A note on operator tuples which are (m, p)-isometric as well as (μ, ∞)-isometric

Philipp H. W. Hoffmann

Abstract

We show that if a tuple of commuting, bounded linear operators $\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ is both an (m, p)-isometry and a (μ, ∞)-isometry, then the tuple $\left(T_{1}^{m}, \ldots, T_{d}^{m}\right)$ is a $(1, p)$-isometry. We further prove some additional properties of the operators T_{1}, \ldots, T_{d} and show a stronger result in the case of a commuting pair $\left(T_{1}, T_{2}\right)$.

Keywords: operator tuple, normed space, Banach space, m-isometry, (m, p)-isometry, (m, ∞)-isometry

AMS Subject Classification: 47B99, 05A10

1 Introduction

Let in the following X be a normed vector space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let the symbol \mathbb{N} denote the natural numbers including 0 .

A tuple of commuting linear operators $T:=\left(T_{1}, \ldots, T_{d}\right)$ with $T_{j}: X \rightarrow X$ is called an (m, p)-isometry (or an (m, p)-isometric tuple) if, and only if, for given $m \in \mathbb{N}$ and $p \in(0, \infty)$,

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}=0, \quad \forall x \in X . \tag{1.1}
\end{equation*}
$$

Here, $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$ is a multi-index, $|\alpha|:=\alpha_{1}+\cdots+\alpha_{d}$ the sum of its entries, $\frac{k!}{\alpha!}:=\frac{k!}{\alpha_{1}!\cdots \alpha_{d}!}$ a multinomial coefficient and $T^{\alpha}:=T_{1}^{\alpha_{1}} \cdots T_{d}^{\alpha_{d}}$, where $T_{j}^{0}:=I$ is the identity operator.

Tuples of this kind have been introduced by Gleason and Richter 10 on Hilbert spaces (for $p=2$) and have been further studied on general normed spaces in [8]. The tuple case generalises the single operator case, originating in the works of Richter [11] and Agler [2] in the 1980s and being comprehensively studied in the Hilbert space case by Agler and Stankes [3]; the single operator case on Banach spaces has been introduced by Bayart in [4] in its general form and also has also been studied in [7] and [12]. We remark that boundedness, although usually assumed, is not essential for the definition of (m, p)-isometries, as shown by Bermúdez, Martinón and Müller in [5]. Boundedness does, however, play an important role in the theory of objects of the following kind:

Let $B(X)$ denote the algebra of bounded (i.e. continuous) linear operators on X. Equating sums over even and odd k and then considering $p \rightarrow \infty$ in
(1.1), leads to the definition of (m, ∞)-isometries (or (m, ∞)-isometric tuples). That is, a tuple of commuting, bounded linear operators $T \in B(X)^{d}$ is referred to as an (m, ∞)-isometry if, and only if, for given $m \in \mathbb{N}$ with $m \geq 1$,

$$
\begin{equation*}
\max _{\substack{|\alpha|=0, \ldots, m \\|\alpha| \text { even }}}\left\|T^{\alpha} x\right\|=\max _{\substack{|\alpha|=0, \ldots, m \\|\alpha| \text { odd }}}\left\|T^{\alpha} x\right\|, \quad \forall x \in X . \tag{1.2}
\end{equation*}
$$

These tupes have been introduced in [8], with the definition of the single operator case appearing in (9. Although, it may be possible that tuples of unbounded operators satisfying (1.2) exist, several important statements on (m, ∞)-isometries require boundedness. Therefore, from now on, we will always assume the operators T_{1}, \ldots, T_{d} to be bounded.

In [8, the question is asked what necessary properties a commuting tuple $T \in B(X)^{d}$ has to satisfy if it is both an (m, p)-isometry and a (μ, ∞)-isometry, where possibly $m \neq \mu$. In the single operator case this question is trivial and answered in 9]: If $T=T_{1}$ is a single operator, then the condition that T_{1} is an (m, p)-isometry is equivalent to the mapping $n \mapsto\left\|T_{1}^{n} x\right\|^{p}$ being a polynomial of degree $\leq m-1$ for all $x \in X$. This has been already been observed for operators on Hilbert spaces in [10] and shown in the Banach space/normed space case in [9]; the necessity of the mapping $n \mapsto\left\|T_{1}^{n} x\right\|^{p}$ being a polynomial has already been proven in (4) and [6]. On the other hand, in (9] it is shown that if a bounded operator $T=T_{1} \in B(X)$ is a (μ, ∞)-isometry, then the mapping $n \mapsto\left\|T_{1}^{n} x\right\|$ is bounded for all $x \in X$. The conclusion is obvious: if $T=T_{1} \in B(X)$ is both (m, p) - and (μ, ∞)-isometric, then $n \mapsto\left\|T_{1}^{n} x\right\|^{p}$ is always constant and T_{1} has to be an isometry (and, since every isometry is $(m, p)-$ and (μ, ∞)-isometric, we have equivalence).

The situation is, however, far more difficult in the multivariate, that is, in the operator tuple case. Again, we have equivalence between $T=\left(T_{1}, \ldots, T_{d}\right)$ being an (m, p)-isometry and the mapping $n \mapsto \sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}$ being polynomial of degree $\leq m-1$ for all $x \in X$. The necessity part of this statement has been proven in the Hilbert space case in [10 and equivalence in the general case has been shown in 8. On the other hand, one can show that if $T \in B(X)^{d}$ is a (μ, ∞)-isometry, then the family $\left(\left\|T^{\alpha} x\right\|\right)_{\alpha \in \mathbb{N}^{d}}$ is bounded for all $x \in X$, which has been proven in [8]. But this fact only implies that the polynomial growth of $n \mapsto \sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}$ has to caused by the factors $\frac{n!}{\alpha!}$ and does not immediately give us any further information about the tuple T.

There are several results in special cases proved in 8]. For instance, if a commuting tuple $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ is an (m, p)-isometry as well as a (μ, ∞)-isometry and we have $m=1$ or $\mu=1$ or $m=\mu=d=2$, then there exists one operator $T_{j_{0}} \in\left\{T_{1}, \ldots, T_{d}\right\}$ which is an isometry and the remaining operators T_{k} for $k \neq j_{0}$ are in particular nilpotent of order m. Although, we are not able to obtain such a results for general $m \in \mathbb{N}$ and $\mu, d \in \mathbb{N} \backslash\{0\}$, yet, we can prove a weaker property: In all proofs of the cases discussed in [8], the fact that the tuple $\left(T_{1}^{m}, \ldots, T_{d}^{m}\right)$ is a $(1, p)$-isometry is of critical importance (see the proofs of [8, Theorem 7.1 and Proposition 7.3]). We will show in this paper that this fact holds in general for any tuple which is both (m, p)-isometric and (μ, ∞)-isometric, for general m, μ and d.

The notation we will be using is basically standard, with one possible exception: We will denote the tuple of $d-1$ operators obtained by removing one operator $T_{j_{0}}$ from $\left(T_{1}, \ldots, T_{d}\right)$ by $T_{j_{0}}^{\prime}$, that is $T_{j_{0}}^{\prime}:=\left(T_{1}, \ldots, T_{j_{0}-1}, T_{j_{0}+1}, \ldots, T_{d}\right) \in$
$B(X)^{d-1}$ (not to be confused with the dual of the operator $T_{j_{0}}$, which will not appear in this paper). Analogously, we denote by $\alpha_{j_{0}}^{\prime}$ the multi-index obtained by removing $\alpha_{j_{0}}$ from $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$.

We will further use the notations $R\left(T_{j}\right)$ for the range and $N\left(T_{j}\right)$ for the kernel (or nullspace) of an operator T_{j}.

2 Preliminaries

In this section, we introduce two needed definitions/notations and compile a number of propositions and theorems, predominantly taken from [8, which are necessary for our considerations.

In the following, for $T \in B(X)^{d}$ and given $p \in(0, \infty)$, define for all $x \in X$ the sequences $\left(Q^{n, p}(T, x)\right)_{n \in \mathbb{N}}$ by

$$
Q^{n, p}(T, x):=\sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}
$$

Define further for all $\ell \in \mathbb{N}$ and all $x \in X$, the mappings $P_{\ell}^{(p)}(T, \cdot): X \rightarrow \mathbb{R}$, by

$$
\begin{aligned}
P_{\ell}^{(p)}(T, x) & :=\sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k} Q^{k, p}(T, x) \\
& =\sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} x\right\|^{p} .
\end{aligned}
$$

It is clear that $T \in B(X)^{d}$ is an (m, p)-isometry if, and only if, $P_{m}^{(p)}(T, \cdot) \equiv 0$.
If the context is clear, we will simply write $P_{\ell}(x)$ and $Q^{n}(x)$ instead of $P_{\ell}^{(p)}(T, x)$ and $Q^{n, p}(T, x)$.

Further, for $n, k \in \mathbb{N}$, define the (descending) Pochhammer symbol $n^{(k)}$ as follows:

$$
n^{(k)}:= \begin{cases}0, & \text { if } k>n \\ \binom{n}{k} k!, & \text { else }\end{cases}
$$

Then $n^{(0)}=0^{(0)}=1$ and, if $n, k>0$ and $k \leq n$, we have

$$
n^{(k)}=n(n-1) \cdots(n-k+1)
$$

As mentioned above, a fundamental property of (m, p)-isometries is that their defining property can be expressed in terms of polynomial sequences.
Theorem 2.1 ([8, Theorem 3.1]). $T \in B(X)^{d}$ is an (m, p)-isometry if, and only $i f$, there exists a family of polynomials $f_{x}: \mathbb{R} \rightarrow \mathbb{R}, x \in X$, of degree $\leq m-1$ with $\left.f_{x}\right|_{\mathbb{N}}=\left(Q^{n}(x)\right)_{n \in \mathbb{N}} \sqrt{1}$

This actually follows by the (not immediat $\|^{2}$) application of a well-known theorem about functions defined on the natural numbers, which itself will be needed for our considerations as well. We give it here in a simplified form which is sufficient for our needs.

[^0]Theorem 2.2 (see, for instance, [1, Satz 3.1]). Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence and $m \in \mathbb{N}$. Then we have

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{n+k}=0, \quad \forall n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

if, and only if, there exists a polynomial function f of degree $\operatorname{deg} f \leq m-1$ with $\left.f\right|_{\mathbb{N}}=a$!

Two important consequences of Theorem 2.1 are contained in the following corollary. The first part describes the Newton-form of the Lagrange-polynomial f_{x} interpolating $\left(Q^{n}(x)\right)_{n \in \mathbb{N}}$. The second part trivially describes the leading coefficient of f_{x}.
Corollary 2.3 ([8, Proposition 3.2]). Let $m \geq 1$ and $T \in B(X)^{d}$ be an (m, p) isometry. Then we have
(i) for all $n \in \mathbb{N}$

$$
Q^{n}(x)=\sum_{k=0}^{m-1} n^{(k)}\left(\frac{1}{k!} P_{k}(x)\right), \quad \forall x \in X
$$

(ii)

$$
\lim _{n \rightarrow \infty} \frac{Q^{n}(x)}{n^{m-1}}=\frac{1}{(m-1)!} P_{m-1}(x) \geq 0, \quad \forall x \in X
$$

Regarding (m, ∞)-isometries, we will need the following two statements. Theorem [2.5] is a combination of several fundamental properties of (m, ∞) isometric tuples.

Proposition 2.4 ([8, Corollary 5.1]). Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, ∞)-isometry. Then $\left(\left\|T^{\alpha} x\right\|\right)_{\alpha \in \mathbb{N}^{d}}$ is bounded, for all $x \in X$, and

$$
\max _{\alpha \in \mathbb{N}^{d}}\left\|T^{\alpha} x\right\|=\max _{|\alpha|=0, \ldots, m-1}\left\|T^{\alpha} x\right\|,
$$

for all $x \in X$.
Theorem 2.5 ([8, Proposition 5.5, Theorem 5.1 and Remark 5.2]). Let $T=$ $\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, ∞)-isometric tuple. Define the norm $|\cdot|_{\infty}: X \rightarrow[0, \infty)$ via $|x|_{\infty}:=\max _{\alpha \in \mathbb{N}^{d}}\left\|T^{\alpha} x\right\|$, for all $x \in X$, and denote

$$
X_{j,|\cdot| \infty}:=\left\{\left.x \in X| | x\right|_{\infty}=\left|T_{j}^{n} x\right|_{\infty} \text { for all } n \in \mathbb{N}\right\}
$$

Then

$$
X=\bigcup_{j=1, \ldots, d} X_{j,\left.|\cdot|\right|_{\infty}}
$$

(Note that, by Proposition 2.4] |. $\left.\right|_{\infty}=\|$.$\| if m=1$.)
We will also require a fundamental fact on tuples which are both (m, p) - and (μ, ∞)-isometric and an (almost) immediate corollary.

Lemma 2.6 ([8, Lemma 7.2]). Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p) isometry as well as a (μ, ∞)-isometry. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbb{N}^{d}$ be a multi-index with the property that $\left|\gamma_{j}^{\prime}\right| \geq m$ for every $j \in\{1, \ldots, d\}$. Then $T^{\gamma}=0$.

Conversely, this implies that if an operator T^{α} is not the zero-operator, the multi-index α has to be of a specific form. The proof in [8] of the following corollary appears to be overly complicated, the statement is just the negation of the previous lemma.

Corollary 2.7 ([8, Corollary 7.1]). Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p) isometry for some $m \geq 1$ as well as a (μ, ∞)-isometry. If $\alpha \in \mathbb{N}^{d}$ is a multiindex with $T^{\alpha} \neq 0$ and $|\alpha|=n$, then there exists some $j_{0} \in\{1, \ldots, d\}$ with $T^{\alpha}=T_{j_{0}}^{n-\left|\alpha_{j_{0}}^{\prime}\right|}\left(T_{j_{0}}^{\prime}\right)^{\alpha_{j_{0}}^{\prime}}$ and $\left|\alpha_{j_{0}}^{\prime}\right| \leq m-1$.

This fact has consequences for the appearance of elements of the sequences $\left(Q^{n}(x)\right)_{n \in \mathbb{N}}$, since several summands become zero for large enough n. That is, we have trivially by definition of $\left(Q^{n}(x)\right)_{n \in \mathbb{N}}$:

Corollary 2.8 (8 , proof of Theorem 7.1]). Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry for some $m \geq 1$ as well as a (μ, ∞)-isometry. Then, for all $n \in \mathbb{N}$ with $n \geq 2 m-1$, we have

$$
Q^{n}(x)=\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=0, \ldots, m-1}} \sum_{j=1}^{d} \frac{n!}{(n-|\beta|)!\beta!}\left\|T_{j}^{n-|\beta|}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p}, \quad \forall x \in X
$$

where $\frac{n!}{(n-|\beta|)!\beta!}=\frac{n^{(|\beta|)}}{\beta!}$. (We set $n \geq 2 m-1$ to ensure that every multi-index only appears once.)

3 The main result

We first present the main result of this article, which is a generalisation of 8 , Proposition 7.3], before stating a preliminary lemma needed for its proof.

Theorem 3.1. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometric as well a (μ, ∞)-isometric tuple. Then
(i) the sequences $n \mapsto\left\|T_{j}^{n} x\right\|$ become constant for $n \geq m$, for all $j \in\{1, \ldots, d\}$, for all $x \in X$.
(ii) the tuple $\left(T_{1}^{m}, \ldots, T_{d}^{m}\right)$ is a $(1, p)$-isometry, that is

$$
\sum_{j=1}^{d}\left\|T_{j}^{m} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X
$$

(iii) for any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $n_{j} \geq m$ for all j, the operators $\sum_{j=1}^{d} T_{j}^{n_{j}}$ are isometries, that is

$$
\left\|\sum_{j=1}^{d} T_{j}^{n_{j}} x\right\|=\|x\|, \quad \forall x \in X
$$

Of course, (i) and (ii) imply that, for any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $n_{j} \geq m$ for all j,

$$
\sum_{j=1}^{d}\left\|T_{j}^{n_{j}} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X
$$

Theorem 3.1 is a consequence of the following lemma, which is a weaker version of 3.1(i).

Lemma 3.2. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometric as well as $a(\mu, \infty)$-isometric tuple. Let further $\kappa \in \mathbb{N}^{d-1}$ be a multi-index with $|\kappa| \geq 1$. Then the mappings

$$
n \mapsto\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\kappa} x\right\|
$$

become constant for $n \geq m$, for all $j \in\{1, \ldots, d\}$, for all $x \in X$.
Proof. If $m=0$, then $X=\{0\}$ and if $m=1$, the statement holds trivially, since $T_{j} T_{i}=0$ for all $i \neq j$ by Lemma [2.6. So assume $m \geq 2$. Further, it clearly suffices to consider $|\kappa|=1$, since the statement then holds for all $x \in X$. The proof, however, works by proving the theorem for $|\kappa| \in\{1, \ldots, m-1\}$ in descending order. (Note that the case $|\kappa| \geq m$ is also trivial, again by Lemma (2.6)

Since for $n \geq 2 m-1$, by Corollary 2.8 ,

$$
Q^{n}(x)=\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=0, \ldots, m-1}} \sum_{j=1}^{d} \frac{n^{(|\beta|)}}{\beta!}\left\|T_{j}^{n-|\beta|}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p}, \quad \forall x \in X
$$

and $P_{m-1}(x)=\lim _{n \rightarrow \infty} \frac{Q^{n}(x)}{n^{m-1}}$, for all $x \in X$, by Corollary 2.3(ii), we have that

$$
P_{m-1}(x)=\lim _{n \rightarrow \infty} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=m-1}} \sum_{j=1}^{d} \frac{1}{\beta!}\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p}, \quad \forall x \in X
$$

Now fix an arbitrary $j_{0} \in\{1, \ldots, d\}$ and let $\kappa \in \mathbb{N}^{d-1}$ with $|\kappa| \in\{1, \ldots, m-1\}$. Again, by Lemma 2.6, we have, for any $\nu \geq 1$,

$$
\begin{equation*}
P_{m-1}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)=0, \quad \forall x \in X \tag{3.1}
\end{equation*}
$$

Now let $\nu \geq m$ and set $\ell:=m-|\kappa|$. Then $\ell \in\{1, \ldots, m-1\}$ and $|\kappa|=m-\ell$.

We again apply Lemma 2.6, this time to $Q^{k}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)$. By definition,

$$
\begin{aligned}
& Q^{k}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)=\sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)\right\|^{p} \\
& =\left\|T_{j_{0}}^{k}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)\right\|^{p}+\sum_{j=1}^{k} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=j}} \frac{k!}{(k-j)!\beta!}\left\|T_{j_{0}}^{k-j}\left(T_{j_{0}}^{\prime}\right)^{\beta}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)\right\|^{p} \\
& \stackrel{2.6}{=}\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}+\sum_{j=1}^{\min \{k, \ell-1\}} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=j}} \frac{k!}{(k-j)!\beta!}\left\|T_{j_{0}}^{\nu+k-j}\left(T_{j_{0}}^{\prime}\right)^{\kappa+\beta} x\right\|^{p} \\
& =\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}+\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{\nu+k-j}\left(T_{j_{0}}^{\prime}\right)^{\kappa+\beta} x\right\|^{p},
\end{aligned}
$$

for all $k \in \mathbb{N}$, for all $x \in X$. Here, in the third line, the fact that $\nu \geq m$ is used, where in the last line, we utilise the fact that $k^{(j)}=0$ if $j>k$.

We now prove our statement by (finite) induction on ℓ.

$\ell=1:$

For $\ell=1$ and $|\kappa|=m-1$, we have

$$
Q^{k}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)=\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}, \quad \forall k \in \mathbb{N}, \forall x \in X
$$

Hence, since $P_{m-1}(x)=\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k} Q^{k}(x)$ by definition, we have, by (3.1),
$P_{m-1}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)=\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}=0, \quad \forall x \in X$.
However, by definition, that means, that the operator $\left.T_{j_{0}}\right|_{R\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa}\right)}$ (that is, $T_{j_{0}}$ restricted to the range of $\left.T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa}\right)$ is an $(m-1, p)$-isometric operator.

By Theorem 2.1 (or, as mentioned in the introduction, by statements proven by earlier authors), this implies that the sequences $n \mapsto\left\|T_{j_{0}}^{n+\nu}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}$ is polynomial of degree $\leq m-2$, for all $x \in X$. Thus, $n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}$, become polynomial of degree $\leq m-2$, for $n \geq \nu \geq m$, for all $x \in X$.

However, since T is a (μ, ∞)-isometric tuple, by Proposition 2.4 the sequences $n \mapsto\left\|T_{j}^{n} x\right\|$ are bounded for all $j \in\{1, \ldots, d\}$, for all $x \in X$. Therefore, we must have that the mappings

$$
n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|
$$

become constant for $n \geq m$, for all $x \in X$.
Since $\ell \in\{1, \ldots, m-1\}$, if we had $m=2$, we are already done. So assume in the following that $m \geq 3$.
$\ell \rightarrow \ell+1:$

Assume that the statement holds for some $\ell \in\{1, \ldots, m-2\}$. That is, for all $\kappa \in \mathbb{N}^{d-1}$ with $|\kappa|=m-\ell$ the sequences

$$
n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|
$$

become constant for $n \geq m$, for all $x \in X$.
Now take a multi-index $\tilde{\kappa} \in \mathbb{N}^{d-1}$ with $|\tilde{\kappa}|=m-(\ell+1)$ and consider

$$
Q^{k}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)=\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}+\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{\nu+k-j}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p} .
$$

Note that we have $|\tilde{\kappa}+\beta| \geq m-\ell$, since $|\beta| \geq 1$. Hence, if $k \geq j$, by our induction assumption,

$$
\left\|T_{j_{0}}^{\nu+k-j}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}=\left\|T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}, \quad \forall x \in X
$$

since $n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|$ become constant for $n \geq \nu \geq m$.
Hence, we have

$$
Q^{k}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)=\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}+\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}
$$

Then, by definition and 3.1

$$
\begin{aligned}
0= & P_{m-1}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)=\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k} Q^{k}(x) \\
= & \sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p} \\
& +\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left(\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}\right),
\end{aligned}
$$

for all $x \in X$. But now, for all $x \in X$, the sequence

$$
k \mapsto\left(\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}\right)
$$

is polynomial (in k) of degree $\leq \ell-1 \leq m-3$ (with trailing coefficient 0).
Hence, by Theorem 2.2,

$$
\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left(\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}\right)=0
$$

and, thus,

$$
0=P_{m-1}\left(T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)=\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left\|T_{j_{0}}^{\nu+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p},
$$

for all $x \in X$. Now we can repeat the argument from the case $\ell=1$ (that is, $T_{j_{0}}$ restricted to the range of $T_{j_{0}}^{\nu}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}}$ is an $(m-1, p)$-isometric operator), to obtain again that the sequences

$$
n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|
$$

become constant for $n \geq \nu \geq m$, for all $x \in X$. This concludes the induction step and the proof.

We can now prove the main result.
Proof of Theorem 3.1, By the lemma above, we have for $n \geq 2 m-1$,

$$
\begin{align*}
Q^{n}(x) & =\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=0, \ldots, m-1}} n^{(|\beta|)} \sum_{j=1}^{d} \frac{1}{\beta!}\left\|T_{j}^{n-|\beta|}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p} \\
& =\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=1, \ldots, m-1}} n^{(|\beta|)} \sum_{j=1}^{d} \frac{1}{\beta!}\left\|T_{j}^{m}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p}+\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}, \quad \forall x \in X . \tag{3.2}
\end{align*}
$$

That is, for all $x \in X$, for $n \geq m-1$, the sequences $n \mapsto Q^{n}(x)$ are almost polynomial (of degree $\leq m-1$), with the term $\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}$ instead of a (constant) trailing coefficient.

However, by Corollary 2.3(i), we know that for any $x \in X$, the sequence $n \mapsto Q^{n}(x)$ are indeed polynomial. Since, by Proposition 2.4, for each $x \in X$, the sequence $n \mapsto \sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}$ is bounded, we can successive compare and remove coefficients of the formula for $Q_{n}(x)$ as given in 2.3.(i) and (3.2), until we eventually obtain that

$$
\begin{equation*}
\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X, \forall n \geq 2 m-1 \tag{3.3}
\end{equation*}
$$

Since $T_{i}^{m} T_{j}^{m}=0$ for all $i \neq j$, by Lemma 2.6. replacing x by $T_{j}^{\nu} x$ with $\nu \geq m$ in this last equation, gives $\left\|T_{j}^{\nu} x\right\|=\left\|T_{j}^{n+\nu} x\right\|$ for all $n \geq 2 m-1$, for all $x \in X$.

Hence, the sequences $n \mapsto\left\|T_{j}^{n} x\right\|$ become constant for $n \geq m$, for all $j \in$ $\{1, \ldots, d\}$, for all $x \in X$. This is 3.1.(i).

But then, (3.3) becomes

$$
\sum_{j=1}^{d}\left\|T_{j}^{m} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X
$$

This is 3.1.(ii).

Now take any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $n_{j} \geq m$ for all j and replace x in the equation above by $\sum_{j=1}^{d} T_{j}^{n_{j}}$. Then, again, since $T_{i}^{m} T_{j}^{m}=0$ for $i \neq j$, and since $n \mapsto\left\|T_{j}^{n} x\right\|$ become constant for $n \geq m$,

$$
\sum_{j=1}^{d}\left\|T_{j}^{m+n_{j}} x\right\|^{p}=\sum_{j=1}^{d}\left\|T_{j}^{m} x\right\|^{p}=\left\|\sum_{j=1}^{d} T_{j}^{n_{j}} x\right\|^{p}, \quad \forall x \in X .
$$

Together with 3.1.(i), this implies 3.1.(iii).
It is clear that we have a stronger result if one of the operators $T_{j_{0}} \in$ $\left\{T_{1}, \ldots, T_{d}\right\}$ is surjective. Theorem 3.1(i) then forces this operator to be an isometric isomorphism and by 3.1(ii) the remaining operators are nilpotent.

If one of the operators $T_{j_{0}} \in\left\{T_{1}, \ldots, T_{d}\right\}$ is injective, by Lemma 2.6 and 3.1(ii) we obtain at least that $T_{j_{0}}^{m}$ is an isometry and the remaining operators are nilpotent. However, while, by definition of an (m, p)-isometry, we must have $\bigcap_{j=1}^{d} N\left(T_{j}\right)=\{0\}$, it is not clear that the kernel of a single operator has to be trivial.

4 Some further remarks and the case $d=2$

We finish this note with a stronger result for the case of a commuting pair $\left(T_{1}, T_{2}\right) \in B(X)^{d}$. We first state the following two easy corollaries of Theorem 3.1 which hold for general d.

Corollary 4.1. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry as well as $a(\mu, \infty)$-isometry. Then $T_{j}^{m}=0$ or $\left\|T_{j}^{m}\right\|=1$ for any $j \in\{1, \ldots, d\}$.

Proof. By Theorem [3.1.(ii) we have $\left\|T_{j}^{m}\right\| \leq 1$ for any j. On the other hand, by 3.1(i) we have

$$
\left\|T_{j}^{m} x\right\|=\left\|T_{j}^{m+1} x\right\|=\leq\left\|T_{j}^{m}\right\| \cdot\left\|T_{j}^{m} x\right\|, \quad \forall x \in X
$$

for any j. That is, $T_{j}^{m}=0$ or $\left\|T_{j}^{m}\right\| \geq 1$.
Lemma 4.2. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry as well as $a(\mu, \infty)$-isometry. Define $|\cdot|_{\infty}: X \rightarrow[0, \infty)$ and $X_{j,|\cdot|_{\infty}}$ as in Theorem 2.5. Then

$$
\begin{array}{r}
X_{j,|\cdot| \infty}=\left\{x \in X \mid \exists \alpha(x) \in \mathbb{N}^{d} \text {, s.th. }|\alpha(x)| \leq \mu-1\right. \text { and } \\
\left.|x|_{\infty}=\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\alpha_{j}^{\prime}(x)} x\right\|, \forall n \in \mathbb{N}\right\} .
\end{array}
$$

Proof. By Proposition 2.4 we know that for every $x \in X$, there exists an $\alpha(x) \in$ \mathbb{N}^{d} with $\max _{\alpha \in \mathbb{N}^{d}}\left\|T^{\alpha} x\right\|=\left\|T^{\alpha(x)} x\right\|$ and $|\alpha(x)| \leq \mu-1$.

Then $x \in X_{j,|\cdot| \infty}$ if, and only if, for all $n \in \mathbb{N}$, there exists an $\alpha(x, n) \in \mathbb{N}^{d}$ with $|\alpha(x, n)| \leq \mu-1$ s.th. $|x|_{\infty}=\left\|T_{j}^{n} T^{\alpha(x, n)} x\right\|$. Hence, the inclusion " \supset " is clear.

To show " \subset " let $0 \neq x \in X_{j,|\cdot| \infty}$. Then $T_{j}^{m} \neq 0$ and, hence, $\left\|T_{j}^{m}\right\|=1$.
Since $|\alpha(x, n)| \leq \mu-1$ for all $n \in \mathbb{N}$, there are only finitely many choices for each $\alpha(x, n)$. Thus, there exists an $\alpha(x) \in \mathbb{N}^{d}$ and an infinite set $M(x) \subset \mathbb{N}$ s.th.

$$
|x|_{\infty}=\left\|T_{j}^{n} T^{\alpha(x)} x\right\|, \forall n \in M(x) .
$$

By Theorem 3.1.(i), $M(x)$ contains all $n \geq m$ and further,

$$
\left\|T_{j}^{n} T^{\alpha(x)} x\right\|=\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\alpha_{j}^{\prime}(x)} x\right\|, \text { for all } n \geq m
$$

Since $\left\|T_{j}^{m}\right\|=1$, the statement holds for all $n \in \mathbb{N}$.
Proposition 4.3. Let $T=\left(T_{1}, T_{d}\right) \in B(X)^{d}$ be both an (m, p)-isometric and a (μ, ∞)-isometric pair. Then T_{1}^{m} is an isometry and $T_{2}^{m}=0$ or vice versa.

Proof. By Theorem [2.5, we have $X=X_{1,|\cdot| \infty} \cup X_{2,|.|_{\infty}}$.
Let $x_{1} \in X_{1,|\cdot| \infty}$. Then, by the previous lemma, there exists an $\alpha_{2}\left(x_{1}\right) \in \mathbb{N}$ with $\alpha_{2}\left(x_{1}\right) \leq \mu-1$ s.th. $\left|x_{1}\right|_{\infty}=\left\|T_{1}^{n} T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|$ for all $n \in \mathbb{N}$.

Furthermore, we have $\|x\|^{p}=\left\|T_{1}^{m} x\right\|^{p}+\left\|T_{2}^{m} x\right\|^{p}$, for all $x \in X$, by Theorem 3.1(ii). Replacing x by $T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}$ gives

$$
\begin{aligned}
\left\|T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\| & =\left\|T_{1}^{m} T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|+\left\|T_{2}^{m+\alpha_{2}\left(x_{1}\right)} x_{1}\right\| \\
\Leftrightarrow\left\|T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\| & =\left|x_{1}\right|_{\infty}+\left\|T_{2}^{m} x_{1}\right\| .
\end{aligned}
$$

This implies $\left\|T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|=\left|x_{1}\right|_{\infty}$ and, moreover, $\left\|T_{2}^{m} x_{1}\right\|=0$.
An analogous argument shows that $X_{2,|\cdot| \infty} \subset N\left(T_{1}^{m}\right)$. Hence,

$$
X=N\left(T_{1}^{m}\right) \cup N\left(T_{2}^{m}\right),
$$

which forces $T_{1}^{m}=0$ or $T_{2}^{m}=0$. The statement follows from $\|x\|^{p}=\left\|T_{1}^{m} x\right\|^{p}+$ $\left\|T_{2}^{m} x\right\|^{p}$, for all $x \in X$.

References

[1] M. Aigner, Diskrete Mathematik, Vieweg, Braunschweig/Wiesbaden 1993.
[2] J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., Vol. 112. No. 1 (1990), 1-14.
[3] J. Agler and M. Stankus, m-isometric transformations of Hilbert space, I, Integr. equ. oper. theory, Vol. 21, No. 4 (1995), 383-429.
[4] F. Bayart, m-Isometries on Banach Spaces, Mathematische Nachrichten, Vol. 284, No. 17-18 (2011), 2141-2147.
[5] T. Bermúdez, A. Martinón and V. Müller, (m, q)-isometries on metric spaces, J. Operator Theory, Vol. 72, No. 2 (2014), 313-329.
[6] T. Bermúdez, A. Martinón and E. Negrín, Weighted Shift Operators Which are m-Isometries, Integr. equ. oper. theory, Vol. 68, No. 3 (2010), 301-312.
[7] F. Botelho, On the existence of n-isometries on ℓ_{p} spaces, Acta Sci. Math. (Szeged), Vol. 76, No. 1-2 (2010), 183-192.
[8] P. H. W. Hoffmann and M. Mackey, (m, p)- and (m, ∞)-isometric operator tuples on normed spaces, Asian-Eur. J. Math., Vol. 8, No. 2 (2015).
[9] P. Hoffmann, M. Mackey and M. Ó Searcóid, On the second parameter of an (m, p-isometry, Integr. equ. oper. theory, Vol. 71, No. 3 (2011), 389-405.
[10] J. Gleason and S. Richter, m-Isometric Commuting Tuples of Operators on a Hilbert Space, Integr. equ. oper. theory, Vol. 56, No. 2 (2006), 181-196 .
[11] S. Richter, Invariant subspaces of the Dirichlet shift, J. reine angew. Math., Vol. 386 (1988), 205-220.
[12] O.A. Sid Ahmed, m-isometric Operators on Banach Spaces, Asian-Eur. J. Math., Vol. 3, No. 1 (2010), 1-19.

Philipp Hoffmann
National University of Ireland, Maynooth
Department of Computer Science
Maynooth, County Kildare
Ireland
email: philipp.hoffmann@cs.nuim.ie
philip.hoffmann@maths.ucd.ie

[^0]: ${ }^{1}$ Set $\operatorname{deg} 0:=-\infty$ to account for the case $m=0$.
 ${ }^{2}$ The application of Theorem [2.2 to (m, p)-isometries by setting $a=\left(Q_{n}(x)\right)_{n \in \mathbb{N}}$ is not immediate, since the requirement $P_{m}(T, x)=0$ is only the case $n=0$ in (2.1).

