
Nonlinear Froude-Krylov force modelling for two

heaving wave energy point absorbers
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Abstract—Most mathematical models used to assess the mo-
tions of wave-energy converters are linear, which may lead to
significant errors as these devices can have a strongly-nonlinear
behaviour. This paper investigates the effects of nonlinearities in
the computation of Froude-Krylov forces, which play a major
role in the dynamics of the motion of heaving energy point-
absorbers, with a focus on the influence of the device’s geometry.
Results show that Froude-Krylov forces nonlinearities could be
negligible when the device is uncontrolled. In contrast, they
become significant when control is applied to maximise motions,
especially for a device whose immersed cross-sectional area varies
over time: in such a case latching control parameters based on a
linear model can prove to be inefficient. Furthermore, although
the latching control can be adapted to the nonlinear behaviour
of the device by tuning parameters accordingly, the amount of
power production assessed through the linear models does not
seem to be achievable.

Index Terms—Wave energy, boundary element method, exci-
tation force, Froude-Krylov force, nonlinear modelling

I. INTRODUCTION

Mathematical models for wave energy devices are essential

for power production assessment, for the simulation of device

motion (including for control system assessment), or for the

design of model-based control. They typically follow Cum-

mins equation [1], using hydrodynamic parameters, identified

in most of cases, by using boundary element methods (BEM).

Most of these models are linear, which is attractive due to

their low computational requirements. However, assumptions

under which they are valid are restrictive, in particular the

assumption of small motion.

In fact, the aim of wave energy converters (WEC) is to

exaggerate the motion of the device to maximise the power

production. Despite the objective to harvest energy, power

absorption is not always possible, and other goals can be more

important in specific situations, such as the safety of the device

in extreme conditions. During survival mode, nonlinearities are

high and important, but the machine may need to protect itself

from the rough sea conditions and abandon power production.

However, it is also possible to meet situations where nonlin-

ear effects are significant within the power production mode,

as illustrated in Figure 1. This kind of situation is of particular

interest for the present study, where the focus is on the

impact of nonlinearities on the models developed for power

production assessment and control design.

Fig. 1. Different operating regions for wave energy devices

Significant differences can be observed when comparing

linear models to experimental tests [2] or nonlinear models

[3]. As a consequence, linear models may need to be improved

by adding appropriate nonlinear effects in order to have the

fullest and most precise information possible about the system.

Well known and confirmed codes such as WAMIT [4],

Aquaplus [5] or NEMOH [6], are based on boundary ele-

ment methods and solve radiation and diffraction problems

in the frequency domain, based on linear methods. However,

nonlinear analysis requires time-domain simulations. As a

consequence, frequency-domain results need to be adapted to

be analysed in the time-domain, for example by using the

Ogilvie’s formula [7], or by performing simulations in the

time-domain directly. The latter is used within the scope of

this paper.

Different models have already been presented in the liter-

ature, where nonlinear effects have been added to the linear

model, either using extended BEMs [3], [8], or by adding

nonlinear forces to Cummin’s equation [2], [9].

Froude-Krylov (FK) forces of heaving point-absorbers are

the main component of the hydrodynamic force [3]. Therefore,

in this paper, instantaneous static and dynamic Froude-Krylov

forces are computed by using an extended BEM. Hence,

integration of the hydrostatic force and incident wave dynamic

pressure is performed over the exact instantaneous wetted

surface. In order to further study the influence of the nonlinear

FK forces, with regard to the geometry of the device, two

different bodies are analysed: a sphere and a cylinder, both
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with a single degree of freedom (heave). These geometries are

chosen to offer one with a uniform cross-sectional area (CSA)

and one with a non-uniform CSA. This choice will allow the

investigation of the effect of variations in instantaneous wetted

surface. For these two devices, the influence of nonlinear

effects on the adequate setting of the control strategy and on

power production is studied as well, in the specific and simple

case of latching control.

II. THEORETICAL BACKGROUND OF BEMS

Two three-dimensional bodies are considered as floating

wave energy converters, whose gravity centre at the hydrostatic

equilibrium position is taken as origin point of the inertial

reference frame. We assume the fluid to be inviscid and the

incident flow to be irrotational and incompressible. That way,

Newton’s law can be used to specify the governing equation

as follows:

m~̈x = ~Fg −
x

S

P~ndS + ~FPTO (1)

where m is the mass of the body, x is the position of the

body relating to its hydrostatic equilibrium position, Fg is the

gravity force acting on the body, S the wetted surface, P the

pressure acting on this surface, ~n the vector normal to the

surface element and FPTO the power take-off force, which

will be modelled as a linear damper.

Potential theory is generally used in different BEM methods,

where the potential flow of the wave describes the velocity

field as the gradient of the velocity potential. This total flow

can be divided into three different potentials: undisturbed

incident flow (ΦI ), diffracted flow (ΦD) and radiated flow

(ΦR). The sum of these three potentials makes up the total

potential of the wave (Φtot).

Φtot = ΦI +ΦD +ΦR (2)

The pressure P acting on the body can be obtained from

the derivation of this total potential of the incident flow by

using Bernoulli’s equation:

P = −ρgz − ρ
∂Φtot

∂t
− ρ

|∇Φtot|
2

2
(3)

where z is the position of the wetted surface and −ρgz the

hydrostatic pressure acting on it.

A. Forces acting on the body

In the same way as the total potential is divided into

three potentials in Eq. (2), the action of the pressure of each

component of the potential can be identified and Eq. (3) can

be written as follows:

P = −ρgz − ρ
∂ΦI

∂t
− ρ

|∇ΦI |
2

2

− ρ
∂ΦD

∂t
− ρ

|∇ΦD|2

2

− ρ
∂ΦR

∂t
− ρ

|∇ΦR|
2

2
− ρ∇ΦI∇ΦR − ρ∇ΦI∇ΦD − ρ∇ΦD∇ΦR (4)

where:

• Pst = −ρgz is the hydrostatic pressure as mentioned

before, well known as Archimedes force. It forms the

static Froude-Krylov force together with the gravity force

(Fg):

~FFKst
= ~Fg −

x

S

Pstatic~ndS (5)

• Pdyn = −ρ∂ΦI

∂t
−ρ |∇ΦI |

2

2 is the dynamic pressure, which

generates the dynamic FK force:

~FFKdyn
= −

x

S

Pdyn~ndS (6)

• PD = −ρ∂ΦD

∂t
− ρ |∇ΦD|2

2 is the pressure related to the

diffraction potential and generates the diffraction force:

~FD = −
x

S

PD~ndS (7)

• PR = −ρ∂ΦR

∂t
− ρ |∇ΦR|2

2 is the pressure related to the

radiation potential and generates the radiation force:

~FR = −
x

S

PR~ndS (8)

• ρ∇ΦI∇ΦR, ρ∇ΦI∇ΦD and ρ∇ΦD∇ΦR are second

order diffraction-radiation terms.

As only Froude-Krylov forces are considered nonlinear

in our model, quadratic terms in radiation and diffraction

potentials and second-order terms are neglected. These terms

are neglected in the same way by any other linear model.

Each of these individual forces contributes to the motion of

the bodies and is shown in Eq. (9), which is the developed

form of equation Eq. (1):

m~̈x = ~FFKst
+ ~FFKdyn

+ ~FD + ~FR + ~FPTO (9)

III. MODELLING METHODS

Two different models, based on BEM, are compared in this

paper. The first one is the fully linear model while the second

one is a weakly-nonlinear model that considers nonlinear

Froude-Krylov forces.
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A. Linear modelling

The linear method assumes that the amplitude and the

steepness of the waves are small. Under this assumption, the

fluid potential theory can be linearised and therefore, all the

quantities of the simulation can be expressed over the mean

wetted surface of the body. In addition, radiation and excitation

forces are calculated by using the convolution integral of the

corresponding impulse-response function and the velocity of

the body (for radiation) or the free-surface elevation and (for

the excitation term). Nevertheless, this time-domain approach

has the same limitations as the frequency-domain simulation

and so might be unable to accurately reproduce the motion of

the body.

Under the linear approach, Eq. (9) is written as,

m~̈x = −KH~x−

∫ ∞

−∞

KEx(t− τ)η(τ)dτ

− µ∞~̈x−

∫ ∞

−∞

KR(t− τ)~̇x(τ)dτ − CPTO~̇x (10)

where:

The static Froude-Krylov force is considered to act like

a mass-spring system, where KH is the hydrostatic stiffness

matrix. This system represents the Archimedes force pushing

up when the body is pushed down into the water and the

gravity force pushing down when the body moves in the

positive vertical sense.

The excitation force is formed by the dynamic Froude-

Krylov force and the diffraction force and uses the convolution

product between the excitation impulse-response matrix (KEx)

and the free-surface elevation (η).

The radiation force is expressed by using the added mass

term (µ∞) and a convolution between the radiation impulse-

response matrix (KR) and the velocity of the body, according

to the classical Cummins decomposition [1].

Power take-off force is modelled as a linear damper using

a fixed damping coefficient (CPTO).

Time-domain hydrodynamical coefficients and impulse-

response functions (KH , KEx and KR) are directly given by

ACHIL3D [10] calculations.

However, this linear approach neglects significant nonlin-

earities such as the second order terms of the Eq. (4), non-

linearities of the incident waves, or geometric nonlinearities

generated by pressure forces acting over a varying wetted

surface. The method presented in Section III-B is designed

to deal with variations in wetted surface.

B. Nonlinear Froude-Krylov forces

In order to improve the accuracy of the linear model,

another degree of complexity can be introduced to extend the

linear approach. Instead of using the mean wetted surface, the

undisturbed incident wave pressure as well as the hydrostatic

force can be integrated over the instantaneous wetted surface.

It implies that the wetted surface will change over time and so

will need to be re-defined at each time-step, which has been

applied in few models showing very promising results [2],

[3], [11]. Calculating instantaneous wetted surface requires an

additional computational effort, especially since it implies the

use of a very fine mesh that takes into account only those

cells of the mesh below the instantaneous free surface [2] or

an automatic remeshing routine [3], [11] as applied in this

paper’s framework.

Eq. (10) can be written as

m~̈x = ~Fg −
x

S(t)

(Pst + Pdyn)~ndS −

∫ ∞

−∞

KD(t− τ)ηdτ

− µ∞~̈x−

∫ ∞

−∞

KR(t− τ)~̇x(τ)dτ − CPTO~̇x (11)

where:

The Froude-Krylov forces are integrated over the instan-

taneous wetted surface. In our case, an automatic remeshing

routine, explained in detail in [8], is used to compute the

exact instantaneous wetted surface. This routine first involves

the computation of the intersection between the body and the

free surface, then the selection of the immersed or partially

immersed panels and, finally, the remeshing of those panels

that are partially immersed.

The diffraction force is expressed by the convolution

product between the diffraction impulse-response matrix (KD)

and the free-surface elevation (η). In this case the diffraction

force remains linear as in the linear approach, but it is analysed

independently. KD is also computed by ACHIL3D code.

The radiation force is computed as in the linear approach.

The power take-off force remains the same as in the linear

approach.

IV. CASE STUDY

The main objective of this paper is to assess the relevance

of modelling nonlinear Froude-Krylov forces with regards to

the geometry of a device. Therefore, two shapes are studied:

a sphere and a cylinder. Sphere has a varying CSA, which

is likely to increase the effects of geometric nonlinearities,

while cylinder has a constant CSA, which could make the

linear model a better approximation than it is for the sphere

case, at least when the motion amplitude of the cylinder does

not exceed its length.

Only heave motion is considered for both devices, in

order to simplify the analysis, assuming, in both cases, that

the bodies are tethered to the seabed with power take-off

(PTO) systems based on a linear damper. Figure 2 shows the

configuration of the two cases.

This section explains how the dimensions of these two

devices are set, presents the range of sea states in which their

dynamic behaviour is simulated, and describes the power take-

off and control strategies that are used.
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Fig. 2. Sketch view of the two configurations: sphere and cylinder.

A. Body geometries

As a previous study utilised a sphere [3] and results showed

the significance of the nonlinear Froude-Krylov forces, a

sphere is retained. However, the dimensions are different

in this case, to be as close as possible to realistic device

parameters.

The dimensions of the cylinder are defined so as to present

as much comparability as possible with the sphere. First of all,

the two devices are chosen to have a density of 500kg/m3,

so that the positions of their gravity centres at hydrostatic

equilibrium are the same and aligned with the free surface at

rest, and so that the asymmetries of their vertical motions are

limited. Furthermore, the condition that the two devices should

have a similar natural frequency is chosen as a comparability

criterion. In addition, it can be useful to keep similar geometric

dimensions like radius, draft or volume displacement, in order

to obtain forces of similar magnitude acting on the two bodies.

All these choices are designed to make the results easier to

compare.

Requirements to make the bodies comparable lead to the

choice of a 5-m diameter sphere (inspired by real-life wave

energy devices such as the WAVESTAR device [12]) with a

density of 500kg/m3, as mentioned above. In order to find

dimensions for the cylinder that meet the chosen comparability

criteria, basic algebraic calculations are used, based on the

typical equations for the natural frequency (ω0) shown in Eq.

(12) for the sphere and in Eq. (13) for the cylinder:

ω0 =

√

ρgπR2
s

ρ 4
3πR

3
s(1 + ε)

=

√

3g

4Rs(1 + 0.5)
(12)

ω0 =

√

ρgπR2
c

πρR2
c2Hc +

4
3ρR

3
c

=

√

πg

πHc+ 4
3Rc

(13)

For a sphere of radius Rs, the added mass is calculated by

using an approximation, where ε = 0.5 [13]. For a cylinder

of radius Rc and draft Hc, the added mass is calculated by

using the well-known analytical formula A∞ = 4
3ρR

3
c [14].

Hence, for a sphere having a natural period of 3.17s,

according to Eq. (12), suitable geometric characteristics for

the cylinder can be found using the formula in Eq. (13)

so as to obtain the same natural period. This results in a

rather flat cylinder with the same radius as the sphere and

a similar displacement. Table I summarizes all the geometric

characteristics of the two bodies.

TABLE I
GEOMETRICAL CHARACTERISTICS OF THE BODIES

Sphere Cylinder

Geometry
Radius (m) 2.5 2.5
Draft (m) - 1.45

Displacement (m3) 32.72 28.47
Natural period (s) 3.17 3.17
Optimal PTO damping (BPTO) 25000 26000

Once the geometric features of the devices are set,

ACHIL3D simulations are run in order to obtain the hydro-

dynamic parameters needed in the two time-domain hydrody-

namic modelling methods.

B. Sea-states

The response amplitude operator (RAO) of a given wave

energy converter allows for a representation of its behaviour

under the whole range of wave periods. Knowledge of the

RAO is of high importance with regard to the power output

and motions that can be expected, both in usual operating

conditions and in extreme sea states. Yet, taking nonlinearities

into account in the modelling of the WECs motions could

generate significant changes in its expected response.

That is why the RAOs are plotted for the two devices using

both hydrodynamic models described in Section III, serving

as a relevant point of comparison.

To achieve this, simulations must be run for many dif-

ferent monochromatic wave periods. The studied devices are

assumed to operate under deep water conditions, which is con-

sistent with their dimensions and with the wave characteristics

used in the simulations. Under deep water assumption, the

wave length (λ) and period (T ) are related as follows:

λ =
g

2π
T 2 (14)

Hence, the choice of a wave period determines the wave-

length. In order to study the responses of the device for dif-

ferent wave periods and compare them easily, the same wave

steepness is kept for all the simulations. As a consequence,

for each wave period TW the wave height H is set so that the

steepness H
λ

remains constant.

As our primary goal is to study the effects of nonlinear

device modelling only, and not those of nonlinear wave

modelling, regular, linear waves based on Airy’s theory are

used. This is a good approximation for relatively small and

flat waves. The wave steepness H
λ

is set to 0.018, based

on a wave of 1m height and 6s period (λ is then 56.25m).

These parameters could correspond to realistic typical wave
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conditions and describe normal operating conditions for our

WECs.

Table II shows the range of wave periods and their cor-

responding wave heights and wavelengths in function of the

selected steepness value.

TABLE II
ANALYSED SEA-STATES FOR THE 0.018 STEEPNESS

Wave periods [s] 3 4 5 6 7 8 10

Wave height [m] 0.25 0.44 0.69 1 1.36 1.78 2.78

Wavelength [m] 14 25 39 56 77 100 156

C. Power absorption and control

The main objective of a WEC is harvesting power from

the waves. The absorption rate depends on the velocity of the

device, among others aspects such as PTO system, mooring

lines or the geometry of the device. In order to assure amplified

motions even when the wave frequency is far from the natural

frequency of the device, the velocity of the device can be

regulated by using control strategies, adapting the device to

the incident wave. This adaptation can considerably increase

the power capture, improving it by a factor 2 in irregular waves

and 4 in regular waves [15] using latching control. This latter

control strategy is chosen for this work, due to its simplicity

and efficiency [16].

1) Latching control strategy: Latching control consists of

locking the motion of the device when its velocity goes to zero,

and keeping it latched until the wave force reaches the most

advantageous phase, when the device will be unlatched. The

motion of the device is then a succession of ramps separated

by periods of rest, as illustrated in Figure 3.

Fig. 3. Latching calculations, [16]

The control variable is the duration of the latching period

(TL), calculated using the natural period of the device (Tω0
)

and the period of the incident wave (TW ) as follows:

TL =
t5 − t1

2
− (t5 − t4) =

TW

2
−

Tω0

2
(15)

If the natural period of the device is known, and regular,

monochromatic waves are used, this optimal latching time is

easy to compute and remains constant over time. An initial

latching control strategy (hereafter referred to as fixed-time

latching strategy) can then be defined based on linear theory:

(TL) is kept constant and is defined as in the equation above.

This fixed-time control strategy is designed to give very

good results in the scope of linear theory, where the natural

period of the device is indeed very well-defined, since it only

depends on the hydrostatic stiffness, mass and added mass of

the device, as described in Section IV-A. But it may not be the

best strategy with the weakly-nonlinear model since, in this

case, the device does not have a clearly-defined hydrostatic

stiffness, especially when the immersed CSA of the device is

not constant. This will be confirmed by the results presented

in Section V.

A second latching control strategy (hereafter referred to as

adaptive latching strategy) is then defined, in which a basic

algorithm, presented in Figure 4, allows for adaptive changes

in the latching period in order to obtain the greatest possible

motion amplitude in the incident monochromatic wave train,

regardless of the hydrodynamic model that is used.

The adaptive algorithm consists of modifying the latching

period step-by-step in a direction that increases the motion

amplitude. Between two consecutive modifications, the algo-

rithm waits for the motion to reach a steady state in order

to get a reliable evaluation of the new motion amplitude

obtained. Dealing with monochromatic waves, the criterion

used to determine if this steady state is reached is to check

whether the motion period is close enough to the wave period.

The algorithm then alternates modifications of the latching

period and stabilisation phases.

In Figure 4, Tm is the period of the device’s motion,

measured as twice the time elapsed between two consecutive

latching events, l is the threshold which determines whether

the motion has reached the steady state situation, A∗ is

the memorised motion amplitude obtained with the previous

latching time, and d is the increment to the latching time.

Unlike the constant latching time used in the strategy

based on the linear model, this adaptive algorithm enables the

device’s motion to reach a pattern which is well-synchronised

with the excitation force, even when using the weakly-

nonlinear hydrodynamic model, thus ensuring that motion

amplitude and power production are the best that can be

obtained by using latching in monochromatic waves. Notice

that when applied to the linear hydrodynamic modelling case,

the algorithm converges to the initial latching control strategy.

2) Power Take-Off: For reasons of simplicity and generali-

sation capability, in this paper the PTO system is modelled as

a linear damper, as illustrated in Figure 2. The optimal value

for the PTO damping coefficient of each device is calibrated

using linear simulations. When using latching, this optimal

PTO value shows very little sensitivity to the incoming wave

period. That’s why a single PTO damping value is defined

for each device, which allows for a good power capture in all

the studied sea states, while facilitating efficient comparisons.

Values for (BPTO) are presented in Table I.

V. RESULTS

Results are obtained by using a program written in Fortran

that performs the time-domain simulation of the device’s

motion (using 4th-order Runge-Kutta integration) and has the
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Fig. 4. Diagram of the algorithm for the new latching strategy created to apply with nonlinear FK forces

ability to compute nonlinear Froude-Krylov forces such as

described in Section III-B. Initially, the ACHIL3D software

is used to generate the hydrodynamic coefficients which will

be used for each geometry in all the simulations.

The only nonlinear effects analysed are Froude-Krylov

forces, as [3] identifies them to be mainly responsible for the

nonlinear behaviour of point absorbers. The rest of the forces

(radiation, diffraction, incident wave, ...) are modelled using

linear models.

Various simulations are run to compare linear and nonlinear

models for the two devices described in Section IV-A: a

very simple free-decay case is briefly studied, where only

the static part of the FK forces is active, in order to validate

this paper’s basic hypothesis about the impact of the device’s

geometry. Simulations are then performed over a range of

linear monochromatic waves such as described in Section

IV-B, first in the case where the device goes uncontrolled, then

using the two different latching control strategies described in

Section IV-C. It is then ensured that nonlinear behaviours are

represented under a wide range of conditions.

A. Free-decay

For the free-decay simulation, the initial position of the body

is set where the devices are immersed below their equilibrium

position, so that their motion is then a damped oscillation

around their equilibrium position.

One can very quickly notice, in Figure 5, how the nonlinear

curve stays exactly on top of the linear curve for the cylinder,

while there is a visible difference in the case of the sphere.

Differences observed between linear and weakly-nonlinear

models in the case of the sphere are due to the computation of

the instantaneous wetted surface in the nonlinear simulation,

which, in this case, leads to a non-constant immersed CSA,

resulting in lower amplitudes and slower dynamics. In contrast,

the immersed CSA remains constant for the cylinder; as a con-

sequence, the hydrostatic stiffness coefficient used in the linear

method to model static FK forces is a good approximation, and

that is why both simulations give identical results.

Fig. 5. Free-decay simulations for sphere (on top) and cylinder (below)

The free-decay test highlights the geometrical nonlinearities

of the sphere in comparison with the cylinder and suggests

that the influence of the nonlinear FK forces can be more

significant in the case of the sphere.

B. Uncontrolled motions in regular waves

Although the free-decay test already highlighted the nonlin-

ear behaviour of the sphere it is, of course, more interesting

to analyse the responses of the devices in various incident

wave trains. As mentioned in Section IV-B, only linear, regular
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waves are used, as the main objective is to focus on the FK

force nonlinearities.

Fig. 6. RAOs of linear and nonlinear uncontrolled simulations for the sphere
on top and the cylinder below for different incident wave trains

The responses of the devices are first analysed by plotting

RAOs for the case where they move freely, without any control

or PTO system damping. Figure 6(a) and 6(b) show the results

for the sphere and the cylinder respectively, for different

wave periods and amplitudes. There is very little difference

between the linear and nonlinear computation of FK forces,

the nonlinear case showing a barely lower RAO than the linear

one, even for big waves.

This result is explained as follows: the natural frequency

of the device is between 3 and 4 s in both cases. But waves

whose periods are close to these values, have small heights (as

shown in Table II) compared to the dimensions of the devices.

Therefore, for wave periods close to their natural resonant

frequency, the devices do resonate and have greater motions

than the incident waves; however, the motion amplitude in

relation to the water surface is too small compared to the

device’s dimensions to see any significant geometric nonlinear

effects (about 0.2 m of amplitude while the drafts of the

devices are 2.5 and 1.45m respectively). In contrast, bigger

waves are those whose periods are well above the natural

period of the devices. Thus, the WECs do not resonate, and

behave as wave-followers: as a consequence the motions, in

relation to the water surface, are again very small compared

to the device’s dimensions.

C. Controlled motions in regular waves

The results of the control- and PTO-free case for these

specific devices do not especially highlight the interest of

modelling nonlinear features of the FK forces. However, a

realistic wave-energy device would be likely to be equipped

with a control system, enabling it to exaggerate its motions

not only in small waves, but also in bigger ones that are

away from its natural period. As a consequence, the latching

control strategies defined in Section IV-C1 are applied to the

two devices.

1) Fixed-time latching strategy: The fixed-time latching

strategy is suitable when the immersed CSA and the wetted

surface can be assumed to be constant. However, as soon as

CSA and wetted surface start to vary significantly over time,

as made possible by the weakly-nonlinear model, this latching

strategy loses efficacy.

Fig. 7. RAOs of linear and nonlinear computations for the sphere on top and
the cylinder below for different incident wave trains in controlled simulations
using the fixed-time latching strategy

Figure 7 demonstrates the loss of effectiveness of the fixed-

time latching strategy for the two devices. While the control

seems to work efficiently in small waves (up to about 6s

wave periods, i.e. 1-m wave height), its performance drops

dramatically in bigger waves, when nonlinearities become

significant.

The loss of efficacy of the fixed-time latching strategy

when using the weakly-nonlinear model can be more precisely

understood by analysing the motion of the device in a given

wave, as shown in Figures 9(a) and 9(b), which illustrate

how this control strategy works well using the linear model,

but is totally inadequate when nonlinear FK forces become

significant: the latching time is then poorly adapted to the

slower nonlinear dynamics of the device. Thus, the fixed-time

latching strategy is not able to place the velocity profile in

phase with the excitation force profile. Figure 9 shows 20s of

the steady state of a simulation with a wave period of 8s.

As seen in Figure 7, the bigger the wave, the more inad-

equate the control strategy, since nonlinearities are more sig-

nificant. Using an inadequate control strategy has an adverse

effect on the motion of the device, and in consequence, on the

power production.

In order to focus on the differences between the sphere

and the cylinder, the relative difference of the motion RAOs

between linear and weakly-nonlinear models is computed for

the two geometries and shown in Figure 8.
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Fig. 8. On top, relative difference in RAOs between linear and nonlinear
simulations. Below, amplitude of the relative motion between the device and
the free-surface, compared to the drafts of the devices, for the sphere and the
cylinder. The three regions are shown in all of them

Denoting the amplitude of the motion in relation to the free

surface as AW and the draft of the device as D, based on

Figure 8, three important types of situations can be depicted, in

which the differences between linear and nonlinear simulations

are significant or not, for each device:

• Region 1, AW << D (wave periods below 5s for

both devices): For the sphere and for the cylinder, the

nonlinearities in the computation of FK forces, especially

geometric nonlinearities, are insignificant and thus have

very little impact on the dynamics of the device. The

linear model is then a good approximation, and the fixed-

time latching strategy, which is based on the linear model,

works well even in the simulations using the weakly-

nonlinear hydrodynamic model.

• Region 2, AW < D (wave periods of 5 to 6s for the

cylinder, 5 to 7s for the sphere): The linear model fails

to accurately describe the motion of the sphere, but

remains accurate for the cylinder, whose immersed CSA

is constant. Thus, the fixed-time latching strategy applied

to the weakly-nonlinear model looses efficiency for the

sphere but keeps good performance for the cylinder.

• Region 3, AW > D (wave periods above 7s for the

cylinder, above 8s for the sphere): Because of bigger

wave heights, combined with the motion being magnified

by the latching, the devices spend a significant amount

of time either fully submersed, or totally out of the

water. As a consequence, the immersed CSA cannot be

assumed to be constant any more, either for the sphere

or for the cylinder, and the linear model becomes a

poor approximation for both shapes. The performance of

the fixed-time latching strategy drops accordingly when

applied to the nonlinear model.

While the realism of the situations described in Region

3 could be rightfully questioned, Region 2 is of particular

interest, since it corresponds to typical wave conditions such

as those described in Figure 8, and results in motions of very

significant amplitude. These significant motions demonstrate

the existence of realistic operational conditions in which

nonlinear effects cannot be neglected, especially when dealing

with a device whose immersed CSA is not constant. Nonlinear

effects have, in addition, a significant impact on the efficiency

of the control strategy. A control strategy based on the linear

model can prove to be inefficient when applied to a device

whose behaviour is nonlinear.

Note that Region 2 in Figure 8 is smaller for the cylinder

than it is for the sphere; this is because of its relatively small

draft due to the conditions chosen to enhance comparability

between the two devices. Using a taller device, the range

within which the linear model accurately represents the cylin-

der’s dynamics may be increased.

2) Adaptive latching strategy: The importance of nonlin-

earities in the setting of the control strategy is now demon-

strated. However, another question arises: if one succeeds in

consequently adapting the control strategy to the nonlinear

characteristics of the motion, can one expect to harvest as

much power as promised by the linear model? This subsection

attempts to give a part of the answer to this question.

The control strategy needs to be improved in order to

maximize power production in all waves, including when using

the model with nonlinear Froude-Krylov forces. This is why

the adaptive latching control strategy, presented in Section

IV-C and based on an algorithm to find the optimal latching

time, is implemented. Due to its very simple features, the

algorithm of the adaptive latching strategy is not designed to

represent a real-time controller. What matters is the ability of

the adaptive latching strategy to place the device’s velocity

pattern well in phase with the excitation force - just as the

first latching strategy does in the linear case. One can then

reasonably compare the power outputs that are to be expected

when using the linear and weakly-nonlinear models.

Figures 9(b) and 9(d) clearly illustrate the improvement

brought to the control strategy by the adaptive algorithm, the

velocity of the device now being in phase with the excitation

force. The adaptive latching strategy, in the case of nonlinear

FK forces computation, results in an optimal latching time

T ′
L which is different from the fixed-time latching period TL.

When the adaptive strategy is applied in the linear simulations,
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Fig. 9. Motion amplitude on top and velocity below of the sphere, for the controlled case using the fixed-time strategy on the left and the adaptive strategy
on the right

the optimal latching period converges to TL so that the motions

end up being the same as with the fixed-time latching strategy,

as green lines in Figure 7 and 10 illustrate.

Fig. 10. RAOs of linear and nonlinear computations for the sphere on top and
the cylinder below for different incident wave trains in controlled simulations
using the adaptive latching strategy

As a result, the motion amplitude obtained with the weakly-

nonlinear model is increased, now being closer to the one

obtained with the linear model. However, there still remains a

gap between the linear and weakly-nonlinear cases.

The new motion RAOs are plotted in Figure 10, which

illustrates both the improvement brought by the adaptive

control strategy in the case of the weakly-nonlinear model,

as well as the significant remaining difference between the

results obtained, depending on whether linear or nonlinear FK

forces are computed.

Fig. 11. Mean absorbed power by the sphere on top and the cylinder below

The consequences of FK force nonlinearities on power

absorption are illustrated in Figures 11 and 12, which both

show a lower efficiency in the nonlinear case. Using the

adaptive latching strategy, Figure 11 represents the mean

power (P = 1
2BPTO|v|

2) absorbed by both devices in the

linear and weakly-nonlinear cases. Figure 12 represents an

estimation of the power output (in %), i.e. the mean absorbed
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Fig. 12. Relative difference in mean absorbed power between linear and
nonlinear computation of FK forces

power (P = 1
2BPTO|v|

2) divided by the theoretical maximum

wave power that can be captured by a heaving axisymmetric

point-absorber in deep waters PMax = 1
8ρgH

2Cg
1
k

where Cg

is the group velocity, 1
8ρgH

2Cg (in W/m) is the wave power

per unit of wave crest and 1
k
= λ

2π (in m) is the absorption

width. It seems, from these results, that even when the latching

time is tuned to the nonlinear behaviour of the device, the

resulting power output is significantly lower than the one that

can be assessed through linear simulations.

VI. CONCLUSION

It appears, from the results of this study, that nonlinearities

of FK forces are not consistent in the forced, uncontrolled case.

In addition, the results obtained for the cylinder tend to show

that when the immersed CSA of the device is constant, linear

models can remain accurate (as far as Froude-Krylov forces

are concerned) provided that the amplitude of the motion

in relation to the free-surface elevation does not exceed the

dimensions of the body. However, the range of conditions

under which linear models remain realistic should be further

investigated by using a taller cylinder than the one modelled

in this study.

In contrast to the uncontrolled case, nonlinear effects be-

come significant when control is used, especially with a device

whose immersed CSA presents noticeable variations over time.

In such cases, nonlinear effects have important implications for

the models that should be used in control design, as well as

for power capture assessment. Firstly, a control system based

on a linear model can prove to be inefficient when applied

to a device whose motions show significant nonlinearities in

normal operating conditions - such as the sea states exam-

ined in this paper. Secondly, power capture assessment using

linear FK models can be unreasonably optimistic and give a

misleading guide on the economic value of a device.

It has to be noted that the waves used in the simulations

presented in this paper are linear and thus are relatively flat

waves. Taking into account steeper, nonlinear waves, such as

those which can be encountered in real sea conditions, would

be likely to enhance the nonlinear effects described, along with

their impact on control design and power production assess-

ment. Furthermore, only heave motions have been considered

in the present work, while higher nonlinear effects could be

expected by adding more degrees of freedom, due to their

coupling.

Finally, the presented formulation of the nonlinear FK forces

does not lend itself easily to model-based control design and

further work is necessary to develop corresponding nonlinear

control algorithms capable of real-time operation. However,

control strategies based on latching can be tuned adaptively

and do not depend on the hydrodynamic model adopted.
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