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Abstract

The (constructive Hausdorff) dimension of a point x in Euclidean space is the algorithmic
information density of x. Roughly speaking, this is the least real number dim(x) such that
r×dim(x) bits suffices to specify x on a general-purpose computer with arbitrarily high precisions
2−r. The dimension spectrum of a set X in Euclidean space is the subset of [0, n] consisting of
the dimensions of all points in X.

The dimensions of points have been shown to be geometrically meaningful (Lutz 2003, Hitch-
cock 2003), and the dimensions of points in self-similar fractals have been completely analyzed
(Lutz and Mayordomo 2008). Here we begin the more challenging task of analyzing the dimen-
sions of points in random fractals. We focus on fractals that are randomly selected subfractals
of a given self-similar fractal. We formulate the specification of a point in such a subfractal as
the outcome of an infinite two-player game between a selector that selects the subfractal and a
coder that selects a point within the subfractal. Our selectors are algorithmically random with
respect to various probability measures, so our selector-coder games are, from the coder’s point
of view, games against nature.

We determine the dimension spectra of a wide class of such randomly selected subfractals. We
show that each such fractal has a dimension spectrum that is a closed interval whose endpoints
can be computed or approximated from the parameters of the fractal. In general, the maximum
of the spectrum is determined by the degree to which the coder can reinforce the randomness
in the selector, while the minimum is determined by the degree to which the coder can cancel
randomness in the selector. This constructive and destructive interference between the players’
randomnesses is somewhat subtle, even in the simplest cases. Our proof techniques include van
Lambalgen’s theorem on independent random sequences, measure preserving transformations,
an application of network flow theory, a Kolmogorov complexity lower bound argument, and a
nonconstructive proof that this bound is tight.
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1 Introduction

Fractals are inherently information-theoretic objects. The dimension n of a Euclidean space Rn is
a measure of the amount of information (number of real numbers) that suffices to specify a point in
Rn in a natural way. Similarly, the fact that the Hausdorff dimension of the Cantor “middle-thirds”
set C is dimH(C) = log 2/ log 3 ≈ 0.63 tells us that it only takes about 0.63 of a real number to
specify a point in C in a natural way. That is, roughly (0.63)r bits suffice to specify the first r bits
of a point in C. Intuitively, then, the Hausdorff (fractal) dimension dimH(C) is an upper bound
on the “information densities” of points in the fractal C.

Of course some points in the Cantor set can be specified even more concisely. The theory
of constructive dimension, a computability-theoretic extension of Hausdorff dimension developed
in the present century [16], assigns each individual point x in a Euclidean space Rn a dimension
dim(x) ∈ [0, n] that is a measure of its information density. This notion of dimension has been
shown to be geometrically meaningful. For example, if X ⊆ Rn is a “reasonably simple” set, in the
sense that X is a union of Π0

1 (i.e., computably closed) sets, then

dimH(X) = sup
x∈X

dim(x), (1.1)

which is a nonclassical, pointwise characterization of the classical Hausdorff dimensions of such sets
[16, 12].

The self-similar fractals form the best known and best understood class of fractals. (See section
2.3 for a detailed review of self-similar fractals.) Each self-similar fractal F is given by an iterated
function system (IFS) S = (S1, . . . , Sm−1) of contracting similarities Si. A celebrated theorem of
Moran [20] states that

dimH(F ) = sdim(F ) (1.2)

holds for every self-similar fractal F , where sdim(F ) is the similarity dimension of F . Much of
the importance of this theorem arises from the fact that sdim(F ) is easy to compute from the
contraction ratios c0, . . . , cm−1 of the respective similarities S1, . . . , Sm−1. That is, (1.2) gives an
easy way to compute the Hausdorff dimensions of self-similar fractals.

The dimensions of points in computably self-similar fractals (those for which S1, . . . , Sm−1 are
computable) have now been completely analyzed. If F is a self-similar fractal as above, then each
point x ∈ F is naturally given by at least one coding sequence U ∈ Σ∞m , where Σm = {0, . . . ,m−1}.
Intuitively, x is the result of a limiting process in which, at each stage t ∈ N, we apply the contracting
similarity SU [t]. The main theorem of [18] says that, if F is computably self-similar, then, for each
x ∈ F and each coding sequence U for x,

dim(x) = sdim(F )dimπS (U), (1.3)

where dimπS (U) ∈ [0, 1] is the dimension of the sequence U ∈ Σ∞m with respect to the similarity
probability measure πS on Σm, which arises from the IFS S in a natural manner. (This is a
constructive version of Billingsley dimension [3] introduced in [18].)

This paper begins the more challenging task of analyzing the dimensions of points in random
fractals. We focus on a particular class of random fractals, the random subfractals of self-similar
fractals. For a concrete example, let F be the Sierpinski triangle. This is a well-known self-similar
fractal. Intuitively, consider a selector σ that randomly chooses just two of the three top-level
subtriangles of F , then randomly chooses just two subtriangles of each of these, etc., ultimately
obtaining a subfractal Fσ of F . If σ is algorithmically random (with respect to some probability
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distribution), then we call Fσ a random subfractal of F . An individual element x ∈ Fσ is specified
by a coder T ∈ {0, 1}∞ that tells us, at successive stages, which of the two selected subtriangles has
x as an element. This interplay between σ and T is formalized in general terms as the selector-coder
game in section 3. Since our selectors are all random, our coders are playing games against nature.

The dimension spectrum of a set X ⊆ Rn is the set sp(X) ⊆ [0, n] consisting of all dim(x) for
x ∈ X. Our objective is to determine the dimension spectrum sp(Fσ) of random subfractals of a
given computably self-similar fractal F . By (1.3) and the fact that dimπS (U) takes on all values in
[0, 1], we have

sp(Fσ) ⊆ sp(F ) = [0, sdim(F )] (1.4)

in any case.
Our main theorem, Theorem 4.1, concerns similarity-random subfractals Fσ of a given self-

similar fractal F , i.e., subfractals of F specified by a selector σ that is algorithmically random
with respect to a natural extension of the above-mentioned similarity probability measure πS on
Σm. This theorem says that each such sp(Fσ) is an interval containing sdim(F ), and it gives upper
and lower bounds on the left endpoint of the interval sp(Fσ). In the particular case where the
contraction ratios c0, . . . , cm−1 are all the same, these upper and lower bounds coincide, and our
main theorem gives the exact dimension spectrum of Fσ.

Intuitively, the proof that dim(F ) ∈ sp(Fσ) is carried out by showing that the coder T can
reinforce the randomness in σ, while the bounds on the left endpoint of sp(Fσ) quantify the degree
to which the coder T can cancel some of the randomness of σ. This constructive and destructive
interference between the players’ randomnesses is somewhat subtle, and the proof of our main
theorem reflects this, using van Lambalgen’s theorem on independent random sequences, measure-
preserving transformations, a Kolmogorov complexity lower bound argument, and a nonconstructive
proof that this lower bound is nearly (and, in the single-contraction-ratio case, exactly) tight.

In section 5 we give results on the dimension spectra of subfractals of self-similar fractals that
are random with respect to more general probability measures. Our proofs use the above methods,
together with network flow theory and the divergence formula for randomness and dimension [17].

The randomness cancellation phenomena that play such a large role here have also arisen in
other contexts, notably dimension spectra of random closed sets [2, 7] and of random translations
of the Cantor set [8]. Our work is as much an investigation of these phenomena as it is an analysis
of a particular class of fractals.

2 Preliminaries

2.1 Notation and Terminology

Given a finite alphabet Σ, we write Σ∗ for the set of all (finite) strings over Σ and Σ∞ for the set
of all (infinite) sequences over Σ. If ψ ∈ Σ∗ ∪ Σ∞ and 0 ≤ i ≤ j < |ψ|, where |ψ| is the length
of ψ, then ψ[i] is the ith symbol in ψ (where ψ[0] is the leftmost symbol in ψ), and ψ[i..j] is the
string consisting of the ith through the jth symbols in ψ. If w ∈ Σ∗ and ψ ∈ Σ∗ ∪ Σ∞, then w is
a prefix of ψ, and we write w v ψ, if there exists i ∈ N such that w = ψ[0..i− 1]. If A ⊆ Σ∗ then
A=n = {x |x ∈ A ∧ |x| = n}.

For k ∈ N, Σk = {0, . . . , k − 1}. Let s
(k)
0 , s

(k)
1 , s

(k)
2 , ... be the standard enumeration of Σ∗k. For

w ∈ Σ∗k, index(k)(w) is the index of w in the standard enumeration of Σ∗k, i.e., s
(k)

index(k)(w)
= w.

For a set A and k ∈ N, [A]k is the set of all k-element subsets of A.
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For functions on Euclidean space, we use the computability notion formulated by Grzegorczyk
[11] and Lacombe [14] in the 1950’s and exposited in the monographs by Pour-El and Richards [21],
Ko [13], and Weihrauch [23] and in the recent survey paper by Braverman and Cook [5]. A function
f : Rn → Rn is computable if there is an oracle Turing machine M with the following property.
For all x ∈ Rn and r ∈ N, if M is given a function oracle ϕx : N → Qn such that, for all k ∈ N,
|ϕx(k)−x| ≤ 2−k, then M , with oracle ϕx and input r, outputs a rational point Mϕx(r) ∈ Qn such
that |Mϕx(r)− f(x)| ≤ 2−r.

For subsets of Euclidean space, we use the computability notion introduced by Brattka and
Weihrauch [4] (see also [23, 5]). A set X ⊆ Rn is computable if there is a computable function
fX : Qn × N→ {0, 1} that satisfies the following two conditions for all q ∈ Qn and r ∈ N.

(i) If there exists x ∈ X such that |x− q| ≤ 2−r, then fX(q, r) = 1.

(ii) If there is no x ∈ X such that |x− q| ≤ 21−r, then fX(q, r) = 0.

All logarithms in this paper are base-2. We use µ for the uniform probability measures for
Cantor spaces with all finite alphabet sizes.

2.2 Randomness and Dimension

Recent advances in computability theory have yielded notions of dimension for single points in
Euclidean spaces [16, 1, 18] (as opposed to the classical view where single points have dimension
zero). These notions are robust in the sense that they admit several equivalent characterizations.
We start with a description of constructive dimension on Σ∞m . For the rest of this section let π
denote a positive probability measure on Σm, extended by product to Σ∗m.
Definition. Let s ∈ [0,∞). A π-s-gale is a function d : Σ∗m → [0,∞) such that for all w ∈ Σ∗m,
d(w)πs(w) =

∑
b∈Σm

d(wb)πs(wb). A π-1-gale is called a π-martingale. A π-s-gale is constructive

(lower semicomputable) if there exists a computable function d̂ : Σ∗m × N→ Q such that

1. for all w, t, d̂(w, t) < d(w), and

2. for all w, limt→∞ d̂(w, t) = d(w).

A π-s-martingale succeeds on T ∈ Σ∞m if lim sup
n→∞

d(T [0..n]) = ∞. A π-s-martingale succeeds

strongly on T ∈ Σ∞m if lim inf
n→∞

d(T [0..n]) =∞.

For a π-s-gale d, define its success set by S∞[d] = {T ∈ Σ∞m | lim sup
n→∞

d(T [0..n]) = ∞} and its

strong success set by S∞str[d] = {T ∈ Σ∞m | lim inf
n→∞

d(T [0..n]) =∞}.
A sequence T ∈ Σ∞m is π-random if no constructive π-martingale succeeds on it.

Definition. Let X ⊆ Σ∞m . The (constructive) dimension of X relative to π is

dimπ(X) = inf{s ∈ [0,∞)|X ⊆ S∞[d] for some lower semicomputable π-s-gale d}.

For a sequence T ∈ Σ∞m we write dimπ(T ) for dimπ({T}).
The constructive dimension of a sequence T characterizes the information density of the se-

quence. In fact, an alternative Kolmogorov complexity characterization of dimension was given in
[19, 1, 18]. Fix a universal prefix free TM U . For any string x, the prefix-complexity of x denoted
K(x), is the size of the shortest binary program p such that U on input p produces x. The definition
does not depend on the choice for U up to an additive constant.
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Definition. Let w ∈ Σ∗m. The Shannon self-information of w with respect to π is

Iπ(w) = log 1
π(w) =

∑|w|−1
i=0 log 1

π(w[i]) , where the logarithm is base-2 [6].

Theorem 2.1 [19, 16, 1, 18] Let T ∈ Σ∞m . Then

dimπ(T ) = lim inf
j→∞

K(T [0..j − 1])

Iπ(T [0..j − 1])
. (2.1)

We now describe a similar dimension notion for single points in Euclidean spaces. For any x ∈ R
and r ∈ N, consider the Kolmogorov complexity of x at precision r given by

Kr(x) = min{K(q) | q ∈ Q and |x− r| ≤ 2−r}.

The dimension of points in Rn is defined similarly to the Kolmogorov characterization in The-
orem 2.1.
Definition. Let x ∈ Rn. The dimension of x is

dim(x) = lim inf
r→∞

Kr(x)

r
. (2.2)

2.3 Self-Similar Fractals

Many famous fractals are made up of parts that are resized copies of the whole set. As an example,
the middle third Cantor set is the union of two shrunken version of the whole set. Such fractals
are called self-similar.

Self-similar fractals are formally defined as the unique invariant set under a family of contracting
similarities S0, . . . , Sm−1, where for every i ≤ m− 1 and x, y ∈ Rn, Si : D → D (where D ⊂ Rn is
closed) and |Si(x)− Si(y)| = ci|x− y|, where ci ∈ (0, 1).

With the example of the middle third Cantor set F , letting S0(x) = 1/3x and S1(x) = 1/3x+2/3
(S0, S1 : R → R) the invariance property can be expressed as F = S0(F ) ∪ S1(F ), where S0(F )
(resp. S1(F )) is the resized copy of F placed on the left (resp. right).

Formally a finite sequence S = (S0, . . . , Sm−1) of two or more contracting similarities on a
nonempty, closed set D ⊆ Rn, is called an iterated function system (IFS). We call D the domain
of S, writing D = dom(S). Each Si has a contraction ratio ci ∈ (0, 1). Let K(D) be the set of
compact subsets of D, and K(S) = K(dom(S)). S induces a function S : K(S)→ K(S) defined by
S(A) = ∪m−1

i=0 Si(A).
Going back to the example of the middle third Cantor set, using the alphabet Σ = {0, 1}

to refer to the contracting similarities S0 and S1, then each point P in F can be specified by
an infinite sequence T ∈ Σ∞, that codes for the infinite sequence of similarities ST [0], ST [1], . . .
that when applied successively to A = [0, 1], yield P . Denoting P by S(T ), The middle third
Cantor set can be expressed as the set of points encoded by all infinite sequences T ∈ Σ∞, i.e.
F (S) = {S(T ) |T ∈ Σ∞}.

The general case is similar: Let S = (S0, . . . , Sm−1) be an IFS. Let A ∈ K(S) be such that
S(A) ⊆ A. Consider the function SA : Σ∗m → K(S) defined by the following induction. SA(λ) = A
and SA(wi) = Si(SA(w)) for every w ∈ Σ∗m, i ∈ Σm. Because all the contraction ratios ci are
smaller that 1, it is easy to see that for each sequence T ∈ Σ∞m there is a unique point SA(T ) ∈ Rn
such that ∩w<TSA(w) = {SA(T )}. We call T a coding sequence for the point SA(T ). It is well
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known [10] that the function SA : Σ∞m → Rn does not depend on the choice of A i.e., for any
A,B ∈ K(D) such that S(A) ⊆ A and S(B) ⊆ B, we have SA = SB. Thus for any IFS S, the
function S : Σ∞m → Rn obtained by letting S = SA for some set A ∈ K(D) such that S(A) ⊆ A is
well defined. The attractor of the IFS S is given by F (S) = {S(T )|T ∈ Σ∞m}.

Because the sets S0(D), . . . , Sm−1(D) need not be disjoint, a point in F (S) can admit more
than one coding sequence T .

An attractor F of an IFS S is a self-similar fractal if the sets S0(D), . . . , Sm−1(D) are “almost”
disjoint i.e., if F satisfies the following open set condition.
Definition. An IFS S = (S0, . . . , Sm−1) with domain D satisfies the open set condition if there
exists a nonempty, bounded, open set G ⊆ D such that S0(G), . . . , Sm−1(G) are disjoint subsets of
G.

It is a classical result of Moran [20] and Falconer [9] that for any self similar fractal F (S), the
box, packing and Hausdorff dimension all coincide and are equal to the unique solution sdim(F ) of

equation
∑m−1

i=0 c
sdim(F )
i = 1, where the ci’s are the compression ratios of S.

Iterated function systems induce probability measures on alphabets in the following manner.
Definition. The similarity probability measure of an IFS S = (S0, . . . , Sm−1) with contraction
ratios c0, . . . , cm−1 is the probability measure πS on the alphabet Σm defined by

πS(i) = c
sdim(S)
i

for all i ∈ Σm.
In this paper, we are interested in computable IFSs. Here is a definition.

Definition. An IFS S = (S0, . . . , Sm−1) is computable if dom(S) is a computable set and the
functions S0, . . . , Sm−1 are computable.
Definition. A computably self-similar fractal is a set F ⊆ Rn that is the attractor of an IFS that
is computable and satisfies the open set condition.

The following theorem is our starting point.

Theorem 2.2 [18]. If F ⊆ Rn is a computably self-similar fractal given by a computable IFS S,
then, for all points x ∈ F and all coding sequences U of x,

dim(x) = sdim(F )dimπS (U).

3 The Selector-Coder Game

The random fractals that we consider in this paper are randomly selected subfractals of a given
computably self-similar fractal. This section explains this random selection process in terms of a
two-player game.

Let n, m, and k be integers with n ≥ 1 and m ≥ k ≥ 2. Let F = F (S) ⊆ Rn be a self-similar
fractal given by a computable IFS S = (S0, . . . , Sm−1) satisfying the open set condition. Recall
that

F = {S(U) | U ∈ Σ∞m } ,

i.e., each point x ∈ F is of the form x = S(U) for some coding sequence U ∈ Σ∞m . We are interested
in certain randomly selected subfractals of the fractal F . It is easiest to specify such a subfractal
by saying which coding sequences U ∈ Σ∞m give rise to points S(U) in the subfractal.
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Intuitively, our subfractal consists of points S(U) for which U is the outcome of a game played
by a selector and a coder. During each round t = 0, 1, . . . of this game, the tth symbol U [t] ∈ Σm

of U is determined by the following choices.

(i) The selector chooses a k-element subset A of Σm.

(ii) The coder chooses an element i of Σk.

The symbol U [t] is then the ith element of A.
More formally, recall that [Σm]k is the set of all k-element subsets of Σm. Given a set A ∈ [Σm]k

and an index i ∈ Σk, we let Ai denote the ith element of A in the standard ordering of Σm. Thus
A = {A0, . . . , Ak−1} and A0 < · · · < Ak−1.

The following definition allows the selector’s choice of the set A to depend upon the coder’s
earlier choices of symbols in Σk.
Definition. An

(
m
k

)
-selector (or, when m and k are clear from the context, a selector) is a function

σ : Σ∗k → [Σm]k.

We write SEL
(
m
k

)
for the set of all

(
m
k

)
-selectors.

For the purpose defining random subfractals, it does not really matter how the coder makes its
choices, i.e., we can identify the coder with the sequence of choices that it makes.
Definition. A coder is a sequence T ∈ Σ∞k .

Once a selector and a coder have been chosen, the outcome of the selector-coder game is
determined.
Definition. Let σ ∈ SEL

(
m
k

)
be a selector, and let T ∈ Σ∞k be a coder. The outcome of (the

selector-coder game played between) σ and T is the sequence σ ∗ T ∈ Σ∞m defined by

(σ ∗ T )[t] = σ(T [0..t− 1])T [t]

for all t ∈ N.
Our intent, captured in the next definition, is for each selector σ to specify (select) the subfractal

Fσ of F consisting of all points S(U) for which U is an outcome of playing σ against some coder.
Definition. For each selector σ ∈ SEL

(
m
k

)
, the subfractal of F selected by σ is the set

Fσ = {S(σ ∗ T ) | T ∈ Σ∞k } .

The following observation, which follows immediately from Theorem 2.2, reduces our study of
the dimensions of points in Fσ to a study of the dimensions of sequences of the form σ ∗ T .

Observation 3.1 For each point x = S(σ ∗ T ) ∈ Fσ we have

dim(x) = sdim(F )dimπS (σ ∗ T ).

Our interest here is in randomly selected subfractals of F , by which we mean subfractals Fσ
of F for which the selector σ is random with respect to some probability measure. That is, we
are interested in the case where the coder is playing a “game against nature”. To make this idea
precise, we identify each selector σ : Σ∗k → [Σm]k with its characteristic sequence χσ ∈ ([Σm]k)∞

defined by

χσ[i] = σ(s
(k)
i )
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for all i ∈ N. Note that χσ is an infinite sequence over the
(
m
k

)
-element alphabet [Σm]k.

We now have two ways to visualize a selector σ. The original definition suggests that we regard
a selector σ : Σ∗k → [Σm]k as a labeled tree in which this underlying tree is Σ∗k (i.e., the root is λ,
and each vertex w has the left-to-right children w0, w1, ..., w(k−1)) and each vertex w has the set
σ(w) ∈ [Σm]k as its label. The identification of σ with its characteristic sequence χσ ∈ ([Σm]k)∞

suggests that we regard σ as a breadthfirst traversal of this labeled tree. As we shall see, these are
both useful perspectives.

We often analyze selectors, coders, and their outcomes in terms of finite “initial segments”. To
this end, we define a string u ∈ ([Σm]k)∗ to be a prefix of a selector σ, and we write u v σ, if
u v χσ.

We next define a “finite prefix version” of the outcome operation (σ, T ) 7→ σ ∗ T . This takes a
bit of care, because σ ∗ T only depends on those values σ(v) of σ for which v v T .
Definition. Let u ∈ ([Σm]k)∗ and v ∈ Σ∗k. Let v′ be the longest prefix of v such that j < |u| for

every proper prefix s
(k)
j <
6=
v′. Then the result of u and v is the string u ∗ v ∈ Σ

|v′|
m defined by

(u ∗ v)[i] = u[index(k)(v[0..i− 1])]v[i]

for all 0 ≤ i < |v′|, recall that index(k)(w) is the index of w in the standard enumeration of Σ∗k, i.e.,

s
(k)

index(k)(w)
= w.

Observation 3.2 If σ ∈ SEL
(
m
k

)
, T ∈ Σ∞k , u v σ, and v v T , then u ∗ v is the longest prefix of

σ ∗ T that is determined by u and v.

We now define what it means for the selector σ to be random with respect to a given probability
measure.
Definition. Let γ ∈ ∆([Σm]k), i.e., let γ be a probability measure on the discrete sample space
[Σm]k. A selector σ ∈ SEL

(
m
k

)
is random with respect to γ (or, more simply, γ-random) if its

characteristic sequence χσ is γ-random.
This paper is concerned with the following type of fractal.

Definition. Let γ ∈ ∆([Σm]k). A γ-random subfractal of F is a set Fσ, where σ is a γ-random
selector.

The following well-known Kolmogorov complexity characterization of γ-randomness [15] is use-
ful.

Theorem 3.3 A selector σ ∈ SEL
(
m
k

)
is random with respect to a computable probability measure

γ ∈ ∆([Σm]k) if and only if every sufficiently long prefix u v σ satisfies

K(u) > Iγ(u) log
(
m
k

)
.

4 Similarity-random subfractals

This is the main section of the paper. We investigate the dimension spectra of a natural class
of random subfractals of a self-similar fractal. This class is somewhat restrictive, but it exhibits
several subtleties of the interactions between randomness and dimension.
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As before, let n, m, and k be integers with n ≥ 1 and m ≥ k ≥ 2. Let F = F (S) ⊆ Rn be a
computably self-similar fractal given by a computable IFS S = (S0, . . . , Sm−1) satisfying the open
set condition.
Definition. The similarity probability measure induced by S (equivalently, by F ) on [Σm]k is the
probability measure π̂s ∈ ∆([Σm]k) given by

π̂s(A) =
πS(A)(
m−1
k−1

)
for each A ∈ [Σm]k. Here πs is the similarity probability measure on Σm defined in section 2, and
we write πS(A) =

∑
i∈A πS(i).

It is routine to verify that
∑

A∈[Σm]k π̂s(A) = 1, whence π̂s ∈ ∆([Σm]k). It should also be noted
that, if the similarities S0, . . . , Sm−1 all have the same contraction ratio, then πs is the uniform
probability measure on Σm, and π̂s is the uniform probability measure on [Σm]k.
Definition.

1. A selector σ ∈ SEL
(
m
k

)
is similarity random if it is π̂s-random.

2. A similarity random subfractal of F is a subfractal Fσ of F (as defined in section 3), where
σ is a similarity random selector.

Our objective is to prove the following.

Theorem 4.1 (main theorem) For every similarity random subfractal Fσ of F , the dimension
spectrum sp(Fσ) is an interval satisfying

[s∗
logm− log k

log 1
a

, s∗] ⊆ sp(Fσ) ⊆ [s∗
logm− log k

log 1
A

, s∗],

where s∗ = sdim(F ), a = min{πS(i) | i ∈ Σm}, and A = max{πS(i) | i ∈ Σm}. In particular, if all
the contraction ratios of F have the same value c, then every similarity-random (i.e., uniformly
random) subfractal Fσ of F has dimension spectrum

sp(Fσ) = [s∗(1− log k

logm
), s∗],

where s∗ = sdim(F ) = (logm)/(log 1
c ).

Example 4.2 Let F be the standard Sierpinski triangle. This is given by and IFS S = (S0, S1, S2)
in which all three contraction ratios are c = 1

2 , so dimH(F ) = sdim(F ) = log 3. If σ is a uniformly
random selector that chooses two of the contractions S0, S1, S2 at every stage, then Theorem 4.1
says that the resulting random subfractal Fσ of F has dimension spectrum

sp(Fσ) = [(log 3)− 1, log 3] ≈ [0.585, 1.585].

We now turn to the proof of Theorem 4.1. Let J be the set of all possible values of dimpiS (σ∗T ).
By Observation 3.1 it suffices to prove the following three things.

• J is an interval. (4.1)

9



• 1 ∈ J (4.2)

• logm−log k

log 1
a

≤ inf J ≤ logm−log k

log 1
A

(4.3)

It is routine, though delicate, to use a “back-and-forth” construction to show that J is convex,
whence (4.1) holds. We omit the details here and focus on the more interesting components of the
proof.

The following lemma and theorem establish that (4.2) holds. Proofs appear in the appendix.

Lemma 4.3 There is a distribution γ ∈ ∆(Σk) such that the outcome operation (σ, T ) 7→ σ ∗ T is
measure-preserving when using distributions πS ∈ ∆(Σm) and π̂s ∈ ∆([Σm]k).

Theorem 4.4 Let γ be the distribution given by the previous lemma. If a coder T is γ-random
relative to a similarity-random selector σ, then the coding sequence σ∗T is πS-random, so dimπS (σ∗
T ) = 1.

The proof of Theorem 4.4 uses Lemma 4.3 and van Lambalgen’s theorem [22].
We now turn to (4.3), which concerns the left endpoint of the interval J . The question is now

how small the coder T can force the dimension dimπS (σ ∗ T ) to be. More intuitively, how much of
the randomness in σ can the coder “cancel”? The following theorem places an upper bound on the
amount of such cancellation and thereby establishes the left-hand inequality in (4.3).

Theorem 4.5 If σ is a similarity-random selector, then for every coder T ,

dimπS (σ ∗ T ) ≥ logm− log k

− log a
,

where a = min{πS(i) | i ∈ Σm}.

The proof is a Kolmogorov complexity argument. Roughly, if a prefix w of σ ∗ T can be
compressed to ( logm−log k

− log a − ε)Iπ(w) bits, then σ is “somewhat” compressible, hence nonrandom by
Theorem 3.3. Details appear in the appendix.

To prove the right-hand inequality in (4.3) we need a strategy by which T can cancel as much as
the randomness in σ as possible. A tempting strategy for this is T = 0∞, which always chooses the
minimum element of the set chosen by σ. Consider this coder T in the following specific context.

Example 4.6 Let F and σ be as in Example 4.2, and let T = 0∞. It is easy to see that the outcome
σ ∗ T is α-random, where α ∈ ∆(Σ3) is given by α(0) = 2

3 , α(1) = 1
3 , and α(2) = 0. It follows by

Theorem 7.7 of [16] that dim(σ ∗ T ) = H3(α) = 1− 2
3 log 3 ≈ 0.58, whence by Observation 3.1 that

dim(S(σ ∗ T )) = (log 3)− 2
3 ≈ 0.918.

This example shows that the coder T = 0∞ does indeed cancel some of the randomness in σ,
but not enough to reach the left endpoint of the spectrum claimed in Example 4.2. The following
theorem uses a nonconstructive strategy to establish the right-hand inequality of (4.3). The proof
is in the appendix.

Theorem 4.7 For every similarity-random selector σ, there is a coder T such that

dimπS (σ ∗ T ) ≤ logm− log k

− logA
,

where A = max{πS(i) | i ∈ Σm}.

This concludes the proof of our main theorem.
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5 More General Random Subfractals

5.1 Upper Bound For Product Distribution

In this section, we investigate the upper bound for points in random subfractals generated from
product measures on SEL

(
m
k

)
, i.e., measures on SEL

(
m
k

)
that are products of measures in ∆([Σm]k).

The well-known max-flow min-cut theorem is particularly useful in our investigation, so we
include a definition of the flow network for completeness.
Definition. A flow network is a tuple N := 〈G, s, t, c〉, where G = (V,E) is a directed graph,
s, t ∈ V , and c : E → R is a capacity function. A flow in N is a function f : E → R that satisfies
the following conditions:

1.
∑

(u,v)∈E f((u, v)) =
∑

(v,u)∈E f((v, u)) for all v ∈ V − {s, t}.

2. f(e) ≤ c(e) for all e ∈ E.

In the following, we give establish conditions under which the dimensions of points in random
subfractals can achieve the dimension of the fractal from which the random subfractal is generated.
Our proof makes essential use of the max-flow min-cut theorem.

Theorem 5.1.1 Let ρ ∈ ∆(Σm) and γ ∈ ∆([Σm]k) be such that the following condition holds∑
A∩C 6=∅

γ(A) ≥
∑
i∈C

ρ(i), ∀C ⊆ Σm. (5.1.1)

Then for every γ-random selector σ there is a T ∈ Σ∞k such that σ ∗ T is ρ-random.

The flow network construction in the proof of Theorem 5.1.1 not only tells us when the points
in a random subfractal can achieve the dimension of the original fractal, but also provides us a way
to find out the maximum dimension of points in a random subfractal when the dimension of the
original fractal is not achievable.

Theorem 5.1.2 Let ρ ∈ ∆(Σm) and γ ∈ ∆([Σm]k) be such that condition (5.1.1) holds. Then for
every γ-random selector σ there is a T ∈ Σ∞k such that
dim(S(σ ∗ T )) = cdim(Fσ(S)) = dimH(F (S)) dimπS (σ ∗ T ), with

dimπS (σ ∗ T ) =
H(ρ)

H(ρ) +D(ρ||πS)
,

which is the πS-dimension of a ρ-random sequence.

Corollary 5.1.3 Let γ ∈ ∆([Σm]k) be such the following condition holds∑
A∩C 6=∅

γ(A) ≥
∑
i∈C

πS(i), ∀C ⊆ Σm. (5.1.2)

Then for every γ-random selector σ there is a T ∈ Σ∞k such that σ ∗ T is πS-random, and

dim(S(σ ∗ T )) = cdim(Fσ(S)) = dimH(F (S)).

11



Corollary 5.1.4 Let γ ∈ ∆([Σm]k). Then for every γ-random selector σ there is a T ∈ Σ∞k such
that dim(S(σ ∗ T )) = cdim(Fσ(S)) = dimH(F (S))A, where

A = max{Eρ log πS | ρ satisfies condition (5.1.1)}

Note. Maximizing Eρ log πS is equivalent to minimizing H(ρ) +D(ρ||πS), where

D(ρ||πS) = Eρ log
ρ

πS

is the Kullback-Leibler divergence between two probability measures.
Remark. Condition (5.1.1) is equivalent to∑

A∈C
γ(A) ≤

∑
i∈∪A∈CA

ρ(i), ∀C ⊆ [Σm]k. (5.1.3)

This is because both γ and ρ are probability measures, i.e., both sum to 1 and the problem is
symmetric. Also note that the achievability of πS (that is, the existence of T ∈ Σ∞k such that σ ∗T
is πS-random) also implies condition (5.1.2).

5.2 Lower Bound For General Computable Distribution

In the following theorem, we provide a dimension lower bound tool for more general computable
probability measures on SEL

(
m
k

)
.

Theorem 5.2.1 Let γ ∈ ∆(SEL
(
m
k

)
) be computable. Let σ be an γ-random selector.

For each A ∈ [Σm]k, U ∈ ([Σm]k)∗, i ∈ Σm, and w ∈ Σ∗m define ρ(A|U, i) and ρw ∈ ∆(SEL
(
m
k

)
)

as follows.

ρ(A|U, i) =
γ(A|U)∑

B∈[Σm]k,i∈B γ(B|U)
,

ρw(UA) =


1 U = A = λ,

ρw(U)ρ(A|U,w[|T | − 1]) (∃T ∈ Σ
depth(UA)
k )UA ∗ T v w, |U ∗ T | = |UA ∗ T | − 1,

ρw(U)γ(A|U) (∃T ∈ Σ
depth(UA)
k )UA ∗ T = U ∗ T v w,

0 otherwise.

Fix T ∈ Σ∞k and let x = σ ∗ T . Then

dim(x) ≥ lim inf
n→∞

log

(∏
i∈Ux[0..n−1]

ρx[0..n−1](σ[i]|σ[0..i−1])∏
i∈Ux[0..n−1]

γ(σ[i]|σ[0..i−1])

)
n logm

,

where Uw =
{

index(k)(w′) | w 6= w′ v w
}

for all w ∈ Σ∗m.

Remark. In this theorem, the bound only depends on γ. It is easy to verify by substituting
the correct probability measure that Theorem 4.5 can be derived from Theorem 5.2.1.
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Optional Technical Appendix

Proof (of Lemma 4.3). We can explicitly define γ(0), then γ(1), etc using equations

πS(0) = π̂s(0)γ(0)

πS(1) =
∑

1∈A,06∈A
π̂s(A)γ(0) +

∑
0,1∈A

π̂s(A)γ(1)

...
2

Proof (of Theorem 4.4). The proof of this result uses van Lambalgen’s theorem [22] and the
fact that the outcome operation (σ, T ) 7→ σ ∗ T is measure-preserving.

We prove this theorem by proving that if σ is π̂s-random and σ ∗ T is not πS-random, then T
is not γ-random relative to σ.

Let d : Σ∞m → [0,∞] be an optimal constructive πS-martingale on Σ∞m . Without loss of gener-
ality, assume that d(λ) < 1.

For each n ∈ N, let
Zn =

{
U ∈ Σ∞m

∣∣ (∃u v U)d(u) > 22n
}
.

It is clear that {Zn}n∈N is uniformly computably enumerable (or Σ0
1) and πS(Zn) < 2−2n.

For each σ′ ∈ SEL
(
m
k

)
and each n ∈ N, let

Y σ′
n =

{
T ′ ∈ Σ∞k

∣∣ (∃u v σ′ ∗ T ′)d(u) > 22n
}
.

Let
Xn =

{
σ′ ∈ SEL

(
m
k

) ∣∣∣ γ(Y σ′
n ) > 2−n

}
.

It is clear that {Xn}n∈N is Σ0
1. Then since ∗ is measure preserving, πS(Zn) ≥ π̂s(Xn) · γ(Y σ′

n ) and

π̂s(Xn) · 2−n ≤ πS(Zn) < 2−2n.

Therefore, π̂s(Xn) < 2−n.
Since σ is π̂s-random, | {n ∈ N | σ ∈ Xn } | < ∞ and thus there exists n0 ∈ N such that for all

n0 ≤ n ∈ N,
γ(Y σ

n ) ≤ 2−n.

Note that {Y σ
n }n∈N is uniformly Σ0

1 in σ. Since σ ∗ T is not πS-random, T ∈
⋂
n∈N Y

σ
n , which is a

σ-effective measure 0 set. Therefore T is not γ-random relative to σ. 2

Lemma .0.2 (Technical Lemma) There is a constant c ∈ N with the following property. For
every selector σ, every coder T , and every prefix w v σ ∗ T , if uw is the (k|w| − 1)/(k − 1)-symbol
prefix of σ (i.e., the prefix of σ that determines all labels at depth less than |w| when σ is viewed
as a labeled tree), then

K(uw) ≤ |uw| log
(
m
k

)
+ K(w)− |w| log m

k + c. (.0.1)

Proof. Let M be a self-delimiting Turing machine that does the following on program π ∈ {0, 1}∗.
In order for the computation of M to succeed, π must be of the form

π = π0π1z
′,

where the strings π0, π1, z′ ∈ {0, 1}∗ have the following properties.



1. U(π0) is (a canonical binary encoding of ) a string w ∈ Σ∗m.

2. U(π1, w) is (a canonical binary encoding of) a string y ∈ ([Σm]k−1)∗ satisfying |y| = |w| and
w[i] /∈ y[i] for all 0 ≤ i < |w|.

3. z′ is (a canonical binary encoding of) a string z ∈ ([Σm]k)∗ satisfying

|z| = k|w| − 1

k − 1
− |w|.

If the above conditions hold, then M(π) executes the algorithm in Figure 1.

begin
u, v := λ, λ;
for i = 0 to (k|w| − 1)/(k − 1)− 1 do

if s
(k)
i = v

then begin
A := {head(w)} ∪ head(y);
u := uA;
v := vj, where Aj = head(w);
w, y := tail(w), tail(y)
end

else begin
u := uhead(z);
z := tail(z)
end;

output u
end

Figure 1: Algorithm for M in the proof of Lemma .0.2

Let cM ∈ N be an optimality constant for M , so that

K(u) ≤ KM (u) + cM (.0.2)

holds for all u ∈ ([Σm]k)∗. By standard techniques, there is a constant c1 ∈ N such that

K(y|w) ≤ |w| log
(
m−1
k−1

)
+ c1 (.0.3)

holds for all strings w ∈ Σ∗m and y ∈ ([Σm]k−1)∗ satisfying |y| = |w| and w[i] /∈ y[i] for all 0 ≤ i < |w|.
Also by standard techniques, there is a constant c2 ∈ N such that each string z ∈ ([Σm]k)∗ has a
canonical binary encoding z′ ∈ {0, 1}∗ satisfying

|z′| = |z| log
(
m
k

)
+ c2. (.0.4)

Let
c+ cM + c1 + c2. (.0.5)

To see that c has the desired property, let σ, T , w, and uw be as given. Let v be the prefix of
T with |v| = |w|. Define y ∈ ([Σm]k−1)|w| by

y[i] = σ(v[0..i− 1])− {w[i]}



for all 0 ≤ i < |w|. Let z be the string obtained from uw by deleting all the symbols uw[index(k)(v′)]
for which λ 6= v′ v v. (Note that uw[index(k)(v′)] = σ(v′). ). Then the algorithm of Figure 1
“reconstructs” the strings u = uw and v from the strings w, y, and z. It follows that

KM (uw) ≤ K(w) + K(y|w) + |z′|,

where z′ is the canonical binary encoding of z. By (.0.2), (.0.3), and (.0.4), we then have

K(uw) ≤ K(w) + |w| log
(
m−1
k−1

)
+ |z| log

(
m
k

)
+ c

= K(w) + |w| log
(
m−1
k−1

)
+ (|uw| − |w|) log

(
m
k

)
+ c

= |uw| log
(
m
k

)
+ K(w)− |w| log m

k + c,

i.e., (.0.1) holds. 2

Proof (of Theorem 4.5).
Let σ and T be as given. Choose cσ ∈ N as in Theorem 3.3, and choose c ∈ N as in Lemma

.0.2. Then, for every prefix w v σ ∗ T , we have

|uw| log
(
m
k

)
− cσ ≤ K(uw)

≤ |uw| log
(
m
k

)
+ K(w)− |w| log m

k + c,

so

K(w) ≥ |w| log m
k − cσ − c

= |w|(log m
k − o(1))

as w 7→ σ ∗ T , so

dimπS (σ ∗ T ) = lim inf
w→σ∗T

K(w)

IπS (w)

≥
log m

k

− log aS
.

2

Proof (of Theorem 4.7). Let α > 1− log k/ logm. Let u ∈ Σ∗m, n ∈ N. We define the set

Zun = {σ | ∀T with u v T,K(σ ∗ T [0..n− 1] ≥ αn logm} .

Let i ∈ Σm be such that πs(i) ≥ 1
m . Then π̂s(i) ≥ k

m .

If σ ∈ Zun , for instance for all T extending u, σ ∗ T [0..n− 1] 6∈ Σαn
m {i}(1−α)n/ and therefore

π̂s(Zn) ≤
(

1− (π̂s(i))
(1−α)n

)kαn−|u|
≤

(
1− (

k

m
)(1−α)n

)kαn−|u|
≈ e−k

n/m(1−alpha)n →n 0.

So {Zun} is a π̂s-Martin-Löf test for each u, and if σ is π̂s-random ∃∞nσ 6∈ Zun . Therefore there is
a T ∈ Σ∞k such that K(σ∗T [0..n−1] < αn logm for infinitely many n, and dimπS (σ∗T ) ≤ α· logm

− logAS
.



Instead of a single α we can take a decreasing rational sequence αr →r 1 − log k/ logm and
prove that there is a T ∈ Σ∞k with dimπS (σ ∗ T ) ≤ logm−logk

logAS
. 2

Proof (of Theorem 5.1.1). We prove this theorem by proving that there is a probability
measure that depends on σ, according to which, a random T has the desired property. We first
formulate this problem in terms of a network flow problem. We then prove that condition (5.1.1)
imply the maximum flow in our flow network is exactly 1 and construct the desired probability
measure based on a maximum flow.

Let G = (V,E) be a directed graph such that

V = {s, t} ∪ [Σm]k ∪ Σm

and
E =

{
s,A

∣∣∣ A ∈ [Σm]k
}
∪ {i, t | i ∈ Σm } ∪ {A, i | i ∈ A} .

Let

c(e) =


γ(A) if e = s,A

∞ if e = A, i

ρ(i) if e = i, t.

be a capacity function. Then N = 〈G, s, t, c〉 is a flow network.
Since γ and ρ are probability measures, it is clear that for any flow f : E → R in N , f(s, t) ≤ 1.

It is also clear that the smallest cut in N has capacity less than or equal to 1.
By the min-cut/max-flow theorem, it suffices to show that the minimum cut of G has capacity

at least 1.
Note that for any cut that contains an edge in {A, i | i ∈ A}, the capacity of the cut is ∞.

Any such cut cannot be a minimum cut. Let B ∪ Cc be a non-trivial cut of G, where B ⊆{
s,A

∣∣ A ∈ [Σm]k
}

and Cc ⊆ {i, t | i ∈ Σm }. (We insist here that Cc ∪ C = {i, t | i ∈ Σm } ) Let
B′ =

{
s,A

∣∣ A ∈ [Σm]k, (A× {t}) ∩ C 6= ∅
}

. Note that since B ∪ Cc is a cut, B′ ⊆ B and it is
easy to see that B′ ∪Cc is a cut. So B′ ∪Cc has capacity at most that of B ∪Cc. The capacity of
B′ ∪ Cc is∑
(s,A)∈B′

c(s,A) +
∑

(i,t)∈Cc
c(i, t) =

∑
(s,A)∈B′

c(s,A) + 1−
∑

(i,t)∈C

c(i, t)

=
∑

A∩C 6=∅

γ(A) + 1−
∑
i∈C

ρ(i)

≥ 1 by condition (5.1.1).

Therefore, the capacity of the cut B ∪Cc is at least 1. Since B ∪Cc is an arbitrary non-trivial cut,
the minimum cut capacity is 1 and the maximum flow is at least 1.

Let f be a flow of value 1 for the network N . For each A ∈ [Σm]k, define the probability measure
νA ∈ ∆(Σk) by

νA(j) =
f(A,Aj)

γ(A)
,

for each j ∈ Σk. (Aj is the jth element of the set A in numerical order.)
For each σ′ ∈ SEL

(
m
k

)
, define the probability measure νσ′ ∈ ∆(Σ∞k ) by the following recursion.

νσ′(λ) = 1



νσ′(wa) = νσ′(w)νσ′(w)(a)

for all w ∈ Σ∗k and all a ∈ Σk.
In the following, we show that for an algorithmic νσ-random T , σ ∗ T is ρ-random. We do so

by showing that if σ ∗ T is not ρ-random, then T is not νσ-random relative to σ.
Let d : Σ∞m → R be an optimal constructive ρ-martingale on Σ∞m with d(λ) < 1.
For each n ∈ N, let

Zn =
{
U ∈ Σ∞m

∣∣ (∃u v U)d(u) > 22n
}
.

It is clear that {Zn}n∈N is uniformly Σ0
1 and ρ(Zn) < 2−2n.

For each σ′ ∈ SEL
(
m
k

)
and each n ∈ N, let

Y σ′
n =

{
T ′ ∈ Σ∞k

∣∣ (∃u v σ′ ∗ T ′)d(u) > 22n
}
.

Let
Xn =

{
σ′ ∈ SEL

(
m
k

) ∣∣∣ νσ′(Y σ′
n ) > 2−n

}
.

It is clear that {Xn}n∈N is uniformly Σ0
1 and γ(Xn) ≤ 2−n. Since the joint distribution of γ(σ′)

and νσ′ is ρ,
γ(Xn) · 2−n ≤ ρ(Zn) < 2−2n.

Therefore, γ(Xn) < 2−n.
Since σ is γ-random, | {n ∈ N | σ ∈ Xn } | < ∞ and thus there exists n0 ∈ N such that for all

n0 ≤ n ∈ N,
νσ(Y σ

n ) ≤ 2−n.

Note that {Y σ
n }n∈N is uniformly Σ0

1 in σ. Since σ ∗ T is not ρ-random, T ∈
⋂
n∈N Y

σ
n , which is a

σ-effective νσ measure 0 set. Therefore T is not νσ-random relative to σ. 2

Proof (of Theorem 5.1.2). The result follows from Theorem 5.1.1 together with the Kullback-
Leibler divergence Lemma. 2

Proof (of Theorem 5.2.1).

In here and hereafter, depth(U) = 1 + max
{
|s(k)
i |
∣∣∣ i < |U |}, is intuitive the depth (the number

of layers of nodes) in the tree defined by U , as U is a prefix of some selector, which we regard as a
labeled tree.

Note that when |T | ≥ depth(U), T specifies a branch of U to as far as U allows and it is possible
that only a proper prefix of T is used.

When UA ∗T = U ∗T for some T ∈ Σ
depth(UA)
k and U ∗T v w, then the last bit A in UA is not

in obvious way related to w and therefore the knowledge of w in no obvious way helps predicting
A given U .

When UA ∗ T v w and |U ∗ T | = |w| − 1, a bit of w is partially determined by the last bit A in
UA and hence the knowledge of w obviously gives some information on what A should be given U .

Define the following subprobability measure.
Let

ρ(U) =
∑
w∈Σ∗m

2−K(w)ρw(U).

Since γ is computable and the inverse of the ∗ operator is computable, ρ is constructive and is
dominated by the optimal constructive subprobability supermeasure.



Let

d(U) =
ρ(U)

γ(U)
.

Then d is a constructive r-supermartingale.
Since σ is γ-random,

lim sup
n→∞

d(σ[0..n− 1]) <∞.

Let w ∈ Σ∗m. Let U ∈ ([Σm]k)∗ such that there exists some T ′ ∈ Σk such that U ∗ T ′ = w and
depth(U) = |w| and for any A′ depth(UA′) = |w|+ 1.

Note that |Uw| = depth(U) = |w| and that Uw is intuitive the positions along U where the digits
of w directly depend on. Let Ucw = {j < |U | | j /∈ U }. Then

d(U) =
ρ(U)

γ(U)

=

∑
w′∈Σ∗m

2−K(w′)ρw′(U)

γ(U)

≥ 2−K(w) ρw(U)

γ(U)

= 2−K(w)

∏|U |−1
i=0 ρw(U [i]|U [0..i− 1])∏|U |−1
i=0 γ(U [i]|U [0..i− 1])

= 2−K(w)

∏
i∈Uw ρw(U [i]|U [0..i− 1])∏
i∈Uw γ(U [i]|U [0..i− 1])

·
∏
i∈Ucw ρw(U [i]|U [0..i− 1])∏
i∈Ucw γ(U [i]|U [0..i− 1])

= 2−K(w)

∏
i∈Uw ρw(U [i]|U [0..i− 1])∏
i∈Uw γ(U [i]|U [0..i− 1])

· 1.

Since σ is γ-random, for every U v σ

d(U) ≤ O(1).

Therefore,

2−K(w)

∏
i∈Uw ρw(U [i]|U [0..i− 1])∏
i∈Uw γ(U [i]|U [0..i− 1])

≤ 1,

i.e.,

2K(w) ≥
∏
i∈Uw ρw(U [i]|U [0..i− 1])∏
i∈Uw γ(U [i]|U [0..i− 1])

,

and

K(w) ≥ log

(∏
i∈Uw ρw(U [i]|U [0..i− 1])∏
i∈Uw γ(U [i]|U [0..i− 1])

)
.

Let x ∈ σ ∗ Σ∞k be a sequence. So the constructive dimension of x is

dim(x) = lim inf
n→∞

K(x[0..n− 1])

n logm

≥ lim inf
n→∞

log

(∏
i∈Ux[0..n−1]

ρx[0..n−1](σ[i]|σ[0..i−1])∏
i∈Ux[0..n−1]

γ(σ[i]|σ[0..i−1])

)
n logm

.

2


