
ar
X

iv
:1

21
1.

48
92

v1
 [

cs
.S

C
]

 2
0

N
ov

 2
01

2

Confusion of Tagged Perturbations in

Forward Automatic Differentiation of

Higher-Order Functions

Oleksandr Manzyuk∗ Barak A. Pearlmutter∗

Alexey Andreyevich Radul∗ David R. Rush∗ Jeffrey Mark Siskind†

November 22, 2012

Abstract

Forward Automatic Differentiation (AD) is a technique for augmenting programs
to both perform their original calculation and also compute its directional deriva-
tive. The essence of Forward AD is to attach a derivative value to each number,
and propagate these through the computation. When derivatives are nested, the
distinct derivative calculations, and their associated attached values, must be distin-
guished. In dynamic languages this is typically accomplished by creating a unique
tag for each application of the derivative operator, tagging the attached values, and
overloading the arithmetic operators. We exhibit a subtle bug, present in fielded
implementations, in which perturbations are confused despite the tagging machin-
ery.

1 Forward AD using Tagged Tangents

Forward AD (Wengert, 1964) computes the derivative of a function f : R → α at a point c
by evaluating f(c+ ε) under a nonstandard interpretation that associates a conceptually
infinitesimal perturbation with each real number, propagates these augmented values
according to the rules of calculus (Leibniz, 1664), and extracts the perturbation of the
result. When x is a number, we use x+ x̄ε to denote a tangent-vector bundle: the primal
value x bundled with the tangent value x̄, where x̄ has the same type as x. We consider
this tangent-vector bundle to also be a number, with arithmetic defined by regarding it
as a truncated power series, or equivalently, by taking ε2 = 0 but ε 6= 0. This implies
that f(x + x̄ε) = f(x) + x̄f ′(x)ε where f ′(x) is the first derivative of f at x (Newton,
1704).

∗Hamilton Inst & Dept Comp Sci, NUI Maynooth, Co. Kildare, Ireland
†School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907-2035,

USA

1

http://arxiv.org/abs/1211.4892v1

We can define a first-derivative operator1 by

D f x = tg ε (f (x+ ε)) where ε is fresh (1)

In order for D to nest correctly we must distinguish between different sets of tangent
spaces introduced by different invocations of D (Lavendhomme, 1996), which can be
implemented by tagging (Siskind and Pearlmutter, 2005, 2008). We will indicate different
tags by different subscripts on ε. The tangent extraction function tg extracts the tangent
part of a tangent-vector bundle, with the appropriate tag indicated in the first argument.

The tangent part of a numeric tangent-vector bundle is:

tg ε (a+ bε)
△

= b (2)

When the primal part of the tangent-vector bundle is a function, the tangent-vector
bundle is itself a function and tg is defined by post-composition:

tg ε (λx . e)
△

= λx . tg ε e (3)

This is the technique used to implement Forward AD in dynamic languages: arithmetic
operators are overloaded to handle the chosen representation of numeric tangent-vector
bundles, with tags generated using “gensym” or an analogous mechanism.

2 A Bug

If we have properly defined D and tg, then we can reasonably expect to use them to cal-
culate correct derivatives in commonly occurring mathematical situations. In particular,
if we define an offset operator:

s : R → (R → α) → (R → α)

s u f x
△

= f (x+ u) (4)

the derivative of s at zero should be the same as the derivative operator: if we define

D̂
△

= D s 0 (5)

then D̂ = D should hold, since

D f y = tg ε (f (y + ε)) = tg ε (f(y) + f ′(y)ε) = f ′(y) (6a)

D̂ f y = D s 0 f y = (d/du)s u f y|
u=0

= (d/du)f(y + u)|
u=0 = f ′(y) (6b)

1 The type signature would be D : (R → α) → R → α′ where α′ is the tangent space of α. It is
natural to equate R

′ = R, and because we only consider R and functions built on R, and we equate
(α → β)′ = α → β′, and it follows from Church encoding that (α × β)′ = α′ × β′, we can in all present
examples equate α′ = α. A full treatment of this topic is beyond our present scope.

2

Unfortunately, as we shall see, the above can exhibit a subtle bug:

D̂ (D̂ f) x = 0 6= D (D f) x = f ′′(x) (7)

This is not an artificial example. It is quite natural to construct an x-axis differential
operator and apply it to a two-dimensional function twice, along the x and then y axis
directions, by applying the operator, a rotation, and the operator again, thus creating
precisely this sort of cascaded use of a defined differential operator.

Note that

D̂ = D s 0 = tg ε (s (0 + ε))

= tg ε (λf . λx . f (x+ ε))

= λf . λx . tg ε (f (x+ ε)) (8)

Assuming that g : R → R we can substitute using (8) and then reduce:

D̂ (D̂ g) y = (λf . λx . tg ε (f (x+ ε)))

((λf . λx . tg ε (f (x+ ε))) g) y (9a)

= (λf . λx . tg ε (f (x+ ε)))

(λx . tg ε (g (x+ ε))) y (9b)

= (λx . tg ε ((λx . tg ε (g (x+ ε))) (x+ ε))) y (9c)

= tg ε ((λx . tg ε (g (x+ ε))) (y + ε)) (9d)

= tg ε (tg ε (g ((y + ε) + ε))) (9e)

= tg ε (tg ε (g (y + 2ε))) (9f)

= tg ε (tg ε (g(y) + 2g′(y)ε)) (9g)

= tg ε (2g′(y)) (9h)

= 0 (9i)

This went wrong, yielding 0 instead of g′′(y), because the tag ε was generated exactly
once, when the definition of D̂ was reduced to normal form in (8). The instantiation of
D is the point at which a fresh tag is introduced; early instantiation can result in reuse
of the same tag in logically distinct derivative calculations. Here, the first derivative
and the second derivative become confused at (9f). We have two nested applications of
tg for ε, but for correctness these should be distinctly tagged: ε1 vs ε2. If D̂ were not
already reduced to normal form, and we instead substitute its definition, then D will be

3

instantiated twice, giving two fresh tags and a correct result:

D̂ (D̂ g) y = D s 0 (D s 0 g) y (10a)

= (λf . λx . tg ε1 (f (x+ ε1)))

((λf . λx . tg ε2 (f (x+ ε2))) g) y (10b)

= (λf . λx . tg ε1 (f (x+ ε1)))

(λx . tg ε2 (g (x+ ε2))) y (10c)

= (λx . tg ε1 ((λx . tg ε2 (g (x+ ε2))) (x+ ε1))) y (10d)

= tg ε1 ((λx . tg ε2 (g (x+ ε2))) (y + ε1)) (10e)

= tg ε1 (tg ε2 (g ((y + ε1) + ε2))) (10f)

= tg ε1 (tg ε2 (g(y + ε1) + g′(y + ε1)ε2)) (10g)

= tg ε1 g
′(y + ε1) (10h)

= tg ε1 (g
′(y) + g′′(y)ε1) (10i)

= g′′(y) (10j)

3 Discussion

In a Forward AD system which uses tags to distinguish instances of D, eta reduction is
unsound. The definition D̂ f y = D s 0 f y must not be eta reduced to D̂ = D s 0, and
one must not memoize or hoist D s 0, as it is impure due to the requirement for a fresh
tag. Even the above constraint can be insufficient when D̂ is applied to a function that
is not R → R but instead R → α for some other α. In fact, expanded variants of D̂ are
needed for various α. For instance, applying D̂ to a function R → · · · → R

︸ ︷︷ ︸

n

→ R requires

an eta-reduction-protected

D̂
n
f y1 . . . y

n

△

= D s 0 f y1 . . . y
n

(11)

In general, D should only be instantiated in a context that contains all arguments neces-
sary to subsequently allow the post-composition of the tg introduced by the instantiation
of D to immediately beta reduce to a non-function-containing value. Note that tg dis-
tributes over aggregates like tuples and lists, further complicating the determination of
when D can be instantiated.

Another alternative would be to guard the returned function object against tag collision.
In a programming language with opaque closures, post-composition must be implemented
using a wrapper:

tg ε (λx . e)
△

= λy . tg ε ((λx . e) y) (12)

This wrapper can be augmented to guard against the problem we have encountered:

tg ε1 (λx . e)
△

= λy . (swiz ε2 ε1 (tg ε1 ((λx . e) (swiz ε1 ε2 y))))

where ε2 is fresh
(13)

4

Here “swiz ε1 ε2 v” substitutes ε2 for every occurrence of ε1 in v. In a language with
opaque closures, swiz must operate on function objects by appropriate pre- and post-
composition. This technique was used to address the present issue in the 30-Aug-2011
release of scmutils, a software package that accompanies a textbook on classical mechanics
(Sussman et al., 2001), in response to an early version of this manuscript. Unfortunately
the computational burden of such “swizzling” violates the complexity guarantees of For-
ward AD. This leaves us in the awkward position of there being no known technique

for implementing Forward AD, with its defining complexity guarantee, and generalized
to functions with higher-order outputs (including even curried functions), in a dynamic
language.

We have used fresh tags to implement a form of dependent typing, where a fresh set of
tangent spaces is created each time D is instantiated. Forward AD implementations in
dynamically typed languages which support operator overloading (e.g., Scheme, Python)
are susceptible to the problem we have exhibited due to the impurity of “gensym.” It
seems reasonable to speculate that static type systems (particularly those with at least
some limited form of dependent typing such as existential types) may prevent this error.
However, (a) current type systems prevent first-class automatic differentiation operators
themselves from being defined, and (b) an intuition is a far cry from a proof. It is a current
topic of research to satisfactorily define a λ-calculus based system which correctly models
Forward AD (Ehrhard and Regnier, 2003; Manzyuk, 2012a,b).

Acknowledgments

This work was supported, in part, by Science Foundation Ireland Principal Investigator
grant 09/IN.1/I2637 and Army Research Laboratory Cooperative Agreement Number
W911NF-10-2-0060. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either ex-
press or implied, of SFI, ARL, or the Irish or U.S. Governments. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes, notwithstand-
ing any copyright notation herein.

References

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical

Computer Science, 309(1-3):1–41, December 2003.

René Lavendhomme. Basic Concepts of Synthetic Differential Geometry. Kluwer Aca-
demic, 1996.

Gottfried Wilhelm Leibniz. A new method for maxima and minima as well as tangents,
which is impeded neither by fractional nor irrational quantities, and a remarkable type
of calculus for this. Acta Eruditorum, 1664.

Oleksandr Manzyuk. A simply typed λ-calculus of forward automatic differ-
entiation. In Mathematical Foundations of Programming Semantics Twenty-

5

eighth Annual Conference, pages 259–273, Bath, UK, June 6–9 2012a. URL
http://dauns.math.tulane.edu/~mfps/mfps28proc.pdf.

Oleksandr Manzyuk. Tangent bundles in differential λ-categories. Technical Report
1202.0411, ArXiV, 2012b. URL http://arxiv.org/abs/1202.0411.

Isaac Newton. De quadratura curvarum, 1704. In Optiks, 1704 edition. Appendix.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Perturbation confusion and referential
transparency: Correct functional implementation of forward-mode AD. In Andrew
Butterfield, editor, Implementation and Application of Functional Languages—17th

International Workshop, IFL’05, pages 1–9, Dublin, Ireland, September 19–21 2005.
Trinity College Dublin Computer Science Department Technical Report TCD-CS-2005-
60.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Nesting forward-mode AD in a functional
framework. Higher-Order and Symbolic Computation, 21(4):361–76, 2008. doi: 10.
1007/s10990-008-9037-1.

Gerald Jay Sussman, Jack Wisdom, and Meinhard E. Mayer. Structure and Interpretation

of Classical Mechanics. MIT Press, Cambridge, MA, 2001.

Robert Edwin Wengert. A simple automatic derivative evaluation program. Comm. of

the ACM, 7(8):463–4, 1964.

6

http://dauns.math.tulane.edu/~mfps/mfps28proc.pdf
http://arxiv.org/abs/1202.0411

	1 Forward AD using Tagged Tangents
	2 A Bug
	3 Discussion

