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[1] Measurements made by the Microwave Sounding Unit (MSU) and the Advanced
Microwave Sounding Unit (AMSU) provide a multidecadal record of global atmospheric
temperature change, which have been used by several groups to produce long‐term
temperature records of thick layers of the atmosphere from the lower troposphere to the
lower stratosphere. Here we present an internal uncertainty estimate for the Remote
Sensing Systems data sets made using a Monte Carlo approach that includes contributions
to the total uncertainty from sampling error, premerge adjustments to each individual
satellite, and the merging procedure. The results can be used to estimate uncertainties
in this product at all space and time scales of interest to any specific application.
On small space and time scales sampling effects dominate. On the longer time scales
intersatellite merging is important at all levels and the diurnal adjustment is a critical
uncertainty for the two layers that have a significant surface component, particularly
over land. A comparison of trends for the globe, tropics, and extratropics between
the best estimate data set along with these error estimates and homogenized radiosonde
estimates and available MSU/AMSU estimates from other groups is undertaken. This
shows consistency between our product and those produced by others within the stated
uncertainty for many regions and layers. In almost as many cases, however, the interdata
set differences of the estimated trends are too large be accounted for by the internal
uncertainty estimates derived herein.
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1. Introduction

[2] Temperature sounding microwave radiometers flown
on polar‐orbiting weather satellites provide an important
record of atmospheric temperatures throughout the tropo-
sphere and into the lower stratosphere beginning with the
Microwave Sounding Unit (MSU) on TIROS‐N in late 1978.
Subsequently a series of eight additional MSU instruments
provided a continuous record up to the present, with the
MSU on NOAA‐14 still in operation. Beginning in 1998, the
first of a similar but, crucially from a climate perspective,
nonidentical, follow‐on series of instruments, the Advanced
Microwave Sounding Units (AMSUs) was launched. In
order to provide continuous records of atmospheric tempera-
tures, data from the AMSU instruments has been merged
with data for the previous MSU series of instruments by
several groups to create candidate [Christy et al., 2003; Grody

et al., 2004a; Mears and Wentz, 2009a, 2009b; Prabhakara
et al., 2000; Zou et al., 2006] climate data records. These
have been used in many studies and major scientific assess-
ments over the past 2 decades [e.g., Karl et al., 2006; Solomon
et al., 2007]. The state of our knowledge has evolved sub-
stantially over this time from a ill‐founded position of cer-
tainty when there was only one data set available to one that
is now far more nuanced [Thorne et al., 2010].
[3] There has been substantial previous discussion of

uncertainty in merged microwave sounder data sets [Christy
et al., 2000, 2003; Fu and Johanson, 2005; Grody et al.,
2004b; Mears et al., 2003; Mears and Wentz, 2005; Zou
et al., 2006]. These studies have primarily focused on uncer-
tainty in trends in global scale averages, though some work
has been done on gridbox scale data [Christy and Norris,
2006, 2009]. In this work, we extend these earlier estimates
by describing uncertainty on a number of spatial and tem-
poral scales and more fully accounting for the uncertainty
introduced by sampling error and the diurnal adjustment
procedures. Since much of the focus of current research is
on changes in temperature associated with global climate
change, we focus our attention on uncertainty in temperature
anomalies, rather than on bias in the absolute temperature
measurements.
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[4] In two previous papers [Mears and Wentz, 2009a,
2009b] we described the revised methods we have used
to merge data from the MSU and AMSU satellites together
to form the latest version of our TLT (temperature lower

troposphere), TMT (temperature middle troposphere), TTS
(temperature troposphere stratosphere), and TLS (tempera-
ture lower stratosphere) data sets. The temperature weight-
ing function for each channel is plotted in Figure 1, and a
flowchart showing the most important parts of the merging
procedure is shown in Figure 2. In this paper, we estimate
the uncertainty in these data sets by combining the con-
tributions from various sources of error that result from a
finite sample and very many unknowns. This uncertainty
is the internal uncertainty, that arising given the explicit
methodological choices we have made to create the data set
(Figure 2). These estimates apply to the RSS Version 3.2
MSU/AMSU data sets [Mears and Wentz, 2009a, 2009b],
which are available online at www.remss.com. These data
sets are monthly averages of temperature, gridded on a 2.5°
by 2.5° grid. These uncertainty estimates are important both
when performing comparisons of atmospheric temperature
estimates from different measurement sources and when
undertaking scientific studies using these data.
[5] Another source of uncertainty is the structural uncer-

tainty [Thorne et al., 2005] imparted unintentionally by our
methodological choices. This effect can only be robustly
ascertained by comparison to estimates derived from a suf-
ficiently large number of other independent groups who
have made reasonable choices. We undertake such a com-
parison along with recourse to a similar suite of data sets
derived from radiosonde records to inform on the relative
importance of these two distinct sources of uncertainty to
the MSU/AMSU data sets. However, it must be recognized
that this sample size is small and that it is not guaranteed
that all data set creators (including by definition ourselves)
have made reasonable methodological choices at each step
or accounted for all nonclimatic factors. So, such a com-
parison comes with substantial caveats attached as it can-
not be guaranteed a priori that all of the sample in such an
intercomparison is “plausible.”
[6] It is important to note that the trend errors reported for

MSU/AMSU data in the major assessment reports [Lanzante
et al., 2006; Solomon et al., 2007] are typically generated
using information about how well the reported time series
fits a linear trend. This type of error provides information
about how much the trend might differ if the Earth had
undergone a different set of short time scale variations, such
as those caused by ENSO. They do not provide information
about the uncertainty internal to the data set due to mea-
surement and construction error or the structural uncertainty
that would be imparted by applying a different set of rea-
sonable processing choices. While all these types of error
can be important, depending upon the type of analysis being
undertaken, our analysis here is restricted to determining the
internal uncertainty in our data sets
[7] In section 2 we describe and estimate the magnitude of

the various sources of internal uncertainty, and in section 3
we compare the results from our data set to results from
other approaches used to estimate changes in atmospheric
temperature.

2. Estimation of Internal Uncertainty

2.1. Approach

[8] There are a number of sources of uncertainty in
our merged MSU/ASMU temperature data sets. The most

Figure 1. Temperature weighting functions as a function
of height for each channel. For TMT and TLT, the weight-
ing functions for land scenes are shown by dotted lines and
for ocean scene is shown by solid lines. For TTS and TLS,
the land and ocean weighting functions are nearly identical.
For TLT and TMT, there is also a significant contribution
from emission by the material surface. The surface weight
for TLT land, ocean measurements is 0.193, 0.106, and
for TMT land, ocean measurements the surface weight is
0.083, 0.043.
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Figure 2
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important fundamental uncertainty sources are spatial‐
temporal sampling errors, and the uncertainty in the diurnal
adjustment used to account for the effects of drifting local
measurement time. These uncertainties in turn lead to uncer-
tainty in the merging parameters because these merging
parameters are deduced from the actual measurements (which
include sampling uncertainty) after the diurnal adjustments
are performed. The remaining methodological steps were
found in an initial analysis to exhibit very minimal error and
so are discounted as important components of the overall
error budget.
[9] It is difficult to determine the exact structure of the

uncertainty in the absence of any reference data set that is
known to be free from error. Sadly, such a data set has not
existed, although efforts to create precisely calibrated ground‐
based [Seidel et al., 2009] and space‐based [Space Studies
Board, 2007] observing systems could help resolve this in
the future. We therefore provide an informed estimate of
the uncertainty internal to our data set, often based on an
analysis of intersatellite differences and our knowledge of
the merging procedures we used to produce the data set.
In the following sections, we outline the overall approach
and the contribution of each source of error to the total error.
[10] Different uncertainty sources are important for dif-

ferent spatial and temporal scales. For example, radiometer
noise is important only for short time scales and small
spatial scales because its effects are rapidly diminished by
averaging multiple observations together and thus it is not
considered further in this analysis. Sampling uncertainty
tends to dominate other uncertainty sources for a single
monthly average over a 2.5° times 2.5° cell (the smallest
temporal and spatial resolution we consider) but decreases
rapidly when larger temporal or spatial averages are con-
sidered. Diurnal and merging parameter uncertainties are
spatially and temporally correlated and thus do not decrease
rapidly with averaging and thus become dominant for largest
spatial and longest temporal scales.
[11] Because of the complex interplay between various

parts of the adjustment system (Figure 2) we cannot a priori
determine the degree to which errors in various parts of the
system are interdependent. Therefore a stochastic model is
required to be employed that implicitly allows any such
interdependencies to be expressed rather than making
assumptions which would be hard to justify and could lead
to either too liberal or too conservative a set of estimates.
We therefore use Monte‐Carlo methods to produce a large
number of instances of estimated error in the final data set.
[12] These instances are constructed so that they have

spatial and temporal correlations that are consistent with
those we expect to be present in the final data set and thus
can be interrogated to produce estimates of the estimated
error on a variety of spatial or temporal scales. To generate
each instance, we start with a gridded monthly data set for
each satellite that is set to zero for each month if this given

satellite has valid data and is set to missing otherwise. We
then add to this data set estimated realizations of the sam-
pling and diurnal adjustment uncertainty. Both these esti-
mates are constructed so that their ensemble averages have
zero mean. (Our methods for the construction of these un-
certainties are described in the following sections.)
[13] The data sets with uncertainty added, which we refer

to as “noise datasets,” are then analyzed using merging
procedures that are identical to those used for the real data.
Each noise data set results in a set of noisy merging para-
meters (intersatellite offsets and target factors). Since the
noise‐free data set is constructed with all zeros, we know
that these merging parameters should be zero, and thus any
differences from zero are due to the influence the underlying
uncertainties, i.e., sampling and diurnal adjustment. Thus
our approach describes the total effect of the underlying
uncertainties upon the final merged product, including both
their direct effect and their indirect effect via uncertainty
in the merging parameters. In Figure 2, we show both the
direct and indirect paths of the uncertainties through the
merging procedure.
[14] In undertaking this analysis approach we are making

an implicit assumption that the expression of the errors
will be independent of the underlying spatiotemporal evo-
lution of the climate system state (although this is partially
captured arguably in the sampling error derivation, see
section 2.2). That is to say that the overall magnitude of the
internal uncertainty errors is independent of the timing and
magnitude of natural modes of variability such as ENSO and
the presence or otherwise of an underlying long‐term cli-
mate change signal. This would include any long‐term
evolution of the magnitude of the diurnal cycle. Intuitively,
any such impact would be very much a second‐order effect
and this assumption is likely to be valid.
[15] A further, more tenuous assumption made when add-

ing this Monte Carlo simulation to the operational data set
products is that these products themselves are essentially
unbiased. Several studies have been published that suggest
that our TLT and TMT data sets may contain residual biases
[e.g., Christy et al., 2007; Christy and Norris, 2009; Randall
and Herman, 2008]. These biases could either be due to the
type of errors discussed here or to other unknown error
sources that are not addressed in this analysis. The internal
error analysis produced here cannot, by construction, pro-
vide any information on this aspect of any error in our pro-
ducts. Instead, we view this error analysis as a prerequisite
to performing detailed comparisons with complementary
data sets, since it is critical to be able to assess the statistical
significance of any discrepancies found. All of the radio-
sonde comparisons to date neglect such uncertainty in both
the radiosonde measurements and in the satellite data and
thus the true quantitative significance of their results is
impossible to determine.

Figure 2. A flowchart that shows the most important aspects of the merging algorithm we use to generate long‐term
records from MSU and AMSU observations. For more details on the algorithm, see Mears et al. [2009a, 2009b]. Inputs
to the algorithm that are held constant in our uncertainty analysis are shown in light blue, while inputs that are explicitly
allowed to vary are shown in orange. The uncertainty caused by these variation can be thought of as flowing in two paths,
directly along the black arrows, and indirectly via the influence on the merging parameters deduced from the data (shown
as yellow parallelograms) along the yellow arrows.
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2.2. Sampling Errors

[16] Satellites make measurements at discrete times.
Because the satellites that MSU/AMSU are carried upon are
polar orbiters that orbit pole‐to‐pole every 90 min there is a
distinct geographical sampling imparted upon the data. At
the very highest latitudes sampled (around 85° latitude) each
location is sampled multiple times per day. In the deep
tropics the sampling at a given location can be as infre-
quently as every third day. The sampling grades between
these two extremes at other latitudes. When estimating sam-
pling error this effect must be combined with the synoptic
variability so it need not follow that the magnitude of this

effect would be directly proportional to the sampling rate or
that it would be seasonally invariant.
[17] When forming a monthly average, all measurements

made during a given month that fall within a given 2.5°
by 2.5° cell were averaged together. Sampling errors occur
when this average of discrete measurements does not accu-
rately represent the true monthly average. Figure 3 shows
the simulated hourly TMT brightness temperature (which
uses the central five fields of view) from the CCM3 atmo-
spheric model [Kiehl et al., 1996] for a point in the North
Pacific (50°N, 170°W). The symbols on the line represent
the times at which the temperature would be sampled by
overflights of two coorbiting satellites. The monthly means
obtained by averaging the temperature at these sampling
times can be quite different than the true monthly mean
obtained by averaging all the hourly temperatures. Note that
the mean diurnal cycle is very small for this location (as it is
over the vast majority of the world’s oceans [Kennedy et al.,
2007]) and thus is not an important source of error at this
location.
[18] The lower tropospheric data set (TLT) is formed by

calculating a weighted difference of different fields of view
(FOVs) [Spencer and Christy, 1992]. For the left side of the
MSU swath, this difference is given by

T2LT�MSU ¼ 2:0 T3 þ T4ð Þ � 1:5 T1 þ T2ð Þ; ð1Þ

where Tn is the temperature measured by the nth FOV, with
T1 denoting the left‐hand, near‐limb view. Figure 4 shows
the spatial pattern of measurement footprints and weights
for example scans on a map of Western Europe and the
North Atlantic. A more complex, but similar differencing
procedure is used for AMSU [Mears and Wentz, 2009b]. On
average, this differencing procedure has the effect of extrap-
olating the measurement lower in the troposphere. How-
ever, since each individual view makes a measurement
at a different place (see Figure 4), an undesirable spatial

Figure 3. The effect of sampling on the mean of a simu-
lated brightness temperature time series. The black line is
the simulated TMT brightness temperature for January
1980 from the CCM3 climate model, for a point in the North
Pacific Ocean (40°N, 170°E). The symbols represent the
times the hourly time series would be sampled by the
NOAA‐11 and NOAA‐12 satellites during a typical month.
By chance, the means found using the sampled data are both
less than the true mean of the hourly data; other sampling
patterns could result in the opposite bias.

Figure 4. The spatial pattern of measurement footprints for two example scans. The top scan shows the
weighting for the nonextrapolated products (TMT, TTS, and TLS). For the products, the average of the
five green FOVs is computed and assigned to each of the footprint locations that contribute to the average.
The bottom scan shows the weights for the TLT lower tropospheric extrapolation, where we compute the
weighted average separately for each set of four FOVs on each side of the scan separately.
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derivative is also included in the extrapolated value. Here
we consider the effects of this derivative to be part of the
sampling error.
[19] To estimate this error, we used the hourly CCM3

results to calculate the simulated MSU channel two bright-
ness temperature at each FOV for a simulated satellite orbit
and then used the weighted difference of values to deduce
a satellite‐equivalent TLT that includes the spatial deriva-
tive effect. This is then compared to the true average
(without spatial derivative or temporal sampling effects) of
the modeled TLT‐equivalent brightness temperature at the
location in question. We find that the spatial derivative
effect increases the sampling noise for the TLT data set. The
amount of the increase ranges from about a factor of 1.5 in
the tropics, to as high as a factor of 4 in midlatitude storm
tracks (where the extrapolation is likely to straddle a mid-
latitude cyclone) and near coastlines (where the extrapola-
tion is likely to cross the land‐ocean boundary). As noted by
Mears and Wentz [2009b], the extrapolation procedure also
results in a location‐dependent bias. This bias can be quite
large near the poles due to a net north‐south spatial deriv-
ative in each monthly average and near coastlines. Since the
focus of this work is errors in temperature trends and
anomalies, we do not evaluate this bias in detail here.

[20] We formulated a model‐based estimate of sampling
noise for each channel and for each satellite type (MSU and
AMSU) by calculating the differences between the monthly
sampled mean and the true monthly mean for three different
sampling patterns (i.e., the locations and times of each mea-
surement during the month. These are derived from sam-
pling patterns in the observed data.), for 5 years of hourly
model output from the CCM3 model which was also used
to derive the operational diurnal cycle adjustments (see
section 2.3). Thus for any given month of the year, there
are 15 different possible realizations of the sampling error.
In Figure 5, we show an example of the simulated sam-
pling error for each MSU channel for the month of January
and the standard deviation of the MSU sampling error
averaged over the winter and summer seasons separately.
Sampling errors are largest in the midlatitudes, where the
effects of large day‐to‐day variability and gaps in temporal
sampling are combined together. The gaps in temporal
sampling are even larger in the tropics, but there is usually
much less day‐to‐day variability so that the magnitude of
the sampling error is less. Sampling errors in the tropo-
spheric channels tend to be largest in the winter hemi-
sphere, due to the presence of more intense midlatitude
cyclones that yield much greater synoptic scale variability

Figure 5. Maps of the estimated temperature sampling error for each channel. The left column is an
example of the sampling error for the month of January. The middle column is the standard deviation
of the sampling error averaged over all Northern Hemisphere winter months (November, December,
January, February, and March). The right column is the standard deviation averaged over the Northern
Hemisphere summer months (May, June, July, August, and September).
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than is evident in the summer season. Figure 5 also shows
that the errors at a given grid point tend to be strongly
correlated with those in other nearby grid points due to
similar temporal sampling patterns combined with the spa-
tial correlation in the synoptic‐scale variability.

2.3. Diurnal Adjustment Errors

[21] During the lifetime of most of the MSU and AMSU
instruments, the orbit of each instrument’s satellite platform
slowly changed as a function of time, leading to drifts in
local equator crossing time (see Figure 6). These drifts cause
the diurnal cycle to be aliased into the long‐term records
unless their effects are characterized and removed. As dis-
cussed by Mears and Wentz [2009a, 2009b], we used model‐
based diurnal cycle to make adjustments for drifting local
measurement times. We estimate the uncertainty in this diur-
nal adjustment by evaluating the diurnal adjustments derived
from different climate models. These are used to generate
plausible realizations of the diurnal adjustment error D,
given by

D ¼
XN

i¼1

ai Di � D
� �

: ð2Þ

Here, Di is the adjustment calculated using the ith model,
D is the mean adjustment, and the ai′ s are normally dis-
tributed random numbers with zero mean and unit variance.
[22] For the data products derived from MSU channel 2

and AMSU channel 5, two models are available for calcu-
lating the diurnal adjustment, the NCAR Community Cli-
mate Model‐3 (CCM3) [Kiehl et al., 1996] and the Hadley
Centre Global Environmental Model (HadGEM1) [Martin
et al., 2006]. In our previous work, the CCM3 model was
used to formulate our diurnal correction. For the TTS and
TLS data products, which have temperature weighting func-
tions centered higher in the atmosphere, we also considered
a diurnal adjustment derived from the Canadian Middle
Atmosphere Model (CMAM) [Beagley et al., 2000]. Our
version of the data from this climate model lacks a surface
temperature, making it inappropriate for TLT and TMT,
which have a substantial contribution due to surface emis-
sion. In Table 1, we show the global and tropical trends that
results when each off these diurnal adjustments are applied
to the actual satellite data.

[23] The limited number of climate models available is
far from ideal. We note that the very small number of
models makes tenuous our implicit assumption that the
differences between the specific models we have available
span the range of possible error. It would be highly desirable
to gain further estimates from other modeling centers and
from reanalyses of their diurnal cycle estimates so that this
plausible solution space can be more adequately sampled.
Despite this limitation, we proceed with our analysis, since
it nevertheless provides a significant step forward from
our earlier attempts to characterize the uncertainty in our
diurnal adjustments, where we simply assumed a +/− 50%
error independent of location [Mears and Wentz, 2005].
In Figure 7, we show a typical realization of the diurnal
adjustment and error in the diurnal adjustment for each
channel. In Figure 8 we show global averages of the diurnal
adjustments applied to the NOAA‐14 instrument. On a
global scale, the HadGEM1 model tends to results in larger
diurnal adjustments and a larger seasonal cycle in these
adjustments, while the CMAM model tends to result in
smaller adjustments than our operational product.
[24] Note that there are large spatial correlations in the

diurnal adjustment errors (see the right side of Figure 7) par-
ticularly for the TLT and TMT channels. For these chan-
nels, the HadGEM1 diurnal cycle is significantly larger in
arid land regions than the CCM3 diurnal cycle. We do not
definitively know the reason for this difference, though we
suspect it is influenced by differences between the land sur-
face parameterizations used by the two models.

Table 1. Long‐Term Trends Using Different Diurnal Modelsa

Channel
Diurnal
Model

Global
(80°S to 80°N)

Tropics
(20°S to20°N)

TLT (70°S to 80°N) CCM3 0.150 0.147
HADGEM 0.184 0.169

TMT CCM3 0.088 0.110
HADGEM 0.108 0.121

TTS (1987–2008) CCM3 −0.022 −0.013
HADGEM −0.011 −0.002
CMAM −0.018 −0.008

TLS CCM3 −0.324 −0.310
HADGEM −0.313 −0.299
CMAM −0.335 −0.323

aLong‐term trends are from 1979 to 2009.

Figure 6. Descending node local equator crossing time for each satellite carrying a MSU or AMSU
instrument used in our study.
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[25] These realizations of the diurnal uncertainty are
added to the realizations of the sampling uncertainty we
calculated in the previous sections, yielding a set of 400
“noise realizations” for each satellite in the series that are
consistent in the estimated combined uncertainty from both
sources. Note that for a given Monte Carlo noise realization,
all satellites are adjusted using adjustments calculated from
the same diurnal cycle error realization from equation (2) so
as to not artificially inflate this estimate as the real world
cannot logically exhibit multiple coincident diurnal cycles.

2.4. Uncertainty in Merging Parameters

[26] Earlier work found that global averages of simulta-
neous measurements made by co‐orbiting MSU instruments
differ by both a time‐invariant intersatellite offset and an

additional term that is strongly correlated with the varia-
tions in temperature of the hot calibration target (which is an
integral component of the instrument and measurement tech-
nology) for each satellite [Christy et al., 2000]. To describe
these differences, we use an empirical error model for bright-
ness temperature incorporating the target temperature and
scene temperature correlation [Mears and Wentz, 2009a],

TMEAS;i ¼ T0 þ Ai þ �iTTARGET ;i þ �iTSCENE þ "i ð3Þ

where TMEAS,i is the brightness temperature measured by the
ith instrument, T0 is the true brightness temperature, Ai is the
temperature offset for the ith instrument, ai is a small
multiplicative “target factor” describing the correlation of
the measured antenna temperature with the temperature

Figure 7. Maps of the diurnal adjustment applied to each channel. The left column is an example of the
diurnal adjustment applied to a single monthly average for each data set, calculated using the CCM3‐
derived diurnal cycles. (The adjustments shown here are for the NOAA‐14 satellite, September 2003).
The right column is a deviation from this adjustment chosen from one of the 400 realizations of possible
diurnal error. In general, the largest deviations occur in regions with the largest adjustments. Note the
large change in scale between the tropospheric channels and TTS and TLS.
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anomalies of the hot calibration target, TTARGET,i. The
parameter bi describes the correlation of the calibration error
with the scene temperature anomaly TSCENE, and "i is an
error term that contains additional uncorrelated, zero‐mean
errors due to instrumental noise and sampling effects. The
merging parameters used for the published data sets were
found using a regression procedure that minimizes inter-
satellite differences between monthly averages. Since these
monthly averages contain errors from various sources (domi-
nated by the sampling and diurnal sources mentioned above)
there is uncertainty in the calculated merging parameters.
This uncertainty leads to additional uncertainty in the final
merged data set. Because the intersatellite offset is a single
invariant delta estimate for each satellite pair any error in
this step is equivalent to adding units of red noise to the
series. This error will therefore increase rather than decrease
with length of record. In our analysis we found that the
effect of the uncertainty in the bi’s was negligible compared
to other error sources and is ignored from this point for-
ward to simplify the analysis.
[27] The ai’s (target factors) are the most important

parameters for long‐term behavior of the merged data set
since they are difficult to determine and they multiply the
target temperatures, which often show large long‐term
changes. Figure 9 shows the standard deviation of the fitted
ai’s for each satellite and channel calculated using the

400 noisy realizations from the intrasatellite error determi-
nation above. For TLT and TMT, we find that the largest
uncertainty is in the value of aNOAA‐09, consistent with our
earlier findings [Mears et al., 2003]. For TLS, the uncer-
tainty in aNOAA‐09 is less because the period during which
MSU channel 4 was functioning for both NOAA‐09 and
NOAA‐10 was longer. For TTS, satellites before NOAA‐10
are not used because both NOAA‐09 and NOAA‐06 have
large, unexplained drifts in the data for MSU channel 3.
[28] Once the ai’s are determined, we then find the lati-

tude dependent offsets using a regression procedure for each
2.5°‐wide latitude band. These offsets also vary due to the
sampling noise, diurnal adjustment error, and target factors
error determined in previous steps. As the diurnal adjust-
ment, and thus any error in the diurnal adjustment, is typi-
cally much larger over land, the errors in these offsets tend
to be dominated by errors in the land diurnal cycle. We note
that since we use a single offset for each latitude band for
both land and ocean regions, any land‐caused error will
affect the merged data set in ocean regions at the same
latitude.

2.5. Merging MSU and AMSU Together

[29] The MSU and AMSU measurement bands for the
corresponding channels for the two instruments differ, lead-
ing to small differences in vertical weighting, which in turn

Figure 8. Global diurnal adjustments applied to the MSU instrument on NOAA‐14. The rows corre-
spond to the different channels, and the columns to the different models used. Over this period, the LECT
for NOAA‐14 drifted over 6 h (see Figure 3).
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lead to small differences in brightness temperature that
depend on location and time of year. We remove these
differences empirically by using location and time‐of‐year
dependent offsets to adjust the AMSU measurements so that
they match the MSU measurements during the 1999–2004
period. These offsets also contain error, which is modeled
by our Monte‐Carlo process.
[30] This enables an instantaneous estimate of the effect

given the instantaneous mean atmospheric state at the time
of changeover. Given that there is ample evidence that the
mean climate state is nonstationary and that changes in the
mean climate state are not the same for different atmo-
spheric layers there is a further insidious aspect that will
come into play over time for our data set and for all other
MSU/AMSU data sets which we have not explicitly mod-
eled here but warrants further attention. If, as is widely
predicted, the climate system continues to warm then there
will be a mismatch that grows over time between the change
the AMSU instruments see and that which would have been
seen had MSU frequencies been maintained. Taking HadAT
data [Thorne et al., 2005] and calculating MSU TMT and

the AMSU equivalent shows a trend mismatch over 1958
to date of approximately 0.003 K/decade, roughly 4% of
the long‐term signal. Particularly for assessing differences
between adjacent layers or the surface and the troposphere
effects of this magnitude may be important. Looking for-
ward, the transition to the Advanced Technology Micro-
wave Sounder (ATMS) sensors will introduce a further, but
smaller, such impact onto the long‐term record because the
measurement bands are well‐matched to the AMSU mea-
surement bands.

2.6. MSU/AMSU Drift for TMT

[31] Examination of the differences between TMT from
MSU channel 2 on NOAA‐14 and AMSU channel 5 on
NOAA‐15 shows a long‐term trend difference, with NOAA‐15
cooling at a rate of 0.2 K per decade relative to NOAA‐14
over the July 1998 to December 2004 period of overlap. This
trend difference is not present for the other channel pairs,
including, to our surprise, TLT, and is more than 2.5 times
larger than the trend difference for any pair of MSU sat-
ellites with more than 18 months of overlapping observa-
tions. This trend difference is too large to explain using the
difference between the MSU and AMSU TMT weighting
functions. It is about 100 times larger than the trend differ-
ence simulated using HadAT data over the overlap period.
The cause is not known and could be a drift in calibration
in one or both of the satellites that is not explained by our
calibration error model (equation (3)). Since we do not
know which satellite is closer to being correct, we treat this
drift as an additional source of uncertainty. It is unlikely
that the drift is caused by errors in the diurnal adjustment
because the magnitude of the drift is similar for land‐only
and ocean‐only averages, which is unlikely to be the case
for errors in the diurnal cycle.
[32] To estimate the effect of this source of uncertainty,

we add in artificial ascending (descending) location inde-
pendent trends of 0.2 K per decade to the MSU (AMSU)
noise realizations during the overlap period. Then, we pick
2‐year portions of this overlap from a set of four possible
periods (1999–2000, 2000–2001, 2001–2002, and 2002–
2003) at random. MSU data from after the end of the period,
and AMSU data from before the beginning of the period,
are ignored. This process results in a significant contribution
to the overall uncertainty in TMT and is the reason that the
total uncertainty in TMT is comparable to the uncertainty in
TLT, which has larger diurnal and sampling uncertainty.
[33] In the future, we will resolve this issue by detailed

comparisons with subsequent AMSU instruments, the most
important of these being AMSU on AQUA. Data from the
AMSU instrument on NOAA‐16, which would be useful
if valid, appear to suffer from a large unexplained drift in
several channels, including channel 5 [Mears and Wentz,
2009a].

2.7. Results

[34] At the end of the Monte Carlo merging process, we
have 400 realizations of the expected error in our merged
MSU/AMSU data sets. In Figure 10, we show maps of a
realization of the gridded error for a typical month, along
with maps of the standard deviation of the gridded errors
calculated across the 400 realizations. For TLT and to a
lesser extent, TMT, the errors are dominated by errors in the

Figure 9. Mean and standard deviations of the target fac-
tors calculated for each error realization. For the synthetic
data we analyze here, we expect the target factors to be zero,
so nonzero value we calculate is due to the effect of sam-
pling and diurnal adjustment error in the target factors.
The difference between the mean values and zero is due
to the finite number of noise data sets we evaluate. For an
infinite sample, the target factors would average to zero.
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diurnal adjustment over land. Errors in TTS are significantly
less than for the other channels, due to both the smaller
diurnal adjustment and the relatively small sampling error
given the generally low levels of synoptic variability in this
atmospheric region. Errors tend to be spatially correlated
indicating the dominance of sampling effects and diurnal
uncertainties at these timescales. Both these error sources
have strong spatial coherence.
[35] Figure 11 shows the range of global time series for

each channel. Errors grow away from the tie‐point NOAA‐10
satellite in 1989. Errors are largest for the two lowest chan-
nels that have a significant surface signal. Table 2 shows the
2‐s estimated error in the global and tropical (20S to 20N)
trends, with and without including the uncertainty due to the
diurnal adjustment. For TMT, the MSU‐AMSU drift is also
excluded at the same time as the uncertainty in the diurnal
adjustments. It is clear from the reduction in uncertainty
when omitted that the largest factor in the error in our product
for these lowermost channels arises from uncertainty in how

we account for orbital diurnal drift effects and the associ-
ated knock‐on impacts on determining intersatellite offsets.
In addition to these first‐order findings there are interesting
high‐ and low‐frequency aspects to the error estimates that
may warrant future investigation but are outside the scope
of this present analysis.

3. Comparison With Complementary Long‐Term
Atmospheric Temperature Data Sets

[36] Our set of gridded estimated error realizations will
allow for the first time a rigorous analysis of the uncertainty
inherent in a number of data set intercomparisons and cli-
mate model validation activities. These include comparisons
of microwave satellite data with in situ data sets, compar-
isons with other satellite‐derived temperature data sets such
as those from COSMIC and comparison with reanalysis and
climate model output, including fingerprinting studies. Here
we provide an example of this type of analysis by briefly

Figure 10. Gridded estimated error for each channel. The left column shows maps of a typical realiza-
tion of estimated error from a single month (June). The right column shows the standard deviation of the
gridded errors got the month of June calculated over the 400 realizations of error.
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describing the intercomparison of our data with four
homogenized radiosonde data sets and the two other current
real‐time MSU products.
[37] Here we take an approach of considering all pub-

lished homogenized radiosonde data sets HadAT [Thorne
et al., 2005], RAOBCORE [Haimberger, 2007], RICH
[Haimberger et al., 2008], IUK [Sherwood et al., 2008], and
RATPAC [Lanzante et al. 2003; Free et al., 2005]. The first
four data sets were constructed using automated methods
to find and estimate the size of “breakpoints” in the time
series for radiosonde station which are then used to create
adjusted versions of the radiosonde data with the effects
of the detected breakpoints removed. The version of the
RATPAC data used here, RATPAC‐B, uses a similar but
nonautomated method for data from 1958 to 1997. After
1997, no adjustments were made. We also show results for a
subset of the RATPAC data set (RATPAC_RW) defined by
Randel and Wu [2006], using short‐term comparisons with
satellite data with the intention of removing radiosonde
stations from RATPAC with previously undetected inho-
mogeneities. These data sets are either available as gridded
measurements vertically weighted to correspond to each
channel or contain enough information so that it is possible
for us to construct such a gridded data set by weighting
individual levels.
[38] Several similar analyses and intercomparisons have

previously been undertaken [Christy et al., 2010] which ques-
tion the veracity at given times of several of these products,
including but by no means limited to our own [e.g., Christy

et al., 2007; Christy et al., 2007; Randall and Herman,
2008]. We would caution that all such comparisons are
two or more point comparisons between instruments or
products that are not absolutely calibrated. Any such com-
parisons between uncertain measures cannot de facto pro-
vide absolute conclusions as to the veracity of any of the
individual products. Indeed, on a scientific basis such com-
parisons have limited quantitative value without making
recourse to defensible quantified uncertainty estimates in
each comparator series when we know a priori that each is in
fact uncertain. Rather than making at best semiobjective
decisions based upon such imperfectly scientifically posed
prior comparisons to preclude data products we prefer to
include all products. We caution that readers should not
consider our analysis in isolation of others which provide
potentially valuable insights.
[39] We have already completed an intercomparison of

TLT with these radiosonde data sets [Mears and Wentz,

Figure 11. Range of globally averaged error time series for each channel. The yellow region is
±1 standard deviation for the globally averaged (75°S to 75°N) estimated error for each month. The
red region is the same, except that the effects of the diurnal adjustment and, for TMT,the MSU/AMSU
drift have been ignored. The blue lines are the global time series with the largest and smallest trend in
the error realization set.

Table 2. Uncertainty Estimates for Trends for Each Channela

TLT TMT TTS TLS

Global (75°S–75°N) all errors 0.044 0.042 0.014 0.028
no diurnal 0.022 0.012b 0.008 0.020

Tropical (20°S–20°N) all errors 0.034 0.038 0.020 0.030
no diurnal 0.026 0.012b 0.008 0.020

aUncertainty estimates are 2s and trends for each channel are K/decade.
bThe “no diurnal” results for TMT also does not include the effects of

MSU/AMSU drift in this channel.
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2009b], and thus this work only serves to add error esti-
mates and results from RATPAC to this previous work. For
TMT, TTS, and TLS we follow the earlier analysis method
exactly. For each month, the satellite data is sampled at the
location of the available radiosonde stations in each data set.
This allows us to make a direct comparison with the radio-
sonde products, without needing to worry about whether or
not the radiosonde sampling is dense enough to faithfully
represent a global average. This means that the appearance
and disappearance of radiosonde stations over time is also
automatically taken into account. Note that this procedure
results in a separate sampled satellite data set for each radio-
sonde data set. We then construct area‐weighted global and
regional time series from each data set for intercomparison.
An example set of time series, for globally averaged data is
shown in Figure 12. In Figure 12, we show for the satellite
data both the true global time series and the time series cal-
culated using the sampling procedure. The sampling proce-
dure improves the agreement between the radiosonde data
and the satellite data on short time scales in almost all cases.
For long‐term trends, agreement is also often improved by
such subsampling. Subsampling is therefore important in
making a fair comparison between the spatially complete
satellite data and spatially incomplete radiosonde products
[Free and Seidel, 2005].
[40] Similarly, trend error estimates for the radiosonde‐

sampled RSS satellite data were obtained by constructing
error time series sampling the gridded error realizations at
the radiosonde locations and then calculating the standard
deviation of the trends in these time series. In general, the
estimated trend error is larger than it is for more spatially
complete averages, reflecting the influence of spatial sam-
pling error. This is particularly true for the southern extra-
tropics, where the radiosonde sampling is poor.
[41] Figure 13 shows a summary of trends for each

channel, radiosonde data set, and averaging region. We also
include sampled trends from the UAH [Christy et al., 2003]
and STAR [Zou et al., 2006] satellite data sets, calculated

using identical methods. We use the most recent versions of
each data set available in gridded form, versions 5.3 (TMT,
TLS) and 5.3 (TLT) for UAH and version 2.0 for STAR.
[42] Agreement between radiosonde and satellite data sets

is best for TLT. For TLT, both the radiosonde and UAH
trends lie within our error bars, except for the tropics and
HadAT in the southern extratropics. All data sets agree that
the largest tropospheric warming is in the northern extra-
tropics, with least warming in the southern extratropics. The
exception to this is the UAH data set that exhibits approx-
imately the same warming rate in the deep tropics and the
southern extratropics. Overall UAH exhibits more extra-
tropical warming and less tropical warming than RSS which
leads to a near‐cancellation of differences at the global
average.
[43] For TLT, changes in radiosonde trends as a function

of latitude (i.e., the gradient between these zones and not
the absolute values) are in better agreement with RSS than
UAH. This finding contrasts with many recent publications
which suggest UAH better matches with subsets of the
radiosonde network than does RSS. But as the radiosondes
may retain common biases we would strongly argue that
both this result and the suite of recently published radio-
sonde‐satellite comparisons cannot be used to make con-
crete inferences about the relative quality of the two satellite
TLT products. We include this observation largely to high-
light that there are multiple potential diagnostics which one
could use to evaluate MSU series against radiosondes and
that the choice of diagnostic can significantly impact con-
clusions about apparent MSU data set quality and a naïve
choice as to a “winner” on such a basis.
[44] In the tropics, the RSS trends tend to be higher than

the radiosonde or UAH data sets. In this region three of the
radiosonde data sets and the sampled UAH data set all fall
outside the range of RSS +/− our internal uncertainty esti-
mates with an exception for the RATPAC_RW sampling.
TLT trends in the tropics have been the subject of much
recent controversy [Douglass et al., 2008; Santer et al.,

Figure 12. An example of the intercomparison of satellite data from RSS, UAH, and data from the
HadAT radiosonde‐based data set. For the satellite data, we show both the true globally averaged time
series, and time series found by averaging together only those locations that have radiosonde data. These
data have been smoothed to remove variability on time scales shorter than 6 months.
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2008]. Our error bars increase the probability of concurrence
between our data set and model expectations, reducing the
chances of proving a discrepancy if our method of correct-
ing the data is adequate, an aspect which we stress again our
current analysis does not address.

[45] As we move higher in the atmosphere, the radio-
sonde‐satellite trend differences tend to increase. For TMT,
only about 50% of the radiosonde trends lie within our error
bars, except in the northern extratropics, where the radio-
sonde network is the most spatially complete, and thus the

Figure 13. Summary of radiosonde, satellite, and spatially sampled satellite trends for each channel. All
trends are calculated for 1979–2009 with two exceptions. TTS trends start in 1987, and all trends involv-
ing IUK end in 2005. Error bars on the satellite data were calculated using the methods described in this
work. The outer error bars are the total 2‐s errors including the contributions from the diurnal adjustment
and the MSU/AMSU drift, and the inner error bars include only the contributions from sampling error.
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adjusted data sets, which in almost all cases rely upon a
neighbor constraint, are most likely to be reliable. Here the
agreement remains good. For TMT, the STAR trends are
consistently larger than RSS but generally just within our
uncertainty bounds when diurnal adjustment uncertainties
are included, while the UAH trends are less and tend to be
outside our calculated error margins with the exception of
the southern extratropics where the two data sets are in good
agreement.
[46] It is important to note that for both TLT and TMT, the

different satellite data sets agree most well in the southern
extratropics, where the effects of diurnal drift are small
because of the small amount of land. This further confirms
our finding for our data set that unambiguously resolving
the diurnal drift effect correction and its impacts is likely to
be a key determinant in reducing the uncertainty in long‐
term tropospheric temperature changes from MSU/AMSU
records.
[47] For TTS, the RSS data show trends that are nega-

tively biased relative to the STAR data and positively biased
relative to the radiosonde data. Almost all other data sets lie
outside the range of our error bars in all regions, suggesting
that our uncertainty analysis may be missing some important
error sources for this channel. However, as they lie either
side of our estimate it does not imply that our best‐guess
product is necessarily biased.
[48] For TLS, the results are similar to TTS, except RSS

and STAR are in better agreement with most STAR trends
lying inside our error bars. The radiosonde data show much
more cooling than the RSS satellite data, particularly in the
southern extratropics. UAH data in this region are consis-
tently and significantly cooling faster than our estimates and
in the Northern Hemisphere extratropics also at a greater
rate than all available radiosonde estimates. The increasing
discrepancy between satellite and radiosonde based esti-
mates as we move higher in the atmosphere is likely to be
caused at least in part by residual errors in the homogenized
radiosonde data sets [Mears et al., 2006; Randel and Wu,
2006].
[49] It is notable that agreement between all radiosonde

and satellite data sets at all levels is best in the northern
extratropics, where the radiosonde spatial sampling is much
more complete. Spatially, more complete sampling is likely
to improve the accuracy of the radiosonde homogenization
methods, all of which are based either in their breakpoint
identification and/or in their adjustment step in some sense
upon neighbor comparisons.

4. Conclusions

[50] We have performed a comprehensive internal error
analysis of our MSU/AMSU based data sets of atmospheric
temperature. This work improves upon earlier work in that it
provides uncertainty information on a variety of spatial and
temporal scales, which is critical for meaningful application
of the data sets to the study of climate change on both global
and regional scales. The fundamental results of our calcu-
lations, a set of 400 realizations of estimated error for each
MSU/AMSU channel, is available for download on our Web
site, http://www.remss.com.
[51] We find that on a month to month basis or for very

local scale studies sampling effects are likely to be impor-

tant. At larger time and space scales the dominant sources of
uncertainty are intersatellite merging uncertainty arising
from a finite nonoverlapping sample and how to adjust for
diurnal cycle aliasing introduced through satellite drift for
the two tropospheric layers with a surface contribution. This
latter effect is the dominant source of uncertainty for our
tropospheric estimates. Its effect is twofold in that it is a
substantial uncertainty in itself but also because the pro-
cessing system is sequential and the satellite merge is the
last step it also substantially impairs our ability to cleanly
undertake this step. Getting a better handle on this effect
should be a priority and requires many more diurnal cycle
climatology estimates at 3‐hourly or preferably hourly res-
olution from a larger suite of climate models and reanalysis
products from the skin temperature all the way to the top‐of‐
atmosphere. Reanalyses, which are constrained by observa-
tions, would be a particularly useful resource.
[52] A comparison to alternative estimates from radio-

sondes and independent producers of MSU/AMSU products
was made in the context of our new uncertainty analysis.
It is clear from this comparison that many hitherto unex-
plained differences between the data sets, many of which
have been previously documented, remain. Although the
internal uncertainty estimates derived herein lead to con-
sistency between a number of estimates there are nearly as
many cases where differences between the RSS product and
competing estimates cannot be reconciled as being caused
solely by RSS data set internal uncertainties. An inescapable
conclusion from this is that the methodological choices
that we and others have made have lead to a substantial
and significant impact upon the resulting estimates. This
reinforces the importance of creating multiple independent
estimates from the raw data which is known both to contain
nonclimatic influences and lack metrological traceability if
we are to avoid the possibility of reaching false conclusions.
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