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Abstract

How does the human brain represent simple compositions of objects, actors, and
actions? We had subjects view action sequence videos during neuroimaging
(fMRI) sessions and identified lexical descriptions of those videos by decoding
(SVM) the brain representations based only on their fMRI activation patterns. As
a precursor to this result, we had demonstrated that we could reliably and with
high probability decode action labels corresponding to one of six action videos
(dig, walk, etc.), again while subjects viewed the action sequence during scan-
ning (fMRI). This result was replicated at two different brain imaging sites with
common protocols but different subjects, showing common brain areas, including
areas known for episodic memory (PHG, MTL, high level visual pathways, etc.,
i.e., the ‘what’ and ‘where’ systems, and TPJ, i.e., ‘theory of mind’). Given these
results, we were also able to successfully show a key aspect of language com-
positionality based on simultaneous decoding of object class and actor identity.
Finally, combining these novel steps in ‘brain reading’ allowed us to accurately
estimate brain representations supporting compositional decoding of a complex
event composed of an actor, a verb, a direction, and an object.

1 Introduction
The compositional nature of thought is taken for granted by many in the cognitive-science and
artificial-intelligence communities. For example, in computer vision, representations for nouns,
such as those used for object detection, are independent of representations for verbs, such as those
used for event recognition. Humans need not employ compositional representations; indeed, many
argue that such representations may be doomed to failure in AI systems (Brooks, 1991). This is
because concepts like verb or even object are human constructs; there is debate as to how they arise
from percepts (Smith, 1996). Recent advances in brain-imaging techniques enable exploration of
the compositional nature of thought. To that end, subjects underwent functional magnetic resonance
imaging (fMRI) during which they were exposed to stimuli which evoke complex brain activity
which was decoded, piece by piece. The video stimuli depicted events described by entire sentences
composed of a verb, an object, an actor and a location or direction of motion. By decoding complex
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brain activity into its constituent parts, we show evidence for the neural basis of the compositionality
of verb and argument representations.

Recent work on decoding brain activity corresponding to nouns has recovered object identity from
nouns presented as image and orthographic stimuli. Hanson and Halchenko (2009) perform classi-
fication on still images of two object classes: faces and houses, and achieve an accuracy above 93%
on a one-out-of-two classification task. Connolly et al. (2012) perform classification on still images
of objects, two instances of each of three classes: bugs, birds, and primates, and achieve an accuracy
between 60% and 98% on a one-out-of-two within-class classification task and an accuracy between
90% and 98% on a one-out-of-three between-class classification task. Just et al. (2010) perform
classification on orthographically presented nouns, 5 exemplars from each of 12 classes, achieving
a mean rank accuracy of 72.4% on a one-out-of-60 classification task, both within and between sub-
jects. Pereira et al. (2012) incorporate semantic priors and achieve a mean accuracy of 13.2% on a
one-out-of-12 classification task and 1.94% on a one-out-of-60 classification task when attempting
to recover the object being observed. Miyawaki et al. (2008) recover the position of an object in the
field of view by recovering low resolution images from the visual cortex. Object classification from
video stimuli has not been previously demonstrated.

Recent work on decoding brain activity corresponding to verbs has primarily been concerned with
identifying active brain regions. Kable and Chatterjee (2006) present the brain regions which attempt
to distinguish between the different agents of actions and between the different kinds of actions they
perform. Kemmerer et al. (2008) analyze the regions of interest (ROI) of brain activity associated
with orthographic presentation of twenty different verbs in each of five different verb classes. Kem-
merer and Gonzalez Castillo (2010) analyze the brain activity associated with verbs in terms of the
motor components of event structure and attempt to localize the ROIs of such motor components.
While prior work analyzes regions which are activated when subjects are presented verbs as stimuli,
we recover the content of the resulting brain activity by classifying the verb from brain scans.

Recent work demonstrates the ability to decode the actor of an event using personality traits. Hass-
abis et al. (2013) demonstrate the ability to recover the identity of an imagined actor from that actor’s
personality. Subjects are informed of the two distinguishing binary personality traits of four actors.
During fMRI, they are presented sentences orthographically which describe an actor performing
an action. The subjects are asked to imagine this scenario with this actor and to rate whether the
actions of the actor accurately reflect the personality of that actor. The resulting brain activation
corresponding to these two binary personality traits is used to recover the identity of the actor. No
prior work has recovered the identity of an actor without relying on that actor’s personality. In the
work presented here, the personality of the actor has no bearing on the actions being performed.

In this paper, two new experiments are presented. In Experiment 1, subjects are shown videos and
asked to think of verbs that characterize those videos. Their brains are imaged via fMRI and mea-
sured neural activation is decoded to recover the verb that the subjects are thinking about. Decoding
is done by means of a support vector machine (SVM) trained on brain scans of those same verbs. We
know of no other work that decodes brain activity corresponding to verbs. We show early evidence
that the regions identified by this decoding process are not intimately tied to a particular subject via
an additional analysis that trains on one subject and tests on another. In Experiment 2, subjects are
shown videos and asked to think of complex sentences composed of multiple components that char-
acterize those videos. We show a novel ability to decode brain activity corresponding to multiple
objects: the identity of an actor and the identity of an object. We decode the identity of an actor
without relying on the personality traits of that actor. We know of no other work which recovers
an entire sentence composed of multiple constituents. We find evidence that suggests underlying
neural representations of mental states are independent and compose into sentences largely without
modifying one another.

2 Compositionality
We discuss a particular kind of compositionality as it applies to sentence structure: objects fill argu-
ment positions in predicates that combine to form the meaning of a sentence. Pylkkänen et al. (2011)
reviews work which attempts to show this kind of compositionality using a task called complement
coercion. Subjects in this task are presented with sentences whose meaning is richer than their syn-
tax. For example, the sentence The boy finished the pizza is understood as meaning that the pizza
was eaten, even though the verb eat does not appear anywhere in the sentence (Pustejovsky, 1995).
The presence of pizza, belonging to the category food, coerces the interpretation of finish as finish
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eating. By contrast, He finished the newspaper induces the interpretation finish reading. Because
the syntactic complexity in this prior experiment was held constant, the assumption is that coercion
is a purely semantic meaning-adding function application, with little consequence for the syntax.
The participants completed this task, and brain activity was measured using magnetoencephalogra-
phy (MEG). The results show activity related to coercion in the anterior midline field. This result
suggests an initial localization for at least some function application, but it is difficult to use MEG
to distinguish whether this activity is read from the ventromedial prefrontal cortex or the anterior
cingulate cortex. Earlier work on the representation of objects and actions in the brain also indicates
that these representations may be independent.

Representing objects in the brain Objects are static entities that can be represented by a (mostly)
static neural representation. For example, the 3D representation of a soda can will look the same
in many different contexts, and the appearance of the soda can is not unfolding in time. It is gen-
erally believed that the lexicon of object concepts is represented in the medial temporal lobe while
different areas of the temporal lobe may be combinatoric in constructing object types (Hanson et al.,
2004) although there may be modal areas associated with different representational functions. For
example, lesion data suggests that the temporal pole is associated with naming people, the inferior
temporal cortex is associated with naming animals, and the anterior lateral occipital regions are as-
sociated with naming tools. In addition, some regions involved in object representation are modality
specific. For example, spoken-word processing involves the superior temporal lobe (part of the au-
ditory associative cortex; Binder et al., 2000) while reading words representing objects activates
occipito-temporal regions because of the visual processing (Puce et al., 1996). Specifically, audi-
tory word processing involves a stream of information starting in Heschl’s gyri that is transferred
to the superior temporal gyrus. Once the superior temporal gyrus has been reached, the modality
of stimulus presentation is no longer relevant. In contrast, the initial processing for written words
starts in the occipital lobe (V1 and V2), and moves on to occipito-temporal regions specialized in
identifying orthographic units. The information then moves rostrally to the temporal lobe proper,
where modality of presentation is no longer relevant (Binder et al., 2000).

Representing actions in the brain Unlike objects, verbs are dynamic entities that unfold in time.
For instance, observing someone pick up a ball takes time as the person’s movement unfolds. Ev-
idence reviewed in Coello and Bidet-Ildei (2012) suggests that action verbs activate both semantic
units in the temporal cortex and a motor network. The motor network includes the premotor areas
(including the supplementary motor area), the primary motor cortex, and the posterior parietal cor-
tex. Some researchers went as far as suggesting that the well-known ventral/dorsal distinction in the
visual pathways corresponds to a semantic (ventral) and action (dorsal) distinction. Representation
of action may involve ‘mirror neurons’ that have been shown in macaque to respond jointly in per-
ception/action tasks, where the similarity of the self action is to the perceived action of an observed
individual.

3 Approach
All experiments reported follow the same procedure and are analyzed using the same methods and
classifiers. Videos are shown to subjects who are asked to think about some aspect(s) of the video
while whole-brain fMRI scans are acquired every two seconds. Because fMRI acquisition times are
slow, roughly equal to the length of the video stimuli, a single brain volume that corresponds to the
brain activation induced by that video stimulus is classified to recover the features that the subjects
were asked to think about. Multiple runs separated by several minutes of rest, where no data is
acquired, are performed per subject.

Imaging performed at Purdue University used a 3T GE Signa HDx scanner (Waukesha, Wisconsin)
with a Nova Medical (Wilmington, Massachusetts) 16 channel brain array to collect whole-brain
volumes via a gradient-echo EPI sequence with 2000ms TR, 22ms TE, 200mm×200mm FOV, and
77◦ flip angle. We acquired 35 axial slices with a 3.000mm slice thickness using a 64×64 acquisition
matrix resulting in 3.125mm×3.125mm×3.000mm voxels.

Imaging performed at St. James Hospital in Dublin, Ireland, used a 3T Phillips Achieva scanner
(Best, The Netherlands) using a gradient-echo EPI sequence with 2000ms TR and 240mm×240mm
FOV. We acquired 37 axial slices with a 3.550mm slice thickness using an 80×80 acquisition matrix
resulting in 3.000mm×3.000mm×3.550mm voxels.

Data was acquired in runs, with between three and eight runs per subject per experiment, and each
axis of variation of each experiment was counterbalanced within each run. fMRI scans were pro-
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cessed using AFNI (Cox et al., 1996) to skull-strip each volume, motion correct and detrend each
run, and align each subject’s runs to each other. Voxels within a run were z-scored, subtracting the
mean value of that voxel for the run and dividing by its variance. Because each brain volume has
very high dimension, between 143,360 and 236,800 voxels, we eliminate voxels by computing a
per-voxel Fisher score on our training set and keeping the 5,000 highest-scoring voxels. The Fisher
score of a voxel v for a classification task with C classes where each class c has nc examples is
computed as

C∑

c=1

nc(μc,v − μ)2

C∑

c=1

ncσ
2
c,v

(1)

where μc,v and σc,v are the per-class per-voxel means and variances and μ is the mean for the entire
brain volume. A linear SVM classifies the selected voxels.

One run was taken as the test set and the remaining runs were taken as the training set. The third
brain volume after the onset of each stimulus was taken along with the class of the stimulus to
train an SVM. This lag of three brain volumes is required because fMRI does not measure neural
activation but instead measures the flow of oxygenated blood, the blood-oxygen-level-dependent
(BOLD) signal, which correlates with increased neural activation. It takes roughly five to six seconds
for this signal to peak which puts the peak in the third volume after the stimulus presentation. Cross
validation was performed by choosing each of the different runs as the test set.

To understand our results and to demonstrate that they are not classifying noise or irrelevant features,
we perform an analysis to understand the brain regions that are relevant to each experiment. We
determine these regions by two methods. First we employ a spatial searchlight (Kriegeskorte et al.,
2006) which slides a small sphere across the entire brain volume and repeats the above analysis
keeping only the voxels inside that sphere. We use a sphere of radius three voxels, densely place its
center at every voxel, and do not perform any dimensionality reduction on the remaining voxels. We
then perform an eight-fold cross validation as described above for each position of the sphere. For
Experiment 1 we also back-project the SVM coefficients onto the anatomical scans—the higher the
absolute value of the coefficient the more that voxel contributes to the classification performance of
the SVM—and use a classifier with a different metric, w(i)2, as described by Hanson and Halchenko
(2009).

4 Experiment 1: Verb Representation
We conducted an experiment to evaluate the ability to identify brain activity corresponding to verbs
denoting actions. Subjects are shown video clips of humans interacting with objects and are told to
think of the verb being enacted, but otherwise have no task. The subjects were shown clips depicting
each of these verbs prior to the experiment and were instructed about the intended meaning of each
verb. One difficulty with such an experiment is that there is disagreement between human subjects
as to whether a verb occurred in a video or not. To overcome this difficulty, we asked five humans
to annotate the DARPA Mind’s Eye year 2 video corpus with the extent of every verb. From this
corpus, we chose video clips where at least two out of the five annotators agreed on the depiction.
We selected between twenty seven and thirty 2.5s video clips depicting each of six different verbs
(carry, dig, hold, pick up, put down, and walk). Key frames from one clip for each of the six verbs
are shown in Fig. 1. Despite multiple annotators agreeing on whether a video depicts a verb, the
task of classifying each clip remains very difficult for human subjects as it is easy to confuse similar
verbs such as carry and hold. We address this problem by presenting, in rapid succession, pairs of
video clips which depict the same verb and asking the subjects to think about the verb that would
best describe both videos.

We employed a rapid event-related design similar to that of Just et al. (2010). We presented pairs
of 2.5s video clips at 12fps, depicting the same verb, separated by 0.5s blanking and followed by an
average of 4.5s (minimum 2.5s) fixation. While the video clips within each pair depicted the same
verb, the clips across pairs within a run depicted different verbs, randomly counterbalanced. Each
run comprised 48 stimulus presentations spanning 254 captured brain volumes and ended with 24s
of fixation. Eight runs for each of subjects 1 through 3 were collected at Purdue University. Three
runs for subject 4 and four runs for subject 5 were collected at St. James Hospital.
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carry dig

hold pick up

put down walk

Figure 1: Key frames from sample stimuli for each of the six verbs in Experiment 1. Example
stimulus videos are included in the supplementary material.

Figure 2: Results for Experiment 1. (left) Per-subject classification accuracy on 1-out-of-6 verb
classes averaged across class and fold. Horizontal line indicates chance performance, 16.66%.
(right) Corresponding confusion matrix averaged across subject and fold is mostly diagonal, with
the highest numbers of errors being made distinguishing hold and carry, two ambiguous stimuli.

We performed an eight-fold cross validation (fewer for subjects 4 and 5) for a six-way classification
task, where runs constituted folds. The results are presented in Fig. 2. The per-subject accura-
cies, averaged across class and fold, were: 80.73%, 87.24%, 78.91%, 35.94%, and 43.75% (chance
16.66%). Note that the last two were trained on fewer runs than the first three. This demonstrates
the ability to recover the verb that the subjects were thinking about. The robustness of this result is
enhanced by the fact that it was replicated on two different fMRI scanners at different locations run
by different experimenters.

To evaluate whether the brain regions used for classification generalize across subjects, we per-
formed an additional analysis on the data for subjects 1 and 2. One run out of the eight was selected
as the test set and the data for one of the two subjects was classified. The training set consisted of all
seven other runs for the subject whose data does not appear in the test set. The test was performed
on the run omitted from the training set, even though it was gathered from a different subject, to
preclude the possibility that the same stimulus sequence appeared in both the training and test sets.
We performed cross validation by varying which subject contributes the test data and which subject
contributes the training data, and within each of these folds we varied which of the eight runs is
the test set. These two cross validations yielded accuracies of 33.59% (subject 1�→subject 2) and
41.41% (subject 2�→subject 1), averaged across class and fold, where chance again is 16.66%.

To locate regions of the brain used in the previous analysis, we used a spatial-searchlight linear-SVM
method on subject 1. We use the accuracy to determine the sensitivity of each voxel and threshold
upward to less then 5% of the cross-validation measures. These measures are overlaid and (2-stage)
registered to MNI152 2mm anatomicals shown in Fig. 3(left). Notable are visual-pathway areas (lat-
eral occipital-LO, lingual gyrus-LG, and fusiform gyrus) as well as prefrontal areas (inferior frontal
gyrus, middle frontal gyrus, and cingulate) and areas consistent with the ‘mirror system’ (Arbib,
2006) and the so-called ‘theory of mind’ (pre-central gyrus, angular gyrus-AG, and superior pari-
etal lobule-SPL) areas (Dronkers et al., 2004; Turken and Dronkers, 2011). Fig. 3(right) shows the
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Figure 3: (left) Searchlight analysis for Experiment 1 indicating the classification accuracy of differ-
ent brain regions on the anatomical scans from subject 1, averaged across stimulus, class, and run.
(right) A similar analysis using a w(i)2 metric.

decoded ROIs from a similar SVM classifier with a different metric, w(i)2 (Hanson and Halchenko,
2009), showing similar brain areas but, due to higher sensitivity, also indicates sub-cortical regions
(hippocampal) associated with encoding processes not seen with the cross-validation accuracy met-
ric. As argued in Section 2, lateral-occipital areas are involved in visual processing specifically
related to language, and the fusiform gyrus is a hetero-modal area that could hold abstract represen-
tations of the elements contained in the videos (e.g., semantics). This data brings initial support for
the hypothesis that concepts have both modality-specific and abstract representations. Hence, the
elements used by the SVM to classify the videos are also neuroscientifically meaningful.

5 Experiment 2: Argument Representation
We conducted a further experiment to evaluate the ability to recover compositional semantics for
entire sentences. Subjects were shown videos that depict sentences of the form: the actor verb the
object direction/location. They were asked to think about the sentence depicted in each video and
otherwise had no task. Videos depicting three verbs (carry, fold, and leave), each performed with
three objects (chair, shirt, and tortilla), each performed by four human actors, and each performed
on either side of the field of view were filmed for this task. The verbs were chosen to be discriminable
based on features described by Kemmerer et al. (2008):

leave −state-change −contact
fold +state-change +contact
carry −state-change +contact

Nouns were chosen based on categories found to be easily discriminable by Just et al. (2010): chair
(furniture), shirt (clothing), and tortilla (food) and also selected to allow each verb to be performed
with each noun. Because these stimuli are not as ambiguous as the ones from Experiment 1, they
were not shown in pairs. All stimuli enactments were filmed against the same nonvarying back-
ground, which contained no other objects except for a table (Fig 4).

This experiment, like Experiment 1, also used a rapid event-related design. We collected multiple
videos, between 4 and 7, for each cross product of the verb, object and human actor. Variation along
the side of field of view and direction of motion was accomplished by mirroring the videos about the
vertical axis. Such mirroring induces variation in direction of motion (leftward vs. rightward) for the
verbs carry and leave and induces variation in the location in the field of view where the verb fold
occurs (left half vs. right half). We presented 2s video clips at 10fps followed by an average of 4s
(minimum 2s) fixation. Each run comprised 72 stimulus presentations spanning 244 captured brain
volumes, with eight runs per subject, and ended with 24s of fixation. Each run was individually
counterbalanced for each of the four conditions (verb, object, actor, and mirroring). We collected
data for three subjects at Purdue University but discarded the data for one of the three due to subject
motion. One subject did eight runs without exiting the scanner. One subject exited the scanner
between runs six and seven, which required cross-session registration. All subjects were aware of
the experiment design, were informed of the intended depiction of each stimulus prior to the scan,
and were instructed to think of the intended depiction after each presentation.

This experimental design supports the following classification analyses:

event one-out-of-9 verb&noun (carry, fold, and leave, each performed on chair, shirt, and tortilla)
verb one-out-of-3 verb (carry, fold, and leave)
object one-out-of-3 noun (chair, shirt, and tortilla)
actor one-out-of-4 actor identity
direction one-out-of-2 motion direction for carry and leave (leftward vs. rightward)
location one-out-of-2 location in the field of view for fold (right vs. left)
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carry chair carry shirt carry tortilla

fold chair fold shirt fold tortilla

leave chair leave shirt leave tortilla

Figure 4: Key frames from sample stimuli in Experiment 2. Example stimulus videos are included
in the supplementary material.

The analysis performed was exactly the same as that for Experiment 1, including eight-fold cross
validation for each of our analyses, where runs constituted folds. Fig. 5 presents an overview of
the results along with per-subject classification accuracies and aggregate confusion matrices for the
each of the above analyses. Note that we achieve significantly above-chance performance on all six
analyses with only a single fold for a single subject across all six analyses performing below chance.

Verb performance is well above chance (76.22%, chance 11.11%). This replicates Experiment 1
with different videos and a new verb and adds to the evidence that brain activity corresponding
to verbs can reliably be decoded from fMRI scans. Object performance was significant as well
(60.42%, chance 33.33%). Given neural activation, we can decode which object the subjects are
thinking about. We know of no other work that decodes brain activity corresponding to objects from
videos. The fact that the verb and object can be decoded independently already provides evidence
of argument compositionality. Were the neural representations not compositional at this level, de-
coding would not be possible. For example, if the representation of carry was neurally encoded as
a combination of walk and a particular object, verb performance would not exceed chance, because
our experiment is counterbalanced with respect to the object with which the action is being per-
formed. While this indicates that the representations for verbs and objects are independent of each
other to some degree, we also seek to quantify the level of independence. If the representation of
carry is somewhat different depending on which object is being carried, we expect that performance
would increase when we jointly classify the object and the verb. This seems to not be the case.
The accuracy of event is almost identical to the joint independent accuracy of verb and object:
0.5538 ≈ 0.5289 = 0.8212 × 0.6441 (subject 1) and 0.4097 ≈ 0.3967 = 0.7031 × 0.5642 (sub-
ject 2), indicating that the representation of these verbs is independent of the objects that the verbs
are being performed with. This is also confirmed by the confusion matrix for event in Fig. 5(c)
which remains diagonal.

To decode complex brain activity corresponding to an entire sentence, we can combine actor, verb,
object, and direction or location. We perform significantly above chance on this one-out-of-72
(4×3×3×2) classification:

0.3281 × 0.8212 × 0.6441 × ( 1
3
× 0.6823 + 2

3
× 0.8333) = 0.1359 � 0.0139 = 1

72
(subject 1)

0.3281 × 0.7031 × 0.5642 × ( 1
3
× 0.6458 + 2

3
× 0.7170) = 0.0902 � 0.0139 = 1

72
(subject 2)

(Since direction applied to carry and leave while location disjointly applied to fold, this yields a
binary classification task across all verbs.) Thus we are able to classify entire sentences composi-
tionally from their individual words.

To locate regions of the brain used in the previous analyses, we applied the same searchlight linear-
SVM method that was performed in Experiment 1 to subject 1’s data from this experiment and
identified similar areas in visual-pathway, parietal, and prefrontal areas. The resulting ROIs, shown
in Fig. 6, are overlaid and color coded according to the specific visual feature being decoded. In
general, it is clear that the decoding is sensitive to action/category information and various visual
object-and-motion features. Many of the same regions active for verb in Experiment 1 also show
activity in this experiment. Direction and location activity is present in the visual cortex with signif-
icant location activity occurring in the early visual cortex. Object activity is present in the temporal
cortex, and agrees with previous work on object-category encoding (Gazzaniga et al., 2008).
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(a)

Classification Accuracy
Subject event verb object actor direction location

1 55.38% 82.12% 64.41% 32.81% 83.33% 68.23%
2 40.97% 70.31% 56.42% 32.81% 71.70% 64.58%

chance 11.11% 33.33% 33.33% 25.00% 50.00% 50.00%

(b)

(c)

event verb object actor direction location

Figure 5: Results for Experiment 2. (a) Per-subject mean classification accuracies averaged across
fold. Note that all six analyses perform above chance. (b) Per-subject classification accuracies show-
ing the means and variances of performance across the different folds for each class. The horizontal
line indicates chance performance. (c) Corresponding confusion matrices, averaged across subject
and fold. Note that they are mostly diagonal.

Figure 6: Searchlight analysis for Experiment 2 indicating the classification accuracy of different
brain regions on the anatomical scans from subject 1 averaged across stimulus, class, and run.

6 Conclusion
We have demonstrated that it is possible to read a subject’s brain activity and decode a complex
action tableau corresponding to a sentence from its constituents. To do so, we showed novel work
which decodes brain activity associated with verbs and simultaneously recovers lexical aspects of
different parts of speech. Our results indicate that the neural representations for verbs and objects
compose together to form the meaning of a sentence apparently without modifying one another.
These results indicate that representations which attempt to decompose meaning into constituents
may have a neural basis.
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