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Abstract—Many sports now look to technology to resolve con-
tentious decisions, for example in tennis, Gaelic games, snooker,
association football, etc. However, the sport of canoe slalom, an
Olympic sport, still relies completely on the subjective decision
of a human judge, as to whether a competitor has touched a
‘gate’ or not. With the time difference between gold and bronze
medals frequently being less than 2 secs, a single 2 second penalty
has a significant impact and reliable, objective and repeatable
judging is vital. This paper reports on a prototype slalom pole hit-
detection system, which has been developed in consultation with
the International Canoe Federation (ICF) Slalom Committee.

Index Terms—Canoe, kayak, slalom, penalty, classification

I. INTRODUCTION

Over the past decade or two, there has been a proliferation
of technology-assisted judging in a wide variety of sports.
While video reply has played a part in many sports for some
considerable time (e.g. athletics, rugby, etc), other technology
(including post-processing of video, or a fusion of video
images) has been less prevalent, with fencing being one of the
exceptions, with initial experimentation of electronic scoring
dating back to 1896 [1]. Possibly one of the best known of
the recent developments is the Hawkeye system for tennis [2],
with other similar applications including goal-line technology
for association football [3] and Gaelic games, leg-before-
wicket (LBW) decisions in cricket [4], etc. Other related
developments include virtual spectator technology [5], used
in a variety of sports including yacht racing, which could also
have application in rule judging.

Most technology-assisted judging systems are used in an
advisory capacity, rather than in real time. The reasons for
this are multi-faceted:
• The technology may not be capable of real-time compu-

tation,
• There is no need for a real-time indication, or
• The sport (participants and organisers alike) may wish to

retain traditional human aspects of the sport.
For example, the Hawkeye system has a computational delay
of approximately 5 s, rendering real-time implementation
impossible. However, simpler systems, such as hit detection
in fencing, are both feasible and employed in real time.

Canoe sport began in the late 1800’s in North America, with
races between the native Indians and early colonists [6]. In
the slalom discipline of canoe-kayak sport, where competitors
are required to negotiate a number of slalom ‘gates’ on a
whitewater course, the first world championships were held

Fig. 1. Podium position for men’s kayak slalom at London 2012 Olympics

in 1949, and appeared initially in the Olympic games in 1972.
Following a hiatus until 2002, slalom canoeing (kneeling,
using a single paddle) and kayaking (sitting, using a double
paddle) has since been an integral part of all Olympic games.
Briefly, the rules [7] of canoe/kayak slalom (hereafter referred
to as ‘slalom’ for brevity) require competitors to negotiate a
course of between 18 and 25 gates consisting of vertical poles
between which competitors must pass. At least 6 gates must
be negotiated upstream (red/white poles) with the remainder
downstream (green/white) and gates must be negotiated in
strict order. Typically, courses measure between 200 m and
400 m from start to finish, with a transit time of around 100
s. Time penalties are incurred as follows:

2 s if one, or both poles, of a gate is ‘touched’, and
50 s if a gate is missed.

No further clarification is provided on the precise meaning
of ‘touched’, with some contact being obvious and resulting
in pole displacement, while other more subtle contact may
result in pole rotation only, or no perceptible movement at
all. A touch penalty is awarded if any part of the competitor’s
canoe or kayak, body or equipment (including paddles, helmet,
buoyancy aid, etc). However, rule 29.8 states that “At all times,
the benefit of any doubt must be given to the competitor”.
Currently, at major competitions (Olympics, World Champi-
onships, World Cups) penalties are judged on the basis of
an individual human judge for each gate, with the possibility
for video review following, for example, a protest by the
competitor or competitor’s team. Difficulties experienced in
the current system include:

1) The natural displacement of gate poles due to water
splashes (recall that a whitewater course is used) and
wind,

2) The lack of having a 360o perspective on each pole,
either by the judge or video system (note that a set of 6-



10 video cameras are used to cover the complete course),
3) Any inconsistency in human judging, either between

judges, or between individual competitors with respect
to a single judge, and

4) The lack of a scientific definition of a ‘touch’, and its
precise measurement.

The consequences of a touch, or a mis-judged touch are
significant. Fig.1 shows the podium results from the Men’s
Slalom K1 (individual kayak) at the London 2012 Olympics.
Note that the gold to bronze medal positions are separated by
less than a single touch penalty (2 s)!

In this paper, we present a prototype electronic system for
detecting touches on a slalom pole. The system is based on
an inertial measurement unit, with an Arduino microcontroller
used to capture the data and transmit the data via Bluetooth
to a PC, where data pre-processing takes place and a classifier
implemented to distinguish between normal movement of the
pole due to water and wind disturbances, if present, and pole
touches by competitors. To the best of the authors’ knowledge,
it is the first operational prototype system to have been
developed, though a design for such a system was considered
in [8].

The overall configuration of the pole hit classification sys-
tem is shown in Fig.2. Serial data from the bluetooth receiver
is packaged into 10s frames, with both frequency-domain
and time-domain inputs being used to feed a data reduction
stage (using principal components analysis (PCA)). The PCA
outputs then feed the classifier which produced an output in
the range 0→ 1, with a ‘1’ indicating a hit.
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Fig. 2. Overview of pole hit classification system

The remainder of the paper is organised as follows: The
hardware setup, including the sensor system, data logging and
data transmission, is considered in Section II, while the test
setup and data logged are reported in Section III. Sections
IV and V describe the design of the data preprocessing algo-
rithms and classifier, respectively, with results and conclusions
documented in Sections VI and VII respectively.

II. HARDWARE SETUP

This section documents the components used to make the
measurements on the pole, assemble the data for transmission
and transmit the data to a PC for further processing.

A. Sensor selection

A variety of potential sensors were considered for this
application, including aural, electrical contact, mechanical,

optical (infra red (IR) and video) and motion. Although
audio detection has found application in cricket [9] is was
deemed inappropriate for the noisy environment of slalom,
while an electrical contact sensor system would have potential
difficulties with moisture and require poles to be made of
specialised (expensive) material. Mechanical and IR sensors
were discounted in [8] for various reasons and while vision-
based systems have good potential, they were deemed to be
too expensive due to the requirement for a camera per pole,
with at least 36 poles required to be instrumented. In addition,
it is unlikely that a vision-based system could operate in real-
time and data transmission requirements are also likely to
increase the data handling hardware costs. Motion sensors,

Fig. 3. Overall setup of instrumented slalom pole

including both accelerometer and gyroscopic systems, present
a potentially useful and cost-effective solution and require no
specialised pole materials, with the possibility to retro-fit ex-
isting slalom poles. Typical inertial measurement units (IMUs)
contain both accelerometer and gyroscopic measurements and
often also include magnetometers. An IMU Digital Combo
Board was chosen, which provides 6 degrees of freedom (DoF)
and contains the ITG3205/ADXL345 gyroscope/accelerometer
devices. All three translations DoFs were employed, along



Fig. 4. Arduino board with Bluetooth and IMU connections

with rotation around the vertical axis (yaw). This sensor
system offers 2 g full range sensitivity for translational DoFs
and 2000 o/s for rotation. The IMU is positioned towards the
bottom of the pole (poles are hung from the top) to maximise
sensitivity, as shown in Fig.3.

B. Data communication

A standard Arduino Uno board was interfaced to the IMU,
via the I2C digital interface, which facilitates serial signal
and clock data transmission. The system is set up to allow
the Arduino to operate as a master, with the gyroscope
and accelerometer as slave units. The Arduino can there-
fore set the required sensitivity level in the accelerometer
(±2g,±4g,±8g,±16g) and read the measured linear and
angular acceleration from the appropriate memory locations
on the IMU. A RN41XVC-I/RM Class 1 Bluetooth module
is chosen for data transmission, with a range of 100m (note
that Bluetooth Class 2 provides insufficient range for this
application, at 10 m). The data transmission rate used is 9600
bps, providing a good compromise between transmission rate
and channel integrity. Power for the system is supplied via a
9 V battery, providing power directly to the Arduino board
which, in turn, supplies the IMU with 3.3 V. A separate
regulator, using the 5 V output on the Arduino board, is used to
supply the Bluetooth module with 3.3 V. The data transmission
electronics are shown in Fig.4.

C. The test slalom pole

The pole employed for testing is a hollow plastic cylinder,
allowing sufficient space for insertion of the IMU and data
transmission electronics. ICF rules, which govern the type
of gate pole which may be used, specify a pole height of
between 1.6 m and 2 m and an outside diameter of between
3.5 cm and 5 cm. No exact specification is given for the
weight, with the exception of the guideline “of sufficient
weight that motion caused by wind is not excessive” and,
typically, poles employed for most international competitions
weigh approximately 1.3 kg. The weight of the bare test
pole was 820 g and, complete with instrumentation, came
in at 1.1 kg, which is deemed to be acceptable. The overall

configuration of the instrumented slalom pole is shown in
Fig.3. A plastic cover was fixed to the top of the pole to
prevent water ingress.

Fig. 5. IMU recordings corresponding to a pole hit at 2s

Fig. 6. IMU recordings corresponding to a water splash disturbance at 2s

Fig. 7. IMU recordings corresponding to wind disturbances

III. TEST DATA LOGGING

Both lab-based and water-based testing was carried out to
log suitable data, containing both disturbances (water and
wind) and various types of hits on the pole from body, boat
and paddle. Fig.8 shows the water-based testing setup, where
the white pole is the active pole while, by way of example,
Figs.5, 6 and 7 show the time records for a hit, and water and
wind disturbances respectively, which give an indication of the
challenge facing the classifier in discriminating between pole
hits and ambient disturbances. Fig.9 shows a typical segment
of training data with a mixture of disturbances and hits. For the
statistical classifier results, a total of 135 s of training and 105
s of test data was recorded. The full training data contained a
total of 9 specific disturbances and 17 hits, while the test data
contained a total of 5 specific disturbances and 17 hits.



Fig. 8. River testing for data collection

Fig. 9. Typical training data segment

IV. DATA PREPROCESSING

The raw IMU data is pre-processed in order to provide a set
of suitable variables to the classifier in an appropriate format
to make the job of the classifier easier and to facilitate inter-
pretation. As a first step, the data is segmented into 10s frames,
which is regarded as the time that a single gate is ‘active’. The
choice of 10s is based on an average inter-gate transit time of
3.9s (from the London Olympics) with average mimimum and
maximum inter-gate transit time (across different competitors)
being 1.1 s and 9.8 s, respectively. The point at which a gate
becomes ‘active’ would be specified by the supervisory course-
wide software, which is not considered in this study.

A. Data transformation

In terms of candidate data transformations, a frequency
transformation is perhaps an obvious candidate, giving the
potential to distinguish between the relatively high frequencies
of impact hits and the relatively low frequencies of softer
motion due to water splashes or wind excitation. However,
some time localisation within the 10s window is important,
so the discrete-time short-term Fourier transform (STFT) is
employed:

X(m,λ) =

∞∑
n=−∞

x[n]w[n−m]e−jλn (1)

Fig. 10. STFT for an arm hit at 2 seconds within a 10 segment

where n is the time index, λ the frequency index and w the
windowing function employed. For this study, a Hanning [10]
window function was employed, with a window length of 10
samples and an overlap of 9 samples. By way of example,
Fig.10 shows the STFT for an arm hit at 2 s within a 10 s
segment. While the frequency discretization is relatively coarse
for the STFT parameters chosen, the time localisation of the
hit is adequate for the application.

For the STFT, and the corresponding Hanning window
length of 10 samples, with an overlap factor of 9/10 (i.e. 9
samples), the original 400 samples per frame, for each of the
4 IMU signals, converts to 8 spectral points every sample (10
datapoints, zero padded out to 16 for FFT use and taking
the first 1/2 of the spectrum). However, a small number of
samples (9 in total) are lost at the start and end of the data
record due to the windowing, reducing the effective 10s data
record by 0.225 s. The choice of a 9/10 overlap gives a
good compromise between the time localisation and frequency
resolution. The time-domain signals fed to the next stage of
preprocessing are appropriately subsampled, in order to be
commensurate in time position and length with the frequency-
domain signals. Considering the 4 separate IMU channels, a
total of 32 frequency-domain signals can now be provided to
the classifier.

The resulting STFT data, with 8 frequency datapoints per
IMU channel at each time step, are now considered in addition
to the original 4 time domain IMU signals as inputs to the
classifier.

B. Data dimension reduction

Considering both time- and frequency-domain measure-
ments, a total of 12 (=4+32) signals are now available to
the classifier. In order to eliminate significant levels of linear
dependence between signals, principal component analysis
(PCA) [11] is separately applied to the sets of time- and
frequency-domain signals, as shown in Fig.2. Fig.12 shows
the variance explained for the frequency-domain principal
components, while Fig.11 shows the variance explained for
the time-domain principal components. Overall, 3 (from 32)
components, representing 98.3 = (62.5 + 32.5 + 3.3) % of
the variance explained, are selected for the frequency-domain
signals, while 2 (from 4) components, representing 97.8 %



Fig. 11. Variance explained for time-domain PCA components

Fig. 12. Variance explained for frequency-domain PCA components

of the variance explained, are selected for the time-domain
signals.

V. CLASSIFIER DESIGN

The classifier employed is a multi-layer perceptron (MLP)
artificial neural network (ANN). The inputs to the network
are the principal component scores for time- and frequency-
domain signals, with a total number of classifier inputs of 5,
as documented in SectionIV-B. A 3-layer ANN is employed,
utilising tan-sigmoid neurons (since the input signals are
bipolar) with a log-sigmoid output neuron, since we denote a
hit with a ‘1’ and no hit with a ‘0’. 3 neurons are employed in
the first layer, with 5 neurons in the second layer and a single
output neuron. The network is trained using a scaled conjugate
gradient (backpropagation) algorithm [12] using a variety of
initial conditions to ensure a good local performance surface
minimum is achieved. With the range of the log-sigmoid
output neuron in the range 0 → 1, any number between the
extremities can be loosely interpreted as the probability of a
hit.

5,400 samples of the recorded IMU signals are used for
training data, incorporating 26 events, comprising 9 distur-
bance and 17 hit events. The target signal is specified as
follows. All non-hit frame target sequences are set to zeros.
For training data frames containing a hit, the segment of
the training data where all the magnitude of the original
(x, y, z, φ) time-domain signals from the IMU exceed 100 are

Fig. 13. Training record for the ANN classifier

Fig. 14. Classifier performance on training data

assigned a target of 1. Note that the full range for each of the
IMU signals is 4096, by virtue of 12-bit binary representation.
Therefore, 100/4096 represents roughly 1/40 of the full range.

The training record of network is shown in Fig.13. Early
stopping was employed, based on the classifier mean squared
error (MSE) measured on validation data randomly extracted
(at a 15% level) from the original training data. This ensures
that the ANN classifier retains the capability to generalise
well to unseen data. The performance of the classifier on the
training data is shown in Fig.14.

VI. RESULTS

Unseen test data, comprising 4,400 time samples containing
22 events, containing 5 disturbance and 17 hit events, were
used to test the hit classification system. Using a threshold of
0.5 applied to the classifier output, all test hits were classified
correctly, with no false positives. The classifier output thresh-
old can be adjusted for a particular site to achieve an optimum
balance between sensitivity and false positives. Fig.15 shows
the variation in the IMU (x, y, y) signals (with events labelled)
and the corresponding classifier output, while Fig.16 shows the
variation in time- and frequency-domain test scores on the test
data. It can be noted that the classifier saturates at the target
points and the scale of the water and wind disturbances are
relatively modest in amplitude compared to the hit signals.



Fig. 15. Classifier performance on unseen test data

Fig. 16. Classifier performance on unseen test data

There may be a natural amplitude limitation (in acceleration)
on the scale of the disturbances, but this would need to be
confirmed by further testing.

VII. CONCLUSIONS

A hit classification system for canoe/kayak slalom has been
designed, utilising an IMU as a primary sensor, with data
transmitted wirelessly to a central station for hit classification.
The classifier employs frequency-domain transformation and
PCA is applied to both time- and frequency-domain signals
to provide a set of suitable signals for the classifier to
discriminate between hits and other IMU disturbances due to
to wind and water splashes. For the data considered, the system
works well for a wide range of classifier thresholds, suggesting
that there is considerable margin for successful operation with
more challenging data. To this end, more and varied test data
is required to assess the operation of the system at a range
of sites and the system is shortly due to be evaluated by the

Olympiastützpunkt Bayern at the Eiskanal (former Olympic
slalom site) in Augsburg.

While it is impossible, given the limitations of both the IMU
and the classifier, to have infinite sensitivity to hits and zero
sensitivity to disturbances, the system provides an acceptable
level of sensitivity and, most importantly, is entirely objective
and consistent in hit classification. This represents a major
advantage of the system over current human (subjective) judg-
ing and should appeal to elite competitors and organisers alike.
The system is computationally simple and can be implemented
with a latency of about 0.1 s, making it suitable for ‘real
time’ (e.g. green/red visual) display using an indicator on the
poles themselves. This could be achieved using the Bluetooth
connection from the central classifier system to the pole.

Finally, the system is inexpensive at approximately AC50
per pole (assuming some custom design) and is therefore
suitable for deployment to a complete 25-gate (50 pole) course.
However, for full course operation, some further wireless data
transmission issues need to be addressed.
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