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Abstract
Observed changes in the HadCRUH global land surface specific humidity and CRUTEM3
surface temperature from 1973 to 1999 are compared to CMIP3 archive climate model
simulations with 20th Century forcings. Observed humidity increases are proportionately
largest in the Northern Hemisphere, especially in winter. At the largest spatio-temporal scales
moistening is close to the Clausius–Clapeyron scaling of the saturated specific humidity
(∼7% K−1). At smaller scales in water-limited regions, changes in specific humidity are
strongly inversely correlated with total changes in temperature. Conversely, in some regions
increases are faster than implied by the Clausius–Clapeyron relation. The range of climate
model specific humidity seasonal climatology and variance encompasses the observations. The
models also reproduce the magnitude of observed interannual variance over all large regions.
Observed and modelled trends and temperature–humidity relationships are comparable except
for the extratropical Southern Hemisphere where observations exhibit no trend but models
exhibit moistening. This may arise from: long-term biases remaining in the observations; the
relative paucity of observational coverage; or common model errors. The overall degree of
consistency of anthropogenically forced models with the observations is further evidence for
anthropogenic influence on the climate of the late 20th century.
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1. Introduction

Saturation specific humidity (qs) is governed by the Clausius–
Clapeyron relation. For a 1 K increase in temperature (T )
the water holding capacity of the atmosphere increases by
∼7%; increasing with decreasing temperature (Sun and Held
1996, Held and Soden 2006). Essentially, if relative humidity
(RH) remains constant then specific humidity (q) should also

increase with a scaling of approximately 7% K−1. Indeed,
quasi-constant RH as the climate changes, at least over large
spatial and temporal scales, is often assumed (Manabe and
Wetherald 1967) and is an emergent property of general
circulation models (GCMs) of the climate system (Held and
Soden 2000, Allen and Ingram 2002, Ingram 2002). However,
more recently it has come under debate; decreasing surface RH
over land has been observed since 2003 (Simmons et al 2010).
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Actual changes in surface q and to what extent these are
governed by changes in T and a quasi-constant RH constraint
are key to our understanding of the climate system. Surface
humidity is the principal source for the free-troposphere where
water vapour has important implications for earth radiation
and energy budgets and therefore climate sensitivity (Trenberth
et al 2005) and the hydrological cycle (Allen and Ingram 2002,
Wentz et al 2007). At the surface, humidity is an important
factor in human thermal comfort (Taylor 2006).

The World Climate Research Programme’s (WCRPs)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset affords for the first time an opportunity
to evaluate recent changes in surface humidity in a suite of
Climate of the 20th Century forced GCMs. This dataset has
been used for the analysis of numerous other climate variables
(e.g. surface T trends (Stone et al 2007); total atmospheric
moisture content (Santer et al 2007); precipitable water (Mears
et al 2007); tropical lapse rates (Santer et al 2008); sea surface
temperature changes in tropical cyclogenesis regions (Santer
et al 2006a)). In these studies, only the anthropogenically
forced models have shown reasonable consistency with the
most recent observational datasets.

Following the above studies, this paper expands upon
previous analyses of the Hadley Centre and Climatic Research
Unit Surface Humidity record HadCRUH (Willett et al 2007,
2008—henceforth W07 and W08 respectively; Simmons et al
2010) by undertaking a multi-model comparison. It uses the
gridded near-global homogenized surface specific humidity
product HadCRUH land component (W08) and the Hadley
Centre and Climatic Research Unit land surface air temperature
product CRUTEM3 (Brohan et al 2006). Only land surface
data are considered due to issues with marine humidity data
pre-1982 (W08). Previously, a dataset of recent changes
in surface q and RH was created and assessed (W08) and
compared to a single fully coupled GCM, with natural and
anthropogenic forcings for the purpose of detection and
attribution (W07). Here, firstly recent proportional changes in
observed q relative to climatology, along with simultaneous
changes in surface T , are assessed. Secondly, a comparison
is undertaken of the observed and CMIP3 archive Climate of
the 20th Century (forced with historical anthropogenic and
natural emissions) mean state and changes in q alongside T . To
investigate the effect of spatial completeness on trend analyses,
following Simmons et al (2010), both full model coverage
and coverage sub-sampled to HadCRUH field availability are
considered. This study therefore addresses the extent to which
RH remains constant over the land surface of the Earth in the
observations and the CMIP3 models.

Ideally the model assessment would include both q and
RH. However, surface RH is not available for any Climate
of the 20th Century runs from the CMIP3 archive. Its
derivation from pressure level RH fields makes an inadequate
comparison as it is a fundamentally different quantity from
observed surface RH. Furthermore, calculating surface RH
from monthly mean surface q and T is unsatisfactory owing
to non-linearity in the conversion formulae (McCarthy and
Willett 2006). It would yield values fundamentally different
from the monthly mean of instantaneous RH. Given recent

findings regarding changes in surface RH over land (Simmons
et al 2010) it would be very useful if surface RH were to
become a mandatory field in future CMIP archives enabling
a surface RH multi-model intercomparison study to be
conducted.

Section 2 describes the datasets and models used in the
present study. Section 3 describes observed changes in surface
q with T across the land surface of the globe. Section 4
compares all findings from the observational data to the full
suite of state of the art GCMs from which the relevant
parameters are available (q was not a mandatory variable).
Section 5 provides a summary.

2. Dataset description

All observed humidity data are from HadCRUH: a quality
controlled and homogenized land and marine monthly mean
anomaly 5◦ × 5◦ gridded dataset of q and RH for the
period 1973–2003 (W08). This is based around a 1974–2003
climatology chosen to maximize the number of contributing
stations and spatial coverage. The land data originate from
the National Climatic Data Center (NCDC) Integrated Surface
Dataset (ISD; Lott et al 2001). This is a global compilation of
station SYNOP reports and high temporal resolution records
from various sources. Most CMIP3 Climate of the 20th
Century model runs finish in 1999 so in order to compare
like with like the observational dataset is curtailed here and
renormalized to a 1974–1999 climatology such that the grid-
box mean is zero over this period. This period is chosen
to both make the climatology period length as close to the
widely used standard of 30 years as possible (New et al 1999),
and maintain consistency with the original observational data
as far as possible. The authors strongly recommend that
CMIP5 historically forced runs are continued as close to the
present day as possible to enable up to date comparisons in the
future. The data have been homogenized using a neighbour-
based breakpoint detection and adjustment algorithm and only
long-term stations are included in the product. Grid-box
averages were created by taking a straight average of all
stations contributing data in any given month within the grid-
box region. No spatial or temporal infilling was performed.
Further details are given in W08.

CRUTEM3, the land component of HadCRUT3 (Brohan
et al 2006 and references therein) is used to provide
simultaneous monthly mean anomaly surface T on the same
5◦ × 5◦ grids for comparison. The land component differs
from HadCRUH in source datasets (monthly summaries of dry-
bulb temperature versus synoptic level dewpoint temperature
reports), although many observing stations are common.
Methods for quality control and homogenization also differ
substantially such that, over land at least, the two datasets can
be considered structurally independent (Thorne et al 2005).
CRUTEM3 data for the 1973–1999 period are extracted and
renormalized to the climatology period of 1974–1999. The
more globally complete CRUTEM3 dataset is sub-sampled to
HadCRUH field availability. Both HadCRUH (blended land
and marine) and CRUTEM3 are freely available at www.
hadobs.org.
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Table 1. CMIP3 GCMs providing surface specific humidity and surface temperature. Abbreviations are as follows: (GHG) well mixed
greenhouse gases; (OZ) tropospheric and stratospheric ozone; (SD) sulfate aerosol direct effects; (SI) sulfate aerosol indirect effects; (BC)
black carbon; (OC) organic carbon; (MM) mineral dust; (SS) sea salt; (LC) land use change; (SO) solar irradiance; and (V) volcanic aerosols
Source: Santer et al (2006b).

Model Description Members Forcings

BCCR BCCR-BCM2.0—Bjerknes Centre for
Climate Research (BCCR), Univ. of
Bergen, Norway

1 GHG, SD

CCCMAt47, CCCMA t63 CGCM3.1(T47) and
CGCM3.1(T63)—Canadian Centre for
Climate Modelling and Analysis, Univ.
of Victoria, Canada

5 t47 runs and 1 t63
run

GHGs, SD

CNRM CNRM-CM3—Center for National
Weather Research, Meteo-France,
Toulouse, France

1 GHG, OZ, SD, BC

CSIRO3.0, CSIRO3.5 CSIRO-Mk3.0 and
CSIRO-Mk3.5—Commonwealth
Scientific and Industrial Research
Organization, Australia

2 3.0 runs and 3 3.5
runs

GHG, SD

GISSAOM, GISSEH,
GISSER

GISS-AOM, GISS-EH,
GISS-ER—NASA Goddard Institute for
Space Studies, Colombia Univ. NY,
USA

2 AOM runs, 5 EH
runs and 9 ER runs

AOM: GHG, SD, SS, EH
and ER: GHG, OZ, SD,
SI, BC, OC, MD, SS, LC,
SO, V

INMCM INM-CM3.0—Institute for Numerical
Mathematics, Russia

1 GHG, SD, SO

IPSL IPSL-CM4—Sciences de
l’environnement, Institut Pierre Simon
Laplace, France

2 GHG, SD, SI

MIROCH, MIROCM MIROC3.2(hires),
MIROC3.2(medres)—Center for
Climate System Research (The
University of Tokyo); National Institute
for Environmental Studies; Frontier
Research Center for Global Change
(JAMSTEC), Japan

1 hires, 3 medres GHG, OZ, SD, SI, BC,
OC, MD, SS, LC, SO, V

MRI MRI-CGCM2.3.2—Meteorological
Research Institute, Ibaraki, Japan

5 GHG, SD, SO, V

NCAR CCSM3—National Center for
Atmospheric Research, Boulder, USA

8 GHG, OZ, SD, BC, OC,
SO, V

All CMIP3 archive models (Meehl et al 2007) with
surface specific humidity (huss) and surface temperature
(tas) available for the ‘Climate of the 20th Century’ forcing
scenario are obtained from www-pcmdi.llnl.gov/. The
IAP/LASG FGOALS g1.0 runs have not been included
following discovery of an addendum submitted to the CMIP3
data portal (www-pcmdi.llnl.gov/ipcc/model documentation/
more info iap fgoals.pdf) with a disclaimer recommending
that IAP is not used for mid- to high-latitude climate studies.
This notes cold biases in the tropical Pacific, an overly strong
ENSO, overestimated sea ice extent in the high-latitudes and
a weakened Atlantic Meridional Overturning Circulation. A
revised version is now referred to in the addendum but has
not been included here. This results in 15 models and a total
of 49 ensemble members. These include greenhouse gas and
aerosol forcings in all cases, and in some cases volcanic, solar
and other forcings (table 1). While the natural variability of the
climate system e.g. ENSO does not align with observed timings
and magnitude, anthropogenic, volcanic and solar forcings are
chronologically aligned to those experienced historically. For
this reason it is important that model and observed dataset
periods and climatologies are identical. All runs are retrieved

as monthly mean values from 1973 to 1999 (December) and are
regridded to match HadCRUH resolution (5◦ × 5◦) by simple
averaging over each grid-box. This technique is chosen to cope
with the irregular gridding at high-latitudes in some models
and while not ideal should be sufficient for the resolution of
analyses made herein. Model data are resampled to match
HadCRUH spatio-temporal availability and then anomalies are
created from a 1974 to 1999 climatology for each grid-box.

3. Recent changes in observed surface humidity from
1973 to 1999

The largest magnitude changes (in g kg−1) in q have previously
been found over the Tropics and summer hemisphere (Dai
2006; W08). Here it is shown that proportional changes (%
relative to climatology) are largest in the Northern Hemisphere
in winter (December, January and February—DJF (figures 1(a)
and (b))). At the grid-box level these increases can be
very large (>20% between 1973 and 1999), particularly in
continental interiors.
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Table 2. Large scale changes in specific humidity and temperature between 1973 and 1999. Changes are calculated by fitting trends to the
data using the median of pairwise slopes technique (Sen 1968, Lanzante 1996). Error bars are obtained from the 90th percentile confidence
intervals around the median of pairwise slopes. Confidence intervals for changes in specific humidity with temperature are created by
combining the individual confidence intervals following Stuart and Ord (1987). Values in bold are significantly different from zero at the 90%
level of confidence.

Region
Total change
in q (%)

Total change
in T ( ◦C)

Change in q per ◦C
increase in T (%)

Correlation
between T and q

Globe (70◦S–70◦N) 4.11 ± 0.78 0.56 ± 0.09 7.35 ± 0.97 0.72
Northern Hemisphere (20◦N–70◦N) 5.98 ± 1.18 0.68 ± 0.15 8.81 ± 1.46 0.67
Tropics (20◦S–20◦N) 2.45 ± 0.63 0.45 ± 0.08 5.45 ± 0.68 0.90
Southern Hemisphere (20◦S–70◦S) −0.27 ± 1.08 0.31 ± 0.10 −0.85 ± 3.56 0.42

a)

b)

Figure 1. Seasonal changes in surface specific humidity from 1973
to 1999 shown as total change over the period as a percentage
relative to the 1974–1999 climatology. Changes are calculated based
on trend fitting using the median of pairwise slopes technique (Sen
1968, Lanzante 1996).

Large scale averages over all seasons show the greatest q
increase in the extratropical Northern Hemisphere at 5.98 ±
1.18% (table 2), coincident with the largest increase in T . For
the Tropics and Globe, increases in q are 2.45 ± 0.63% and
4.11 ± 0.78% respectively. There is no significant change
in the extratropical Southern Hemisphere; there is evident
drying over the arid areas in this region (figures 1(a) and (b)).
There is significant warming in all regions in CRUTEM3;
although this warming is smallest in the extratropical Southern
Hemisphere. The large gaps in data, and lower station density
over Central Africa, the Amazon and Central Australia increase

the uncertainty in the Southern Hemisphere (Tropics and
extratropics) observations of both T and q .

As T increases so does the water holding capacity of the
atmosphere (qs). Hence, q also increases where evaporation
is not limited by water availability and where atmospheric
conditions are conducive to evaporation in terms of windiness.
It is expected that qs will increase by ∼7% K−1 following
Clausius–Clapeyron theory and therefore in regions where
RH remains constant we may expect to observe similar scale
increases in q . Indeed, such changes have been observed by
remote sensing of column water vapour (Mears et al 2007,
Trenberth et al 2005, Trenberth 2007).

For HadCRUH, this is explored in more detail using 23 of
the Giorgi and Francisco (2000) regions (table 3) which were
used in slightly modified form in the IPCC 4th Assessment
(Christensen et al 2007). For all regions monthly mean T and
q correlate positively; for 17 of the 23 regions the correlation
r value is greater than 0.5 (table 3). Fifteen regions exhibit
significantly increasing q consistent with quasi-constant RH
(figure 2, table 3) in that trends lie between 6 and 8% K−1

taking into account confidence intervals. Thus there is support
in the observations for Clausius–Clapeyron scale increases
(∼7% K−1) in q over most but not all regions over the 1973–
1999 period. The Southern Hemisphere regions of South
Africa, Northern Australia and Southern Australia show an
inverse relationship with T in terms of total change but these
are not significant. These are typically desert regions where
water, and hence evaporation, is limited. Simmons et al
(2010) point to faster warming over land relative to the oceans
as a causal mechanism for the observed very recent drying
(outside our period) in relative terms (decreasing RH). Thus,
while being water-limited may explain slower than Clausius–
Clapeyron scaling to some extent, it is unlikely to be the
full story and further research is needed. Three regions (the
Tibetan Plateau, Southern Asia and the Caribbean) exhibit q
increases which significantly exceed 8% K−1. This implies
local increases in RH in these regions.

Over larger scales (table 2), T –q correlations greater
than 0.5 are found in all regions except for the extratropical
Southern Hemisphere. The strongest correlation is found
over the Tropics (r = 0.9), a warm and moisture-abundant
region. RH and T are not correlated at monthly mean
anomaly resolution (not shown). Increases in q scaling with
T are both significant and consistent with 7% K−1 for the
Globe (7.35 ± 0.97% K−1). Scaling is significantly positive
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Figure 2. Regional changes in surface specific humidity relative to changes in temperature from 1973 to 1999 shown as the percentage of
specific humidity relative to climatology (1974–1999) per 1 K rise in temperature (% K−1). Changes are calculated using trends fitted by the
median of pairwise slopes technique (Sen 1968, Lanzante 1996). Regions are based on Giorgi and Francisco (2000). They are described along
with total changes in specific humidity (%) and temperature (◦C), changes in specific humidity per 1 K change in temperature and monthly
mean anomaly timeseries correlations of temperature and specific humidity in table 3.

Table 3. Regional scale changes in specific humidity and temperature from 1973 to 1999. Changes and confidence intervals are calculated as
described in table 2. Values in bold are significantly different from zero at 90% confidence. Italicized values are also consistent with
Clausius–Clapeyron scaling in that within the confidence intervals they lie between 6 and 8 % K−1 scaling. The spread from 6 to 8% is chosen
to reflect that the 7% K−1 scaling is only an approximation.

Region
acronym Region description

Total change
in q (%)

Total change
in T (◦C)

Change in q per ◦C
increase in T (%)

Correlation
between T and q

ALA Alaska 6.13 ± 5.04 1.22 ± 0.60 5.02 ± 2.09 0.76
CGI Canada, Greenland and Iceland 4.86 ± 3.19 0.52 ± 0.36 9.32 ± 2.70 0.73
WNA Western North America 3.88 ± 2.90 0.84 ± 0.42 4.61 ± 1.84 0.72
CNA Central North America 1.87 ± 4.06 0.22 ± 0.48 8.33 ± 8.82 0.68
ENA Eastern North America 3.59 ± 2.66 0.33 ± 0.25 10.85 ± 4.59 0.79
CAM Central America 3.74 ± 1.78 0.41 ± 0.16 9.10 ± 4.10 0.58
AMZ Amazon 3.20 ± 0.65 0.51 ± 0.11 6.31 ± 0.80 0.83
SSA Southern South America 2.23 ± 2.05 0.35 ± 0.21 6.37 ± 4.01 0.67
NEU Northern Europe 5.14 ± 3.13 0.53 ± 0.32 9.66 ± 2.63 0.87
SEU Southern Europe 5.34 ± 1.78 0.69 ± 0.19 7.74 ± 1.40 0.85
SAH Sahel 8.74 ± 2.42 0.89 ± 0.19 9.76 ± 2.43 0.57
WAF Western Africa 4.71 ± 1.87 0.68 ± 0.18 6.96 ± 2.61 0.44
EAF Eastern Africa 3.03 ± 1.40 0.14 ± 0.14 21.96 ± 21.85 0.37
SAF Southern Africa −1.52 ± 1.80 0.64 ± 0.14 −2.37 ± 2.93 0.17
NAS Northern Asia 7.73 ± 3.70 0.80 ± 0.46 9.68 ± 1.90 0.74
CAS Central Asia 5.70 ± 3.00 0.61 ± 0.47 9.38 ± 4.23 0.67
TIB Tibetan Plateau 10.88 ± 3.19 0.69 ± 0.38 15.77 ± 6.02 0.49
EAS Eastern Asia 5.91 ± 2.26 0.75 ± 0.23 7.87 ± 1.81 0.66
SAS Southern Asia 4.97 ± 1.22 0.43 ± 0.14 11.62 ± 3.33 0.56
SEA South East Asia 1.84 ± 0.71 0.42 ± 0.11 4.38 ± 0.95 0.85
NAU Northern Australia −1.02 ± 3.18 0.61 ± 0.22 −1.68 ± 5.40 0.21
SAU Southern Australia −3.18 ± 2.25 0.10 ± 0.22 −31.9 ± 84.78 0.50
CAR Caribbean 4.59 ± 0.84 0.40 ± 0.11 11.58 ± 2.18 0.80

and slightly higher in the extratropical Northern Hemisphere
(8.81 ± 1.46% K−1) but lower in the Tropics (5.45 ±
0.68% K−1). Extratropical Southern Hemisphere scaling is
small and negative but not significant. Unfortunately, over the

Southern Hemisphere especially, HadCRUH and CRUTEM3
(after HadCRUH resampling) omit key regions of hydrological
extremes such as Central Africa and much of Amazonia. This
suggests that this region may not be well represented in the
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Table 4. Fractions of grid-box climatological mean (1974–1999) and σ of specific humidity in the first ensemble members for each model
within 2σ of HadCRUH climatology and within 20% of HadCRUH σ respectively. Members having >66.6% of grid-boxes within these
ranges are in bold. Ensemble members are considered dry/moist/high/low if >66.6% of those grid-boxes outside these ranges are
dry/moist/high/low.

Grid-boxes within
2σ of observed
climatology (%)

Grid-boxes within
20% of observed σ

Bias relative to the
observations JJA/DJF

Model JJA DJF JJA DJF

Mean (D = dry,
M = moist,
— = no bias)

σ (H = high,
L = low,
— = no bias)

BCCR 63.0 68.9 39.0 39.7 D/D —/L
CCCMAt47 58.5 68.2 52.4 50.7 M/M L/L
CCCMAt63 62.2 70.6 51.5 39.4 —/— L/L
CNRM 53.5 73.8 46.0 47.5 M/— H/—
CSIRO3.0 66.6 68.9 27.3 33.5 D/— —/—
CSIRO3.5 36.4 47.2 38.3 37.7 M/M H/H
GISSAOM 64.0 55.9 38.7 33.5 —/M L/—
GISSEH 52.4 64.8 39.6 33.0 —/— —/L
GISSER 46.6 68.8 36.1 36.2 D/— —/L
INMCM 54.0 53.9 39.3 34.2 D/— H/H
IPSL 63.0 69.7 50.4 44.4 D/— —/L
MIROCH 46.2 64.7 48.2 47.2 M/M L/L
MIROCM 47.7 70.2 37.8 43.7 M/— —/L
MRI 70.3 78.7 47.1 45.2 D/— L/L
NCAR 52.6 71.8 44.2 37.7 D/— —/—

observations. Even where there is coverage the station density
is generally lower and therefore fundamental data quality is
more questionable.

4. How are surface specific humidity and
temperature related processes represented by the
CMIP3 multi-model archive with ‘Climate of the
20th Century’ forcings?

To date there has been no multi-model comparison of surface
humidity with available observations. Here, an investigation
into how well current models represent present day surface
q and the T –q relationship is undertaken. The primary aim
is to explore the models’ ability to capture the mean state
(climatological mean and interannual variability) and trend
behaviour apparent in the observations. Additionally, this will
test to some extent whether the surface humidity signal, which
is very likely at least in part of anthropogenic origin (W07), is
consistent across a wide spread of model physics, forcings and
climate sensitivities.

4.1. Climatological means and standard deviations of
seasonal specific humidity: HadCRUH verses CMIP3 models

The climate mean state is assessed over two seasons: DJF
(December, January and February); and JJA (June, July and
August). While forcings in the models will be aligned in
real time with the observations, natural variability is not.
It is assumed that the use of long-term averages (1974–
1999) will ameliorate differences arising from this mis-
matched natural variability to a large extent. Observed
climatological means range from 0.05 g kg−1 at the Poles
to 21.95 g kg−1 in the Tropics (figures 3(a) and (b)). To
broadly assess model-observed differences (without attributing

any formal statistical significance) the percentage of grid-boxes
in each first ensemble member falling within observational
natural variability (seasonal climatology ±2σ of the observed
interannual seasonal variability—figures 5(a) and (b) for
comparison) is calculated (table 4, figures 3(c)–(h), 4(a)–(f)).
The models are in general agreement with the observations: 11
(of 15) show greater than 50% agreement with the observations
in both seasons; MRI and CSIRO3.0 in particular. The
remaining grid-boxes are then apportioned to being either
biased moist or biased dry and the model classified as moist/dry
if greater than 2/3 of remaining grid-boxes fit into the
moist/dry category. In this way, BCCR run 1 is relatively
dry and CSIRO3.5 run 1 is relatively moist. To represent the
dry to moist spread of models INMCM, MRI and CSIRO3.5
are shown respectively in figures 3(c)–(h) (figures 5(c)–(h)
for variability comparison). INMCM and CSIRO3.5 have a
relatively low proportion of grid-boxes in ‘agreement’ with the
observations. There is a slight tendency towards drier JJA in
the models. However, given the spread of moisture regimes
we conclude that there is no overall bias in the models but that
agreement is closest and bias least during DJF. As shown in
figures 4(a)–(f) there are regions where models show common
biases: most noticeably there is a propensity for overly dry
conditions across the Amazon and Central Asia during JJA.

Observed interannual seasonal variability is smallest in
the winter hemisphere, especially in DJF (minimum =
0.03 g kg−1) (figures 5(a) and (b)). The extratropical summer
hemisphere variability is higher, likewise especially in DJF
(maximum = 2.28 g kg−1). Given higher summertime
temperatures, this should be expected if the mean and
variability of RH are largely seasonally invariant. To crudely
identify model-observed differences (again without attributing
any formal statistical significance) the percentage of grid-
boxes falling within observational natural variability (defined
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Figure 3. Comparing the seasonal 1974–1999 climatological means in HadCRUH observed surface specific humidity and a range of CMIP3
archive first ensemble members. Observations are shown at the top in g kg−1 with colour bar. Three ensemble members of the 15 CMIP3
models with surface specific humidity available are shown in the lower panels. INMCM is a particularly dry model, MRI is moderate within
the spread of models and CSIRO3.5 is a moist model. These are shown as model—observed differences in terms of the percentage relative to
the observed climatology. Greyed out areas identify regions where the model climatologies are within 2σ of the observed interannual seasonal
variability. Statistics for all model first ensemble members are listed in table 4.

as ±20% of the standard deviation for each grid-box) are
calculated for each first ensemble member by season (table 4,
figures 5(c)–(h), 6(a)–(f)). Agreement assigned in this way
is generally low with only one model exceeding 50% grid-
box agreement for both seasons. All show more than 30%
with the exception of CSIRO3.0 which interestingly agrees
well in terms of climatology. Models are categorized as high
or low variability relative to the observations by looking for
a 2/3 proportion of remaining grid-boxes (as for moist/dry
categorization above). For variability, unlike climatology, it is

apparent that the models are closer to the observed variability
in the JJA season. There is a low variability tendency
in many of the models relative to HadCRUH but CNRM,
CSIRO3.5 and INMCM exhibit higher variability. Given that
CSIRO3.5 is biased moist and INMCM is biased dry there
is no clear link demonstrated between biases in the mean
and variability relative to the observations. Variability over
Southern and Eastern Asia is biased high in the majority of
models over JJA especially. There is a common low bias over
the Caribbean in both seasons. To what extent the models can
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Figure 4. Summary of all model surface specific humidity seasonal climatologies (1974–1999) compared to the observations showing the
number of model first ensemble members within each category: moister than the observations, within 2σ interannual variability of the
observations and drier than the observations.

be expected to accurately reconstruct observational variance at
the 5◦ × 5◦ grid-box scale is debatable, especially in regions of
inhomogeneous topography. Observations can originate from
topographically heterogeneous stations and may not capture
the entire variability of climate over the grid-box resulting
in random sampling errors and inflated variance estimates.
Conversely CMIP3 models resolve physical equations over
a variety of different grid-box scales (often finer resolution
than the observations) with a single topographical realization.
Despite these considerations, we conclude that the models
exhibit variability of the same order of magnitude as seen in
the observations.

4.2. Specific humidity and temperature processes: HadCRUH
verses CMIP3 models

For the Globe, extratropical Northern Hemisphere and Tropics,
the model spread of trends of surface q encompasses the
observed increasing trends (figures 7(a)–(d)). All model
runs for these three regions show positive trends. For the
extratropical Northern Hemisphere the observed trend is at
the higher end of the model spread. Model spread over the
Tropics is larger than for any other region. This could be
due to proportionally larger effects from ENSO variability
and higher interannual variance over this region. However,
to conclude this it should follow that the spread of trends

within model ensembles should be greater here than for other
regions but it is not (figures 7 and 8). This suggests that model
uncertainty over the Tropics is a more likely reason. In the
extratropical Southern Hemisphere there is essentially no trend
in the observations but all model runs (except CSIRO3.5 run
3) show positive trends of a similar magnitude to those in the
extratropical Northern Hemisphere. Given data sparsity and
the larger observational uncertainty in this region (W08) it is
conceivable that the models could lie closer to reality than the
observations imply. Interannual variability in the large scale
zonally averaged observed timeseries lies close to that of the
multi-model mean and is encompassed by the spread of model
variability. In analysing the timeseries it is important to note
that not all models include volcanic forcings, only GISSER,
GISSEH, MIROCM, MIROCH, MRI and NCAR (see table 1).
In addition to the lack of ability to simulate ENSO event
phasing and magnitudes precisely as they occurred in the real-
world this leads to differences between the individual GCM
runs and observed timeseries.

For the most part, large scale regional T –q relationships
in the models agree well with the observations (figures 8(a)–
(d)). Correlations between T and q timeseries are highest in
the Tropics in both the models and observations, followed by
the Globe and then the extratropical Northern Hemisphere. For
all regions the majority of model runs show increasing q with
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Figure 5. Comparing the seasonal 1974–1999 standard deviation in HadCRUH observed surface specific humidity and a range of CMIP3
archive first ensemble members. Observations are shown at the top in g kg−1 with colour bar. Three first ensemble members of the 15 CMIP3
models with surface specific humidity available are shown in the lower panels. INMCM is a particularly dry model, MRI is moderate within
the spread of models and CSIRO3.5 is a moist model. These are shown as model—observed differences in terms of the ratio relative to the
observed standard deviation. Greyed out areas identify regions where the models are within 20% (0.8–1.2) of the observed seasonal
variability. Statistics for all first ensemble members are listed in table 4.

T close to Clausius–Clapeyron scaling of qs with T with multi-
model means consistently lying between 6 and 7% K−1. There
is much greater model spread in the extratropical Southern
Hemisphere. For total change in q the spread is large in all
regions. NCAR (run 7) and CSIRO3.5 (run 3) are strong
outliers in the extratropical Southern Hemisphere. Models
envelop the observed q changes proportionally and with T
for the Tropics and Globe but show poorer agreement in the
extratropical Northern Hemisphere and very poor agreement
in the extratropical Southern Hemisphere (figures 8(a)–(d)).

For the Northern Hemisphere it is not possible to say whether
the observations are showing too large an increase or the
models too small—both have implications for changes in RH
over large scales. All but CSIRO3.5 (run 3) show larger T –
q scaling than the observations in the extratropical Southern
Hemisphere. This could be due to: long-term biases remaining
in the observations; the relative paucity of observational
coverage; common model errors or a combination of these.
The large model spread in this region could point to more
model uncertainty in the extratropical Southern Hemisphere
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Figure 6. Summary of all model surface specific humidity interannual seasonal standard deviations (1974–1999) compared to the
observations showing the number of model first ensemble members within each category: higher variability than the observations, within 20%
of the variability of the observations and lower variability than the observations.

than in the other regions but could also be due to sparse
data sampling (from matching spatially and temporally to the
observed data coverage).

Incomplete spatial coverage of observational datasets is a
common problem leading ultimately to uncertainty in terms
of accurate representation of large scale averages. Indeed,
Simmons et al (2010) found strong agreement between
the ERA interim reanalyses and CRUTEM3 when spatially
matched but larger trends in the spatially complete ERA
interim. Notably there remains considerable uncertainty in
humidity trends from models and reanalyses over regions
where there are no observations with which to validate. To
address this issue for HadCRUH, figure 8 has been repeated
with full spatial coverage in the models over land. Changes in
the rate of change of q with T are very small for all regions—
from −0.03 in the Tropics to +0.14 for the Globe. All
regions show small increases of ∼0.5% in the total change in q
with the smallest change (0.41%) in the extratropical Southern
Hemisphere and largest change (0.61%) in the Tropics. There
is no systematic shift by ensemble members towards or away
from the observations. If we accept that the models are making
a satisfactory reconstruction of the observations and that the
observations are reasonable this suggests that for q filling in
the missing data, at least over the latitudinal extent studied here
(70◦N and 70◦S) and period of study (1973–1999), will have
little implication for the large scale features observed for the
Globe, Tropics and Northern Hemisphere. As with Simmons

et al (2010), there will likely be some difference in the exact
magnitude of changes.

5. Discussion

Increases in seasonal surface specific humidity at the largest
scales are significant and broadly consistent with Clausius–
Clapeyron scaling of temperature trends given constant relative
humidity. Some smaller regions, however, have moistened at
a greater rate or—south of the equator—become drier, though
these latter results may be sensitive to local data coverage and
quality issues.

The CMIP3 multi-model archive ‘Climate of the 20th
Century’ mean surface specific humidities are broadly
consistent with the observed climatology with no overall moist
or dry bias. Interannual seasonal variability in the models
tends to be biased slightly low relative to the observations
except for CNRM, CSIRO3.5 and INMCM. In part this may
be an expected result as it is unlikely that at the true observed
grid-box scale variability will be adequately reproduced by
either. The observations are likely to over-estimate grid-box
variability through under-sampling, especially in poor station
density regions where regression to the mean is inhibited and
there is therefore more noise. Models may be more likely
to under-estimate grid-box interannual variability in some
regions due to coarsely resolved topography and land use/land
cover (the latter is not included in all models). Regardless,
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Figure 7. Comparing large scale HadCRUH observed surface specific humidity timeseries and trends with individual members of 15 CMIP3
models sub-sampled to HadCRUH coverage from 1973 to 1999 over land. Regional averages are created using the cosine of latitude
weighting. Timeseries are monthly mean anomalies smoothed using a 21 point filter. Observations are in black and models are coloured in
order from blue to red (see table 1). Decadal trends and standard deviation are shown on the right-hand side, again with observations in black.
Trends are fitted using the median of pairwise slopes technique (Sen 1968, Lanzante 1996).

the models’ interannual variability is of the right order of
magnitude across a range of spatial scales.

When averaged over large scales, models capture the
historical timeseries satisfactorily in terms of the variability
for all regions and trend sign and magnitude for all except the
extratropical Southern Hemisphere. Although models are sub-
sampled to match observational data coverage, within grid-
box station sampling of the observations is also sparse in
the Southern Hemisphere and so to some extent may explain
some of this inconsistency. All models concur on positive
trends for all regions with the exception of one run in the
Southern Hemisphere. Models show close to 7% K−1 scaling
in all large regions with little difference between them. This
captures the temperature–specific humidity relationship found
in observations for the Globe and Tropics and is close to but
smaller by ∼3% K−1 than that observed in the extratropical
Northern Hemisphere. There is no agreement between all
models and observed behaviour in the extratropical Southern
Hemisphere.

Complete geographical sampling makes little difference
to multi-model means overall. This suggests that where
the observations and models concur (Globe, extratropical
Northern Hemisphere and Tropics) the observational sampling
is sufficient to capture the main features of recent changes.

In the extratropical Southern Hemisphere the observations
remain inconsistent with the models whether sub-sampled
or fully sampled. This region also shows larger model
uncertainty in the temperature–specific humidity relationship.
It is unfortunate that due to poor data coverage here the
observational uncertainty is also high. Further work is needed
to establish whether the shortcomings are really from the
observations, the models or perhaps more likely, both.

We have shown herein that the climate models in the
CMIP3 archive exhibit reasonable mean state (climatological
means and interannual variability) specific humidity charac-
teristics compared to the observations. The spread of their
Climate of the 20th Century runs encapsulates the observations
for recent changes in the global mean, tropical mean and
Northern Hemisphere extratropical mean. This does not hold
for the Southern Hemisphere extratropics. This discrepancy
could relate to: residual observational error, spatial represen-
tivity, or common model errors. Although uncertainty in the
observations is largest here there is insufficient evidence to
formally discriminate between these factors. Notwithstanding
the Southern Hemisphere extratropics this study indicates the
strong agreement between anthropogenically forced GCMs
and statistically significant changes observed in surface spe-
cific humidity. Hence, it supports findings from earlier single
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Figure 8. Comparing large scale changes in specific humidity relative to temperature over land from 1973 to 1999 from the HadCRUH and
CRUTEM3 observations and 15 CMIP3 models sub-sampled to HadCRUH coverage. Regional averages are created using cosine of latitude
weighting. Observations are shown as black triangles with the correlation r between observed specific humidity and temperature monthly
mean anomaly timeseries shown in the bottom right corner. Model members are shown by name labels (described in figure 7) and colour
coded by their specific humidity–temperature timeseries correlation r . Changes are calculated from trends fitted using the median of pairwise
slopes technique (Sen 1968, Lanzante 1996).

model studies of the likely presence of an anthropogenic signal
in specific humidity observations from the latter part of the
20th Century.
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