)

V∏
i=u+1

P (G(vi)(W
(vi)
k ) ≥ n)

≤ sup
n∈Kk(x,ε)

max
(v1,...,vV )

(V !)P (G(v1)(W
(v1)
k ) = n)

u∏
i=2

P (G(vi)(W
(vi)
k ) ≤ n)

V∏
i=u+1

P (G(vi)(W
(vi)
k ) ≥ n)

≤ sup
n∈Kk(x,ε)

max
(v1,...,vV )

(V !)P (G(v1)(W
(v1)
k ) = n)

u∏
i=2

P

(
1

k
logG(vi)(W

(vi)
k ) ≤ x+ ε

) V∏
i=u+1

P

(
1

k
logG(vi)(W

(vi)
k ) ≥ x− ε

)
≤ inf

n∈Kk(x−2ε,ε)
max

(v1,...,vV )
(V !)P

(
1

k
logG(v1)(W

(v1)
k ) = n

)
u∏
i=2

P

(
1

k
logG(vi)(W

(vi)
k ) ≤ x+ ε

) V∏
i=u+1

P

(
1

k
logG(vi)(W

(vi)
k ) ≥ x− ε

)
.

The first equality holds by definition of Gopt(U, ·). The first inequality follows from the

union bound over all possible permutations of {1, . . . , V }. The second inequality utilizes

k−1 log n ∈ (x − ε, x + ε) if n ∈ Kk(x, ε), while the third inequality uses the monotonic

decreasing probabilities in guessing a single user’s string.

Taking limε↓0 lim supk→∞ k
−1 log on both sides of the inequality, interchanging the order

of the max and the supremum, using the continuity of Λ
(v)
G (·) for each v ∈ {1, · · · , V },
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Figure 6.3: Binary alphabet, A = {0, 1}, Bernoulli selection with P (W1 = 1) = p in
figure legend. Average guesswork growth rate as a function of V − U , the
excess number of guessable strings.

and the representation of the rate function IGopt(U, V, ·) in equation (6.7), gives the upper

bound

lim
ε↓0

lim sup
k→∞

1

k
log sup

n∈Kk(x,ε)
P (Gopt( ~Wk) = n) ≤ −IGopt(U, V, x)− x.

Considering the least likely guesswork in the ball leads to a matching lower bound. The

other case, x = 0, follows similar logic, leading to the result.

�

6.5 Examples

To illustrate the reduction in computational security that comes from having multiple

users, in Figure 6.3 the average guesswork growth rate for an asymptotically optimal

strategy is plotted for the simplest case, a binary alphabet and an i.i.d. Bernoulli string

source for each user. The x-axis is the excess number of guessable strings, V − U , and

the y-axis is the log2 growth rate. If the source is perfectly uniform (i.e. characters are

chosen with a Bernoulli 1/2 process), then the average guesswork growth rate is maximal
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Figure 6.4: Binary alphabet, A = {0, 1}, Bernoulli source with P (W1 = 1) = 0.25.
Approximate average guesswork for a 128 bit string as a function of V − U ,
the excess number of guessable strings.

and unchanging in V − U . If the source is not perfectly uniform, then the growth rate

decreases as the number of excess guessable strings V −U increases, with a lower bound

of the source’s Shannon entropy.

For a string of length 128 bits and a Bernoulli (0.25) source, Figure 6.4 displays the

impact that the change in this exponent has, approximately, on the average number of

guesses required to determine U strings.

In Chapter 3 it is shown that Λ(·) is constant for α < −1 and increasing thereafter. The

derivative of Λ is continuous for α > −1 and 0 for α < −1, though it may not exist at

α = −1. Something similar holds for the multi-user case, though with a discontinuous

derivative at α = −U .

In Figure 6.5, A = {0, 1, 2} is used with each character in a string picked in an i.i.d.

fashion and P (W1 = 0) = P (W1 = 1) = 0.4, P (W1 = 2) = 0.2 for each user. For the

U = 1, V = 2 case it agrees with Chapter 3 in that the discontinuity in that the derivative

of the sCGF occurs at α = −1 and Λ(1, 2, α) is constant for α ≤ −1, but the other two

cases illustrate that this is dependent on U and not on V in the multi-user case. It can

be seen that the U = 2, V = 2 and U = 2, V = 4 both display the discontinuity in the

derivative of the sCGF referred to in Chapter 3 at α = −U as opposed to −1 and both
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Figure 6.5: Trinary alphabet, A = {0, 1, 2}, Bernoulli string selection with P (W1 = 0) =
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shows that the value below which the sCGF is constant is dependent on U
but not V .

a constant below this point.

Throughout the rest of this section we shall use A = {0, 1}, assume that all users have

the same source statistics, and revert to using log base 2. In this case, the maximum

average guesswork growth rate is 1.

We now consider a number of metrics including the ultimate security gap between having

one user and having many, R(1/2) − R(1) and the one additional user security gap,

R(1/2) − R((V − U + 1)/(V − U + 2)). These measure the drop in average guesswork

growth rate possible from having an arbitrarily large number of users and having V −U
additional users, respectively.

For Bernoulli(p) sources, while Figure 6.3 shows how the security gaps change for fixed

p as a function of the excess number of guessable strings, V − U , Figure 6.6 shows how

for fixed V − U the gap behaves as p is changed.

If that source statistics of all strings are governed by a Markov chain with transition
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matrix (
1− a a

b 1− b

)
,

where a, b ∈ (0, 1), then the specific Rényi entropy can be evaluated for β 6= 1 to be

R(β) =
1

1− β
log

(
(1− a)β + (1− b)β

2
+

√
((1− a)β − (1− b)β)2 + 4(ab)β

2

)

and R(1) is the Shannon entropy

R(1) =
b

a+ b
H(a) +

a

a+ b
H(b),

where H(a) = −a log(a)− (1− a) log(1− a).

If b = 1− a, then the source is i.i.d. and if b = 1− a = 0.5 then the average guesswork

is maximized with rate 1, as is the ultimate security gap. The ultimate security gap

is plotted in Figure 6.7 as a and b vary, with largest gap being approximately 0.346 he

one additional user security gap is plotted in Figure 6.8, which has a maximal value of

approximately 0.156.

6.6 Discussion

Since Massey [39] posed the original guesswork problem and Arikan [1] introduced his

long string asymptotic, generalizations have been used to quantify the computational

security of several systems, including being related to questions of lossless compression.

Here we have considered what appears to be one of the most natural extensions of that

theory, that of multi-user computational security. As a consequence of the inherent non-

convex nature of the guesswork rate function unless string source statistics are equal

for all users, this development wasn’t possible prior to the Large Deviation Principle

proved in [10]. The results therein themselves relied on the earlier work that determined

the scaled cumulant generating function for the guesswork for a broad class of process

[1, 37, 46].

The fact that rate functions can be non-convex encapsulates that distinct subsets of users

are likely to be identified depending on how many unsuccessful guesses have been made.
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Figure 6.8: Binary alphabet, A = {0, 1}, Markov string selection with P (W2 = 1|W1 =
0) = a and P (W2 = 0|W1 = 1) = b in figure legend. Computational security
gap in having one extra hackable user: Rényi entropy (1/2) less Rényi entropy
(2/3) as a function of V − U , the excess number of guessable strings.

As a result, a simple ordering of string guessing difficulty is inappropriate in multi-

user systems and suggests that quantification of multi-user computational security is

inevitably nuanced.

The original analysis of the asymptotic behavior of single user guesswork identified an

operational meaning to specific Rényi entropy. In particular, the average guesswork

grows exponentially in string length with an exponent that is the specific Rényi entropy

of the character source with parameter 1/2. When users’ string statistics are the same,

the generalization to multi-user guesswork identifies a surprising operational rôle for

specific Rényi entropy with parameter n/(n + 1) for each n ∈ N when n is the excess

number of strings that can be guessed. Moreover, while the specific Shannon entropy of

the string source was found in the single user problem to have an unnatural meaning as

the growth rate of the expected logarithm of the guesswork, in the multi-user system it

arises as the universal lower bound on the average guesswork growth rate.

For the asymptote at hand, the key message is that there is a law of diminishing returns

for an inquisitor as the number of users increases. For a multi-user system designer, in

contrast to the single character, single user system introduced in [39], Shannon entropy
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is the appropriate measure of expected guesswork for systems with many users.
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7 Reverse Guesswork
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7.1 Introduction

Unlike previous chapters, this one is somewhat speculative, pointing towards future

work and enhancements to the quality of estimates on the guesswork probability mass

function. Building on earlier results, in Chapter 3 for single user guesswork it was proven

that if {Wk} is a stochastic process, with Wk : Ω 7→ Ak = {0, . . . ,m− 1}k, in one of the

classes considered by [1, 37, 46], and with G being an optimal single-source guesswork

ordering, then the process {
1

k
logG(Wk)

}
(7.1)

satisfies a Large Deviation Principle (LDP) with rate function

I(x) = sup
α∈R

(αx− Λ(α)), where Λ(α) =

(1 + α)R
(

1
1+α

)
if α > −1

−R(∞) if α ≤ −1

and R is the specific Rényi entropy of {Wk}

R(β) = lim
k→∞

1

1− β
log

∑
w∈Ak

P (Wk = w)β.

Based on this result, in Corollary 3.1, the following direct estimate on the guesswork

probability mass function (PMF) is proposed:

P (G(Wk) = n) ≈ 1

n
exp

(
−kI

(
k−1 log n

))
, for n ∈ {1, . . . ,mk}. (7.2)

While this estimate has formal backing and appears reasonable (e.g. Figure 7.2), we felt

it could be improved upon. What follows below is a result in the simplest of cases, i.e.

binary i.i.d. string sources, and a conjecture in that setting. A new LDP that will give

a distinct approximation to the guesswork probability mass function will be formally

established. From it, a heuristic and some evidence for a conjectured result is provided.
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7.2 Reverse Guesswork

The key observation that suggests considering alternate approximations to the guesswork

PMF relates to the non-linear scaling in eq. (7.1), i.e. the inner log. As a result of it,

the LDP essentially provides information regarding

P

(
1

k
logG(Wk) ∈ (x− ε, x+ ε)

)
= P

(
G(Wk) ∈ (ek(x−ε), ek(x+ε))

)
.

For x small, this contains information about the likelihood the guesswork is in a relatively

small neighbourhood around exp(kx) guesses and, indeed, it is effectively perfect for x =

0. As x increases, however, it contains information about the likelihood the guesswork

is in an exponentially expanding neighbourhood of guess numbers. In the extreme case

where x = log |A| it is almost inquiring “what is the likelihood the guesswork is in

the second half of the strings?” and the estimate is, therefore, poor for any particular

individual string in this second half.

Here we provide an initial approach at obtaining an estimate where the scaling focuses

on a different part of the guesswork PMF. We do this by considering guessing in the

pessimal order, the absolute reverse of an optimal order, which we dub reverse guesswork.

Consider an inquisitor that asks questions from the least likely to most likely. If wik ∈ Ak

for i = 1, . . . ,mk, let

G(w1
k) > G(w2

k) > · · · > G(wm
k

k )

denote an optimal guessing order. The inquisitor reverses the order and defines the new

order

GR(w1
k) < GR(w2

k) < · · · < GR(wm
k

k ).

Establishing a LDP for the reverse guesswork,{
1

k
logGR(Wk)

}
,

provides a bad approximation for likely strings, but a finer estimate for highly unlikely

strings. Better estimates of the likelihood of these unlikely words may be of interest, for

example, in understanding lossless Huffman codes.
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Analysing reverse guesswork turns out to be a challenge for one main reason, which is also

what makes it technically interesting: the resulting rate function will be concave and so

dual methods, determining how the moments scale, cannot tell us how the probabilities

scale.

As we can’t start via the sCGF route, we need a more direct argument about the

probabilities themselves.

7.3 Reverse Guesswork and i.i.d binary sources

We restrict to i.i.d. binary sources, A = {0, 1}, and denote P (W1 = 0) = p > 1/2, for

which we have the following, whose proof appears in Section 7.4.

Theorem 7.1 Define the (pseudo-)inverse

H−1(x) := max{b ∈ [0, 1] : H(b) = x}, (7.3)

where H(b) = −b log b − (1 − b) log(1 − b) is the binary Shannon entropy. Then guess-

work {k−1 logG(Wk)} satisfies the LDP with a rate function that admits the following

characterisation:

IH(x) = −x−H−1(x) log p− (1−H−1(x)) log(1− p) for x ∈ [0, log(2)]. (7.4)

The reverse guesswork, {k−1 logGR(Wk)}, satisfies the LDP with rate function

IR(x) = −x− (1−H−1(x)) log p−H−1(x) log(1− p) for x ∈ [0, log(2)], (7.5)

which is strictly concave.

For p = 0.8, Figure 7.1 plots both the rate function for guesswork IH(x) and reverse

guesswork IR(x) vs. x. The first thing to note is that IR(x) is concave and so while its

Legendre Fenchel transform is the scaled Cumulant Generating Function (sCGF), it is

not the Legendre Fenchel transform of the sCGF. Indeed, the double Legendre-Fenchel

transform would be the rate function’s convex hull, which in this case is a straight line.

Thus the approach taken heretofore in the study of guesswork is not of use for this
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Figure 7.1: Guesswork rate function, IH(x), and reverse guesswork rate function, IR(x),
for a binary i.i.d. source and p = P (W1 = 0) = 0.8. Note that these are
guessing in distinct orders: the least likely guess in guesswork is at x = log(2)
while this is the most-likely guess in reverse guesswork. This is suggestive
that the latter is picking up where the former finishes.
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Figure 7.2: Guesswork and reverse guesswork PMF approximations, which do not con-
sider any potential factors missed through the asymptote, versus the true
guesswork PMF for p = 0.8 and string length k = 16.

process. The second thing to note is that guesswork is read most likely to least likely

left-to-right on this figure, while reverse guesswork is the other way around. In some

sense, it appears as if reverse guesswork takes up where the guesswork leaves off.

In the same way that the original LDP suggests an approximation to the guesswork

PMF, Theorem 7.1 can be formally shown to suggest the following:

P (G(Wk) = 2k − n+ 1) = P (GR(Wk) = n)

≈ 1

n
exp(−kIR(k−1 log n)). (7.6)

For binary strings of length k = 16, Figure 7.2 plots the true guesswork PMF along with

the two estimates obtained from guesswork and reverse guesswork asymptotes. One

might imagine that the two in some way converge from above and below. If, however,

one recalls our original observation that guesswork is providing estimates for the first

half of guesses and reverse guesswork for the second half, one can look to see what would

happen if there was a missing factor of 2 in our approximation. I.e. guesswork is giving

us an approximation for the first half of the guesses and reverse guesswork for the latter

half.
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Figure 7.3: Conjecture of a better approximation guesswork and reverse guesswork PMF
approximations that incorporate a conjectured factor that would be lost in
the asymptotic scaling versus true guesswork PMF for p = 0.8 and string
length k = 16.

To achieve this approximation we replace eq. (7.2) with the following for n ∈
{1, . . . , 2k−1}

P (G(Wk) = n) ≈ 1

n
exp(−kI(k−1 log(2n))).

and eq. (7.6) for n ∈ {2k−1 + 1, 2k} with

P (G(Wk) = n) = P (GR(Wk) = 2k − n+ 1)

≈ 1

n
exp

(
−kIR(k−1 log(2(2k − n+ 1)))

)
.

To be clear, this conjectured factor is one that the asymptote couldn’t capture. As

presently formed, it would be eliminated by the scaling and so the approximation is as

valid as the ones we’ve previously established. The result, however, is plotted Figure

7.3. This suggests to us that heuristic is correct and that if we wish to get a handle on

the guessing probabilities of the unlikely strings, a deeper analysis of reverse guesswork

would be desirable, for which the present results provide an initial investigation.
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7.4 Sketch proof

The characterisation of the rate function for guesswork in terms of inverse Shannon

entropy, equation (7.4), is most readily seen by algebraic manipulation. One can show

IH is convex and so to establish that

IH(x) = I(x) = sup
α∈R

(αx− Λ(α)),

where

Λ(α) =

(1 + α) log
(
p1/(1+α) + (1− p)1/(1+α)

)
if α > −1

log(p) if α ≤ −1
,

it suffices to prove that

ΛH(α) = sup
x∈R

(xα− IH(x)) = Λ(α).

This can be achieved by calculus recalling the inverse differential rule. The strict con-

cavity of IR can also be shown directly by calculus.

The i.i.d. binary assumption gives us the following symmetry, which we rely on in the

proof and so an alternate approach would need to be developed in general.

Lemma 7.2 For a binary, i.i.d. source we have

P (G(Wk) = n) = pck(1− p)(1−c)k

for c ∈ [0, 1], if and only if

P (GR(Wk) = n) = p(1−c)k(1− p)ck.

Proof: Let

Cj = {w ∈ {0, 1}k : P (Wk = w) = pk−j(1− p)j}

and note that in guesswork the sets are asked in order from C1 to Ck, with the ordering

of strings within them broken arbitrarily. In reverse guesswork, they are asked in the
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order Ck to C1, but the size of the set Cj is the same as that of Ck−j ,

|Cj | =
(
k

j

)
=

(
k

k − j

)
= |Ck−j |,

and so the result follows.

�

From this symmetry, the proof of the LDP for reverse guesswork follows the argument

of Theorem 3.3 in Chapter 3 for guesswork, showing that the upper and lower deviation

functions coincide. As the argument is near identical, the details are omitted.
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