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Abstract—This paper addresses the mathematical modelling
of the relationship between the free surface elevation (FSE) and
the excitation force for wave energy devices (excitation force
model). While most studies focus on the model relating the
FSE to the device motion, the excitation force model is required
to complete the mathematical wave energy system description
and also plays an important role in excitation force observer
design. In the paper, a range of linear and nonlinear modelling
methodologies, based on system identification from numerical
wave tank tests, are developed for a range of device geometries.
The results demonstrate a significant benefit in adopting a
nonlinear parameterisation and show that models are heavily
dependent on incident wave amplitude.

Index Terms—Excitation force, System identification, Numer-
ical wave tank, Wave energy, Discrete-time modelling, ARX
model, Hammerstein model, Kolmogorov-Gabor Polynomial
Model

I. INTRODUCTION

Mathematical modelling of wave energy converters (WECs)

has many uses, including simulation of device motion, power

production assessment and as a basis for model based control

design. A large number of models employed in the simulation

and analysis of WECs are based on the Cummins equation

[1]. Cummins’ equation is based on Newton’s second law

describing the motion of the device floating in water subjected

to the fluid, gravity and other external forces (like the mooring

force, fM , and the PTO force, fPTO). The fluid force is

derived under the simplifying hypothesis of linear potential

theory, that allows the total fluid force (applied from the

fluid to the floating body) to be written as the summation

of the excitation force, fE , the radiation force, fRAD, and the

buoyancy force, fBU , and to express the radiation force as a

convolution integral. Therefore, the structure of the model can

be graphically represented using the block diagram of Fig. 1,

where fIN = fM +fE+fPTO represents the right hand side

of the Cummins equation [2].

When the body is in motion, the excitation force is not

directly measurable; however, the excitation force is a vital

variable required by energy maximising control systems [3]

and, in the absence of a direct measurement, a suitable estimate

is required, which can be provided by an observer [4]. In a

typical observer configuration, [5], a model linking the input

with the variable to be estimated (documented in this paper),
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Fig. 1. General block diagram of the wave energy device model.

along with the model linking the variable to be estimated with

the system output (see, for example [6]) needs to be provided.

In this paper, the attention is focused on the modelling of

the relationship between the undisturbed free surface elevation

(FSE), η, measured in a position that corresponds to the centre

of mass of the body, and the excitation force, that is the

force experienced by the body when it is held fixed in the

presence of waves [7]. This relationship is represented by the

”Excitation force kernel” block in Fig. 1.

In the context of linear models, the relationship between η
and fE can be described in the time domain via a convolution

integral or, in frequency domain, with a transfer function [8].

Linear models have very desirable properties, like superpo-

sition or a frequency domain description, but they are based

on the hypothesis of small waves, ideal fluid (inviscid and

incompressible) and small body displacement, that are not

satisfied in reality for the wave energy context. Consequently,

when the wave amplitude increases, becoming of the same

order of magnitude of the dimensions of the body, some

nonlinear effect may appear. As an example, Fig. 2 shows

the excitation force experienced from a fixed body subjected

to monochromatic waves; it is shown that, despite the fact

that the sinusoidal input is symmetrical with respect to the

mean free surface elevation (MFSE), the excitation force is

asymmetric. Furthermore, Fig. 3 shows that there is a nonlinear

relationship between the incident wave and excitation force

amplitudes. Such typical nonlinear effects are an indication

that it is necessary to introduce nonlinearities into the models

utilised to describe the interaction between the body and the

fluid.
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Fig. 2. Regular FSE and excitation force time series.
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Fig. 3. Max excitation force amplitude vs (max wave amplitude)/(Device
heigth).

Different studies have already been conducted to introduce

nonlinear effects into the calculation of the excitation force,

taking into consideration the fact that the wetted surface of the

body is not constant in time, as assumed by linear potential

theory, but changes depending on the FSE and the position of

the body. Therefore, the excitation force has been calculated

by integrating the pressure on the instantaneous wetted surface

of the body [9]–[12].

An alternative modelling approach, utilised in this paper,

is that of system identification, where models are determined

from input/output data measured from the system under study

[13]. Such methods are particularly useful where the system to

be modelled is very complex and/or does not easily lend itself

to first principles modelling. However, one major difficulty

in system identification is ensuring that the input/output data

used to determine the model is sufficiently representative of

the system dynamics and, in particular, must cover the range

of frequencies and amplitudes likely to be encountered during

system operation. In the WEC case, such a range of excitation

signals are not likely to be available in the open ocean (at

least not in a reasonably short time frame) and there are

difficulties in exactly enumerating the excitation experienced

by the device, particularly for a directional device. In short, in

the open ocean, there is no external control of the excitation.

One other possibility is to employ tank tests. However, in

addition to the significant cost and the need for a physical

prototype, there may be limitations on the range of excitation

signals available and tank wall reflections may further limit

the range and duration of viable tests.

A different option for generating suitable input/output data

is to use a numerical wave tank (NWT), implemented in CFD

[6], which has the following advantages :

- Reflections from tank walls can be effectively controlled,

- The device can be tested at full scale, eliminating scaling

effects,

- A wide variety of excitation signals, including incident waves

and forces directly applied to the device, as well as free

response tests, can be implemented,

- The device can be constrained to different modes of motion

without requiring mechanical restraints, which can add friction

and alter the device dynamics,

- Signals can be passively measured without requiring physical

sensor devices which can alter the device or fluid dynamics

and are subject to measurement error and, most importantly,

- Specialist equipment, including a prototype WEC device, is

not required.

In this paper, for simplicity, the general six degree of

freedom (DOF) problem has been reduced to a heave single

DOF. However, the illustrated methods and procedures can be

extended to the full six DOF.

The paper is laid out as follows; in Section II, the structure

of the proposed linear and nonlinear models are outlined. Sec-

tion III then explains the NWT experiments used to produce

the system identification data. Section IV describes the process

of identifying the model parameters from the NWT generated

data. Some illustrative examples demonstrating these methods

are then given in Section V, and the results of the different

models compared.

II. MODEL STRUCTURES

A. General Dynamic Model Structure

Choice of the parametric structure of the model is very im-

portant, if a representative model is to be identified. The model

structure may be inspired from physical system knowledge

and considerations (white-box modelling) or completely based

on the recorded data itself (black-box modelling). There are

also many possibilities within these two extremes which are

denoted by shades of grey e.g. off white, slate grey, smoke

grey, etc [14]. In general, whether the model structure is

inspired by physical phenomena or purely derived from the

data, it is necessary to determine a parsimonious structure

for the model which will work well with the identification

data, but also generalise well to other data. A compatible

requirement is that it is not desirable to add complexity to the

model for little gain. The identified parametric model should

be able to capture the essential nonlinearities, but remain,

simultaneously, with a sufficient simplicity that allows the

model to be run in real time.

Considering the discrete time nature of sampled data from

experiments, the majority of system identification techniques

are based on discrete time models [13]. For this reason,

discrete time models are utilised in this paper. However,

209C1-1-



D

D

fE (k)

D

Ƞ (k‐nd)

Ƞ (k)

D Ƞ (k‐nd‐1)

D

fE (k‐na)

fE (k‐1)

nb

na

g[]

linear

or 
nonlinear

discrete

time

model

Ƞ (k‐nd‐nb)

nd

Fig. 4. Block diagram for a general NARX discete-time model. Each D-
block denotes a single delay element. na, nb and nd indicate the number of
D-blocks.

identification of continuous time models can also be performed

[15] [16]. Discrete-time modelling implies using signals only

at the discrete time instants t = kTs, where Ts is the sampling

period and k is an integer. The values of the η and fE at the

time instant kTs are represented with the symbols η(k) and

fE(k) respectively.

The relationship between η and fE is non causal [8],

therefore, noncausality has to be introduced into the structure

of the identified model. In this paper, models with external

dynamics, called nonlinear autoregressive with exogenous

input (NARX) models [17], are utilized. In NARX models,

the present value of the output fE(k) depends on the past

values of the output fE(k − 1), ..., fE(k − na) and the input

values η(k − nd), η(k − nd − 1), ..., η(k − nd − nb). If the

system is causal, the output does not depend on future values

of the input and nd ≥ 0, otherwise, if the system is noncausal,

nd < 0 and the present value of the output is influenced by

future input values. The NARX model is summarized with the

following equation:

y(k) =g
[
fE(k − 1), ..., fE(k − na),

η(k − nd), η(k − nd − 1), ..., η(k − nd − nb)
]

(1)

which can be represented with the block diagram of Fig.

4. na and nb represent the dynamical order of the model,

and increasing them, the model becomes more flexible and

able to show more complex behaviour, but, at the same time,

unnecessarily high orders can make the model less able to

generalise on new data (overfitting). nd is the input delay time

and it represents the number of samples before the output

reacts to the input (for nd ≥ 0) or the number of future

input steps that influence the present value of the output (for

nd < 0).

B. ARX Model (Linear)

The first parametric model utilised in this paper is the

autoregressive with exogenous (ARX) model. It is a well

Nonlinear
Static

r

Ƞ(k) fE(k)s(k) Linear
Dynamic

ARX

Fig. 5. Block diagram of the Hammerstein model.

known black box model with a linear input-output relationship

and is linear in the parameters ai and bi. For the ARX model,

Equation (1) becomes:

fE(k) =

na∑

i=1

aifE(k − i) +

nb∑

i=0

biη(k − nd − i) (2)

C. Hammerstein Model (Nonlinear)

A way to introduce a nonlinearity into the relationship

between the input η(k) and the output fE(k) of the model

is to utilise a nonlinear static block. The Hammerstein model

consists of a cascade connection of a nonlinear static block

followed by a linear dynamic block (see Figure 5). In the

Hammerstein case, Equation (1) becomes [18]:

fE(k)=

na∑

i=1

aifE(k − i) +

nb∑

i=0

bir[η(k − nd − i)] (3)

where r[.] is a nonlinear static function. The Hammerstein

model is characterized by a nonlinear input-output relation-

ship, but is linear in the parameters ai and bi. In the Hammer-

stein model, the static relationship between input and output

is given by the product of the static function, r[.], and the

steady-state gain of the ARX model, DCgain. Therefore, the

characterization of the two blocks is not unique, any pair

(DCgain/α , αr) will produce the same input and output [19].

To remove this ambiguity, the DCgain of the ARX block is

set to unity, which allows the steady-state gain for the entire

Hammerstein model to be solely represented by the nonlinear

static function. In this case, r[η(k)] will represent the static

relationship between the constant input free surface elevation

and the constant output excitation force, which is just the

buoyancy force. Therefore, once the buoyancy force versus

constant wave elevation relationship is available, the nonlinear

static function, r[.], can be identified separately from the linear

dynamic block. In this way, the Hammerstein model black-box

structure is given a shade of ’grey’ by considering the physical

meaning of the nonlinear static function to be a representation

of the hydrostatic buoyancy force.

D. Kolmogorov-Gabor Polynomial Model (Nonlinear)

The final model considered in this paper utilises a poly-

nomial nonlinearity, which results in a Kolmogorov-Gabor

polynomial (KGP) model [17].
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. In this case, Equation (1) becomes:

fE(k)=

na∑

i=1

ai1fE(k − i)+

nb∑

i=0

bi1η(k − nd − i)

+ ...

+

na∑

i=1

aipf
p
E(k − i)+

nb∑

i=0

bipη
p(k − nd − i)

+

na∑

i=1

nb∑

j=0

cijfE(k − i)η(k − nd − j)

+ . . . (4)

where p is the maximum polynomial order for the terms

involving η and fE alone, as well as the cross-product terms.

The KGP model is a black box model having a nonlinear

input-output relationship, but is linear in the parameters aij ,

bij and cij .

During the preparation of the present work, the presence of

the cross-product terms in the model typically resulted in an

instability in the identified KGP model. For this reason, the

cross-product terms in the model of Equation (4) have been

removed, obtaining the simpler model:

fE(k) =

p∑

j=1

[ na∑

i=1

aijf
j
E(k−i)+

nb∑

i=0

bijη
j(k−nd−i)

]
(5)

The cancellation of the cross-product terms reduces the flex-

ibility of the KGP model in describing the different nonlinear

effects, nevertheless, the presence of the terms, involving η
and fE alone, guarantees the introduction of nonlinear effects

and an improvement with respect to the linear ARX model.

III. NUMERICAL WAVE TANK

The NWT in this study is based on the open-source CFD

software OpenFOAM. Details for the implementation of an

OpenFOAM NWT for wave energy experiments can be found

in [20].

A. NWT Experiments

Two different types of experiments are performed to provide

the model identification data: the NWT Dynamic Experiments

and the NWT Hydrostatic Force Experiments.

1) NWT Dynamic Experiment: This experiment involves

holding the body fixed in the presence of input waves and

measuring the resulting hydrodynamic force on the body.

The excitation force is given by removing the hydrostatic

force, experienced by the device at equilibrium, from the

total measured hydrodynamic force. In a NWT, like in the

open ocean or in a physical tank, measuring η at the WEC’s

centre of mass presents an issue, since the body occupies that

position. A possible solution is the employment of techniques

of spatial reconstruction of the wave field, using a group of

sensors located in the proximity of the floating body, like

LIDAR instruments or buoys [21]. In the NWT, the problem is

overcome by performing the experiment in two stages. First,

the input waves are generated and η at the desired position is

measured without the body in the tank (see Fig. 6-a). Next, the

Ƞ(k)

fE(k)

Mean free surface elevation

Mean free surface elevation

wave

wave

Experiment without the body to 
measure the free surface elevation

Experiment with the body to 
measure the excitation force

(a)

(b)

Fig. 6. NWT Hydrostatic Force Experiment: (a) the input waves are generated
and the FSE at the desired position measured without the body. (b) the same
input waves are generated but with the body geometry imported into the tank
and held fixed while the resulting hydrodynamic force is measured.

same input waves are generated, but with the body geometry

imported into the tank and held fixed, while the resulting

hydrodynamic force on the body is measured, (see Fig. 6-

b). Two vectors are produced by this experiment for model

identification, one containing the FSE, {ηd(k)}, and the other

the resulting excitation force, {fEd(k)}. Since this experiment

is used to identify the dynamic of the system under study, it is

important that the input signal {ηd(k)} has a rich frequency

content.

2) NWT Hydrostatic Force Experiment: This experiment is

used to identify the static curve of the Hammerstein model.

Two vectors are produced by this experiment for model

identification, one containing the FSE, {ηs(k)}, and the other

the resulting excitation force, {fEs(k)}. Since in the previous

NWT Dynamic Experiment the output signal {fEd(k)} shows

simultaneously the effects of the nonlinear static curve and of

the system dynamics, it is difficult to separate one effect form

the other one for the identification of the Hammerstein sub-

blocks. As explained in Section II-C, the static curve of the

Hammerstein model is related to the buoyancy force applied on

the floating body, therefore, it is possible to design a specific

experiment (the NWT Hydrostatic Force Experiment) to reveal

only the buoyancy characteristics of the floating body and use

them for the identification of the static curve. In this case,

differently from the NWT Dynamic Experiment, the input

signal {ηs(k)} has to be slow so that dynamic effects are

negligible and only the hydrostatic force is present in the

excitation force measurement. Ideally, the body is held fixed

and η is very slowly increased from the bottom to the top of the

body and the resulting hydrostatic force is measured. However,

in terms of implementing the experiment in the NWT, it is

easier to keep the water level constant and slowly submerge

the body, to obtain the same hydrostatic force measurements.
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Fig. 7. System identification principle.

IV. MODEL IDENTIFICATION

A. System Identification

The fundamental idea of system identification is represented

in Fig. 7. The identification procedure is based on a sequence

of steps:

1) A parametric structure of the model is chosen (linear or

nonlinear),

2) A suitable input signal is applied to excite the system, and

3) Using the recorded input and output signals, an identi-

fication algorithm is used to determine the optimal model

parameters θ (the target is to minimize some error metric

between the measured output y and the output ŷ predicted

by the identified parametric model).

B. Linear Regression and Least Squares

Consider a model with an output, ẑ, that is a linear combi-

nation of p independent variables, xi:

ẑ = θ1x1 + · · ·+ θpxp (6)

where the coefficients, θi, are the unknown parameters [17].

It will be assumed that, i = 1..N data samples, {z(i)}, have

been measured. The error at each sample is ε(i) = z(i)− ẑ(i).
In matrix form:

ε = z− ẑ = z−Xθ (7)

where:

ε =
[
ε(1) ε(2) ... ε(N)

]T
, (8)

z =
[
z(1) z(2) ... z(N)

]T
, (9)

ẑ =
[
ẑ(1) ẑ(2) ... ẑ(N)

]T
, (10)

X =




x1(1) x2(1) ... xp(1)
x1(2) x2(2) ... xp(2)

...
...

. . .
...

x1(N) x2(N) ... xp(N)


 , (11)

θ =
[
θ1 θ2 ... θp

]T
. (12)

X and z, are called the data matrix and the observation vector

respectively. In a full column rank context, the estimated

parameters that minimize the least squares error are [17]:

θ̂ = argmin
θ

(εTε) = (XT
X)−1

X
T
z. (13)

The least squares problem is not usually resolved calculating

the solution directly from Equation (13), because the use of

X
T
X increases the possibility to obtain an ill-conditioned

problem (the condition number of XT
X is approximately the

square of the condition number of the data matrix X). Instead,

a QR factorization method was implemented, which allows

computing the least square solution directly from X without

forming X
T
X [22] [23].

If the parameters have also to satisfy the linear equality

constraints Aθ = d, the estimated parameters are:

θ̂c = θ̂ −H
−1

A
T (AH

−1
A

T )−1(Aθ̂ − d), (14)

where H = X
T
X, and θ̂ is calculated via Equation (13) [17].

C. Time Delay and Dynamical Order Estimation (nd, na, nb)

An important part of the model structure selection is the

choice of the delay nd and the dynamical orders na and nb.

As Equation (1) suggests, y(k) is a function of na output and

nb +1 input values, taken at different time instants. Once na,

nb and nd are selected, it is possible to obtain the different

model structures (for this paper ARX, Hammerstein and KGP)

by changing the function g(). Since linear and nonlinear mod-

els share the same na, nb and nd, all these parameters are esti-

mated implementing a trial and error process on several ARX

models having different na, nb and nd and their performances

measured with a loss function (a measure of the modelling

error). For each ARX model estimation, independent training

and validation data sets are utilised. At the end, the simplest

ARX model able to repeat the validation data with a sufficient

accuracy is selected (parsimonious model) [24].

D. ARX Model Identification

Performing the NWT Dynamic Experiment (see Section

III-A), the signals {ηd(k)} and {fEd(k)} for i = 1...N ,

are generated, and they can be utilised as input and output

for the identification of the ARX model. The first possible

predicted model output is for k = τ + 1 (the first τ values

of the output data are utilised as initial conditions), where

τ = max{na, (nb + nd)}. The last possible predicted model

output is for k = Ñ , where

Ñ =

{
N if nd ≥ 0,
N + nd if nd < 0.

In this case, Equations (9), (11) and (12) become:

z =
[
fEd(τ + 1) fEd(τ + 2) ... fEd(Ñ)

]T
, (15)

X=




fEd(τ) ...fEd(τ+1−na) ηd(τ+1−nd)...ηd(τ+1−nd−nb)
fEd(τ+1) ...fEd(τ+2−na) ηd(τ+2−nd)...ηd(τ+2−nd−nb)

...
. . .

...
...

. . .
...

fEd(Ñ−1) ... fEd(Ñ−na) ηd(N) ... ηd(N−nb)




θ̂arx =
[
a1 a2 ... ana

b0 b1 ... bnb

]T
. (16)

respectively. The estimated parameters are determined from

Equation (13).
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E. Hammerstein Model Identification

The first step, in the identification of the Hammerstein

model, is to identify the nonlinear static block. The nonlinear

static function can be approximated with a linear combination

of basis functions; in this way, it is possible to apply linear re-

gression for the identification. For simplicity, the selected basis

functions in this paper are polynomials {x0, x1, x2, ..., xnc}.

Therefore, the relationship between the input and the output

of the nonlinear static block is:

ŝ(k) = c1η(k) + c2η
2(k) + ...+ cnc

ηnc(k) (17)

where, c0 = 0 is imposed (if the FSE is zero, the applied

excitation force has to be zero). Under static conditions s(k) =
fE(k) (a consequence of the DCgain of the ARX equal to

one). Therefore, Equation (17) becomes:

f̂E(k) =

nc∑

i=1

ciη
i(k) (18)

The NWT Hydrostatic Force Experiment (see Section III-A)

generates the signals {ηs(k)} and {fEs(k)}, that can be

utilised as input and output for the identification of the

nonlinear static block. In this case, Equation (6) becomes

Equation (18) and Equations (9), (11) and (12) become:

z =
[
fEs(1) fEs(2) ... fEs(N)

]T
(19)

X=




η1s(1) η2s(1) ... ηnc

s (1)
η1s(2) η2s(2) ... ηnc

s (2)
...

...
. . .

...

η1s(N) η2s(N) ... ηnc

s (N)


 (20)

θ̂Hc =
[
c1 c2 ... cnc

]T
(21)

respectively. The estimated parameters are determined from

Equation (13). The identification of θ̂Hc is repeated for dif-

ferent values of nc, evaluating the fitting error of the static

function. Lastly, the smallest nc that leads to a fitting error

smaller than 3% is selected (as a good compromise between

parsimony and accuracy), together with the associated θ̂Hc.

In the second step, the ARX block is identified utilising

the signals {ηd(k)} and {fEd(k)}, generated with the NWT

Dynamic Experiment. Now that θHc is known, it is possible to

calculate the output {s(k)} of the nonlinear static block using

Equation (17). In this way, both the input and the output of the

ARX model is known, and it is therefore possible to identify

the ARX parameters θHARX
, under the constraint that the DC

gain of the ARX is equal to one: DCgain = (
∑nb

i=1
bi)/(1 +∑na

i=1
ai) = 1, which corresponds to an equality constraint on

the parameters A = [−1,−1, ...,−1, 1, 1, ...1] and d = 1. In

this case Equations (9), (11) and (12) become:

z =
[
fEd(τ + 1) fEd(τ + 2) ... fEd(Ñ)

]T
, (22)

X=




fEd(τ) ...fEd(τ+1−na) s(τ+1−nd)...s(τ+1−nd−nb)
fEd(τ+1) ...fEd(τ+2−na) s(τ+2−nd)...s(τ+2−nd−nb)

...
. . .

...
...

. . .
...

fEd(Ñ−1) ... fEd(Ñ−na) s(N) ... s(N−nb)




Fig. 8. Wave tank geometry.

θ̂Harx =
[
a1 a2 ... ana

b0 b1 ... bnb

]T
(23)

respectively. The estimated parameters are given from Equa-

tion (14).

F. Kolmogorov-Gabor Polynomial Model Identification

For the KGP model, the NWT Dynamical Experiment

signals are utilised, obtaining from Equations (9) and (12):

z =
[
fEd(τ + 1) fEd(τ + 2) ... fEd(Ñ)

]T
,

θ̂KGP=[a11,...,ana1
,b01,...,bnb1

,...,a1p,...,anap,b0p,...,bnbp]
T

Each of the (Ñ − τ) rows of the data matrix (11) has the

form: [fEd(k− 1), ..., fEd(k−na), η(k−nd), ..., η(k−nd −
nb), ..., f

p
Ed(k−1), ..., f

p
Ed(k−na), η

p(k−nd), ..., η
p(k−nd−nb)],

where k = (τ + 1), ..., Ñ .

V. ILLUSTRATIVE EXAMPLES

In this section, the methods described in Sections II- IV are

implemented on different test devices. The present case study

considers a two dimensional (2D) NWT, whereby the NWT

is one cell thick and symmetry planes are imposed on the

front and back faces of the domain. The 2D NWT is used to

allow a timely investigation of the optimal experiment design,

before moving to the much computationally slower 3D NWT

for real WEC geometries. The NWT is a 50m deep tank with

walls 100m from the device and with wave creation/absorption

implemented via the waves2FOAM package [25] utilising two

95m long relaxation zones situated 5m either side of the device

(see Fig. 8). Since two dimensional (2D) NWT simulations are

utilised, the geometries of the test devices are infinitely long

horizontal bars, having vertical cross-sections of a triangle, a

circle and a box, with the dimensions shown in Fig. 9. For

all the geometries, the draft is 50% of the device height. In

the context of 2D NWT simulations, the waves move along a

direction perpendicular to the infinitely long horizontal body

axis, therefore, no wave directionality effects on the body are

investigated.

A. Model Training and Identification

As illustrated in Section III-A, for the model identifica-

tion, two kinds of NWT experiments are performed for each

geometry, NWT Hydrostatic Force Experiment and NWT

Dynamic Experiment, generating output data vectors sampled

at Ts = 0.1s.
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Fig. 9. Test device geometries: box, circle and triangle. The dotted line
represents the mean free surface elevation (MFSE).

Fig. 10. Results from the NWT Static Force Experiment and fitting of the
Hammerstein’s static curves in case of triangle (nc = 2), circle (nc = 3) and
box (nc = 1).

The results from the NWT Static Force Experiments are

shown in Figure 10. Figure 10-(a) shows the FSE, starting from

the bottom of the device and slowly rising, until the device

is completely submerged. Figure 10-(b) shows the excitation

force on the body during this FSE change. Figure 10-(c) then

plots the excitation force as a function of the FSE, showing

the nonlinear nature of the relationship for the triangular and

circular geometries.

Figure 11 shows the fitting error of the static curves of the

Hammerstein models as a function of nc, and the identified

values of nc for the different geometries (nc equal to 1, 2 and 3

for box, triangle and circle respectively). Figure 10-(c) shows

Fig. 11. The fitting error of the static curve of the Hammerstein model for
different polynomial order nc. The smallest nc is chosen that guarantees
fitting error smaller than 3%. In case of the box, the static curve is a straight
line, therefore the fitting error is already zero for nc = 1
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Fig. 12. Training experiment T1.

TABLE I
IDENTIFIED na ,nb , nd , nc AND p FOR THE TRIANGLE, CIRCLE AND BOX

GEOMETRIES.

Geometry na nb nd nc p

Triangle 4 2 -8 2 2

Circle 3 2 -6 3 2

Box 3 2 -7 1 2

the fitting of the static curves of the Hammerstein models.

For the simulation of the NWT Dynamic Experiments,

two different sea states have been utilised, having Jonswap

spectra characterised by: (Hs = 1.5m, Tp = 10s) and

(Hs = 0.5m, Tp = 10s). Each sea state realization has been

obtained as multisine signal, consisting of 100 harmonics with

a fundamental frequecncy of 0.01Hz and selecting a random

phase for each harmonic.

For each sea state, four different realizations have been

generated (in total 8 realizations), and utilised with each

geometry (in total 24 experiments). The experiments involving

the triangle have been called Ti with i = 1, ...8, and similarly,

the symbols Ci and Bi have been utilised for the experiments

involving circle and box geometry respectively (see Tables II,

III and IV). Fig. 12 shows the experiment T1 utilised to train

the models for the triangular geometry, where it is possible to

see that, the FSE has been intentionally constructed in a way

so, that the device is never overtopped or dried out.

Utilising the strategy illustrated in Section IV-C, the input

delay time nd, and the dynamical orders na and nb have been

identified for the three geometries; the results are summarized

in Table I. In the case of the circular geometry, Fig. 13 shows

the loss function calculated for the different ARX models,

obtained by changing nd. It is possible to see that the minimum

value occurs for nd = −6 (noncausal ARX model). In Fig.

14 the loss function is plotted for different values of na, for

the case of circular geometry. It is possible to see that, for na

bigger than 3, the loss function has no significant reduction,

indicating that na = 3 is appropriate for the identification of

a parsimonious model.

The polynomial order of the KGP model p = 2 has been

identified, observing that bigger values of p improve the

training fitting but degrade the quality of the validation fitting

(overfitting).
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Fig. 13. Determination of nd = −6, for the circle geometry.

Fig. 14. Determination of the dynamical order na = 3, for the circle
geometry.

Different error metrics can be utilised to compare the model

prediction f̂E(k) with the measured signal fE(k). A possible

choice could be the mean square error (MSE), but it is

not normalised with respect to the magnitude of fE(k). To

overcome this inconvenience, the mean absolute percentage

error (MAPE) could be chosen. However, drawback of this

error metric is that it can give a distorted picture of the error,

if there are zero or nearly-zero values in the measured signal.

Since fE(k) oscillates around zero, there is a good possibility

that it could happen. This leads to the definition of a new

metric, which we term normalised root mean-squared error

(NRMSE):

NRMSE =

√∑
k[fE(k)− f̂E(k)]2
√∑

k f
2

E(k)
(24)

Fig. 15 shows, for experiment T1, the multi-step predictions

of the identified ARX, Hammerstein and KGP models. It

is possible to see that none of the modelling approaches

is perfect, but the linear model has particular difficulty in

following peaks in the excitation force. All the fitting results

on the training experiments are summarised in Table II, III and

IV for the triangle, circle and box, respectively. It is possible

to observe that, for all 24 experiments, in the case of training

fitting, the KGP model shown to be the best, followed by

the Hammerstein and finally the ARX model, confirming the
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Fig. 15. Identified model performances on the training experiment T1. The
multi-step model predictions are compared with the training data.

TABLE II
NRMSE MODELS MULTI-STEP PERFORMANCES FOR TRAINING

(TRIANGLE).

Training Experiment ARX Hammerstein KGP

Hs=1.5m ; Tp=10s ; (T1) 0.2336 0.1011 0.0891

Hs=1.5m ; Tp=10s ; (T2) 0.2388 0.1028 0.0972

Hs=1.5m ; Tp=10s ; (T3) 0.2705 0.1078 0.1060

Hs=1.5m ; Tp=10s ; (T4) 0.2488 0.1099 0.0960

Hs=0.5m ; Tp=10s ; (T5) 0.0915 0.0681 0.0450

Hs=0.5m ; Tp=10s ; (T6) 0.0819 0.0697 0.0483

Hs=0.5m ; Tp=10s ; (T7) 0.1017 0.0697 0.0506

Hs=0.5m ; Tp=10s ; (T8) 0.0803 0.0676 0.0421

presence of nonlinear effects in the data.

B. Model Validation

The simplest way to evaluate the accuracy of a model is to

identify it on training data, and then, evaluate its performance

on test data from a different experiment. A model, which fits

TABLE III
NRMSE MODELS MULTI-STEP PERFORMANCES FOR TRAINING

(CIRCLE).

Training Experiment ARX Hammerstein KGP

Hs=1.5m ; Tp=10s ; (C1) 0.1233 0.1135 0.0922

Hs=1.5m ; Tp=10s ; (C2) 0.1324 0.1151 0.0967

Hs=1.5m ; Tp=10s ; (C3) 0.1495 0.1228 0.1117

Hs=1.5m ; Tp=10s ; (C4) 0.1430 0.1222 0.1072

Hs=0.5m ; Tp=10s ; (C5) 0.0371 0.0351 0.0306

Hs=0.5m ; Tp=10s ; (C6) 0.0366 0.0366 0.0261

Hs=0.5m ; Tp=10s ; (C7) 0.0372 0.0359 0.0304

Hs=0.5m ; Tp=10s ; (C8) 0.0351 0.0340 0.0273

TABLE IV
NRMSE MODELS MULTI-STEP PERFORMANCES FOR TRAINING (BOX).

Training Experiment ARX Hammerstein KGP

Hs=1.5m ; Tp=10s ; (B1) 0.1311 0.1270 0.0961

Hs=1.5m ; Tp=10s ; (B2) 0.1294 0.1251 0.0914

Hs=1.5m ; Tp=10s ; (B3) 0.1368 0.1308 0.0952

Hs=1.5m ; Tp=10s ; (B4) 0.1259 0.1243 0.0917

Hs=0.5m ; Tp=10s ; (B5) 0.0531 0.0481 0.0463

Hs=0.5m ; Tp=10s ; (B6) 0.0591 0.0561 0.0477

Hs=0.5m ; Tp=10s ; (B7) 0.0547 0.0511 0.0493

Hs=0.5m ; Tp=10s ; (B8) 0.0537 0.0494 0.0448
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Fig. 16. Identified model performances on the validation experiment T2. The
multi-step model predictions are compared with the training data. The models
have been trained on the experiment T1.

TABLE V
NRMSE VALIDATION MULTI-STEP PERFORMANCES OF THE MODEL

TRAINED WITH THE EXPERIMENT T1 (TRIANGLE).

Validation Experiment ARX Hammerstein KGP

Hs=1.5m ; Tp=10s ; (T2) 0.2394 0.1017 0.0894

Hs=1.5m ; Tp=10s ; (T3) 0.2697 0.1071 0.1042

Hs=1.5m ; Tp=10s ; (T4) 0.2514 0.1084 0.0999

Hs=0.5m ; Tp=10s ; (T5) 0.1050 0.0643 0.0718

Hs=0.5m ; Tp=10s ; (T6) 0.0960 0.0649 0.0775

Hs=0.5m ; Tp=10s ; (T7) 0.1123 0.0657 0.0713

Hs=0.5m ; Tp=10s ; (T8) 0.0954 0.0638 0.0759

well the training data, is not necessary a good model on a dif-

ferent experiment (overfitting problem). In this paper, instead

of validating the identified model on a singular experiment, it

has been decided to stress the model with an intense group

of 7 validation tests. In this way, it is possible to obtain a

more complete overview regarding the ability of the model

in predicting the excitation force in different wave conditions.

Considering the triangular geometry, the models trained on

T1 are validated on all the other experiments T2...T8, with the

fitting results summarised in Table V. Fig. 16 shows the perfor-

mance of the models trained with experiment T1 and validated

with experiment T2. Analogous procedures have been done for

the circle and box, with the results shown in Table VI and VII.

In general, the models show the ability to predict a different

realization belonging to the same sea state or to another sea

state (the model trained with Hs = 1.5m behaves well also for

Hs = 0.5m). This indicates a parsimonious structure for the

models and a good estimate for the parameters. Furthermore, it

is possible to see that, in most cases, the nonlinear models (and

particularly the KGP model) are able to predict the excitation

force with more accuracy. Therefore, it is possible to conclude

that the problem under investigation includes nonlinearities,

and that the nonlinear identified models are able to describe

them.

In Fig. 17, the identified models from experiment T1 (tri-

angular geometry) have been also validated on an experiment

with a monochromatic wave of 0.1Hz. It can be seen that the

fully nonlinear NWT simulation exhibits an asymmetric out-

put, with respect to the MFSE, in response to the symmetrical

TABLE VI
NRMSE VALIDATION MULTI-STEP PERFORMANCES OF THE MODEL

TRAINED WITH THE EXPERIMENT C1 (CIRCLE).

Validation Experiment ARX Hammerstein KGP

Hs=1.5m ; Tp=10s ; (C2) 0.1216 0.1114 0.0887

Hs=1.5m ; Tp=10s ; (C3) 0.1374 0.1194 0.1224

Hs=1.5m ; Tp=10s ; (C4) 0.1311 0.1174 0.1115

Hs=0.5m ; Tp=10s ; (C5) 0.0722 0.0556 0.0545

Hs=0.5m ; Tp=10s ; (C6) 0.0730 0.0561 0.0533

Hs=0.5m ; Tp=10s ; (C7) 0.0718 0.0553 0.0547

Hs=0.5m ; Tp=10s ; (C8) 0.0726 0.0558 0.0534

TABLE VII
NRMSE VALIDATION MULTI-STEP PERFORMANCES OF THE MODEL

TRAINED WITH THE EXPERIMENT B1 (BOX).

Validation Experiment ARX Hammerstein KGP

Hs=1.5m ; Tp=10s ; (B2) 0.1278 0.1243 0.0934

Hs=1.5m ; Tp=10s ; (B3) 0.1317 0.1277 0.0984

Hs=1.5m ; Tp=10s ; (B4) 0.1383 0.1332 0.0992

Hs=0.5m ; Tp=10s ; (B5) 0.0747 0.0761 0.0662

Hs=0.5m ; Tp=10s ; (B6) 0.0805 0.0826 0.0692

Hs=0.5m ; Tp=10s ; (B7) 0.0771 0.0777 0.0691

Hs=0.5m ; Tp=10s ; (B8) 0.0769 0.0786 0.0665

sinusoidal η, owing to the fact that the triangle’s geometry is

asymmetric to respect to the MFSE. It is not possible for the

linear ARX model to replicate this nonlinear behaviour and

it is outperformed by the nonlinear models that are able to

replicate the asymmetric output. This is confirmed also in the

results in Table II and V, where the fitting of the ARX model

is poor, in particular for the sea state with Hs = 1.5m. This

is because the nonlinear effects, arising from the geometric

asymmetries, become more relevant with larger waves.

VI. CONCLUSION

Three different discrete time model structures have been

introduced to model the relationship between FSE and exci-

tation force, all linear with respect to the parameters, offering

the advantage of a convex optimisation for parameters that can

be easily solved.

The models were tested on three different geometries, and

the superiority of the nonlinear models (Hammerstein and
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Fig. 17. Model trained with experiment T1, and validated on monochromatic
experiment with f=0.1Hz.
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KGP models) showed the nonlinear nature of the investigated

problem.

The linear ARX model exhibited strong limitations due to its

inability to generate asymmetry at its output, for a stimulation

with a symmetric input. The nonlinear models, on the other

hand, shown a very good ability in asymmetry generation.

The identified nonlinear models display good performance

both in training and validation, indicating that the selected

model structures, the estimated parameters and the identifi-

cation procedures are appropriate. Overall, the KGP model

behaves as the most accurate model, both in training and

validation.
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