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Abstract 

DDX3 is an RNA helicase that has been shown to have a range of nuclear and cytoplasmic 

functions, including transcription, translation, splicing and mRNA export. DDX3 has also 

been shown to play a role in innate immune signalling and tumorigenesis. DDX3 is targeted 

by multiple viruses: HIV, HCV , HBV and Vaccinia Virus have all been shown to interact with 

DDX3; either using DDX3 to replicate or inhibiting DDX3’s function in antiviral signalling. 

Human DDX3 was reported to be exported from the nucleus independently of its N-

terminal NES and to interact with CRM-1 through DDX3's C-terminal region. It was 

suggested that DDX3 acts as a CRM-1 cofactor, rather than cargo, and that it mediates Rev-

dependent export of HIV RNAs. I confirmed that DDX3 exports in a CRM-1 dependent 

manner, and DDX3's N-terminus is required for nuclear export.   

We have also investigated the nuclear import of DDX3. Putative NLS were found using 

bioinformatic software, and tested for functionality by mutating key basic residues. We also 

used a range of nuclear import inhibitors to examine how DDX3 is imported into the 

nucleus. We found that the DDX3's two Rec-A like domains could be imported 

independently, and also that DDX3 imported independently of Importin- and Calmodulin. 

We were also interested as to whether DDX3's cellular localisation was regulated during 

viral infection, cellular stress and during the cell cycle. We investigated the relationship of 

DDX3 with HIV and HCV viral proteins, and found that both HIV and HCV target the cellular 

localisation of DDX3. We found that DDX3 directly interacts with HIV-Rev protein, and also 

that HIV-Rev recruits DDX3 to the nucleolus. We also found that HCV Core protein recruited 

DDX3 to cytoplasmic speckles, and prevented the nucleocytoplasmic shuttling of DDX3. We 

found DDX3 to be recruited to Stress Granules after cellular stress. DDX3's cellular 

localisation and expression levels were also found to change throughout the cell cycle.  
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Chapter 1 : Introduction 

The human cell is a complex structure composed of subcellular compartments 

that have specialised environments and functions. The nucleus and cytoplasm are 

the two major compartments of the cell, segregating DNA replication and 

transcription to the nucleus and protein synthesis to the cytoplasm. The nucleus 

and cytoplasm are separated by the nuclear envelope, a double lipid bi-layer, which 

separates genetic material in the nucleus from the cytoplasm. The nuclear envelope 

is embedded with Nuclear Pore Complexes (NPC) which allow the controlled 

transport of molecules between the nucleus and the cytoplasm. Many cellular 

proteins have distinct functions within the cytoplasm or the nucleus, consequently 

regulation of a protein's nuclear transport can also regulate protein function. The 

NPC plays an integral role in controlling both gene expression and cell cycle 

regulation (Ahmed & Brickner 2007; Hetzer & Wente 2009).  

In this study, I investigated the cellular localisation of the human DEAD-box RNA 

helicase DDX3, and the regulation of its nuclear import and export. Since DDX3 has 

been shown to influence various cellular processes in both the nucleus and the 

cytoplasm, we hypothesised that its cellular localisation is likely to be regulated and 

would influence its participation in its different cellular functions. DDX3 has been 

implicated in all aspects of the RNA life cycle, participating in the nuclear events 

(transcription, splicing and mRNA export) as well as the cytoplasmic events 

(translation and ribosome biogenesis) (Chang & Tarn 2009). Hence, it would be 

expected that DDX3 localisation changes in response to cellular requirements. 
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Importantly, DDX3 has been reported to regulate transcription and translation 

of proteins involved in control of the cell cycle, with DDX3 being implicated as both 

a tumour suppressor and oncogene (Chao et al. 2006; Botlagunta et al. 2008). 

Interestingly, DDX3 localisation has been suggested to be modified during cancer, 

switching from a predominantly nuclear localisation in healthy epidermal cells to a 

cytoplasmic localisation in transformed epidermal cells (Chao et al. 2006). A 

number of oncogenes and tumour suppressors have also been shown to be 

mislocalised in cancer cells, as a consequence of incorrect nuclear cytoplasmic 

transport  (Kau et al. 2004).  

DDX3 has also been shown to be a critical component of innate immune 

signalling, being implicated in both cytoplasmic and nuclear signalling events 

(Schröder 2011). DDX3 is targeted by a range of viruses that pose major global 

health threats, namely Human Immunodefiency Virus (HIV) (Yedavalli et al. 2004), 

Hepatitis C Virus (HCV) (Lee et al. 2008; Owsianka & Patel 1999; Oshiumi, Ikeda, et 

al. 2010), Hepatitis B virus (HBV) (Wang, Kim, et al. 2009; Chang et al. 2006), 

poxviruses (Schröder et al. 2008), Norovirus (Vashist et al. 2012) and West-Nile 

virus (Geissler et al. 2012). Various viruses have been linked to an increased risk of 

tumorigenesis (Carrillo-Infante et al. 2007), for example HCV is the major causative 

agent of Hepatocellular Carcinoma (HCC) (De Oliveria Andrade et al. 2009). Since 

DDX3 is a target for various viruses, and has also been implicated in tumorigenesis 

(Schröder 2010), we speculated that DDX3 localisation could be altered  by viruses 

to impede DDX3's many cellular functions.  
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1.1. An Introduction to Nuclear Transport 

The nuclear envelope (NE) separates the nucleus from the cytoplasm in 

eukaryotic cells and is comprised of two lipid membranes; the inner nuclear 

membrane and the outer nuclear membrane. Separation of transcription and 

translation via the nuclear membrane provides eukaryotes with the power to 

control gene expression; but also necessitates the ability to selectively transport 

proteins between the cytoplasmic and nuclear compartments (Fahrenkrog & Aebi 

2003). The nuclear transport of proteins is often regulated, with post-translational 

modifications playing an important role in this process. Post-translational 

modification such as phosphorylation, sumoylation, ubiquitination can regulate the 

nuclear transport of proteins, and ensure the correct functions of proteins 

(Rothenbusch et al. 2012; Nardozzi et al. 2010; Geetha et al. 2005).  

The transport of molecules greater than approximately 40kDa across the 

nuclear envelope occurs though the nuclear pore complexes (NPCs), which are 

imbedded in the inner and the outer nuclear membrane (Fahrenkrog & Aebi 2003) 

(Figure 1.1). The NPC is comprised of stationary nucleoporins and soluble transport 

factors which can shuttle between the nuclear and cytoplasmic compartments. The 

NPC structure consists of two main functional regions: the central domain 

embedded in the nuclear envelope and the peripheral structures, which extend into 

the nuclear interior and the cytoplasm. The NPC central domain consists of an 

eight-fold symmetrical cylindrical assembly, which encases the main nuclear 

transport channel which is lined with Phe-Gly nucleoporins and functions as a 

molecular sieve to regulate the bidirectional transport of macromolecules and small 

metabolites (Figure 1.1).  
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Karyopherins are nuclear transport factors that bind to proteins containing 

specific sequences and transport these proteins through the NPC (Fried & Kutay 

2003). Karyopherins can be divided into two groups based on their function, 

Importins import proteins containing Nuclear Localisation Sequences (NLS) and 

Exportins export proteins containing Nuclear Export Sequences (NES). 
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Figure 1.1: Architecture of nuclear membrane and NPC complex structure 
A: The nuclear envelope separates the nucleus from the cytoplasm in eukaryotic cells. It consists of 
an inner and outer membrane, which is embedded with Nuclear Pore Complexes (NPC). B: Each 
nuclear pore complex (NPC) is a cylindrical structure comprised of eight spokes surrounding the 
central region that connects the nucleus and cytoplasm. The outer and inner nuclear membranes of 
the nuclear envelope join to form a ring in which the NPC sits. The NPC is anchored to the nuclear 
envelope by a nuclear pore ring structure that connects to the core scaffold and comprises inner ring 
and outer ring elements. NPC-associated peripheral structures consist of cytoplasmic filaments, the 
nuclear basket and a terminal ring. Adapted from (Strambio-De-Castillia et al. 2010). 
 

A 
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1.1.2. Nuclear import 

1.1.2.1. Ran dependent nuclear import 

1.1.2.1.1. Importin alpha 

The Importin-α family recognises classical nuclear localisation sequences (cNLS). 

These cNLSs consist of either one or two stretches of basic amino acids. 

Monopartite cNLSs are illustrated by the SV40 large T antigen NLS (126PKKKRRV132) 

and the bipartite cNLSs are illustrated by the nucleoplasmin NLS 

(155KRPAATKKAGQAKKKK170). The monopartite motif is typically a cluster of basic 

residues preceded by a helix-breaking residue; whereas the bipartite motif consists 

of two clusters of basic residues separated by 9-12 amino acids. The search 

algorithm PSORT II can be used to detect cNLS from the amino acid sequence of 

proteins (Gardy et al. 2005). 

Importin-α family members contain a flexible N-terminal importin- binding 

(IBB) domain, which is required for both binding to importin-and dissociation of 

the cargo complex (Görlich et al. 1995; Fanara et al. 2000). The C-terminus is a 

highly structured domain containing ten Armadillo repeats which interact with the 

cNLS containing cargo and also the export factor Cellular Apoptosis Susceptibility 

protein (CAS) (Conti et al. 1998; Cingolani et al. 1999). There have been six 

importin-α family members identified, which can be split into three 

phylogenetically distinct groups; the α-1s, the α-2s and the α-3s (Goldfarb et al. 

2004). 

The cNLS pathway was the first nuclear import pathway characterised, however 

it is not necessarily the pathway most prevalently used (Lange et al. 2007). 

Examples of proteins which are imported via importin- include p53, which 
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interacts with importin-via two bi-partite NLSs (Liang 1999), and Cap Binding 

Protein 80 (CBP 80) which interacts with importin-via its N-terminal NLS (Dias et 

al. 2009). It is important to note that some proteins are transported via importin-α 

independently of an cNLS that matches the consensus sequence. For example, 

Signal Transducers and Activator of Transcription 1 (STAT 1) does not contain a cNLS 

that can be defined using cNLS search algorithms, however upon dimerization each 

subunit contributes basic residues that form a cNLS recognised by importin-α 

(Fagerlund et al. 2002).  

During nuclear import, importin-β forms a complex with  importin-α and its 

cargo in the presence of a high concentration of Ran/GDP. This complex is then 

transported through the nuclear pore to the nucleus, where a high concentration of 

Ran/GTP is present. Finally, the complex disassociates at the nuclear side of the 

pore, with Ran/GTP binding to importin-β, displacing importin-α and the cargo 

protein. As a result, the cargo protein is released within the nucleus. The Ran/GTP-

importin-β complex is then exported to the cytosol, where the bound GTP is 

hydrolyzed to GDP, releasing importin-β to participate in another cycle of nuclear 

import. Importin-α is recycled to the cytoplasm by the nuclear export factor CAS, in 

complex with RanGTP (Stewart 2007) (Figure 1.2).  
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Figure 1.2: Overview of nuclear protein import.   
An import complex is formed in the cytoplasm between cargoes that contain an NLS, importin-α and 
importin-β. After passing through the nuclear pore complex (NPC), RanGTP binds to importin-β 
resulting in dissociation of importin-β from importin-α. The NLS containing cargo is then dissociated 
from importin-α and importin-α is recycled to the cytoplasm by its nuclear export factor CAS, in 
complex with RanGTP. In the cytoplasm, RanGAP stimulates GTP hydrolysis, releasing the importins 
for another import cycle.   
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1.1.2.1.2. Importin-Beta 

As stated above, importin-α mediates import of cNLS containing proteins in 

conjunction with importin-β; however importin-β alone can also import non-

classical NLS containing proteins. Non-classical NLS proteins are imported by 

importin-β without its adaptor importin-α, in a Ran-dependent fashion. Cargoes 

that directly bind to importin-β include transcription factors such as GAL4 (Chan et 

al. 1998); retroviral proteins such as HIV-1 Rev and Tat (Truant & Cullen 1999); 

ribosomal proteins and various others (Cingolani et al. 2002). 

Importin-β family members have a modular structure consisting of 19 HEAT 

repeats, with each HEAT repeat made up of two helixes connected by a loop. The A 

helixes are located on the outside of the protein forming a convex face; whereas 

the B helixes form a concave face inside (Cingolani et al. 1999). NPC binding sites 

are found on the convex face (Bayliss et al. 2000), whereas the importin-α IBB 

binding  domain and RanGTP binding sites are located in the C-terminal (HEAT 7-19) 

and N-terminal (HEAT 1-10) regions of the concave face (Cingolani et al. 1999; 

Vetter et al. 1999). There are 11 importin-β family members in the human 

proteome (Pemberton & Paschal 2005).  

The requirements for non-classical NLS proteins to be recognised by importin-β 

are undefined and the recognised sequences are diverse; containing either three-

dimensional epitopes or linear epitopes. It would seem that there are multiple 

cargo binding sites within importin-β, for example the non-classical NLS containing 

protein parathyroid hormone related protein (PTHrP) binds to importin-β in a 

region distinct from the site to which the importin-α IBB domain binds (Cingolani et 
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al. 2002), and sterol regulatory element–binding protein 2 (SREPB2) binds to yet 

another distinct region (aa 343-403) (Lee et al. 2003).  

1.1.2.1.3. Transportins 

Transportins (also known as Kap2) are members of the Karyopherin protein 

family. Transportins have been shown to import proteins involved in mRNA 

processing, recognising a distinct sequence known as the PY-NLS  (also known as 

M9-NLS) (Lee et al. 2006). More than 20 mRNA processing proteins have been 

reported as being imported via transportin (Lee et al. 2006). Transportin was first 

identified as a nuclear import factor for the splicing factor hnRNP A1 protein, which 

contains a 38 amino acid signal referred to as the M9-NLS (Fridell et al. 1997).  

PY-NLSs are often found within structurally disordered regions of proteins, and 

can be divided into two subclasses: hydrophobic and basic PY-NLS (hPY-NLS or 

bPYNLS). PY-NLSs have an overall positive charge and contain either a loose 

hydrophobic (hPY-NLS) or basic motif (bPY-NLS) at the N-terminus, alongside a 

R/K/H-X(2-5) -P-Y motif at the C-terminus (Lee et al. 2006). A bioinformatic search for 

PY-NLSs in human SwissPROT database found 81 candidate transportin substrates, 

of which 61% were involved in transcription or RNA processing (Lee et al. 2006).  
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1.1.2.2. RAN independent nuclear import 

1.1.2.2.1. Calmodulin/calcium- dependent import 

Ran-independent nuclear import pathways have been described, but are poorly 

understood. Calmodulin (CALcium MODulated proteIN) is a calcium binding 

messenger protein expressed in all eukaryotic cells, which has been reported to 

have a role in Ran-independent nuclear import. Calmodulin has been shown to be 

imported to the nucleus in the absence of cytosolic factors or an ATP-regeneration 

system, with import being sensitive to the calmodulin antagonist peptide M13, 

which blocks Calmodulin binding to target proteins (Liao et al. 1999). Calmodulin 

acts as a transducer of intracellular Ca2+ signals, and can regulate the nuclear 

transport of Calmodulin-binding proteins in its Ca2+-bound state, eg. p21waf1/cip1 

(Taulés et al. 1999) , and Cdk4 and Cyclin D1 (Taulés et al. 1998). It must be noted, 

that the inhibitory effect of Calmodulin on the nuclear import of p21waf1/cip1 was 

shown to be caused by Calmodulin preventing phosphorylation of p21waf1/cip1 at 

Ser153 , a residue found within the p21waf1/cip1 classical NLS (Rodríguez-Vilarrupla et 

al. 2005). 

The Calmodulin pathway is suggested to be an evolutionarily ancient pathway, 

with Calmodulin  shown to import a range of evolutionary conserved architectural 

transcription factors (Hanover et al. 2009; Hanover et al. 2007). For example HMG 

(high-mobility group) non-histone chromosomal proteins have been shown to be 

imported via the Calmodulin pathway, (Hanover et al. 2009; Kaur et al. 2010). The 

HMG-box of SOX (SRY (sex-determining region on the Y chromosome)-related HMG-

box)) family members, which play key roles in development, is highly conserved and 

displays striking homology within the Calmodulin-NLS (Kaur et al. 2010). Defects in 
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nuclear import of HMG-box of SOX are associated with sex reversal diseases. It was 

proposed that release of intracellular calcium stores during cellular activation 

induces the Calmodulin/Ca2+ import pathway, and inhibits GTP-dependent nuclear 

transport (Sweitzer & Hanover 1996). The Calmodulin import system could 

represent another means to facilitate the import of proteins into the nucleus in 

response to different cellular requirements. 

1.1.3. Nuclear Export 

1.1.3.1. Ran dependent nuclear export 

Exportins are required for the nuclear export of proteins. Most exportins, such 

as CAS (cellular apoptosis susceptibility), Exportin T or Exportin 5, seem to have a 

restricted number of cargoes (Fried & Kutay 2003); however CRM-1 (Chromosome 

region maintenance 1, also called Exportin 1 or XPO1) has a broad range of cargos. 

Table 1.1 gives an overview of mammalian exportins and their cargoes. 

Exportin Export Cargo 

CRM-1 Proteins containing NES, snurportin 
CAS Importin-α 
Exp-t tRNAs 
EXP4 eIF5A 
Exp5 Pre-miRNAs,tRNAs,minihelix RNAs,eEF1A,JAZ 
Exp7 p50RhoGAP,14-3-3 sigma 
Imp13b eIF1A 
Table 1.1: Mammalian Exportins and their cargoes.  
Adapted from Kutay and Güttinger 2005. 

 

CRM-1 is the most important nuclear export receptor for proteins. It interacts 

with proteins containing a conserved nuclear export sequence (NES). The NES of the 

HIV Rev protein has helped define CRM-1 function (Askjaer 1998). The NES 

recognised by CRM-1 is defined as a short amino acid sequence comprised of evenly 

spaced hydrophobic residues; with leucine usually being most abundant (La Cour et 

al. 2004). Leucine-rich NESs usually form the consensus sequence φ-x2-3-φ-x2-3-φ-x-
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φ (φ=L,I,V,F,M; x any amino acid); where the intervening amino acids are often 

negatively charged, polar or small (La Cour et al. 2004). Recently it has been 

suggested that NESs can be split further into two types; PKI-class NESs and Rev-class 

NESs with different  consensus sequences (Güttler et al. 2010).  The PKI-class of 

NESs contain five hydrophobic residues, whereas Rev-like NESs contain four 

hydrophobic residues (Figure 1.3). 

 
 
Figure 1.3: Redefinition of NES consensus sequence into PKI-like NES and Rev-like NES.  
Φ is key hydrophobic residue with preferential amino acids indicated. Figure adapted from (Güttler 
et al. 2010). 

 

Binding of NES-containing proteins to CRM-1 is controlled by RanGTP, which 

predominantly localises to the nucleus. CRM-1 binding to the NES is usually weak; 

this is to facilitate disassembly of the export complex in the cytoplasm. CRM-1 

contains 19 HEAT repeats, the RanGTP interaction has been suggested to occur at 

an acidic loop within HEAT repeat 8; and this seems to mediate for the cooperative 

binding of the NES cargo (Hutten & Kehlenbach 2007).  

When NESs with strong affinity to CRM-1 were created, these 

“supraphysiological” NES interacted with CRM-1 in a RanGTP independent manner.  

These NES-containing proteins localised at the cytoplasmic filaments of the NPC, 
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suggesting that the efficient release of export complexes from the NPC was 

impaired (Kutay & Güttinger 2005).  

CRM-1 can bind NESs that vary in both length and sequence at a single binding 

cleft. Guttler et al. showed that NESs bind to a hydrophobic cleft in CRM-1 at five 

specific hydrophobic pockets regardless of sequence differences; with no single 

hydrophobic residue essential for either CRM-1 binding or NES function (Güttler et 

al. 2010). This hydrophobic cleft has a defined conformation which does not adapt 

to different NESs. NES-like sequence patterns can be found frequently in proteins; 

however to be functional they must occur within the N- or C-termini or within 

unstructured regions of the protein.  

The exact mechanism of nuclear export through CRM-1 is unclear. During the 

formation of the export complex, RanGTP binds to CRM-1 with the NES-containing 

export cargo. As stated earlier, the binding of CRM-1 to NES-containing cargo is 

weak; RanBP3 is thought to promote the formation of export complexes by linking 

CRM-1 to Regulator of Chromosome Condensation 1 (RCC1) and also by enhancing 

the catalytic activity of RCC1 (Nemergut et al. 2002). RanBP3 binds to CRM-1 at the 

acidic loop, allowing stable binding of both RanGTP and the NES-containing cargo 

(Englmeier et al. 2001; Petosa et al. 2004). RanBP3 increases the active 

concentration of RanGTP and promotes the binding of cargo to the CRM-1 central 

domain. RanBP3 contains FG repeats; and CRM-1 binds to its FG-repeat containing 

region (Hutten & Kehlenbach 2007).  

The exact mechanism of CRM-1 translocation through the pore is unknown 

(Figure 1.4). Directionality of transport is imposed by the Ran gradient, which 

favours assembly of export complexes and disassembly of import complexes in the 
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nucleus (Fried & Kutay 2003; Macara 2001; Pemberton & Paschal 2005; Tran & 

Wente 2006). CRM-1 has been shown to interact with cytoplasmic nucleoporins, 

Nup358 and Nup 214, with these being seen as terminal docking sites of the export 

complex (Hutten & Kehlenbach 2006; Bernad et al. 2004). RanBP1, Nup358, 

RanGAP (Hutten & Kehlenbach 2006; Englmeier et al. 1999); and NXT1 (Black et al. 

2001) are required for disassembly of the export complex from its terminal binding 

site in the cytoplasm. For disassembly, RanGTP in the complex must be hydrolysed. 

While RanGTP is interacting with the export complex; hydrolysis is inhibited. 

However, RanBP1 releases this inhibition and with the aid of RanGAP the export 

complex can be disassembled. 
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Figure 1.4: Nuclear export through the pore.  
NES containing proteins interact with CRM-1 in complex with RanBP3. 
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1.1.3.1. Ran-independent nuclear export 

In human cells the majority of mRNA export occurs independently of the Ran 

system and the karyopherin family of proteins (Clouse et al. 2001). The Tip-

associated protein (TAP), also known as NXF1, and its cofactor Nxt1/p15 are 

responsible for the nuclear export of most cellular mRNAs (Izaurralde 2002). TAP 

contains a PY-NLS, an RNA binding (RNP) domain, and a leucine-rich repeat (LRR) 

domain in its N-terminus (residues 1–372) (Truant 1999; Lee et al. 2006; Liker et al. 

2000). During mRNA export, TAP interacts with the mRNP, forming a heterodimer 

with p15 and interacts with the FG repeats of nucleoporins via its C-terminus 

(Fribourg et al. 2001).  

TAP was originally found to interact with the Constitutive Transport Element 

(CTE) of viral RNA, giving viruses the ability to export their unspliced RNAs from the 

nucleus (Kang & Cullen 1999; Braun et al. 1999). In normal mRNA export, TAP binds 

to an export adaptor-mRNA complex, causing a transfer of the mRNA to TAP's RNA 

binding domain. TAP binds to mRNA weakly in the absence of adaptor proteins, 

however in the presence of a bound adaptor TAP has a 4-fold higher binding affinity 

with mRNA (Hautbergue et al. 2008). Following transport through the NPC, TAP 

dissociates from adaptor proteins reverting to a low affinity RNA-binding state, and 

the DEAD box protein Dbp5 promotes the displacement of the mRNP from the NPC 

(Tran et al. 2007; Lund & Guthrie 2005).  

1.1.4. Regulation of Nuclear transport 

Nuclear transport is involved in regulation of critical processes such as gene 

regulation and cell cycle progression. Proteins that have distinct functions in the 

nucleus and cytoplasm can be regulated by controlling their nuclear transport. 
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Nuclear transport can be regulated through post-translational modifications in 

response to a variety of signals such as hormones, cytokines and growth factors, 

cell cycle signals, immune challenge and stress (Poon & Jans 2005). Regulation of 

nuclear import via phosphorylation is the most studied post-translation 

modification, with phosphorylation regulating import in various ways. 

Phosphorylation of amino acids within a protein's NLS has been shown to increase 

binding affinity to importins, with phosphorylation of Ser385 of Epstein Barr virus 

Nuclear Antigen-1 (EBNA-1)  increasing binding to importin-5 and thus increasing 

nuclear import (Kitamura et al. 2006). Phosphorylation of proteins can also cause 

structural rearrangement, for example STAT1 phosphorylation induces homo-

dimerisation through a reciprocal SH2-phosphoTyr interaction, which exposes an 

NLS recognisable by importin-5 (Fagerlund et al. 2002; Balagopal & Parker 2009).  

Phosphorylation of the HBV Core antigen positions the NLS on the exterior of the 

viral capsid, thus promoting nuclear import (Kann et al. 1999; Rabe et al. 2003).  

Ubiquitination and sumoylation can also regulate the nuclear import of 

proteins.  For example, ubiquitination has been shown to regulate nuclear import of 

the tumour suppressor Phosphatase and tensin homolog (PTEN) (Trotman et al. 

2007; Howitt et al. 2012). Sumoylation has been shown to regulate the nuclear 

import of many different proteins (Wilson & Rangasamy 2001; Pichler & Melchior 

2002), including targeting RanGap1 to the nuclear pore complex (Matunis et al. 

1998).   

Nuclear export of proteins can also be regulated by post-translational 

modifications. The interaction of  the main mammalian exportin CRM-1 with its 

NES-containing cargo can be regulated by phosphorylation; either positively or 
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negatively. For example, casein kinase II dependent phosphorylation of 

PPARgamma results in accumulation in the cytosol (Von Knethen et al. 2010); 

whereas phosphorylation of c-Fos inhibits nuclear export (Sasaki et al. 2006). Mono-

ubiquitination is required for nuclear export of hDCNL1 (Wu, Yan, et al. 2011).  

Sumoylation has also been shown to regulate nuclear export, with sumoylation of 

TEL being required for its nuclear export (Wood et al. 2003). 
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1.2. Introduction to DDX3 

DDX3 is a member of the DEAD-box family of putative RNA helicases which were 

first described in 1989 (Linder et al. 1989); and there are now over 500 DEAD-box 

proteins described in protein databases. It was first discovered in 1997 as one of 

five X-chromosomal genes that have homologues in the non-recombining region of 

the Y-Chromosome (DDX3Y) (Lahn & Page 1997). All DEAD-box helicases contain 

nine conserved helicase motifs, including the Asp–Glu–Ala–Asp (D-E-A-D) motif, 

which is located within a structurally conserved core element forming two recA-like 

domains. DEAD-box helicases have been implicated in a wide variety of cellular 

processes involving RNA, including splicing, mRNA export, transcriptional and 

translational regulation, RNA decay and ribosome biogenesis (Schröder 2010). 

Interestingly, DDX3 seems to be critical for survival as knockout mice are not viable 

and stably knockdown DDX3 cell lines are not able to retain knockdown.  

In the following sections the various nuclear and cytoplasmic functions of DDX3 

will be reviewed.  

1.2.1. DDX3's role in RNA metabolism 

DEAD-box proteins have been implicated in all aspects of RNA metabolism. 

DDX3's core helicase domain is comprised of two covalently linked globular 

domains, each consisting of five –strands and five -helices, connected by a 

flexible linker. DEAD-box helicases such as DDX3 contain nine conserved helicase 

motifs, Motif I (Walker A), motif II (Walker B), motif III and motif Q in the sub 

domain 1, and motif V and VI in the sub domain 2 (Figure 1.5). DDX3 and its 

homologues share strong similarities as shown in Figure 1.5. The core helicase 

motifs are involved in ATP binding, ATPase activity, RNA substrate binding and 
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unwinding. The N- and C- termini of DEAD-box proteins show much more 

divergence, and are thought to confer functional specificity to the individual DEAD- 

box helicases (Rocak & Linder 2004).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

                                                                                                                                                                                                    

 

Figure 1.5: DDX3 belongs to the DEAD-box protein family.  
A: A schematic representation of DDX3 protein structure and conserved domains. B: Human DDX3 
protein sequence alignment with DDX3 homologues: Mus musculus PL10 ; Xenopus An3; 
Drosophila Belle and S. cerevisiae Ded1p and human DDX3. Alignment was performed using CLC 
Sequence viewer, conservation shown in colour gradient with blue being most identical to red being 
non identical.  
 
 

 

 

A 

B Consensus 
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During the mRNA life cycle, mRNA is processed in both the nucleus and the 

cytoplasm to produce a functional protein. Briefly, mRNA is transcribed from DNA 

in the nucleus, mRNA is then processed by mRNA processing enzymes (eg. 5' 

capping, splicing, polyadenylation). Processed mature mRNA is then transported 

from the nucleus to the cytoplasm in complex with proteins as mRNPs, and in the 

cytoplasm mRNA is translated at the ribosomes (Figure 1.6). DEAD box proteins 

have been shown to have roles all of these processes, hence nucleocytoplasmic 

transport of DEAD box proteins must occur for mRNA processing to occur.  

The role of DDX3 in various aspects of RNA metabolism will be discussed in the 

following paragraphs. 

 
 
 
 

Figure 1.6: Nuclear and cytoplasmic processes involving mRNA.  
In the nucleus, mRNA is transcribed from DNA into mRNA, mRNA processing occurs (splicing, 5' 
capping and polyadenylation), followed by transport to the cytoplasm where the mRNA is translated 
into protein.  
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1.2.2. Evidence of DDX3's role in Transcription 

Several DEAD-box proteins have been shown to play a role in gene regulation 

through interaction with the transcription machinery in the nucleus (Rocak & Linder 

2004; Fuller-Pace 2006). DDX3 has been suggested to participate in transcriptional 

regulation of several genes, ranging from genes involved in cell cycle regulation to 

genes involved in innate immune signalling (Schröder 2010). DDX3 has been shown 

to bind to the IFNβ, p21waf1/cip1 and E-Cadherin promoters, with the ability to either 

increase or decrease activation of these promoters (Table 1.2) (Soulat et al. 2008; 

Chao et al. 2006; Wu, Liu, et al. 2011; Botlagunta et al. 2008). 

 

DDX3 regulates transcription of promoters 

Promotor ↑/↓ activation Reference 

IFN ↑ (Soulat et al. 2008) 

p21 waf1/cip1 ↑ (Chao et al. 2006; Wu, Liu, et al. 2011) 

E-Cadherin ↓ (Botlagunta et al. 2008) 

Table 1.2: Human DDX3 regulates transcription of several gene promoters. 

 

DDX3 has been shown to increase activation of the IFNβ promoter during innate 

immune responses. Chromatin immunoprecipitation revealed that DDX3 was 

recruited to the  IFNβ promoter upon infection with Listeria monocytogenes, 

independently of IRF3 (Soulat et al. 2008). DDX3 induced activation of the IFNβ 

promoter independently of DDX3's ATPase activity, since the K230E helicase 

inactive mutant behaved the same as wild type DDX3 (Schröder et al. 2008; Soulat 

et al. 2008). The K230E mutant has a mutation in the Walker A motif, which 

disrupts its ability to bind nucleotides, and thus disrupting ATPase and helicase 
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activity (Yedavalli et al. 2004). Other DEAD-box proteins have also been shown to 

regulate promoter activity independently of their enzymatic activity (Yan et al. 

2003; Rajendran et al. 2003).  

DDX3 has been shown to interact and cooperate with Sp1 to up-regulate 

promoter activity of the cell cycle regulator p21waf1/cip1 in a ATPase-dependent and 

helicase-independent manner (Chao et al. 2006). DDX3 has been shown to be 

down-regulated in human hepatocellular carcinoma (HCC) cancers; suggesting a 

role as a tumour suppressor gene (Chang et al. 2006). DDX3 has also been shown to 

regulate transcription of the tumour suppressor E-Cadherin. Loss of E-Cadherin, a 

cell adhesion protein, has been shown to induce epithelial–mesenchymal transition 

(EMT) in breast cancer (Botlagunta et al. 2008). DDX3 was shown to reduce 

activation of an E-Cadherin promoter reporter construct through direct binding to 

the E-Cadherin promoter, while knockdown of DDX3 by shRNA promoted E-

Cadherin expression (Botlagunta et al. 2008). Another study showed that DDX3 

positively regulates the transcription factor Snail, with knockdown of DDX3 by 

shRNA resulting in decreased levels of Snail (Sun et al. 2011). Snail is a 

transcriptional repressor of E-Cadherin (Batlle et al. 2000).  

The role for DDX3 in regulating gene expression at the level of transcription 

demands that DDX3 must be present in the nucleus. Regulation of DDX3's nuclear 

import could therefore affect the expression of genes transcriptionally regulated by 

DDX3, such as p21waf1/cip1, IFNand E-Cadherin. 
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1.2.3. Evidence of DDX3's role in Splicing 

A role for DEAD-box proteins in splicing has been suggested due to the 

interaction of DDX3’s and the DDX3 homologue Ded1p from S. cerevisiae  with the 

spliceosome and mRNPs (Stevens et al. 2002; Merz et al. 2007). In yeast, three-

DEAD box proteins have been shown to be required for in vivo splicing; Sub2, 

Prp28, and Prp5 (Linder 2006). However, neither human DDX3 nor Ded1p have 

been shown to be required for splicing. In humans, DDX3 has only been shown to 

be associated with spliced mRNAs in an Exon junction complex (EJC)-dependent 

manner (Merz et al. 2007), suggesting DDX3 does not play an active role in splicing 

but associates with the RNPs after splicing has occurred (Schröder 2010). 

1.2.4. Evidence of DDX3's role in RNA export 

DDX3 has been shown to be exported via two nuclear shuttling proteins, TAP 

and CRM-1 (Lai et al. 2008; Yedavalli et al. 2004). As stated earlier, the nuclear 

export of mRNA occurs predominantly through a heterodimer of TAP and a small 

cofactor termed Nxt (Cullen 2003). DDX3 has been shown to interact with TAP 

independently of RNA binding via its C-terminus, and also to interact with polyA-

mRNAs (Lai et al. 2008).  

In addition to NES-containing proteins, CRM-1 has been found to export a small 

subset of inducible RNAs, including IFN-1 mRNA and IFNγ-induced HLA-A mRNA 

(Kimura et al. 2004; Browne et al. 2006). DDX3 has been shown to be exported via 

CRM-1 and to interact with CRM-1 (Yedavalli et al. 2004). Knockdown of DDX3 does 

not affect overall mRNA export, suggesting that DDX3 is not required for general 

mRNA export but may be involved in export of specific mRNAs (Lai et al. 2008). 

Since DDX3 has recently been shown to have a role in anti-viral gene expression, it 
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is possible that DDX3 might also be involved in the export of the above-mentioned 

immunologically relevant mRNAs via CRM-1.  

1.2.5. DDX3's role in Protein Translation 

Many DEAD-box proteins have been implicated in translation. The DEAD-box 

protein eIF4A is thought to be part of the cap binding complex, in which it unwinds 

or rearranges RNA-duplex structures at the 5’ end of mRNA; preparing it for 

scanning by the small ribosomal subunit. It is also thought that eIF4A may strip RNA 

of proteins after the RNA has been exported from the nucleus (Svitkin et al. 1996; 

Rogers et al. 2002). DDX3 homologues Ded1p and Dbp1p from S. cerevisiae  have 

also been shown to function in the initiation of translation; with Ded1p being faster 

and more efficient than eIF4A at scanning long 5’UTRs (Chang & Tarn 2009; 

Berthelot et al. 2004; Marsden et al. 2006).  

Human DDX3 has also been shown to interact with several translation initiation 

factors (Table 1.3). DDX3 has been implicated in protein translation through its 

interaction with the multi-component translation initiation factor eIF3 (Lee et al. 

2008). DDX3 had been suggested to have a role in translation regulation; inhibiting 

translation via an interaction with eIF4E  (Shih et al. 2008) while promoting -globin 

mRNA translation via an interaction with eIF3 (Lee et al. 2008). Knockdown of  

DDX3 was also shown to negatively affect the translation of mRNAs containing 

complex secondary structures in their 5′UTRs (Lai et al. 2008), similar to what was 

found in yeast Ded1p. DDX3 has recently been shown to promote translation of 

selected mRNA in association with eIF4F (Soto-Rifo et al. 2012). DDX3 has also been 

shown to have a role in assembly of 80S translation initiation complexes, with DDX3 
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interacting with components of the 80S ribosome in an RNA independent manner 

(Geissler et al. 2012).  

Translation Initiation Factors that interact with DDX3 

Translational initiation factor Reference 

eIF4e (Shih et al. 2008; Lai et al. 2008) 

eIF4a (Lai et al. 2008) 

eIF4α (Lai et al. 2008) 

eIF3 (Lee et al. 2008) 

PABP (Lai et al. 2008) 
eIF4F (Soto-Rifo et al. 2012) 

Table 1.3: Human DDX3 interacts with translational initiation factors. 

 

1.2.6. Summary of DDX3's nuclear and cytoplasmic functions 

DDX3 is involved in a range a cellular processes, which occur in both the nucleus 

and the cytoplasm. Figure 1.7, describes the various nuclear functions (DDX3's role 

in transcription and mRNA processing) and also the cytoplasmic functions 

(translation and innate immune signalling) that DDX3 is implicated in. DDX3's 

functions in both compartments suggests that transport of DDX3 between the 

nucleus and cytoplasm ought to be regulated and that its distribution in the cell 

might affect its participation in these processes.  
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Figure 1.7: DDX3 is a multifunctional protein with distinct roles in the nucleus and the cytoplasm. 
DDX3 has roles in all aspects of RNA metabolism. Transcription: DDX3 can regulate transcription of genes, increasing activation of the cell cycle regulator p21

waf1/cip1
 

promoter, decreasing activation of the E-Cadherin promoter and increasing activation of the IFNpromoter(Chao et al. 2006; Botlagunta et al. 2008; Soulat et al. 2008). 
mRNA processing: DDX3 has been implicated in various stages of mRNA processing. Translation: DDX3 has been implicated in translation initiation. Adapted from (Schröder 
2010).  
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1.3.  Aims of this study 

As DDX3 has distinct roles in both the nucleus and the cytoplasm, 

understanding how DDX3 is transported across the nuclear membrane may 

elucidate how DDX3's participation in nuclear and cytoplasmic processes is 

regulated and reveal what the role of DDX3 is in regulating these processes.   

This study is primarily interested in understanding the factors that influence the 

cellular localisation of DDX3. Whether DDX3 is a nucleocytoplasmic shuttling 

protein will be confirmed. We were interested in understanding how DDX3 is 

exported and imported through the nuclear pore and whether the cellular 

localisation of DDX3 can change in response to the cellular environment.  

As DDX3 has been shown to be a target for various viruses, we also investigated 

whether viral proteins affect DDX3 localisation in the cell, which may play a role in 

viral pathogenesis. Viruses have been implicated in disrupting various cellular 

functions including immune signalling, cell cycle regulation and stress responses 

(Bowie & Unterholzner 2008; Carrillo-Infante et al. 2007; White & Lloyd 2012).  

As we were interested in the localisation of DDX3 in response to cellular stress, 

we investigated how oxidative stress affects the localisation of DDX3 to cytoplasmic 

granules.  

As DDX3 has been shown to play a role in regulating the cell cycle, we 

investigated if DDX3 localisation and expression changes during the cell cycle.  
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Chapter 2 : MATERIALS AND METHODS 

2.1. Standard Laboratory Procedures  

Good laboratory practice was employed at all times. A laminar flow hood was 

used for all tissue culture experiments. All solutions are outlined in Appendix II. 

2.2. Molecular Biological methods  

2.2.1. Preparation of chemically competent cells  

Chemically competent cells were prepared from E.coli strain Novablue (Merck) 

(endA1) or E.coli strain BL21/DE3 (NEB) with CaCI2  solution, which facilitates 

transformation of the cells with DNA. 50 µl of Novablue competent cells were 

added to 5 ml of LB broth, and cultured overnight at 37°C. LB broth (100ml) was 

inoculated with 1ml of the E.coli overnight pre-culture and incubated at 37°C until 

the OD600 of the culture reached 0.4-0.8 (after approximately 6 hours). Then, the 

bacteria were pelleted by centrifugation at 4°C for 20 minutes at 3,000g. The pellet 

was immediately resuspended in 34ml of ice-cold transformation buffer (TB) and 

incubated on ice for 10 minutes. The cells were pelleted as before and resuspended 

in 8ml ice-cold TB. 600 µl of Dimethyl sulphoxide (DMSO, Sigma-Aldrich) was added 

and the cells were incubated on ice for a further 10 minutes. Aliquots of 200-300 µl 

were snap frozen in liquid nitrogen and stored immediately at - 80°C.  

2.2.2. Transformation of chemically competent cells 

Competent cells were thawed on ice. 50 µl of cells were transferred into a cold 

1.5ml tube containing 50 ng of plasmid DNA or 1-2 µl of ligated DNA from ligation 

reaction (see section 2.2.7.3.3) and kept on ice for 30 mins before being heat-

shocked for 35 seconds at 42°C in a water bath, and then placed on ice for a further 

2 minutes. 80 µl of LB broth was then added to the transformed cells and they were 
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immediately plated onto LB agar plates (LB broth with 1.5 % (w/v) agar) containing 

100µg/ml ampicillin antibiotic and incubated at 37°C overnight.   

For kanamycin resistant plasmids an additional outgrowth step was required. 

After heat-shock 100µl of SOC medium or LB broth was added to cells, and the tube 

was left shaking at 37°C in a bacterial incubator for 1hr. Outgrowth at 37°C for 1 

hour is best for cell recovery and maintenance of antibiotic resistance. Transformed 

cells were then spread onto LB agar plates containing 100µg/ml kanamycin and 

incubated at 37°C overnight. 

2.2.2. Isolation of plasmid DNA  

2.2.2.1. Small-scale DNA amplification 

Plasmid isolation and purification from bacterial cells was performed using the 

mi-Plasmid Mini Prep Kit (Metabion) according to the manufacturer's protocol. 

Briefly, 5ml LB broth containing appropriate antibiotic was inoculated with a single 

transformed E.coli colony from an agar plate. The culture was incubated overnight 

at 37°C with constant shaking. The bacterial cells were centrifuged at 5000 g for 5 

mins and subjected to lysis and purification as per the manufacturer's instructions. 

All plasmids were eluted in molecular grade water. 

2.2.2.2. Large-scale DNA amplification 

Plasmid isolation and purification from bacterial cells was performed using the 

Nucelobond Xtra Midi Kit (Macherey-Nagel) according to the manufacturer's 

protocol. Briefly, a starter culture of LB broth (5ml) containing appropriate 

antibiotic was inoculated with a single transformed E.coli colony and incubated at 

37°C with constant shaking for 3-6h. This was then added to LB broth (100ml) 

containing appropriate antibiotic and incubated over night at  37°C with constant 
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shaking. The bacterial cells were centrifuged at 3000g for 20mins and subjected to 

lysis and purification as per the manufacturer's instructions. All plasmids were 

eluted in molecular grade water. 

2.2.2.3. DNA quantification  

DNA concentrations and purity were determined using a NanoDrop® ND-1000 

Spectrophotometer according to the manufacturer's protocol.  

2.2.3. Agarose gel electrophoresis  

The principle of agarose gel electrophoresis is to separate nucleic acids 

according to their molecular size in an electric field. PCR products were 

electrophoresed on agarose gels in a BRL Horizon 58 Life Technologies 

electrophoresis unit. Agarose gels were prepared by adding 0.8-2.0% (w/v) agarose 

(Thermo Fisher Scientific ) to 100ml 1 X TAE buffer (Appendix II), and heated until 

the agarose dissolved. Ethidium Bromide (10,000x; Thermo Fisher Scientific ) or 

GelRedTM Nucleic acid stain (10,000x; Biotium) was added and mixed by swirling 

gently. The solution was transferred into gel moulds and allowed to set. Agarose 

gels were transferred to the electrophoresis apparatus and overlayed with 1xTAE. 

DNA samples were mixed with 10x Loading Dye, and then were loaded into the gel 

wells. 7 µl 1kb DNA Ladder (Thermo Fisher Scientific) was included in each gel as a 

size reference. Gels were electrophoresed at 120 V for 15-30 minutes. DNA was 

visualized by a UV Transluminator and imaged using a Syngene G box gel 

documentation system (Frederick).  
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2.2.4. DNA purification  

2.2.4.1. Gel purification  

The required DNA fragment was excised from an agarose gel after visualising 

the DNA on a UV-transilluminator (Viber Lourmat). DNA fragments were purified 

using QIAquick Gel Extraction Kit (Qiagene), according to the manufacturer's 

protocol and eluted in 30l molecular grade water.  

2.2.5. Polymerase Chain Reaction (PCR)  

2.2.5.1. End-point PCR  

2.2.5.1.1. Principle  

The polymerase chain reaction (PCR) is a sensitive and selective in vitro method 

for exponential amplification of a specific DNA fragment of defined length and 

sequence template DNA. 

2.2.5.1.2. Primer design  

Primer pair design is the largest variable in PCR application and the single most 

critical factor in determining the specificity of the PCR. Primers were designed 

based on deposited GenBank sequences. Primer pairs were designed so they were 

complementary to the 5' and 3' ends of the fragment to be amplified. Primers were 

designed to incorporate appropriate restriction enzyme sites to allow cloning into 

chosen plasmid vectors. The following parameters were respected: G/C content of 

40-60% and length of 16-30 nt with a melting temperature (Tm) of 50°C or higher. 

Of note, complementary sequences of primer pairs should be avoided, since this 

often results in primer-dimer formation, which can impair the efficiency of the PCR.  
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2.2.5.1.3. PCR reaction mix  

Primers were obtained from Eurofins MWG Operon and resuspended in 

molecular grade water (Thermo Fisher Scientific) to a concentration of 100pmol/l. 

PhusionTM High Fidelity PCR polymerase (Finnzymes) was used according to the 

manufacturer’s protocol for a 20µl reaction, see Table 2.1. PCR amplification was 

carried out on a MJ research PTC-200 Thermo Cycler. 

Components 50 µl Volume (µl) 20 µl Volume (µl) Final Conc. 

5xHF Buffer (Phusion) 10 4 1x 

10 mM dNPTs (Metabion) 1 0.4 200 µM 

Primer 1 X X 0.5µM 

Primer 2 X X 0.5µM 

Template DNA X X 1pg-10ng per 50µl Rxn 

Phusion DNA Polymerase 0.5 0.2 0.02 U/µl 

Water Add to 50 Add to 20  

Table 2.1: PCR Master Mix.  
Table shows the components and their concentrations in each Phusion

TM
 PCR Master Mix. 
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2.2.5.1.4. PCR cycling program  

PCR cycling programs were performed using an MJ research PTC-200 Thermo 

Cycler. The programs are listed in Table 1.2. Cycling conditions were determined as 

per manufacturer’s instructions. Generally, an annealing temperature 

approximately 5°C below the lowest Tm of the pair of primers is used. For primers 

with high Tm, a two-step cycling  program was used which does not have an 

annealing step . 

Cycle step 2-step protocol 3-step protocol Cycles 

Temp. Time Temp. Time 
Initial denaturation 98°C 30 s 98°C 30 s 1 

Denaturation 
Annealing 
Extension 

98°C 
- 
72°C 

5 - 15 s 
- 
15 -30 s/kb 

98°C 
X°C 
72°C 

5 - 10 s 
10 - 30 s 
15 - 30 s/kb 

25-35 

Final extension 
  

72°C 
4°C 

5-10 min 
hold 

70°C 
4°C 

5-10 min 
hold 

1 

Table 2.2: PCR cycling program 

 

2.2.6. Site directed mutagenesis PCR 

2.2.6.1. Principle 

The aim of site directed mutagenesis PCR is to introduce a specific mutation at a 

defined site in a DNA sequence. The basic procedure utilizes a supercoiled double-

stranded DNA (dsDNA) plasmid containing the insert of interest and two synthetic 

oligonucleotide primers containing the desired mutation in the middle of their 

sequence. The oligonucleotide primers, each complementary to opposite strands of 

the vector, are extended during temperature cycling by the DNA polymerase. 

Incorporation of the oligonucleotide primers generates a mutated plasmid 

containing staggered nicks. Following temperature cycling, the PCR product is 
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treated with Dpn I (New England Biolabs). The Dpn I endonuclease (target 

sequence: 5´-GM6ATC-3´) is specific for methylated and hemimethylated DNA and 

is used to digest the parental DNA template, and thus to select for mutation-

containing synthesized DNA. DNA isolated from almost all E.coli strains is dam -

methylated and therefore susceptible to Dpn I digestion. The nicked vector DNA 

containing the desired mutations is then transformed into competent cells. 

2.2.6.1. Primer Design 

Primers were designed using the QuickChange primer design tool software 

(Agilent). Primers are listed in Table 2.3. 

 Site-Directed mutagenesis primers 

Mutant Forward Primer                          Reverse primer 
NES mutant 5'-

ctggaccagcagtttgctggcgcagacgcgaactcttcagata
atcagag-3' 

5'-
ctctgattatctgaagagttcgcgtctgcgccagcaaactgctggtc
cag-3' 

NSL 1 5’-
gcaaaagcatgctattcctattatcgcagaggcaagagacttg
atggcttgtgc-3’ 

5’-
ttgggcacacatcaagtctcttgcctctgcgataataggaatagcat
gctt3’ 

NLS2-1 
 

5'-
gctttgagggccatgaaggaaaatggagcggctgggcgccg
caaac-3' 

5'-
gtttgcggcgcccagccgctccattttccttcatggccctcaaagc-
3' 

NLS2-2 
 

5'- 
gaaaatggagcggctggggcagccaaacaatacccaatctc-
3' 

5'- gagattgggtattgtttggctgccccagccgctccattttc -3' 

T204D 5'-
agcttactcgttatactcgcccagatccagtgcaaaagcat-3' 

5'-atgcttttgcactggatctgggcgagtataacgagtaagct-3' 

T323D 5'-atgccatttgttagtagccgatccaggacgtctagtggat-
3' 

5'-atccactagacgtcctggatcggctactaacaaatggcat-3' 

T204A 5'-ctcgttatactcgcccagctccagtgcaaaagcat-3' 5'-atgcttttgcactggagctgggcgagtataacgag-3' 

T323A 5'-gccatttgttagtagccgctccaggacgtctagtg-3' 5'-cactagacgtcctggagcggctactaacaaatggc-3' 

Table 2.3: Site Directed mutagenesis primers. 
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2.2.6.2. PCR reaction mix 

Verbatim High Fidelity PCR Kit (Thermo Fisher Scientific) was used for site 

directed mutagenesis PCR. Primers were obtained from Eurofins MWG Operon and 

resuspended in molecular grade water (Thermo Fisher Scientific) at a concentration 

of 100pmol/l. A 50µl reaction was used; with reagents added as per Table 2.4. A 

negative control with no polymerase was run alongside the positive PCR. 

Components 50 µl Volume (µl) Final amounts 

5xHF Buffer (Verbatim) 10 1x 

20 mM dNPTs  1 200 µM 

Primer 1 X 125ng 

Primer 2 X 125ng 

Template DNA X 5-50ng per 50µl 
Reaction 

Verbatim DNA Polymerase 1.0 2.5 U/µl 

Water Add to 50  

Table 2.4: PCR Master Mix.  
Table shows the components and their volumes in each Verbatim PCR Master Mix. 
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2.2.6.3. PCR cycling conditions 

Site directed mutagenesis PCR conditions were as per Table 2.5. 

Segment Cycles Temperature Time 

Initial Denaturation 1 95°C 30 seconds 

Denaturation 
Annealing 
Extension 

25-30 95°C 
55°C 
68°C 

30 seconds 
1min 
1min/1kb 

Final extension 1 68°C 
4°C 

5-10 min 
Hold 

Table 2.5: PCR Conditions.  
Protocol as per QuikChange Site-Directed Mutagenesis Kit (Agilent) instructions. 
 

 

2.2.6.4. DPN1 digestion and transformation 

Dpn1 (New England Biolabs) was used to digest the parental template DNA. 1µl 

of Dpn1 was added to both the positive and negative control PCR tubes. 10µl of 

product was run on a 0.8% Agarose gel to confirm PCR amplification. E.coli was 

transformed with either positive and negative control PCR product and plated onto 

LB agar plates. Colonies were picked from positive plate and grown for small scale 

DNA purification. DNA was sent for sequencing to confirm mutagenesis. 

2.2.7. Gene cloning technology  

2.2.7.1. Principle  

The aim of recombinant DNA technology is the cloning of DNA fragments into 

plasmids via the joining of two segments of DNA to generate a single DNA 

molecule capable of autonomous replication within E.coli hosts. There are four 

major steps in DNA cloning: 1) preparation of vector and insert; 2) ligation of 

vector and insert; 3) transformation into a host; 4) screening of selected clones. 

The ultimate purpose was to clone genes of interest and to express their encoded 

protein in different host cells (bacterial or mammalian cells). When expressed as a 

non-fusion protein an ATG codon was present at the start of the insert ORF. When 
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the insert was expressed as a fusion protein, the orientation and reading frame 

were maintained. 

2.2.7.2. Vectors and insert sequences 

 All bacterial plasmid vectors contain basic features, such as an origin of DNA 

replication (ori) enabling replication in bacteria; a multiple cloning site (MCS) with 

an array of unique restriction enzyme sites; selectable markers such as antibiotic 

resistance genes (Kmy r and Amp r). For expression in bacterial, yeast or 

mammalian systems, vectors also have to contain specific features recognised by 

the host cells, including a specific ori, a specific promoter region upstream of the 

MCS directing the transcription of the insert and selection markers and also 

features to induce translation, eg. Kozak sequence for bacterial expression. Vector 

maps of all plasmids used and an outline of their respective uses are listed in 

Appendix I.  

The insert sequences were derived from two different sources. Insert 

sequences were isolated directly from previously recombinant plasmids containing 

the inserts via enzymatic digestion of the insert (subcloning) or were amplification 

by PCR. Whether subcloned from another vector or amplified by PCR, inserts 

contained compatible restriction sites with the multiple cloning site (MCS) of the 

chosen expression vector. 
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2.2.7.3. Cloning protocols  

2.2.7.3.1. Enzymatic digestion of the vector and the insert 

The vector and insert DNA were digested with one or two different restriction 

enzymes  with recognition sites included within the MCS of the vector and at the 

ends of the insert, generating compatible and cohesive ends. All restriction 

enzymes were obtained from New England Biolabs and used with manufacturer's 

buffers. Appropriate buffers for double digestions were used, as per manufacturer's 

instructions. The digestion reaction was performed for 3-16h at 37oC, or overnight 

at 37oC as per Table 2.6. 

Components 35l reaction 

Purified vector or insert DNA Approx. 1.0g 

15l PCR product  

10x Buffer 3.5 

Enzyme I 
Enzyme II 
 

1.0 
1.0 

BSA 0.5 

ddH2O Up to 35 

Table 2.6: Restriction enzyme digestion reaction.  
Table shows the components and their volumes for each restriction enzyme digest of DNA insert or 
vector. 
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2.2.7.3.2. Dephosphorylation of vector for one enzyme cloning 

Antarctic Phosphatase (New England Biolabs) was used to dephosphorylate 

vector during one enzyme cloning.  Antarctic Phosphatase catalyzes the removal of 

5´ phosphate groups from DNA and RNA. Since phosphatase-treated fragments lack 

the 5´ phosphoryl termini required by ligases, vector cannot self-ligate. After 

treatment the reaction was carried out for 1h at 37oC (Table 2.7) followed by heat 

inactivation at 65oC for 5 mins. 

Components Volume (µl) Working Conc. Final Conc. 

10x Buffer 3.0 10x 1x 

Antartic Phosphatase enzyme 1.0 NA 4-5U/µg DNA 

BSA 0.5 100x 100 µg/ml 

ddH2O Up to 30 NA NA 

Table 2.7: Dephosphorylation reaction. 
Table shows the components and their volumes for dephosphorylation of digested vectors. 
 

2.2.7.3.3. Ligation of the vector and the insert  

Following restriction digest, vector and insert were gel-purified and then 

ligated. Ligations were carried out with 2xLigase Premix (Clonables, 

Novagen/Merck Millipore) as outlined in Table 2.8. An excess of insert is required 

for successful ligation. A negative control with dH2O instead of DNA insert was also 

included, to control for re-ligation of vector. The ligation reactions were incubated 

at 16oC for 20mins. 

Components Volume (µl) Conc. 

Vector 0.5-1.5 0.0125 pmol 

DNA insert 1.0-2.0  0.025-0.7 pmol 

2xligase 2.5  

Table 2.8: Ligation reaction.  
Table shows the components and their volumes for ligation of purified DNA inserts into appropriate 
vectors.  
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2.2.7.3.4. Transformation and selection  

50µl of competent E.coli cells were transformed with 2µl of the ligation reaction 

mixture. The transformation procedures were described in section 2.2.1.2. 

Transformants were plated on LB plates containing appropriate antibiotic. 

2.2.7.3.5. Screening of the transformants 

Colonies on LB plates were used to inoculate small ON cultures for small scale 

plasmid purification. Restriction digestion was carried out using appropriate 

restriction enzymes to confirm the presence of insert. 

2.2.7.3.6. Sequencing  

Positive clones were then sequenced to confirm their correct sequence, 

orientation and reading frame. Plasmids were sent to either Eurofins MWG Operon 

(Germany) or SourceBiosource (Ireland)  for sequencing. 

2.2.7.4. Plasmid construction 

DDX3 truncation mutants were generated by cloning relevant sequences into 

the EcoRI and Sal I site of the vector pCMV-Ha (Clontech) (Appendix I). The Ha-tag is 

to the N-terminus of DDX3. Primers used are listed in Table 2.9. 

NES-addition mutants, which re-attached the NES region to N- terminal deletion 

mutants, were generated as shown in Figure 2.1 by amplifying the first 1-22 amino 

acids of DDX3 flanked by two EcoR1 site. Constructs for truncation mutants were 

linearised using the EcoR1 restriction enzyme and dephosphorylated using Antarctic 

Phosphate (New England Biolabs) to prevent religation of the NES 1-22 fragment. 

The NES 1-22 fragment was ligated into truncation mutants, and transformed into 

E.coli. Positive clones were sent for sequencing to confirm correct orientation of 

insert. 
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DDX3-GFP plasmids were generated by using Ha-tagged mutants as template 

for PCR, and cloning the products into EcoRI and SalI sites of the pEGFP-N1 vector  

(Clontech) (Appendix I). 

 

DDX3 mutants Forward primer Reverse primer 

DDX3 primers  

22-662 5'-gccgaattcggatgaactcttcagataatcagagt-3' 5’-acgcgtcgactcagttaccccacca-3’ 

44-662 5'-gccgaattcggatgaggaaccgagaagct-3' 5’-acgcgtcgactcagttaccccacca-3’ 

66-662 5'-gccgaattcggatgaaggatgcgtatagc-3' 5’-acgcgtcgactcagttaccccacca-3’ 

80-662 5'-gccgaattcggatggggaagtctagcttc-3' 5’-acgcgtcgactcagttaccccacca-3’ 

100-662 5'-gccgaattcggatgggacggagtgattac-3' 5’-acgcgtcgactcagttaccccacca-3’ 

110-662 5'-attgaattcggatgggtgacagaagtggc-3' 5’-acgcgtcgactcagttaccccacca-3’ 

120-662 5'-attgaattcggatgcgtggtggaaacagt-3' 5’-acgcgtcgactcagttaccccacca-3’ 

130-662 5'-gccgaattcggatgtcagatgaagatgaT-3' 5’-acgcgtcgactcagttaccccacca-3’ 

DDX3 NES-1-22 5'- agtcgtggacgttctaagagcaga -3' 5'-cgaattccgttcaggtctaggccag-3' 

DDX3 GFP 5'-tcttatggccatggaggcccgaattc -3’ 5'- aaatgtcgacgggttaccccaccagtc -3’ 

Table 2.9: Primers used for PCR amplification of DDX3 mutants. 
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Figure 2.1: Schematic of NES addition plasmid construction.  
Not drawn to scale. 
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2.3. Protein methods 

2.3.1. One-Dimensional SDS-PAGE  

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

migrates and separates proteins according to their molecular weight under 

denaturing conditions. Solution for resolving gels, 5% stacking gels, and buffers are 

outlined in Appendix II. Protein samples were mixed with 2x Laemmli sample buffer 

before being heated at 95°C for 5 minutes. Alongside a protein molecular weight 

marker (Fermentas), the samples were loaded into the wells of the stacking gel. 

Gels were then run using the BIO-RAD Minigel electrophoresis apparatus in SDS-

PAGE running buffer at 100-150 V constant voltage for 50-90 minutes, or until 

sufficiently resolved. 

2.3.2. Coomassie Blue staining  

When required, SDS-PAGE gels were stained with Coomassie Blue Staining 

Solution (Appendix II) for 20 minutes at 56°C, followed by destaining in Destaining 

solution (Appendix II) until the background was clear. 

2.3.3. Western blot analysis 

2.3.3.1. Electroblotting procedure  

Once the proteins had been separated by SDS-PAGE, they were transferred 

electrophoretically to a polyvinylidene fluoride (PVDF) transfer membrane 

(Immobilon, Sigma-Aldrich) in a semi-dry electrophoretic transfer unit (Biometra). 

Membrane was pre-soaked in methanol (Sigma-Aldrich) and cold transfer buffer 

(Appendix II) for 10 min.   
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2.3.3.2. Immunoblotting procedure  

After transfer, the membrane was incubated by shaking gently in a blocking 

solution (5% semi-skimmed milk powder in 1×PBS/0.01 % Tween (Sigma)) at room 

temperature for 1 h to prevent non-specific antibody binding. Subsequently, the 

membrane was incubated with a primary antibody, in 5% Milk PBS/Tween, for 2 

hour at room temperature, or 4°C overnight. Antibody concentrations and 

information is listed in Appendix II. Following 3 x 10min washes in 1 X PBS/Tween, 

the membrane was then incubated with a horseradish peroxidase conjugated 

secondary antibody for 2h at room temperature, and then washed again 3 x 10 min 

in 1 X PBS/Tween. 

2.3.3.3. Chemiluminescent detection  

Immunoreactive proteins were detected using Enhanced ChemiLuminescence 

(ECL). ECL was prepared by mixing 1ml of ECL A, 1ml of ECL B and 0.6µl of H2O2  

(Appendix II)  and then added to the membrane for 30 secs. Commercial ECL was 

also used (Millipore) as per manufactures guidelines. Membranes were placed 

between two layers of plastic and placed in a film cassette. In the dark room,  

Autorad film (UltraCruz™ Autoradiography Film, Santa Cruz Biotechnology) was 

placed on top of the membranes in the cassette for 1-30 min. Autorad film was 

then developed and fixed using a Fuji Medical film processor (Fuji). 

2.4. Mammalian cell culture methods  

All cell culture experiments were performed in a Holten LaminAir laminar flow 

hood at  Biosafety Level II. Cells were maintained at 37°C in a humidified 

atmosphere of 5% CO2 in a Thermo Scientific Forma Steri Cycle incubator.  
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2.4.1. Cells culture  

HEK293T and HeLa adherent cell lines were cultured in Dulbecco's Modified 

Essential Medium (DMEM) (Invitrogen) with 10% fetal calf serum (Thermo Fisher 

Scientific) and antibiotics (10 µg/ml gentamicin (Sigma) (Table 2.10). Confluent 

cultures were passed at 1:10 ratio for HEK293T and HeLa in T 75cm2 tissue culture 

flasks (Corning) every 2-3 days. Cells were dissociated using 5% (w/v) trypsin-EDTA 

solution (Sigma) and resuspended in DMEM. 

Cells Description Morphology Maintained in 

HEK293T Immortalised Human embryonic kidney cell 
line, containing the  SV40 Large T-antigen 

Epithelial DMEM 

HEK 293 R1s Immortalised Human embryonic kidney cell 
line, stably transfected with IL-1R1 

Epithelial DMEM 

HeLa Human cervical carcinoma cell line Epithelial DMEM 

HepG2 Human Liver carcinoma cell line Epithelial DMEM 

    

Table 2.10: Cell line information 

  

http://en.wikipedia.org/wiki/SV40_Large_T-antigen
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 2.4.2. Transient transfection of mammalian cell lines 

Cells were transfected with plasmids using either Calcium Phosphate or 

GeneJuice™ (Merck/Novagen) according to the manufacturer's protocol.  

2.4.2.1. Calcium Phosphate transfection 

For a 10cm TC dish, 500µl (-volume of DNA) 2X HBS (Appendix II) were aliquoted 

into a sterile 1.5 ml microfuge tubes. 20 µg of plasmid DNA was added to 2xHBS. 

30µl 2.5M CaCl2 (Appendix II) was then added and mixed gently during the 

addition. After 20min incubation, solution was added dropwise to the cells. Cells 

were incubated at 37°C for 24-48 hours before harvesting. For a 6-well plate, 12-

well plate or 24-well plate, reaction was scaled down appropriately. 

2.4.2.2. Gene juice transfection 

Genejuice™ transfection (Merck/Novagen) was carried out as per the 

manufacturer’s instructions. Transfection assays were carried out in flat bottomed 

96-well plates. Genejuice was diluted in serum free medium (SFM) at a 1:25 dilution 

and left for 5min. The DNA/Genejuice mixture was left for 15 min before addition 

to the cells in the 96 well plate. A total amount of 230ng DNA in 10µl 

GeneJuice/SFM mixture was added to each well and mixed by pipetting.  

2.4.2.3. SIRNA transfection 

Short Interfering RNA (siRNA) can be used to interfere with the expression of 

specific mRNAs containing complementary nucleotide sequences. Lipofectamine 

2000 was used to transfect HEK293Ts and HeLa cells with Stealth™ RNAi 

oligonucleotides (Invitrogen) specific for DDX3 or a control siRNA with matched GC 

content ( 
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Table 2.11). For a 6-well plate, 100pmole (5µl) of siDDX3-1, siDDX3-2, siDDX3-3 

or si medium GC was added to 125µl of Optimem (Gibco) in a sterile eppendorf 

tube. 125µl of Optimem (Gibco) was mixed with 5 µl Lipofectamine 2000 in a sterile 

eppendorf, and left for 15 min. The Lipofectamine/Optimem mix was added to the 

siRNA/Optimem eppendorf tube mixed with pipetting, and incubated for 15 min. 

255µl of Lipofectamine/siRNA mix was added to cells. After 24 h, cells from each 

well were split into two new wells. The following morning a second siRNA 

transfection was carried out, and 6 h later expression plasmids were transfected 

into cells using the calcium phosphate method. Cells were harvested 24 h after the 

calcium phosphate transfection. 

siRNA Sequence Identifier 

DDX3-1 5'-GGGAGAAAUUAUCAUGGGAAACAUU-3' (HSS102712) 

DDX3-2 5'-UUCAACAAGAAGAUCCAACAAAUCC-3' (HSS102713) 

 

Table 2.11: siRNA sequence and Identifier (Invitrogen). 
 

2.4.3. Cell treatments   

For Leptomycin B (LMB) treatment, cells were treated with 20 nM LMB (Sigma) 3 

hours before harvesting. 

For Sendai virus (SeV, Charles River Laboratories) stimulation, Sendai virus was 

added at a 1:200 dilution from original stock (16,000/ml) at required time points. 

Etoposide was added to cells at a concentration of 25µM or 50µM for 4 hours. 

IL1- /TNF- was added at a concentration of 10ng/µl of IL1 and 100ng/µl of TNF 

for 4 hours. 

Importazole was added to cells at a concentration of 40µM for 4/8 h. 

Sodium Arsenite was added to cells at a concentration of 1 mM for 20 minutes.  
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2.5. Co-immunoprecipitation (Co-IP) assay 

2.5.1. Principle 

Immunoprecipitation (IP) is the technique of precipitating a protein antigen out 

of solution using a matrix-bound antibody that specifically binds to that particular 

protein. Co-immunoprecipitation involves the immunoprecipitation of intact native 

protein complexes. 

2.5.2. Co-immunoprecipitation (Co-IP) assay  

HEK293T cells were transfected with 4 µg of expression plasmids for Ha-tagged 

proteins in a 6-well plate; or 20 µg in a 10cm dish. 48 hours post-transfection, cells 

were lysed in 200µl IP-lysis buffer for 6 well plate; or 850 µl for 10cm dishes 

(Appendix II). The required antibody was coupled to Protein G Sepharose Beads 

(Sigma), or Protein A/G agarose beads (Santa Cruz) in 5% BSA/PBS-Tween (0.05%) 

overnight at 4oC with constant rotation. Lysates were added to beads for 3 hours at 

4oC or overnight at 4oC with constant rotation. Beads were washed three times with 

1ml of IP-Lysis Buffer and drained of all wash buffer. Beads were then resuspended 

in 2x Laemmli sample buffer (Appendix II) and boiled for 10min at 95 oC. Co-

immunoprecipitation samples were then analysed for interaction by SDS-PAGE and 

Western blotting. 

2.6. In vitro Recombinant protein Pull down Assay 

2.6.1. Expression and purification of recombinant His-tagged Proteins in E.coli 

1 µl plasmid DNA (pHIS-Parrallel-2 expression plasmid) was transformed 

chemically into competent E. coli strain BL21/DE3 (New England Biolabs) as 

described in section 2.2.2.1. Overnight pre-culture was performed at 37°C by 

inoculating with one transformed colony in 12 ml of LB (AMP) overnight. 

http://en.wikipedia.org/wiki/Precipitation_(chemistry)
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Antibody
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Alternatively, 5 µl of a glycerol stock was used to inoculate the 12ml pre-culture of 

LB (AMP). 10 ml of the overnight pre-culture was inoculated into a 100 ml LB (AMP) 

culture and incubated at 37°C up to the logarithmic phase of growth. When 00600 

=1.2, protein expression was induced by the addition of isopropyl β-D-1 

thiogalactopyranoside (IPTG) to a final concentration of 100 µM at room 

temperature. The E.coli cells were pelleted by centrifugation of 3000g for 45min at 

4°C, and then resuspended in 1 ml native lysis buffer (Appendix II). Lysates were 

snap frozen in liquid nitrogen and thawed using a water bath. Three cycles of 

freeze-thawing were carried out. Additional sonication (30% power for 10sec x 3) 

were performed on the lysates to completely lyse the bacteria. The lysates were 

cleared by centrifugation at 13000g for 30 min. 100 µl Ni-NTA bead slurry (Qiagene) 

was washed three times with His-Wash Buffer (Appendix II), then added to the 

cleared lysates, and incubated at 4°C for overnight with constant rotation. The 

beads were then washed twice with 1.5 ml of His washing buffer I and II and the 

proteins were eluted by 100µl of elution buffer (Appendix II). Aliquots of protein 

were run on SDS-PAGE and stained with Coomasie Blue to assess purity and amount 

of purified recombinant proteins.  

2.6.2. In vitro Pulldown assay 

For pull-downs, equal amounts of the different His- or GST- tagged fusion 

proteins were used, as estimated by SDS–PAGE and Coomassie Blue staining prior 

to use. Cell lysates containing Myc-tagged proteins expressed in HEK293T cells or 

0.5μg of recombinant protein were incubated with the purified His- or GST-tagged 

proteins coupled to Nickel-Agarose or Glutathion-Sepharose respectively, with 

constant rotation for 4h or overnight at 4°C. Beads were washed three times in 
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1.5ml lysis buffer, and then all the liquid drained. Beads were then resuspended in 

2x Laemmli sample buffer (Appendix II) and boiled for 10min at 95 oC.  Sample were 

analysed for interactions by SDS-PAGE and Western blotting. 

2.7. Intracellular protein Co-localisation Studies  

2.7.1. Immunofluorescent staining 

Cells were cultured on round coverslips (Lennox) in a 6 well plate. 24 hours after 

plating, cells were transfected with 4µg DNA using the Calcium Phosphate method. 

1 hour before transfection the medium was replaced. 48 h post-transfection, cells 

were fixed in 4% paraformaldehyde (Appendix II) for 15min on ice, followed by 

washing in PBS (Appendix II). Cells were permeabilised with 0.5% Triton X-100 for 

30min on ice, followed by washing in PBS (Appendix II). Cells were blocked for 1h 

with 5% BSA in PBS-Tween (0.05%). Cells transfected with expression plasmids for 

Ha-tagged proteins were subjected to direct immnunofluorescence using anti-Ha-

AlexaFluor594 (Invitrogen) diluted at 1: 500 in 5% BSA in PBS-Tween (0.05%). The 

antibody solution was incubated with the cells for 2 h at room temperature in the 

dark. Indirect immunofluorescence was performed using primary antibodies, details 

of antibodies used and their concentrations can be found in Appendix II. After 

primary antibody incubation, cells were washed three times in PBS-Tween (0.05%).  

Addition of appropriate secondary antibodies followed, either anti-rabbit-

AlexaFluor 488 (Invitrogen) or anti-mouse-AlexaFluor 488 (Invitrogen) diluted 

1:1000 in 5% BSA in PBS-Tween (0.05%). After staining cells were mounted in 

SlowFade Gold Antifade Reagent containing DAPI (Invitrogen) on microscope slides 

and sealed using clear nail varnish. 
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Cells were viewed using an Olympus Fluoview Confocal Microscope and 

analysed using Olympus Fluoview FV10-ASW software.  Images were captured using 

a 40x objective lens. Sequential excitation at 405nm, 488nm and 594nm was used. 

The term co-localisation refers to the coincidence of green and red fluorescence, as 

detected by the confocal microscope. Olympus Fluoview FV10-ASW software was 

used to measure the degree of co-localisation by calculating the 

Pearson's correlation coefficient (R(r)). Pearson's correlation coefficient  is one of 

the standard techniques used to quantify the covariance between two signals. 

2.7.1.1. Mitochondria staining 

Where required, Mitotracker Red (Invitrogen) was used to stain mitochondria 

for immunofluorescence microscopy. 100nM of Mitotracker Red diluted in serum 

free medium was added to live cells for 1 h before fixation. After staining, cells were 

prepared as described before. 

2.7.1.1. Lipid droplet staining 

Staining of lipid droplets required the addition of oleic acid to induce lipid 

droplet formation. 24 h after transfection, Oleic acid (Sigma) was added to cells at a 

concentration of M overnight. Cells were fixed and stained as previously 

described in 2.7.1., with the secondary antibody being conjugated to AlexaFluor-

488. SUDAN III (Sigma) at 2mg/ml in 70% Ethanol was added to fixed cells for 20 

mins at room temperature and in the dark. Cells were washed 3 times with 70 % 

ethanol, followed by 2 washes with PBS. After staining, cells were prepared as 

described before. 
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2.7.3. Low content analysis 

Cells were stained as described above.  Olympus Fluoview Software was used to 

analyze the nuclear and cytoplasmic intensity of different stains. DAPI stain was 

used as a reference area for the nucleus and the bright field light image for the 

cytoplasmic area. A single line through the cell was then analyzed for the intensity 

of staining in the nucleus and cytoplasm. Intensity of staining in the nucleus divided 

by intensity of staining in the cytoplasm gave the nuclear/cytoplasmic ratio, see 

Figure 1.1.  

 

  
Figure 2.2: Nuclear/Cytoplasmic intensity was measured using Oympus Fluoview Software.  
A straight line was analyzed through each cell; using DAPI and bright field light image to specify 
nuclear and cytoplasmic areas, respectively. Intensity of staining for nucleus and cytoplasm was then 
used to determine the nuclear/cytoplasmic ratio. 
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2.7.3. High Content analysis 

The GE IN Cell Analyzer 1000 is an automated cellular and sub-cellular imaging 

system. The IN Cell Analyzer was used for high content analysis of cells. 

2.7.3.1. Preparation of cells for IN Cell Analyzer 

HeLa cells were grown in a 96 well plate. For experiments requiring 

overexpression of proteins, cells were transfected with expression plasmids via 

calcium phosphate transfection. Cells were fixed and stained in 96 well plate as 

described earlier. Briefly, 100µl 4% PFA was added per well for 15 min while on ice, 

followed by a wash in PBS. For permeabilization, 100µl of 0.05%Trition-X was added 

to wells for 30min on ice. Cells were blocked in 100µl of 5%BSA/PBS-Tween. 

Antibodies were diluted as  described in Appendix II, and 100µl of antibody 

solutions was added to wells. Cells were washed with 300µl  of PBS-Tween between 

antibody incubations. After secondary antibody incubation, DAPI (Sigma) was used 

at a concentration of 0.5µg/ml to stain nucleus and Phalloidin–

Tetramethylrhodamine B isothiocyanate (Sigma) was used at a concentration of 

0.1µM to stain actin filaments. This was followed by further washing in PBS-Tween.  

After staining, cells were covered with 200µl PBS for analysis.  

2.7.3.2. Analyzes of High-Content data 

Data was collated by IN cell Software (GE). DAPI and Phalloidin–

Tetramethylrhodamine B isothiocyanate staining were used to define nuclear and 

cytoplasmic regions, respectively,  which were used as a mask for detection of 

changes in DDX3 staining (Figure 2.3 A). To exclude non-transfected cells; data was 

parsed by setting a minimum threshold fluorescence intensity score using a non-

transfected negative control. Data was parsed using Python programming language. 
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For experiments looking at endogenous proteins all cells were analysed. 

Nuclear/cytoplasmic ratio was determined using an equation which took into 

account background intensity and area of nuclear and cytoplasm (Figure 2.3 B). 

                                        

 

 

 

Figure 2.3: High Content microscopy workflow. 

A: HeLa cells are stained with a primary -DDX3 and secondary -rabbit Alexa Fluor-488, and with 
Rhodamine Phalloidin which binds F-actin. Key: A (DAPI), B (Rhodamine-Phalloidin). B: 
Nuclear/cytoplasmic ratio equation. Background corrected intensities are calculated, and then used 
to calculate nuclear/cytoplasmic ratio. 

 
 
 

 

 

A 

B 
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2.8. Nuclear Cytoplasmic fractionation 

2.8.1. Principle 

Cells were fractionated into their cytoplasmic and nuclear components. A 

hypotonic buffer swells cells to allow for lysis of the cytoplasmic membrane without 

disruption of the nuclear membrane. A stronger lysis buffer is then used to lyse the 

nuclear membrane. 

2.8.2. Method 

HeLa cells were lysed on 10 cm plates for 5 mins using 500μl of Subcellular 

fractionation buffer (Appendix II). Cells were scraped from plate and placed in 1.5 

ml eppendorf tube. Lysates were passed through a 25 G needle 10 times using a 1 

ml syringe. The nuclear pellet was centrifuged out at 720g for 5 min, supernatant 

was retained as the cytosolic fraction. The nuclear pellet was washed once by 

adding 500μl of fractionation buffer. The nuclear pellet was pelleted be 

centrifugation at 720g for 10 min. Wash buffer was removed and the nuclear pellet 

was resuspended in standard lysis buffer (containing 10% glycerol, 1% NP-40), and 

incubated for 30mins on ice, with vortexing intermittently. The cytosolic fraction 

(supernatant) was centrifuged at 10,000g to clear any remaining fragments. The 

supernatant is the cytosolic fraction, pellet is the mitochondrial fraction. If the 

mitochondrial fraction is desired, pellet is washed like the nuclear pellet and 

resuspended in the same buffer as above. 
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2.9. Cell cycle arrest and synchronization 

2.9.1. Principle 

Cell cycle synchronization is the process of growing cells in culture to be at the 

same stage of the cell cycle. Synchronization of cells at specific stages of the cell 

cycle can be achieved by using inhibitors that block cells at specific stages of the cell 

cycle.  

2.9.2. Double thymidine block  (G1/S block) 

HeLa cells were plated at 25-30% confluency and grown in complete DMEM 

(Invitrogen) supplemented with 2mM thymidine (Sigma) for 18h. After this initial 

thymidine block, cells were washed in PBS twice and released into fresh complete 

DMEM for 9h. Cells were then added to complete DMEM supplemented with 2mM 

thymidine for 17h for the second block. Cells are blocked at G1/S boundary by this 

treatment. If required, cells were released into complete DMEM and harvested at 

specific time points to monitor cell cycle progression. 

2.9.3. Thymidine/Nocodazole block ( G2/M block) 

HeLa cells were plated at 40% confluency and grown in complete DMEM 

supplemented with 2mM thymidine for 24h. After initial thymidine block, cell were 

released into fresh complete DMEM for 3h. After release, 100ng/ml nocodazole 

(Sigma) was added to cell for 12h. Cells are blocked at mitotic (G2/M) boundary by 

this treatment. If required, cells were released into complete DMEM and harvested 

at specific time points to monitor cell cycle progression. 

2.9.4. Serum starvation (G0/G1 block) 

HeLa cells at 30-40% confluency were washed twice with PBS and grown in 

serum-free medium for 72 h. Cells are blocked at G0/G1 stage by this treatment. 
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Cells were released into complete DMEM and harvested at specific time points to 

monitor cell cycle progression. 
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Chapter 3 : Nuclear export of DDX3 

3.1. Introduction 

DDX3 has been shown to affect cellular processes in both the nucleus and the 

cytoplasm; therefore how DDX3 is exported from the nucleus is important. The 

nuclear export of DDX3 has not been studied in much detail, but it has been 

addressed in the context of its interaction with HIV-Rev protein. Furthermore it has 

been shown that DDX3 might be exported though both CRM-1 and Tap (Yedavalli et 

al. 2004; Lai et al. 2008). 

In the following passages, the current knowledge on how DDX3 is exported from 

the nucleus will be discussed.   

3.1.1. DDX3 export via Tip Associated Protein (TAP) 

Tip-associated protein (TAP), a member of the NXF family, is considered as the 

major receptor for bulk mRNA export (Herold et al. 2000; Stutz 2003). DDX3 has 

been shown to interact with TAP in an RNA independent manner, and to associate 

with mRNPs (Lai et al. 2008). One study showed that knockdown of TAP resulted in 

a reduced nuclear export of DDX3; suggesting that DDX3 can at least partly be 

exported via TAP (Lai et al. 2008). However, the functional relevance of the DDX3-

TAP interaction is unclear, as DDX3 does not seem to be required for bulk mRNA 

export.  

3.1.2. DDX3 export via CRM-1 

The Xenopus laevis DDX3 homologue An3 has been shown to be exported from 

the nucleus in a CRM-1-dependent manner (Askjaer et al. 1999). An3 export is 

mediated by a leucine-rich NES in its N-terminus. This NES is tightly conserved in 

DDX3 homologues including human DDX3 (X- and Y-linked), with the NES matching 
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the PKI-class NES consensus (Figure 3.1). Removal of the NES resulted in nuclear 

accumulation of An3 and reduced binding to CRM-1. Mutation of the NES through 

substitution of Leu-19 and Leu-21 with alanine residues also resulted in nuclear 

accumulation (Askjaer et al. 1999). An3 nuclear export was also shown to be 

coupled to An3 helicase activity. An An3 DEAD-box mutant (DEAD->DQAD) 

displayed reduced export from the nucleus; while binding to CRM-1 was not 

affected and neither was RNA binding capacity (Askjaer et al. 2000). The NES of An3 

has been described as a high affinity NES; meaning that it binds strongly to the 

hydrophobic cleft of CRM-1 (Güttler et al. 2010). The interaction between An3 and 

CRM-1 was dependent on Ran-GTP as expected for CRM-1 cargo (Askjaer et al. 

1999; Güttler et al. 2010). 

Human DDX3 has been shown to be retained in the nucleus upon treatment 

with Leptomycin B (LMB) (Sekiguchi et al. 2004; Yedavalli et al. 2004). LMB is a 

powerful inhibitor of CRM-1 mediated nuclear export, binding covalently and 

irreversibly to cysteine 528 in the NES-binding region of CRM-1 and thus preventing 

nuclear export of CRM-1 cargo (Yashiroda & Yoshida 2003; Kudo et al. 1999). 

Interestingly, Sekiguchi et al. showed that disruption of the NES through 

substitution of Leu-19 and Leu-21 to alanine did not affect export of hamster DDX3; 

however export of this mutant was still sensitive to LMB treatment (Sekiguchi et al. 

2004). The authors suggested the existence of another NES-region within the DDX3 

protein or that CRM-1 may not be the only form of export utilized by DDX3. 

Another group investigated the role DDX3 played in the export of un-

spliced/partially spliced HIV-1 transcripts via the Rev-RRE/CRM1 pathway (Yedavalli 

et al. 2004). They demonstrated that DDX3 interacts with CRM-1 independently of 



63 
 

its N-terminus, which contains its putative NES.  Instead, the C-terminus of DDX3 

was required for CRM-1 binding and this binding occurred in a Ran-GTP 

independent manner (Yedavalli et al. 2004). DDX3 was shown to co-localise with 

nucleoporins along the outer nuclear rim, and was suggested to play a role in 

processing of RNAs to permit their nuclear export through the NPC. A subsequent 

molecular modelling study, showed that the region between residues 420-560 of 

DDX3 might be responsible for binding to CRM-1. The authors also suggested that 

DDX3 could unwind viral RNA during nuclear transport due to the proximity of the 

DDX3 binding groove  to the HIV-Rev binding groove of CRM-1 (Sharma & 

Bhattacharya 2010).  

 
Figure 3.1: Leucine rich NES is conserved in the DDX3 homologues and corresponds to a PKI-like 
NES.  
Alignment of Xenopus An3 NES sequence with DDX3X (X-homologue) and DDXY (Y-homologue) 
(human), PL10 (mouse), Ded1p (yeast). 
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 3.1.3. Conclusion 

The literature on DDX3 nuclear export is complicated by conflicting results. The 

export of DDX3 has been suggested to occur mainly via CRM-1 however 

involvement of the putative highly conserved N-terminal NES in unclear (Yedavalli 

et al. 2004; Sharma & Bhattacharya 2010). The Xenopus DDX3 homologue An3 has 

been shown to be exported via CRM-1; with the an NES in its N-terminus being 

required for its export (Askjaer et al. 1999). The interaction of NES-containing 

proteins with CRM-1 is well understood; with NESs binding at 5 specific 

hydrophobic (φ) pockets in CRM-1. The An3 NES has been described as having high 

affinity for CRM-1 (Askjaer et al. 2000). Due to the near perfect conservation of this 

NES sequence between An3 and DDX3, it would be expected that the NES of human 

DDX3 should also mediate CRM-1 binding and DDX3 export. 

3.2. Aims 

In this chapter, I investigated the nuclear export of DDX3. I aimed to confirm 

that DDX3 is exported via CRM-1, and test whether DDX3's helicase activity is 

required for export. Using different truncation mutants we aimed to characterise 

the regions required for nuclear export, and to test the functionality of the putative 

N-terminal NES in human DDX3.  
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3.3. Results 

3.3.1. DDX3 localises predominantly in the cytoplasm in a range of transformed 
cells Lines 

Within the literature the localisation of DDX3 is unclear, with most reports 

suggesting a predominantly cytoplasmic localisation (Yedavalli et al. 2004; Sekiguchi 

et al. 2004) and others suggesting a nuclear localisation (Owsianka & Patel 1999). 

Owsianka et al. showed DDX3 localised to the nucleus in a speckled manner with 

only low levels of DDX3 in the cytoplasm (Owsianka & Patel 1999). Others have 

suggested that DDX3 has a nuclear localisation in primary skin cells compared to a 

cytoplasmic localisation in transformed squamous cell carcinoma (SCC) (Chao et al. 

2006). However, most of the literature would suggest DDX3 localises predominantly 

to the cytoplasm.  

I first tested the localisation of DDX3 in HeLa cells using immunofluorescence 

confocal microscopy, staining for endogenous DDX3 and F-actin. DDX3 localised 

predominantly in the cytoplasm in HeLa cells (Figure 3.2). 

I then decided to test the localisation of DDX3 in a range of transformed cell 

lines.  HEK293ts, a kidney cell line; HeLa, a cervical cell line; MC7F, a breast cancer 

cell line; and A549, cell a human alveolar basal epithelium cell line, were stained for 

endogenous DDX3. DDX3 has a predominantly cytoplasmic localisation in all of 

these cell lines (Figure 3.3).  
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Figure 3.2: Endogenous DDX3 localises in the cytoplasm. 

HeLa cells were stained with a primary -DDX3 and secondary -rabbit Alexa Fluor-488 and also 

with tetramethylrhodamine isothiocyanate-phalloidin which binds F-actin. Key: A (DAPI), B (-
DDX3), C (Rhodamine-Phalloidin), D (Merge B and C), E (Merge A,B and C) and F (Contrast).  
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Figure 3.3: DDX3 has a cytoplasmic localisation in a range of human cell lines.  

HEK 293Ts, HeLa, MCF7 and A549 cells were stained with a primary -DDX3 and secondary -rabbit 
Alexa Fluor-488 as described in Chapter 2. Key: A (DAPI -DDX3), C (Merge A+B), D (Contrast). 

 
 

3.3.2. DDX3 is exported from the nucleus in a CRM-1 dependent manner 

DDX3 has been described as a nucleocytoplasmic shuttling protein. It has been 

described to be exported from the nucleus in a CRM-1 dependent manner 

(Sekiguchi et al. 2004; Askjaer et al. 1999; Askjaer et al. 2000); and also through TAP 

(Lai et al. 2008). Confocal microscopy was used to confirm whether DDX3 export 

occurs via the protein exportin CRM-1. To this end, HeLa cells were transfected with 

expression plasmids for Ha-tagged DDX3 (Ha-DDX3), and were subsequently treated 

with the CRM-1 inhibitor Leptomycin B (LMB). Treatment with LMB resulted in 

nuclear accumulation of overexpressed Ha-DDX3; whereas in untreated control 
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cells, overexpressed Ha-DDX3 localised to the cytoplasm (Figure 3.4). I next tested 

whether endogenous DDX3 localised to the nucleus in HeLa cells after treatment 

with LMB, staining with an antibody against endogenous DDX3 and fluorochrome-

conjugated secondary antibody. Treatment with LMB resulted in nuclear 

accumulation of endogenous DDX3; whereas in untreated control cells DDX3 had 

cytoplasmic localisation (Figure 3.4). To confirm this result, Nuclear/Cytoplasmic 

fractionation was used to separate cells into their nuclear and cytoplasmic 

fractions. Western blot analysis of the nuclear and cytoplasmic fractions showed 

that there was more DDX3 in the nuclear fractions after treatment with LMB 

compared to untreated controls, confirming that treatment with LMB causes an 

accumulation of DDX3 in the nucleus (Figure 3.4).  

In conclusion, DDX3 is exported predominantly via CRM-1. Treatment with LMB 

resulted in the nuclear accumulation of both overexpressed and endogenous DDX3; 

with the majority of DDX3 being retained in the nucleus after treatment. 
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Figure 3.4: CRM-1 is required for the export of DDX3. DDX3 accumulated in the nucleus when 
treated with 20mM Leptomycin B (LMB) for 2 hours. 

(1): HeLa cells were transfected with expression plasmids for WT Ha-DDX3, and stained with -Ha 
Alexa Fluor-594. Key: A (DAPI), B (Ha-DDX3), C (Merge A+B), D (Contrast). (2): HeLa cells were 

stained with a primary -DDX3 and secondary -rabbit Alexa Fluor-488. Key: A (DAPI), B (-DDX3), C 
(Merge A+B), D (Contrast). (3): HeLa Cells were fractionated into the nuclear and cytoplasmic 

fractions and immunoblotted as described in Chapter 2. Blots were probed with -DDX3, -Tubulin 

and -HDAC. Representative blot of three experiments. 
 
 
 
 
 
 
 

(1) 

(2) 

(3) 
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3.3.3. DDX3 helicase activity is not required for nuclear export 

Askjaer et al. showed that the nuclear export of An3 was coupled to its helicase 

activity (Askjaer et al. 2000). The single point mutant K230E, bearing a substitution 

in motif I (Walker A), has been previously characterized as having lost both its RNA 

unwinding activity and its ability to hydrolyse ATP (Yedavalli et al. 2004). When the 

K230E mutant was overexpressed in HeLa cells, it localised predominantly in the 

cytoplasm in untreated cells, and became sequestered in the nucleus upon 

treatment with LMB (Figure 3.5). Therefore, unlike DDX3's Xenopus homologue 

An3, human DDX3 does not require its helicase activity for nucleocytoplasmic 

shuttling.  
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Figure 3.5: Helicase activity of DDX3 is not required for nuclear export. 
(1): A schematic representation of protein structure of DDX3. (2): HeLa cells were transfected with expression 
plasmids for K230E mutant which has lost its ability to hydrolyse ATP and unwind RNA. Cells were treated with 

20mM LMB for 2 hours or left untreated. Cells were stained with primary -myc antibody and secondary -
mouse Alexa Fluor-488. Key: A (DAPI), B (Myc-DDX3), C (Merge A+B), D (Contrast). 
  

(1) 

(2) 
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3.3.4. Mapping the region of DDX3 required for nuclear export 

The region of DDX3 required for  nuclear export is unknown, with roles for both 

the N-terminus and C-terminus being described in the literature (Sekiguchi et al. 

2004; Yedavalli et al. 2004).  

3.3.4.1 The C-terminus of DDX3 in not required for nuclear export 

Since the C-terminus of human DDX3 had previously been described as the 

region in which CRM-1 binding occurs (Yedavalli et al. 2004; Sharma & Bhattacharya 

2010) (Figure 3.6); removal of the C-terminus would be expected to result in 

nuclear accumulation. However; overexpression of a C-terminal deletion mutant (1-

408) in HeLa cells resulted in cytoplasmic localisation; suggesting that nuclear 

export had not been affected (Figure 3.6). Since the region of DDX3 responsible for 

import is unknown; we  also treated the cells with LMB to ensure import was not 

being affected by removal of the C-terminus. Treatment with LMB resulted in 

nuclear accumulation of the 1-408 mutant (Figure 3.6). Therefore, these results 

show that the C-terminus of DDX3 is not required for CRM-1 mediated export. If 

CRM-1 binding to DDX3 does occur via the C-terminus as described in the literature, 

this interaction is not required for the export of the protein. 
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Figure 3.6: The C-terminus of DDX3 is not required for export or import of DDX3.  
(1): A schematic showing CRM-1 binding sites as described in the literature and the C-terminal 
truncation mutant 1-408, (not drawn to scale). (2): HeLa cells were transfected with expression 
plasmids for myc-tagged 1-408 truncation mutant of DDX3. Cells were treated with 20mM LMB for 2 

hours or left untreated. Cells were stained with primary -myc antibody and secondary -mouse 
Alexa Fluor-488. Key:A (DAPI), B (Myc-DDX3),C (Merge A+B), D (Contrast). 
  

(1) 

(2) 
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3.3.4.2. The N-terminus of DDX3 is required for nuclear export 

As the C-terminus of DDX3 is not required for nuclear export, I next investigated 

an N-terminal deletion mutant 139-662, which has the first 139 amino acids 

removed. I was very interested in the localisation of this N-terminal mutant, since it 

had previously been shown to lack the ability to induce IFN-β promoter activation 

(Schröder et al. 2008), and also contains the binding sites for IKKε and IRF3 (Gu et 

al. 2012). NetNES software (www.expasy.org) is an online bioinformatic tool which 

predicts classical NES, and NetNES predicted a putative classical NES in the N-

terminus of DDX3 (Figure 3.7). This NES corresponds to the highly conserved 

putative NES that has been characterised in the Xenopus DDX3 homologue An3 

(Askjaer et al. 2000). Removal of the N-terminus removes this putative NES at 

amino acids 12-22, and also a described binding site for the translation initiation 

factor eIF4E (Shih et al. 2008).  

I tested the localisation of the N-terminal deletion mutant 139-662 using 

immunofluorescent staining and nuclear cytoplasmic fractionation. HeLa cells were 

transfected with expression plasmids for Ha-DDX3 and Ha-139-662, followed by 

immunofluorescent staining and confocal microscopy. I found that Ha-DDX3 had a  

clear cytoplasmic localisation and Ha-139-662 had a clear nuclear localisation 

(Figure 3.8). Nuclear/Cytoplasmic fractionation was used to separate cells into their 

cytoplasmic and nuclear fractions. Western blot analysis of the cytoplasmic and 

nuclear fractions showed that there was more Ha-139-662 in the nuclear fractions 

compared to Ha-DDX3 (Figure 3.8). Thus, the 139-662 mutant had a distinct nuclear 

localisation in HeLa cells , showing that the N-terminus of DDX3 is required for 

nuclear export. 
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Figure 3.7: DDX3 has a putative NES at residues 12-22. 
Graphical plot of the values (NES score) calculated by the NetNES software from the Markov Model 
(HMM), and Artificial Neural Network (NN) scores. If the calculated NES score exceeds the threshold, 
then the residue concerned is predicted to be involved in a nuclear export signal.  
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Figure 3.8: WT DDX3 localises predominantly in the cytoplasm; whereas N-terminal deletion 
mutant 139-662 localises predominantly in the nucleus. 
(1): A schematic depicting the N-terminal truncation mutant 139-622 (not drawn to scale). (2): HeLa 
cells were transfected with expression plasmids for Ha-tagged constructs for WT DDX3 and 139-662 

truncation mutant. Cells were stained with -Ha Alexa Fluor-594. Key: A (DAPI), B (Ha-DDX3), C 
(Merge A+B), D (Contrast). (3): HeLa Cells were fractionated into the nuclear and cytoplasmic 

fractions and immunoblotted as described in Chapter 2. Blots were probed with -Ha, -Tubulin and 

-HDAC. Representative blot of three experiments.  

(1) 

(2) 

(3) 
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3.3.5. The NES in the N-terminus of DDX3 is required for nuclear export 

I hypothesized that the nuclear localisation of the 139-662 mutant, was due to 

the removal of the putative NES at amino acids 12-22. Therefore, I designed and 

generated additional truncation mutants which truncated the N-terminus stepwise, 

removing the NES and eIF4E binding site.  

HeLa cells were transfected with expression plasmids for Ha-tagged 22-662 and 

44-662, followed by immunofluorescent staining and confocal microscopy.  

Removal of the putative NES and eIF4E binding site resulted in clear nuclear 

accumulation of DDX3  (Figure 3.9). 
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Figure 3.9: Removal of putative NES results in nuclear accumulation of DDX3. 
(1): A schematic depicting the N-terminal truncation mutants 22-622 and 44-662 (not drawn to 
scale).(2): HeLa cells were transfected with expression plasmids for Ha-tagged WT DDX3, 22-662 or 

44-662 truncation mutants. Cells were stained with primary -Ha antibody and secondary -mouse 
Alexa Fluor-488. Key:A (DAPI), B (Ha-DDX3), C (Merge A+B), D (Contrast). 
  

(2) 

(1) 
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To further validate the nuclear localisation of these truncation mutants; I 

decided to quantify the nuclear/cytoplasmic intensity of staining for DDX3 and its 

mutants. I used the nuclear DAPI stain and the light image to define the nucleus and 

cytoplasm of the cell, respectively. Using the Olympus Fluoview 1000 software the 

intensity of the fluorochrome of interest can be defined as nuclear intensity and 

cytoplasmic intensity using the nuclear stain (DAPI) and light image to define the 

boundaries. With this "Low content analysis", I measured the nuclear/cytoplasmic 

ratio of over-expressed Ha-DDX3; Ha-139-662 mutant and Ha-22-662 mutant. 

Results showed that wild type Ha-DDX3 localised predominantly in the cytoplasm, 

while the 22-662 and 139-662 mutants localised predominantly in the nucleus. 

Interestingly the 22-662 mutant had a reduced nuclear/cytoplasmic ratio compared 

to the 139-662  mutant (Figure 3.10); suggesting that residues downstream of the 

NES might also contribute to nuclear export.  

 
Figure 3.10: N-terminal deletion mutants 22-662 and 139-662 are predominantly nuclear, 
compared to WT DDX3 which was is predominantly cytoplasmic.  
HeLa cells were transfected with  expression plasmids for Ha-tagged DDX3 1-662,22-662 or 139-662. 

Cells were stained with -Ha antibody and secondary -mouse Alexa Fluor-488. Cells were analyzed 
for nuclear/cytoplasmic intensity using Olympus Fluoview Software, as described in Chapter 2. A 
predominantly cytoplasmic stain is<1; Nuclear stain is >1. n=30 (n=15 cells analysed from two 
independent experiments). Standard deviation error bars. 
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3.3.5.1. Disrupting the NES of DDX3 results in impaired nuclear export 

To further confirm the requirement of the N-terminal NES region for export of 

DDX3, an NES point mutant was designed. The NES-CRM-1 binding site can be 

disrupted by changing the hydrophobic leucines within the NES to inert amino 

acids; such as alanine. Askjaer et al. showed that disrupting the NES of the DDX3 

Xenopus homologue An3 by substituting the leucines at residues 19 and 21 with 

alanine disrupted nuclear export of An3 (Askjaer et al. 1999). An equivalent mutant 

was constructed for human DDX3, which substituted the leucines at residues 19 

and 21 with alanine as previously described. Site directed mutagenesis was carried 

out as described in Chapter 2. 

HeLa cells were transfected with expression plasmids for the Ha-NES mutant, 

follwed by immunofluorescent staining and confocal microscopy. As expected, the 

NES mutant localised predominantly in the nucleus; therefore confirming that the 

NES sequence of human DDX3 is required for CRM-1 mediated nuclear export 

(Figure 3.11). 
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Figure 3.11: DDX3 NES mutant localises predominantly in the nucleus. 
(1): Schematic representation of NES mutant. (2): HeLa cells were transfected with expression 

plasmid for Ha-tagged NES mutant, cells were stained with primary -Ha and secondary -mouse 
Alexa Fluor-488; as described in Chaptor 2. Key: A (DAPI), B (Ha-DDX3), C (Merge A+B), D (Contrast). 
(3): HeLa cells were transfected with expression plasmids for Ha-tagged DDX3 1-662 and NES 

mutant. Cells were stained with -Ha antibody and -mouse Alexa Fluor-488. High content analysis 
of nuclear/cytoplasmic ratio was carried out using the GE IN Cell analyser as described in Chapter 2. 
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Mutagenesis of NES regions by substituting the leucines to alanines is reported 

to disrupt the binding of CRM-1 to the NES (Askjaer 1998; Güttler et al. 2010). A 

semi-endogenous immunoprecipitation was carried out, to test if Ha-tagged DDX3 

WT or mutants interacted with endogenous CRM-1. Briefly, HEK 293Ts cells were 

transfected with expression plasmids for Ha-tagged constructs, namely for wild 

type DDX3, the N-terminal deletion mutant 139-662 and the NES mutant, and 

immunoprecipitation was performed using an -CRM-1 antibody (Novus 

Biologicals). Cell lysates were incubated with -CRM-1 bound sepharose beads 

supplemented with recombinant non-hydrolysable RanQ69L-GTP. The RanQ69L-

GTP was added to the binding reaction to increase the affinity of CRM-1 for the NES 

(Güttler et al. 2010). In Figure 3.12, Ha-WT interacted with CRM-1, however the Ha-

NES mutant and Ha-139-662 did not interact with CRM-1, suggesting DDX3 can 

interact with DDX3 and that the NES region is required for this interaction.  
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Figure 3.12: WT DDX3 co-IPs with endogenous CRM-1 stronger than NES mutant and 139-662.  
233ts were transfected with Ha-tagged WT DDX3, NES mutant and 139-662. Protein G sepharose 

beads (Sigma) were incubated with -CRM-1 antibody, and blocked with 5% BSA in PBS-tween. Cell 
lysates were added to beads alongside non-hydrolysable His-RanQ69L-GTP and washed three times 
in PBS-tween. SDS-PAGE gel electrophoresis and semi-dry transfer was carried out as per materials 

and methods. Blots were probed with -CRM-1 (NovusBiologicals) and -Ha (Covance). 
Representative blot of two experiments.  
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3.3.5.2. The NES of DDX3 is sufficient to restore nuclear export of export 
deficient mutants 

I next investigated whether the NES sequence (12-22 aa)  was sufficient to 

facilitate the export of DDX3 from the nucleus to the cytoplasm, using an approach 

previously used to characterize the NES of other proteins (Chevalier et al. 2005). To 

this end, I affixed the 1–22 amino-acid region of DDX3 to the N-terminus of the 

export- deficient mutants 130-663 and 139-662. The NES-130-662 and NES-139-662 

mutants were then overexpressed in HeLa cells, and treated with LMB  to test if the 

NES conferred CRM-1 dependent export (Figure 3.13).The NES-130-662 and NES-

139-662 had a cytoplasmic localisation in untreated cells and a nuclear localisation 

in LMB treated cells.  

Therefore, the NES region restored cytoplasmic localisation of the nuclear N-

terminal truncation mutants 130-662 and 139-662. This demonstrated  that the NES 

of DDX3 is functional and sufficient to export DDX3, and mediates export of  DDX3 

in a CRM-1 dependent manner. 
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Figure 3.13: The N-terminal NES (1-22) is sufficient to mediate export of DDX3. 
(1): Schematic depicting  NES- N-terminal mutants which were constructed by adding the NES 
containing region (1-22) onto N-terminal mutants 130-662 and 139-662. (2): HeLa cells were 
transfected with expression plasmids for Ha-tagged 139-662 or NES 139-662. (3): HeLa cells were 
transfected with expression plasmids for Ha-tagged 130-662 and NES 130-662 mutants. Cells were 

treated with 20mM LMB for 2 hours or left untreated. Cells were stained with primary -Ha 

antibody and secondary -mouse Alexa Fluor-488. Key: A (DAPI), B (Myc-DDX3), C (Merge A+B), 
D(Contrast). 

(1) 

(2) 

(3) 
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3.4. Discussion 

DDX3 is known to shuttle between the nucleus and the cytoplasm, with a 

predominantly cytoplasmic localisation usually being reported (Yedavalli et al. 2004; 

Sekiguchi et al. 2004). Within the literature there is some confusion as to how DDX3 

is exported from the nucleus, with studies concerning human DDX3, hamster DDX3 

and Xenopus An3 showing conflicting results. 

I first tested where DDX3 localised in a range of cell lines, and found that DDX3 

had a predominantly cytoplasmic localisation in all cell lines. Human DDX3 has been 

shown to be exported via two proteins, the main mammalian exportin CRM-1 and 

the major nuclear mRNA exporter TAP (Yedavalli et al. 2004; Lai et al. 2008). My 

results showed that DDX3 is exported from the nucleus in a predominantly CRM-1 

mediated manner. Treatment of HeLa cells with the CRM-1 inhibitor LMB resulted 

in nuclear accumulation of both overexpressed and endogenous DDX3 in HeLa cells, 

shown by confocal microscopy and nuclear cytoplasmic fractionation. The DDX3 

Xenopus laevis homologue An3 was shown to be exported via CRM-1, with export 

coupled to helicase activity (Askjaer et al. 2000), hence I investigated if DDX3 export 

was reduced when helicase activity was abrogated. Using the DDX3 helicase mutant 

K320E, I found that DDX3 shuttled as normal between the nucleus and the 

cytoplasm, suggesting that nuclear trafficking of DDX3 was not coupled to helicase 

activity. The An3 paper showed that the helicase inactive mutant interacted as 

normal with CRM-1, and they suggested that DDX3 may be involved in RNA 

processing during the nuclear export process (Askjaer et al. 2000). Why DDX3's 

export was not affected when helicase activity was abrogated is unclear, maybe 

there are differences in the ways DDX3 processes RNA compared to An3. To my 
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knowledge, helicase activity has not been coupled to nuclear export of any other 

proteins. 

I next wanted to narrow down which regions of DDX3 are required for its 

nuclear export. Xenopus laevis An3 and hamster DDX3 have both been shown to 

export in a CRM-1 dependent manner. Conversely, the highly conserved N-terminal 

NES was critical for nuclear export in An3, but not in hamster DDX3 (Askjaer et al. 

2000; Sekiguchi et al. 2004). A study using human DDX3 showed that the N-terminal 

NES was not required for CRM-1 binding, and in fact the C-terminus of DDX3 was 

required for binding (Yedavalli et al. 2004). My study found that the N-terminus NES 

of DDX3 is required for nuclear export. Mutagenesis of DDX3's NES resulted in 

nuclear accumulation of DDX3. The NES was also capable of restoring nuclear 

export to previously export deficient mutants. I also showed that DDX'3s N-terminal 

NES was required for binding to CRM-1. NES-like sequences occur quite often in 

proteins, however in order to be functional NESs usually occur within N-terminal, C-

terminal or unstructured regions of the cargo, as otherwise they are unable to bind 

to the CRM-1 docking site (Güttler et al. 2010). Since the DDX3's NES is in the N-

terminus, interaction with CRM-1 would be feasible. Yedavalli et al., showed that 

HIV-Rev and CRM-1 utilised DDX3 helicase activity to export partially spliced and 

unspliced HIV mRNAs, and that the C-terminus of DDX3 directly interacted with 

CRM-1 in a Ran-independent manner, suggesting that DDX3 was an effector of 

CRM-1 transport rather than a cargo (Yedavalli et al. 2004). Since HIV-Rev protein 

and DDX3 both contain functional NESs, how and whether they both 

simultaneously interact with CRM-1 is unclear. Yedavalli et al. also showed that 

DDX3 localised to the cytoplasmic side of the NPC, so maybe DDX3 plays a role in 
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restructuring HIV-1 RNA for nuclear export, or plays a role in disassembly of the 

REV-RNA-CRM-1 complex. 

DDX3 has also been shown to be exported via TAP (Lai et al. 2008). Since there 

are no commercial inhibitors for TAP, I did not investigate a role for TAP in DDX3 

export. My results with the CRM-1 inhibitor LMB would suggest that TAP can only 

play a minor role in DDX3 export. Also the NES mutant had a strong nuclear 

localisation confirming that CRM-1 is likely the predominant player in DDX3 export. 

There might be a role for DDX3 in the export of specific mRNAs through CRM-1 or 

TAP. It is tempting to think that since CRM-1 has been shown to play a role in the 

export of immunologically relevant mRNAs (IFN -1 mRNA) (Kimura et al. 2004),  

maybe DDX3 is involved in this process. 

In conclusion, DDX3 is exported from the nucleus via CRM-1, and DDX3's N-

terminal NES is required and sufficient for CRM-1 mediated nuclear export.  
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Chapter 4  : Investigating the Nuclear import of DDX3 

4.1. Nuclear import of DEAD box helicases 

There is little known about how members of the DEAD-box family of proteins 

are imported into the nucleus. Since DDX3 must be imported into the nucleus to 

partake in a some of its functions such as regulation of gene promoters, we wanted 

to understand how DDX3 is mediated. DDX3 is involved in the transcription of 

proteins involved in a variety of cellular functions, including cell cycle regulation 

and innate immune signalling (Chao et al. 2006; Botlagunta et al. 2008; Schröder et 

al. 2008; Soulat et al. 2008).  

In the following passages, the current knowledge on how DEAD box family 

members  and DDX3 are imported into the nucleus will be discussed.   

4.1.1 RAN Dependent- Importins 

The nuclear import of the DEAD-box RNA helicase A/nuclear DNA helicase II 

(RHA) (also known as DHX9) has been investigated. RHA is a nucleocytoplasmic 

shuttling protein which is involved in multiple steps of gene expression, having an 

established role in the transcription of a range of genes (Aratani et al. 2001; Fujii et 

al. 2001; Myöhänen & Baylin 2001). It has also been found to be part of the 

spliceosome and is involved in processing of transcripts (Zhou et al. 2002). RHA has 

also been shown to be involved in viral gene expression, promoting nuclear export 

of CTE- containing RNA and also HIV-1 RRE-containing RNA (Tang et al. 1997; Li et 

al. 1999).  

A study investigating the nuclear import of RHA showed that the C-terminus 

contained a nuclear transport domain (Nichols et al. 2000). A further study 

characterised a 19 amino acid NLS within the C-terminus, which had no consensus 
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with other known NLSs such as the classical monopartite NLS, bipartite NLS or M9 

of hnRNP A1. The RHA NLS was nonetheless imported via the classical Importin-/ 

nuclear import pathway, interacting with Importin- α 1 and importin- α 3 (Aratani et 

al. 2006).  

The nuclear import of another member of the DEAD-Box family member, DDX5 

(also known as p68), has also been investigated. DDX5 is involved in various stages 

of gene expression, and is highly related to DDX17 (also known as p72), sharing 92% 

sequence similarity over their central helicase domains (Lamm 1996). DDX5 has 

been reported to regulate transcription of a range of genes, in particular oestrogen 

receptor- (ER-and p53-dependent genes (Fuller-Pace & Ali 2008; Endoh et al. 

1999; Bates et al. 2005). DDX5 is a nucleocytoplasmic shuttling protein, with a 

predominately nuclear localisation. DDX5 has been shown to shuttle between the 

nucleus and the cytoplasm in a Ran dependent manner,  and two functional 

classical NLSs  and two functional NESs were characterised (Wang, Gao, et al. 2009). 

The two  functional NLSs were found within the helicase core domain and the C-

terminus, and the two NESs were also found within the helicase core domain and 

the C-terminus.  

There has been no research published on how DDX3 is imported into the 

nucleus.  

4.1.2 RAN Dependent-Transportins  

As stated previously, Transportin has been associated with the nuclear import 

of a range of mRNA processing proteins (Güttinger et al. 2004; Truant 1999). DDX3 

was found to interact with Transportin by tandem Mass Spectrometry (MS) 

(Güttinger et al. 2004). However, another research group could not show direct 
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binding of DDX3 to Transportin, and analysis of the DDX3 protein sequence showed 

that DDX3 does not contain the PY-NLS motif which is required for transportin 

binding (Lee et al. 2006).   

4.1.3. RAN Independent-Calmodulin 

The Calmodulin import pathway has been suggested to be an evolutionary 

conserved pathway, involved in nuclear transport of a small set of proteins in a 

Ca2+-dependent manner (Sweitzer & Hanover 1996; Hanover et al. 2009). DEAD-box 

family members have been identified as calmodulin binding proteins, such as DDX3, 

DDX1, DDX5, DDX11, DDX21, DDX47, DDX49 and DDX57 (Shen et al. 2005; Jang et 

al. 2007). DDX1 was shown to interact with calmodulin in a Ca2+ dependent but 

phosphorylation independent manner, whereas DDX5 interacted in a Ca2+-

independent and phosphorylation-independent manner (Jang et al. 2007). DDX3 

has been shown to bind to calmodulin in a Ca2+-independent but phosphorylation-

dependent manner (Jang et al. 2007), however whether DDX3 or other DEAD-box 

proteins can be imported via the Calmodulin pathway has not been investigated. 

4.1.4. Inhibitors of nuclear import 

Recently nuclear inhibitor proteins became available, which will be discussed in 

the following sections. 

4.1.4.1. Importin  inhibitors 

Recently Kosugi et al. described peptide inhibitors that inhibited nuclear import. 

These peptide inhibitors called Bimax 1 and Bimax 2 bind to importin-α in the 

absence of importin-β and prevent cargo release into nucleus (Kosugi et al. 2008). 

Structural interaction analysis also confirmed their interaction with importin-α 

(Marfori et al. 2012). Bimax 1/2 inhibited the importin-/β pathway specifically, 
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with the importin-β cargo Snail being imported normally in the presence of Bimax 

1/2.  

Bimax 1/2 caused an increased nuclear localisation of importin-, suggested to 

occur due to their inhibition of cargo release, thus preventing importin- from 

recycling to the nucleus. This prevents further import of cNLS containing proteins 

because of the unavailability of importin- in the cytoplasm.  

4.1.4.2. Importazole (IPZ) small molecule inhibitor 

Also recently, a small molecule inhibitor of nuclear import was described, called 

Importazole (IPZ). IPZ bound importin β in vitro and disrupted importin-β/RanGTP 

mediated nuclear import (Soderholm et al. 2011). IPZ reversibly blocked importin-β 

mediated nuclear import, and had no effect on transportin mediated nuclear 

import. IPZ did not have any effect on CRM-1 mediated export showing  that IPZ 

does not inhibit all karyopherins, and also that RanGTP levels were not affected, 

because CRM-1 requires Ran-GTP to export proteins (Soderholm et al. 2011).  

4.1.4.3. Calmodulin Inhibitors 

Calmodulin inhibitors have been described to inhibit the nuclear import of 

proteins which are imported via the calmodulin/Ca2+ pathway. Calmodulin 

inhibitors, such as W13, have been shown to alter the cellular localisation of various 

proteins, including the cell cycle regulators p21Cip1 (Taulés et al. 1999) , Cdk4 and 

Cyclin D1 (Taulés et al. 1998).  
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4.2. Aims 

In this chapter, I investigated how DDX3 is imported into the nucleus. We 

characterised the regions of DDX3 required for nuclear import and investigated the 

functionality of putative NLSs found within DDX3. I used nuclear import inhibitors to 

attempt to specify what nuclear import factors DDX3 utilises to be imported into 

the nucleus.  
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4.3. Results 

4.3.1. DDX3 contains two globular RecA-like domains which are imported into 
the nucleus independently 

To define the regions of DDX3 that contribute to nuclear import, I first tested N-

terminal and C-terminal truncation mutants of DDX3. N-terminal truncations lack 

the functional NES and therefore have lost the ability to export from the nucleus, 

(Chapter 3). HeLa cells were transfected with expression plasmids for Ha-tagged 

139-408 and 409-662 DDX3, followed by immunofluorescent staining and confocal 

microscopy. The 139-408 and 409-662 both accumulated in the nucleus, suggesting 

that nuclear import was facilitated by these two independent regions (Figure 3. A 

and B). Since these mutants are quite small, approximately 27 kDa, I wondered if 

the overexpressed protein was passively diffusing into the nucleus. I decided to 

increase the size of the truncation mutants by sub-cloning them into a vector 

generating fusion protein with Green Fluorescent Protein (GFP). GFP is 

approximately 27 kDa, therefore the 409-662-DDX3-GFP is approximately  50kDa. 

Proteins greater than 40kDa cannot passively diffuse through the nuclear pore (La 

Cour et al. 2004). I found that the 409-662 GFP mutant also localised to the nucleus, 

showing that import was indeed facilitated independently by the C-terminus of 

DDX3 (Figure 4.1). I also cloned other GFP-tagged truncation mutants however even 

though sequencing showed cloning was successful no GFP protein was detected 

when plasmids were transfected into HeLa cells suggesting a problem with plasmid 

expression.  
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Figure 4.1: The DDX3 truncation mutants 139-408 and 409-662 are imported independently into 
the nucleus, suggesting two distinct regions facilitate nuclear import of DDX3. 
(1): A schematic depicting 139-408 and 409-662 truncation mutants (not drawn to scale). (2): HeLa 
cells were transfected with expression plasmid for Ha-tagged 139-408.  (3): HeLa cells were 
transfected with expression plasmids for Ha-tagged 409-662 or GFP-tagged 409-662. HeLa cells 

expressing Ha-tagged constructs were stained with a primary -Ha and secondary -mouse Alexa 
Fluor-488 antibody. HeLa cells expressing GFP tagged constructs were not stained. Key:A (DAPI), B 

(-Ha or GFP), C (Merge A+B), D (Contrast). 
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 4.3.2.Putative NLS found using predication software 

I decided to use available software to identify putative NLS regions in DDX3. The 

software PSORT II can be used to identify classical NLS sequences in proteins 

(Horton & Nakai 1997). PSORT II identified a putative NLS between amino acids 211 

and 219 of DDX3, which was within the region 139-408 that can import 

independently. Using site directed mutagenesis we mutated two hydrophobic 

residues to alanines, namely the lysines at positions 215 and 217. This "NLS-1" 

mutation was in generated in full length DDX3 (NLS1- 1-662) and C-terminal 

truncation 1-408 (NLS1-1-408). HeLa cells were transfected with expression 

plasmids for Ha-tagged NLS1-1-662 and NLS1-1-408 mutant, and treated with LMB 

or left untreated. HeLa cells were stained for immunofluorescence followed by 

confocal microscopy. The NLS1-1-662 and NLS1-1-408 were cytoplasmic in 

untreated cells and nuclear in LMB treated cells, suggesting that nuclear import was 

not affected by the mutation (Figure 4.2). 
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Figure 4.2: Mutation of putative NLS predicted by PSORTII did not disrupt nuclear import.  
(1): A schematic depicting the NLS-1 mutation in both full length and C-terminal DDX3 (not drawn to 
scale). (2): HeLa cells were transfected with an expression plasmid for Ha-tagged NSL 1-662 and 
treated with 20mM LMB for 2 hours or left untreated. (3): HeLa cells were transfected with an 
expression plasmid for Ha-tagged NSL 1-408 and treated with 20mm LMB for 2 hours or left 

untreated. HeLa cells were stained with a primary -Ha and secondary -mouse Alexa Fluor-488. 
Key: A (DAPI), B (Ha-DDX3 ),C (Merge A+B), D (Contrast). 
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I next used a new software, NucImport which was suggested to identify NLS 

better than previously published software (Mehdi et al. 2011). NucImport identified 

a putative NLS at amino acids 259-264, which is located in an exposed loop in the 

protein structure of DDX3 (Figure 4.3).  

 

 

               
 

Figure 4.3: NucImport was used to identify other putative NLS regions in DDX3.  
(1): Another putative NLS sequence in DDX3 was found using NucImport, which applies a different 
algorithm to test for NLS sequence in proteins than PSORTII. (2):  The predicted class 1 NLS at aa 
259-263 of DDX3 is in an exposed loop, shown here using Pymol.   
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I first mutated two arginine residues 259 and 260 to alanines in the C-terminal 

truncation mutant 1-408 (NLS2-1). Further mutagenesis to the putative NLS was 

carried out with a total of four amino acids changed to alanines (NLS2-2), (Figure 

4.4). HeLa cells overexpressing expression plasmids for Ha-tagged NLS2-1 and NLS2-

2 were treated with LMB. NL2-1 and NLS2-2 were cytoplasmic in untreated cells and 

nuclear in cells treated with LMB (Figure 4.4).  
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Figure 4.4: Mutation to putative NLS predicted by NucImport did not disrupt nuclear import of 
DDX3. 
(1): A putative NLS sequence was found using NucImport;  two mutants were designed to mutate 
two and four key residues to alanine in C-terminal truncation (1-408). (2): HeLa cells were 
transfected with expression plasmids for Ha-tagged NSL2-1 (1-408) and treated with 20mM LMB for 
2 hours or left untreated. (3): HeLa cells were transfected with expression plasmids for Ha-tagged 
NSL2-2 (1-408) and treated with 20mM LMB for 2 hours or left untreated. HeLa cells were stained 

with a primary -Ha and secondary -mouse Alexa Fluor-488. Key: A (DAPI), B (Ha-DDX3),C (Merge 
A+B), D (Contrast). 
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I then thought that the N-terminus might have some role in nuclear import 

since  the NLS predictor software NucImport predicted a putative NLS in the N-

terminus of DDX3 (Figure 4.5). I decided to create an NLS2-2 mutant which had 

both the N-terminus and C-terminus truncated, NLS2-2 139-408. As earlier stated, 

truncation of the N-terminus prevents nuclear export of DDX3 from the nucleus. 

The 139-408 mutant localised to the nucleus and cytoplasm, as did the NLS2-2 139-

408 mutant in HeLa cells (Figure 4.5). However NLS2-2 139-408 mutant localised 

less to the nucleus, suggesting that nuclear import was impaired but not completely 

hindered. This would suggest that the NLS identified by NucImport software plays a 

role in nuclear import of  DDX3, however DDX3's N-terminus also plays a role in 

nuclear import. All together, evidence would suggest that the putative NLSs 

identified by NucImport software are not critical for DDX3's nuclear import.  
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Figure 4.5: Mutation to putative NLS predicted by NucImport did disrupt nuclear import of 139-
408 mutant.  
(1): A putative NLS sequence was found using NucImport; site mutants of four key residues to 
alanine in a N-terminal and C-terminal truncation (139-408). (2): HeLa cells were transfected with 
expression plasmids for Ha-tagged 139-408 and NSL2.2 139-408. HeLa cells were stained with a 

primary -ha and secondary -mouse Alexa Fluor-488. Key: A (DAPI), B (Ha-DDX3),C (Merge A+B), D 
(Contrast). 
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3.3.3. Investigating the nuclear import of DDX3 using import inhibitors 

Since mutagenesis of the putative NLSs of DDX3 failed to inhibit import, I 

decided to try a different approach to investigate the nuclear import of DDX3. A 

range of nuclear import inhibitors have been described in the literature (Taulés et 

al. 1999; Soderholm et al. 2011; Kosugi et al. 2008), so I decided to test whether 

these inhibitors could affect DDX3 import. 

4.3.3.1. Importazole does not inhibit the import of DDX3 

Importazole (IPZ) is a cell-permeable diaminoquinazoline compound that has 

been shown to specifically target the transport receptor importin-β and disrupt its 

interaction with RanGTP. IPZ reversibly blocks importin-β (NLS)-mediated nuclear 

import without affecting transportin M9-mediated nuclear import and CRM1-

mediated nuclear export (Soderholm et al. 2011) .  

First,  I tested whether IPZ inhibited the import of endogenous DDX3. Since 

DDX3 has a predominantly cytoplasmic localisation, it is difficult to test if import is 

being inhibited. Treating the cells with nuclear export inhibitor LMB and IPZ, 

allowed us to test if import has been affected. IPZ was added to cells for 4 hours, 

followed by LMB treatment for 2 hours (Figure 4.6). If DDX3 was prevented from 

being imported into the nucleus, LMB treatment would not result in nuclear 

accumulation of DDX3. I found that IPZ did not inhibit the import of endogenous 

DDX3, as DDX3 accumulated in the nucleus in cells treated with IPZ and LMB (Figure 

4.6). 
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Figure 4.6: Nuclear import of endogenous DDX3 is not affected by the Importin β inhibitor 
Importazole (IPZ).  
(1): Schematic showing that if DDX3 imports via Importin β, IPZ treatment for 4 Hrs followed by 2 hrs 
LMB treatment would result in nuclear accumulation of DDX3. (2): HeLa cells were treated with 
40µM IPZ for 4/8 hours and treated with 20mM LMB for 2 hours Cells were stained with a primary 

-DDX3 and secondary -rabbit Alexa Fluor-488. Key: A (DAPI), B (-DDX3), C (Merge A+B), D 
(Contrast). 
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Since I have shown that the different domains of DDX3 can be imported 

independently, I then tested these domains separately with IPZ treatment. HeLa 

cells were transfected with expression plasmids for Ha-tagged 139-408, 409-662 or 

1-408 and treated with IPZ for 4 hours. The 1-408 mutant was also treated with 

LMB to inhibit export, while the export-deficient 139-408 and 409-662 mutants did 

not require LMB treatment. HIV-Rev protein was used as a positive control for IPZ , 

since HIV-rev can be imported via importin-β (Henderson & Percipalle 1997). As 

shown in Figure 4.7, IPZ treatment did not inhibit import of 139-408 and 409-662, 

with both mutants having a nuclear localisation despite IPZ treatment. The 1-408 

mutant had a nuclear localisation after treatment with IPZ and LMB, meaning that 

its import also was not blocked by IPZ. The control protein HIV-rev was more 

cytoplasmic in cell treated with IPZ, showing that the IPZ treatment was able to 

inhibit Importin-β mediated import under the conditions used.  

In conclusion, I found that IPZ failed to inhibit import of DDX3, suggesting that 

DDX3 is imported in an importin-β independent manner. 
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Figure 4.7: Nuclear import of DDX3 truncations is not affected by the Importin-β inhibitor 
Importazole (IPZ).  
HeLa cells were transfected with expression plasmids for Ha-tagged Rev, or DDX3 truncation 
mutants. HeLa cells expressing Rev, 139-408, 409-662 were treated with 40µM IPZ for 4 hours. HeLa 
cells expressing plasmids for 1-408 were treated with 40µM IPZ for 4 hours and with 20mM LMB for 

2 hours. Cells were stained with a primary -Ha and secondary -mouse Alexa Fluor-488. Key: A 

(DAPI), B (-Ha), C (Merge A+B), D (Contrast). 
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4.3.3.2. Bimax inhibitors do not inhibit nuclear import of DDX3 

Bimax inhibitors are peptide inhibitors designed to bind importin-α. 

Overexpression of Bimax inhibitors antagonizes the importin-α cargo release 

mechanism, resulting in nuclear accumulation of importin-α and importin-β. The 

exclusion of  importin-β from the cytoplasm results in inhibited importin-β 

mediated nuclear import (Kosugi et al. 2008).  

I tested if nuclear import of DDX3 could be inhibited by Bimax inhibitors. To this 

end, HeLa cells were transfected with expression plasmids for flag-tagged Bimax 1, 

Bimax 2 or Control vector PCV-GRX, alongside the SV40NLS-GFP as a control. As 

before, since DDX3 is normally localised in the cytoplasm, to assess  if import was 

inhibited we treated the cells with LMB, blocking the nuclear export of DDX3. If 

import has been inhibited, treatment with LMB should not result in nuclear 

accumulation of DDX3.  HeLa cells were fixed and stained for immunofluorescent 

confocal microscopy. As shown in Figure 4.8, overexpression of Bimax-2 resulted in 

an increase of cytoplasmic SV40NLS-GFP, suggesting that the inhibitor was working. 

After treatment with LMB, DDX3 localised to the nucleus in cells expressing 

plasmids for Bimax 1, Bimax2 and pCMV-GRX. In conclusion, Bimax inhibitors did 

not inhibit the import of DDX3.  
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Figure 4.8: Nuclear import of DDX3 is not inhibited by the Importin β inhibitors Bimax 1 or Bimax 
2. 
(1): HeLa cells were transfected with expression plasmids for flag-tagged pCMV-GRX, Bimax 1 and 

Bimax 2, and gfp-tagged SV40-NLS. Cells were stained with a primary -flag and secondary -mouse 
Alexa Fluor-594. (2): HeLa cells were transfected with expression plasmids for flag-tagged pCMV-

GRX, Bimax 1 and Bimax 2.  Cells were stained with a primary -DDX3 and secondary -rabbit Alexa 

Fluor-488, and a primary -flag and secondary -mouse Alexa Fluor-594.  Key: A (DAPI), B (-DDX3), 
C (Merge A+B), D (Contrast). 
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4.3.3.3. Calmodulin inhibitors do not inhibit nuclear import of DDX3 

Since my results suggested DDX3 is imported into the nucleus in an importin- 

independent manner, I next decided to investigate the Calmodulin/Ca2+ nuclear 

import pathway. Calmodulin inhibitor W7 (Sigma) has been shown to inhibit 

nuclear import of proteins that utilise the calmodulin/Ca2+ nuclear import pathway, 

such as P21 (Taulés et al. 1999). Here I used P21 as a control. HeLa cells were 

transfected with expression plasmids for Ha-tagged DDX3 and P21, followed by 

treatment with W7. As before, LMB was also added to prevent export of DDX3. If 

import was inhibited, treatment with LMB should not result in nuclear 

accumulation of DDX3. As shown in Figure 4.9, DDX3 localised to the nucleus after 

treatment with W7 and LMB, suggesting that the inhibitor had no effect on DDX3 

nuclear import.  
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Figure 4.9: Nuclear import of DDX3 is not affected by the Calmodulin inhibitor W7.  
(1): Schematic showing that if DDX3 imports via calmodulin, W7 treatment for 4 Hrs followed by 2 
hrs LMB treatment would result in nuclear accumulation of DDX3. (2): HeLa cells were transfected 

with Ha-tagged DDX3 and P21 followed by treatment with 30g/ml W7 for 4 hours. Cells transfected 

with Ha-DDX3 were also treated with 20mM LMB for 2 hours. Cells were stained with a primary -

Ha and secondary -mouse Alexa Fluor-488. Key: A (DAPI), B (Ha-DDX3), C (Merge A+B), D 
(Contrast). 
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4.3. Discussion 

DDX3 normally has a cytoplasmic localisation, however it is constantly shuttling 

in and out of the nucleus. There have been no studies published about the 

regulation of DDX3s nuclear import, hence we decided to investigate how DDX3 is 

imported into the nucleus.  

I found that the two globular RecA-like domains of DDX3 are imported into the 

nucleus independently. The 139-408 and 409-662 mutants were localised to the 

nucleus in HeLa cells, showing that DDX3 has more than one region responsible for 

nuclear import. Within the region 139-408 two separate NLS prediction software 

(PSORTII and NucImport) predicted class I NLSs at different regions. However, when 

key basic residues were mutated to inert alanine, import of DDX3 was not clearly 

affected, suggesting that these putative NLSs are not critical for nuclear import. 

There can be many reasons why the putative NLSs within 139-408 were not critical 

for nuclear import, for example importin-may not be able to bind these NLS due 

to their localisation within a structured region of DDX3, this would not be the case 

for the NLSs situated at an exposed loop. Of note, there was no putative NLS found 

within the 409-662 region, suggesting that a non-classical NLS must occur within 

this region as it was imported sufficiently on its own.  

Recently, inhibitors of nuclear import were described. Using two different 

inhibitors for importin-mediated pathways, I was able to test whether DDX3 is 

imported via importin-or importin-My results suggest that DDX3 is imported 

independently of importin- with DDX3 being imported as normal after using both 

the importin-inhibitor IPZ or the the importin-Bimax inhibitors. I found that 

DDX3 could be imported independently via two separate regions, however import 
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of truncation mutants was also not sensitive to IPZ. My results suggest that neither 

region of DDX3 is imported via importin-suggesting that DDX3 is imported 

independently of importin-

After my exhaustive search for NLSs and testing various importin- inhibitors, 

I then decided to look at other import pathways. DDX3 has previously been shown 

to interact with calmodulin, which has been suggested to play a role in  import of a 

small set of proteins (Jang et al. 2007; Sweitzer & Hanover 1996; Hanover et al. 

2009). The calmodulin inhibitor W7 did not affect nuclear import of DDX3 in our 

assays. A previous paper showed that p21waf1/cip1 was imported in a calmodulin 

dependent manner, with a calmodulin inhibitor causing cytoplasmic re-localisation 

of p21waf1/cip1  (Taulés et al. 1999). Therefore it was used as a positive control in 

assay. However another paper suggested that binding of calmodulin to p21waf1/cip1 

inhibits phosphorylation of p21waf1/cip1 at Ser153 within its bipartite NLS by protein 

kinase C (PKC), resulting in inhibition of nuclear import  (Rodríguez-Vilarrupla et al. 

2005; Rousseau et al. 1999). A search for the highly conserved SOX protein family 

Calmodulin-NLS (Kaur et al. 2010) in DDX3 using PROSITE resulted in no hits, 

suggesting DDX3 does not contain this Calmodulin-NLS.  

My data suggests that DDX3 is imported in a manner independent of importin-

and calmodulin. DDX3 could potentially use the nuclear import protein 

transportin, which has been reported to facilitate the import of a range of mRNA 

processing proteins (Lee et al. 2006). DDX3 was shown to interact with transportin 

1/2 by tandem MS in one study, however another research group was unable to 

show direct binding of DDX3 to transportin or identify a PY-NLS in DDX3's protein 

sequence (Güttinger et al. 2004; Lee et al. 2006). Using PROSITE, I also searched for 
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a PY-NLS in DDX3, obtaining no hits. DDX3 could still potentially be imported via 

transportin, maybe through a different NLS. The basic residue enriched β-like 

import receptor binding (BIB) motif characterised in RL23A has been described to 

interact with transportin and importin-, and recently has been suggested to 

represent a distinct NLS sequence (Jäkel & Görlich 1998; Kimura et al. 2012). 

However, DDX3 was not shown to contain a BIB like NLS in this study (Kimura et al. 

2012). Perhaps DDX3 can interact with transportin but only after specific post-

translational modification. For example, STAT1 contains no classical NLS however 

after tyrosine phosphorylation STAT1 dimerises resulting in a functional 

arginine/lysine rich NLS (Melen et al. 2001; Fagerlund et al. 2002). As there are no 

inhibitors of transportin presently available, we were unable to investigate whether 

DDX3 is imported in this manner. The role for transportin in importing DDX3 could 

be investigated using knockdown experiments of transportin, this however would 

inhibit both direct and indirect transport via transportin.  

It is possible that DDX3 does not directly interact with nuclear import factors. 

Perhaps DDX3 can "piggy back" into the nucleus in complex with another protein 

which contains an NLS. On the other hand, nuclear import of some proteins has 

been shown to occur independently of nuclear import factors, through direct 

interactions with components of the NPC (Sachdev et al. 2000). As DDX3 has been 

shown to localise to nucleoporins at the cytoplasmic side of the NPC, it is not 

implausible that DDX3 could be imported through direct interactions with the NPC. 

This could be investigated in import assays with digitonin permeabilised cells in the 

absence of cytoplasmic factors.  
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In conclusion, how DDX3 is imported into the nucleus is still unclear. Here I have 

shown DDX3 imports independently of the classical import pathway and the 

calmodulin pathway.  
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Chapter 5 : Regulation of DDX3 localisation by viral infection 

5.1. Introduction 

DDX3 has a range of distinct functions in the nucleus and the cytoplasm. In 

chapter one we introduced DDX3 functions in mRNA processing in the nucleus and 

the cytoplasm. In addition to that, DDX3 has been shown to play a critical role in 

innate immune signalling and also to be a target for various viruses. In this chapter 

the role of DDX3 in innate immune signalling and the viral targeting of DDX3 will be 

discussed.  

5.1.1. The role of DDX3 in the immune system 

The immune system allows organisms to fight pathogens and is comprised of 

the innate and adaptive systems. The innate immune system is the first line of 

defence. Innate immune cells express Pattern Recognition Receptors (PRRs), which 

recognise Pathogen-Associated Molecular Patterns (PAMPs) and endogenous 

Danger-Associated Molecular Patterns (DAMPs) and initiate an appropriate immune 

response (Medzhitov 2001). PAMPs are molecules associated with pathogens, 

which alert an organism to intruding pathogens. DAMPS are molecules released by 

stressed cells which act as endogenous danger signals to promote a non-

infectious  inflammatory response. Different PRRs recognise specific PAMPs, 

allowing the organism to mount a response to a broad range of pathogens.  

Currently, six different families of PRRs have been identified, with the ability to 

recognise a large range of different PAMPs. 
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 Membrane bound PRRs 
o Toll like receptors (TLRs) 
o C-type Lectin receptors (CLRs) 

 Cytoplasmic PRRs 
o Retinoic-acid inducible genes (RIG-I) receptors (RLRs) 
o NOD-like receptors (NLRs) 
o Aim2-like receptors (ALRs) 
o other cytosolic DNA receptors 
 

Recognition of viruses by the innate immune system is mediated mainly by a 

specialised groups of TLRs, the RLRS, and DNA receptors. The anti-viral Toll-like 

receptors include TLR3, TLR7, TLR8 and TLR9, which recognise viral nucleic acids 

within the lumen of the endosome. The RLR family recognises viral RNAs in the 

cytoplasm of cells. Recently many new PRRs for cytoplasmic DNA recognition have 

been described, including DNA-dependent activator of interferon (IFN)-regulatory 

factors (DAI) (Takaoka et al. 2007), absent in melanoma 2 (AIM2) (Bürckstümmer et 

al. 2009), RNA polymerase III (Pol III), leucine-rich repeat (in Flightless I) interacting 

protein-1 (Lrrfip1) (Yang et al. 2010), DExD/H box helicases (DHX9, DHX36, DDX41) 

(Kim et al. 2010; Zhang et al. 2011), and the IFN-inducible protein IFI16 

(Unterholzner et al. 2010)The sensing of PAMPs or DAMPs by PRRs results in the 

expression of genes encoding pro-inflammatory cytokines, type I Interferons, 

chemokines and anti-microbial proteins. Activation of most PRRs leads to the 

activation of the transcription factor NF-ĸB and pro-inflammatory cytokines. In 

addition, anti-viral PRRs also activate IFN-regulatory factor (IRF) 3 and IRF7, leading 

to induction type I IFNS, potent anti-viral cytokines. 

Type I interferons are produced in response to anti-viral signalling, with TLR3, 

TLR4, the RLRs and cytoplasmic DNA receptors all utilising the kinases TBK1 (TANK-
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associated NF-ĸB) and IKK [IκB (inhibitor of NF-κB) kinase) to phosphorylate and 

activate IRF3/7, as depicted in Figure 5.1. 
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Figure 5.1: Antiviral signalling leading to type I IFN production.  
Recognition of viral and bacterial components by host pattern recognition receptors (PRRs) triggers signalling pathways that induce production of type I IFN. Viruses enter 
cells either by fusion at the plasma membrane or by endocytosis followed by fusion with the endosomal membrane, and entry into the cytoplasm. Viruses that reach the 
cytoplasmic compartment produce dsRNA during replication, which is recognised by the RLRs (RIG-I and MDA-5) and dsRNA-dependent protein kinase (PKR). RIG-I signals 

via the adaptor MAVS, subsequently activating TBK1/IKK and IRF3. Viruses that enter endocytic compartments are recognised by Toll-like receptors, TLR3, TLR7, TLR8, and 
TLR9. TLR9 recognises unmethylated CpG motifs of viral and bacterial DNA. TLR7 and TLR8 recognise ssRNA from RNA viruses. TLR3 recognises dsRNA motifs of both types 
of viruses. Cytosolic DNA sensors, such Lrrfip1, recognise viral DNA to induce IFNβ via IRF3 transactivation. DAI can bind double-stranded viral DNA to induce TBK1-IRF3-
dependent IFNβ production. IFI16 can directly bind viral DNA via its HIN200 domains and initiate IFNβ induction in a STING-TBK1- and IRF3-dependent manner. RNA 
polymerase III (Pol III) generates dsRNA intermediate that are ligands for RIG-I. All of these PRRs can activate production of type I IFNs.  
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There are three members of the RLR family: Retinoic acid-inducible gene I (RIG-

I), melanoma differentiation-associated antigen 5 (MDA5), and laboratory of 

genetics and physiology 2 (LGP2) (Yoneyama & Fujita 2007; Akira et al. 2006). RLRs 

contain a central DExD/H-box helicase domain and a C-terminal regulatory domain, 

and RIG-I and MDA5 also contain two N-terminal caspase recruitment domains 

(CARDs), whereas LGP2 does not. RIG-I recognises 5′-triphosphate ends of RNA 

followed by a short ds region (up to 1 kb), whereas MDA5 detects long dsRNAs 

(more than 2 kb), such as polyinosinic polycytidylic acid (poly I:C) (Kato et al. 

2008). Upon dsRNA recognition, RIG-I or MDA-5 localise to the outer membrane of 

the mitochondria where their N-terminal CARD domains interact with the CARD 

domain of MAVS (also known as IPS-1, VISA and Cardiff). Activated MAVS recruits 

the IκB kinase IKK- and TANK-binding kinase 1 (TBK1), which phosphorylate IFN-

regulatory factor (IRF) 3 and IRF7, resulting in type I IFN induction (Caillaud et al. 

2005; Sharma et al. 2003). 

The cytoplasmic DNA PRRs utilise adaptor molecules to signal to members of 

the IRF family to promote type I interferon induction. DHX9 and DHX36 recruit 

MyD88 to activate IKK-mediated phosphorylation of IRF7 and type I IFN induction 

(Kim et al. 2010). On the other hand, during RNA-pol III DNA recognition, RNA-pol III 

produces a dsRNA intermediate which then activates RIG-I and MAVS (Ablasser et 

al. 2009). IFI16 utilises the endoplasmic reticulum–resident protein Stimulator of 

interferon genes (STING), which then signals downstream to TBKI to induce type I 

interferons (Unterholzner et al. 2010).  
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The role of DDX3 in innate immune signalling was exposed in studies 

investigating how vaccinia virus evades innate immune response. Vaccinia virus 

(VACV) protein K7 was shown to interact with DDX3 and that this interaction had a 

potent inhibitory effect on Toll-like receptor (TLR)-dependent and -independent 

IRF3/7 activation and IFNβ induction (Schröder et al. 2008). DDX3 was shown to 

interact with IKKε in Sendai virus-infected cells and to enhance IRF3/7 activation 

and induction of IFNβ (Schröder et al. 2008). An N-terminal DDX3 deletion mutant 

(aa 139-662) lost the ability to enhance activation of the IFNβ promoter (Schröder 

et al. 2008). Interestingly, K7 binds to the N-terminus of DDX3 between residues 81-

90 (Figure 5.2) (Oda et al. 2009), and binding of K7 to DDX3 inhibits its antiviral 

function. Site-directed mutagenesis showed that the residues Phe84 and Phe85 in 

DDX3 were required to induce IFNβ promoter activation. Phe84 and Phe85 also 

mediate binding to the vaccinia protein K7. Therefore, it seems that the residues 

Phe 84 and Phe 85 are targeted by VACV protein K7 to inhibit DDX3’s function in 

the induction of type I Interferons (Oda et al. 2009).  Recently, we have shown that 

DDX3 acts as a downstream scaffold adaptor during RIG-I signalling, mediating IKKε 

activation  and coupling the activated kinase to IRF3 (Gu et al. 2013).  
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Figure 5.2: Structure of K7-DDX3 complex.  
K7 is shown in blue ribbons, and the DDX3 peptide (aa82-88) in the yellow stick model. Taken from 
Oda et al. 2009.  
 

 

DDX3 has also been identified as a TBK1-substrate and transcriptional regulator 

of the IFN promoter. Soulat et al. identified several serine/threonine residues 

within the two recA-like domains of DDX3 as TBK1 phosphorylation sites (Soulat et 

al. 2008). They also showed that these phosphorylation sites were required for IFN 

induction, as site directed mutagenesis of these sites resulted in reduced IFN 

induction. Using chromatin immunoprecipitation, the authors also showed that 

DDX3 was able to bind directly to the IFNβ enhancer region upon infection with 

Listeria monocytogenes, in an IRF3 independent manner (Soulat et al. 2008).  



122 
 

DDX3 has also been shown to be a component of the MAVS complex through 

Yeast-2-Hybrid studies. It was shown to be a positive regulator of  MAVS mediated 

IFN induction and the interaction site with MAVS was mapped to the C-terminus 

of DDX3 (Oshiumi, Ikeda, et al. 2010). DDX3 was also shown to bind Poly I:C and 

viral RNA in solution; and the authors suggested that DDX3 may be an initial sensor 

of viral RNA, intensifying MAVS signalling before sufficient levels of RIG-I are 

induced in an IFN-dependent manner (Oshiumi, Ikeda, et al. 2010).  

In summary, DDX3 has been shown to regulate type I interferon production 

with potential effects in both the nucleus and the cytoplasm. DDX3 has been 

implicated at three stages of the IFN activation pathway. 1. After viral RNA sensing 

by RIG-I/MDA-5, DDX3 has been shown to be a component of the IPS-1 complex 

(Oshiumi, Ikeda, et al. 2010). 2. Downstream of the MAVS complex DDX3 has been 

shown to interact with IKK (Schröder et al. 2008) and TBK1 (Soulat et al. 2008), 

with these interactions presumably taking place in the cytoplasm. 3. Downstream 

of TBK1 and IKK, in the nucleus, DDX3 has been shown to bind directly to the IFN 

promoter, potentially after being  phosphorylated by TBK1 at residues within the 

two recA-like domains of DDX3 (Soulat et al. 2008). Figure 5.3, depicts the various 

stages of the IFN induction pathway that DDX3 has been implicated in, with roles 

both in the cytoplasm and the nucleus. Oshiumi et al. suggested that DDX3 interacts 

with the MAVS complex constitutively, however this was shown in cells 

overexpressing DDX3 (Oshiumi, Ikeda, et al. 2010); whereas its interaction with IKK 

occurred after viral infection (Schröder et al. 2008) and it interacted directly with 

the IFN promoter enhancer region upon infection with Listeria monocytogenes 

(Soulat et al. 2008). It is not implausible that DDX3 could interact with IPS-1 at the 
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mitochondria following MAVS activation and also with IKK following viral infection, 

since IKK has been shown to be recruited to the mitochondria after MAVS 

activation (Meylan et al. 2005). It might thus be a possibility that DDX3 is 

responsible for the recruitment of IKK to the mitochondria. 

It is also possible that DDX3 participates in signalling events in the cytoplasm 

before it translocates to the nucleus to bind to the IFN promoter. Investigating the 

subcellular localisation of DDX3 in uninfected and infected cells might thus help to 

elucidate what role DDX3 is playing in the induction of type I interferons at different 

stages of viral and bacterial infections. 

 
 
Figure 5.3: DDX3 is required for IFN induction and is a target for viral immune evasion. 
Viral RNA binds to either RIG-I or MDA-5 leading to recruitment of MAVS and downstream activation 

of the kinases TBK-1 and IKK; which are required for the phosphorylation and activation of IRF3. 

IRF3 stimulates IFN induction. DDX3 has been shown to interact at the level of TBK1/IKKε (Schröder 

et al. 2008), with the MAVS complex (Oshiumi, Ikeda, et al. 2010)and also to directly bind to the IFN  
promoter (Soulat et al. 2008). DDX3 has also been shown to enhance MAVS function through regions 

in its C-terminus (Oshiumi, Ikeda, et al. 2010). Vaccinia protein K7 inhibits DDX3 role in inducing IFN 

(Schröder et al. 2008). HBV pol also inhibits IFN induction via interaction with DDX3 (Wang & Ryu 
2010) .  
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5.1.2. DDX3 is targeted by viruses 

DDX3 has been shown to be targeted by various viruses, including Vaccinia 

Virus, HCV, HBV, and HIV. Viruses have been suggested to both inhibit and subvert 

DDX3 functions to block IFN induction and allow the replication of their genome, 

respectively.   

5.1.2.1. DDX3 is a target for Vaccinia virus 

VACV is a complex enveloped virus belonging to the genus Orthopoxvirus, which 

is a member of the poxvirus family. It has a linear double-stranded DNA genome, 

which encodes for approximately 250 genes. The central portion of orthopoxvirus 

genomes (~100 kb) is highly conserved and contains genes essential for virus 

replication, whereas the termini encodes for non-essential proteins which are 

important virulence factor and immune evasion proteins (Smith et al. 1997).  

VACV protein K7 evades the host immune system  by targeting DDX3. As earlier 

stated DDX3 is targeted by VACV protein K7 to inhibit type I interferon induction 

(Schröder et al. 2008; Oda et al. 2009).  

5.1.2.2. DDX3 is a target for HBV 

Hepatitis B virus (HBV) is a complex, enveloped virus belonging to the genus 

Orthohepadnavirus, which is a member of the Hepadnaviridae family. HBV encodes 

various proteins which allow it to evade detection by the innate immune system 

(Wieland & Chisari 2005). The genome can be found in two different forms, a 

partially double stranded relaxed circular DNA in the virions and a covalently closed 

DNA molecule in the nucleus of infected cells (Kay & Zoulim 2007). The covalently 

closed DNA molecule is transcribed into pregenomic RNA (pgRNA) in the nucleus, 
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which is then exported to the cytoplasm and reverse transcribed into single 

stranded DNA.  

DDX3 is also targeted by HBV. First, overexpression of DDX3 was  shown to 

inhibit replication of HBV through an interaction with HBV pol. The authors 

suggested that DDX3 inhibits viral DNA reverse transcription (Wang, Kim, et al. 

2009). Later it was shown that HBV pol targets DDX3 in an immune evasion 

strategy. HBV inhibited DDX3’s interaction with IKK, which resulted in inhibition of 

IRF3 activation and IFNinduction in a manner similar to K7 (Wang & Ryu 2010; Yu 

et al. 2010). 

5.1.2.3. Introduction to HIV 

Human Immunodeficiency Virus (HIV) is a single-stranded positive-sense RNA 

virus, belonging to the genus lentivirus which is a member of the Retroviridae 

family. The HIV genome consists of a single-stranded RNA that contains 9 open 

reading frames, which can produce 15 proteins (Figure 5.4) (Frankel & Young 1998).  

During viral infection, HIV-1 enters the cell through binding of the Env 

glycoprotein to the CD4 receptor along with the chemokine receptor CXCR4 or 

CCR5. Once in the cytoplasm, the viral RNA is reverse transcribed into proviral DNA 

by the viral Reverse Transcriptase (RT) and then enters the nucleus as a pre-

integration complex (PIC). In addition to the structural proteins Gag, Pol and Env, 

HIV-1 also encodes the important regulatory proteins Tat and Rev. Tat 

(Transcriptional transactivator) is responsible for activating transcription of the HIV 

Long Terminal Repeat (LTR) promoter, while Rev (Regulator of virion expression) is 

involved in transporting unspliced and partially spliced viral mRNAs from the 

nucleus to the cytoplasm (Emerman & Malim 1998; Frankel & Young 1998; Freed 
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2004). Alongside the structural and regulatory proteins, HIV also encodes accessory 

protein Nef (negative effector), Vif (viral infectivity factor), Vpr (viral protein r) and 

Vpu (viral protein u). The accessory proteins are not required for HIV gene 

expression, however they play important roles in immune evasion and 

pathogenesis (Chinnasamy et al. 2000; Freed 2004). 

Rev facilitates nuclear export of unspliced and incompletely spliced mRNAs  by 

binding to the rev response element (RRE), a 350-nt structured RNA found in the 

introns of unspliced viral mRNAs (Pollard & Malim 1998; Malim et al. 1989). It is a 

18kDa protein which has been shown to localise to the nucleolus of  HIV-1 infected 

cells and Rev-expressing cells (Dundr et al. 1995). Rev is exported from the nucleus 

via the CRM-1 pathway and interacts with CRM-1 via its N-terminal leucine-rich NES 

(Askjaer 1998). HIV-1 transcription yields 3 different sized transcripts,  ~2 kb, ~4 kb, 

and ~9 kb RNAs. In the early phase of the viral life cycle, the ~ 2 kb  pre-RNA (which 

encodes rev) is exported from the nucleus via TAP, the standard mRNA nuclear 

export pathway. Upon translation and maturation in the cytoplasm, Rev is imported 

into the nucleus where it helps to export partially spliced ~4 kb RNA and ~9 kb via 

the CRM-1 pathway. Once in the cytoplasm translation of the ~4 kb and ~9 kb RNA 

can occur,  and also packaging of the genomic ~9 kb RNA into virions (Blissenbach 

et al. 2010).  
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Figure 5.4: Organization of the HIV-1 genome.  
The location of the long terminal repeats (LTRs) and the genes encoded by HIV-1 are indicated. Gag, 
Pol and Env proteins are initially synthesised as polyprotein precursors. The Gag precursor is cleaved 
by the viral protease (PR) into the proteins: matrix (MA), capsid (CA), nucleocapsid (NC) and p6. The 
GagPol precursor undergoes PR-mediated processing to generate the Gag proteins and the Pol 
enzymes: PR, reverse transcriptase (RT) and integrase (IN). The Env glycoprotein precursor gp160 is 
cleaved by a cellular protease during transport to the cell surface, generating the mature surface 
glycoprotein gp120 and the trans-membrane glycoprotein gp41. The sizes of the genes and encoded 
proteins are not to scale. Adapted from (Frankel & Young 1998). 

 

DDX3 is an essential cofactor for HIV replication. DDX3 was first linked to HIV 

when cells expressing HIV-Tat were shown to have increased levels of DDX3 

(Yedavalli et al. 2004), and a role for DDX3 as a cofactor for the CRM-1/HIV Rev 

mediated export of HIV RNA was suggested. HIV-Rev has its own functional NES 

which has been shown to interact with CRM-1, so that it can export unspliced viral 

RNA via CRM-1. (Askjaer 1998; Güttler et al. 2010). Knockdown of DDX3 was shown 

to reduce the nuclear export of unspliced HIV-RNA, and consequently to decrease 
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viral replication (Yedavalli et al. 2004; Ishaq et al. 2008). Yedavalli et al. showed that 

DDX3's helicase activity was essential for the nuclear export of HIV-mRNA. They 

also showed that DDX3 interacted with CRM-1 via its C-terminus, independent of its 

putative N-terminal NES. They suggested that DDX3 might play a role in 

restructuring cargo RNAs to allow their transport through the nuclear pore 

(Yedavalli et al. 2004).  

Another study suggested a role for DDX3 in unwinding of DNA/RNA through a 

unique helicase motif (Garbelli et al. 2011). They showed that DDX3 has a unique 

motif which can bind nucleic acids, and is important for RNA/DNA helicase activity. 

Targeting of this motif with  a specific peptide resulted in decreased binding of HIV 

RNA to DDX3 and a decrease in HIV replication (Garbelli et al. 2011). DDX3 has also 

been shown to play a role in translation of HIV-RNA independently of its role in HIV-

RNA nuclear export (Liu et al. 2011).  

It is undisputed that DDX3 is an important cofactor for HIV replication, however 

the exact role of DDX3 in HIV-RNA nuclear export and translational regulation is 

unclear. DDX3 could facilitate HIV-RNA export through an interaction with CRM-1 

and/or HIV rev, or it could play a role in packaging viral RNA for export through its 

helicase activity.   

5.1.2.4. DDX3 is a target of HCV 

HCV is a single-positive strand RNA virus, belonging to the genus Hepacivirus, 

which is a part of the Flaviviridae family. HCV infection is a major cause for chronic 

hepatitis, liver cirrhosis and hepatocellular carcinoma. The genome consists of a 5'-

non-coding region (NCR), which includes an Internal Ribosomal Entry Site (IRES), a 

single open reading frame that encodes a large polyprotein and a 3' NCR (Kato 
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2000). The polyprotein is processed by cellular and virally encoded proteases to 

produce the structural and non-structural proteins. The structural proteins consist 

of the core, envelope glycoproteins and P7; and the non-structural proteins consist 

of NS2, NS3, NS4A, NS4B, NS5A and NS5B (Figure 5.5). 

There are six major genotypes of HCV, which are defined by nucleotide 

variation. These genotypes can be further divided into more than 80 subgroups. 

There is large diversity within HCV, with a 30-59% variation among viral genotypes 

and 15-30% variation among subgroups and within a single patients 1-5% variation 

in nucleotide sequence (Simmonds et al. 1993; Bukh et al. 1994). The highest 

sequence variation is found within the hypervariable region of the envelope 

glycoproteins E1 and E2. There is little sequence variation found within the 5'UTR 

which contain specific sequences and RNA secondary structure that are required for 

replication and translation.  
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Figure 5.5: Schematic of HCV virion structure and genome organisation.  
HCV is formed by an enveloped particle harbouring a plus-strand RNA of 9.6 kb. The genome 
consists of a long open-reading frame (ORF) encoding a 3010 amino acid polyprotein. Translation of 
the HCV ORF is directed by an IRES within the 5' UTR. The HCV polyprotein is cleaved co- and post-
translationally by cellular and viral proteases into ten different products, with the structural proteins 
(Core (C), E1 and E2) located in the N-terminal third and the nonstructural (NS2-5) replicative 
proteins in the remainder. Putative functions of the cleavage products are shown. Adapted from 
(Ashfaq et al. 2011). 
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DDX3 has been shown to interact with HCV Core protein and is required for HCV 

replication (Owsianka & Patel 1999; Mamiya & Worman 1999; You et al. 1999; 

Ariumi et al. 2007). HCV Core is a highly conserved basic, RNA-binding protein that 

forms the viral nucleocapsid and might also regulate viral and cellular gene 

expression (McLauchlan 2000; Nguyen et al. 2006). Core protein is a dimeric, alpha-

helical protein that can be separated into three domains, D1 (a basic hydrophilic 

region covering two-thirds of the N-terminus (aa 1–118)), D2 (a hydrophobic 

domain of the central domain (aa 119-173)) and D3 (the hydrophobic signal 

sequence containing aa 174–191) (Angus et al. 2010; McLauchlan 2000; Boulant et 

al. 2005). The D1 region of HCV Core is important for RNA binding and Core 

oligomerisation and D2 is required for HCV Core association with membranes 

(Boulant et al. 2005; Boulant et al. 2006). HCV Core protein plays an important role 

in recruiting non-structural proteins and replication complexes to lipid droplets 

which is required for virus production (Miyanari et al. 2007; Boulant et al. 2007). 

HCV Core protein has also been suggested to play a role in  the development of 

HCC, as it has been shown to alter the expression of genes involved in tumour 

surveillance (Nguyen et al. 2006).  

The function of the HCV Core protein interaction with DDX3 is unclear, with 

some reports suggesting HCV enhances DDX3 transcriptional functions (You et al. 

1999) and others suggesting HCV Core allows the virus to evade clearance through 

inhibiting DDX3’s anti-viral response (Oshiumi, Ikeda, et al. 2010). HCV Core protein 

has been shown co-localise with DDX3 in both the cytoplasm (You et al. 1999; 

Mamiya & Worman 1999) and nucleus (Owsianka & Patel 1999), though more 

studies have shown a cytoplasmic co-localisation. HCV Core protein has been 
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suggested to target the cytoplasmic function of DDX3; as HCV Core protein co-

localises with DDX3 in the cytoplasm in distinct speckles (Owsianka & Patel 1999). 

Recently, these distinct HCV Core protein speckles have been shown to occur 

around lipid droplets, and to be rich in mRNA associated proteins such as DDX3 

(Ariumi, Kuroki, Kushima, et al. 2011; Pérez-Vilaró et al. 2012). The interaction of 

DDX3 with the D1 domain of HCV Core protein has been shown to occur via DDX3's 

C-terminus, with one group suggesting aa 473–611 and another aa 553–622 

(Owsianka & Patel 1999; Mamiya & Worman 1999).  

HCV Core protein has been shown to enhance the ATPase activity of DDX3 and 

the ability of DDX3 to induce pCMV-Luc, indicating that DDX3 has a role in 

transcriptional regulation and that this role is targeted by HCV Core protein (You et 

al. 1999). Core protein has also been shown to interfere with the DDX3-substituted 

ded1-deletion yeast, inhibiting growth and translational initiation of capped mRNAs 

(Mamiya & Worman 1999). Two studies have shown that HCV replication requires 

DDX3 (Ariumi et al. 2007; Angus et al. 2010). However, this effect of DDX3 was 

found to be independent of its interaction with HCV Core protein (Angus et al. 

2010).   

Another study investigating the functional relevance of the HCV Core-DDX3 

interaction found that HCV Core protein abrogated DDX3’s effect on IPS-1-mediated 

IFNβ induction (Oshiumi, Ikeda, et al. 2010). They suggested that the Core protein 

switches DDX3's role in IFNβ induction to a HCV-replication mode. However, DDX3's 

interaction with HCV Core protein has been shown to result in enhanced IFNβ and 

ISRE induction (Kang et al. 2012). In this study it was shown that the interaction of 
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DDX3 and HCV Core could be lost through antigenic variation of the Core protein in 

cultured adapted viruses (Kang et al. 2012). 

As stated above, HCV Core protein has been shown to alter expression of 

proteins involved in cell cycle regulation. DDX3 expression has been shown to be 

down-regulated in HCC patients with HCV infection (Chang et al. 2006), and DDX3 

has been shown to promote transcription of the tumour suppressor p21waf1/cip1 

(Chang et al. 2006; Chao et al. 2006; Wu, Liu, et al. 2011). DDX3 has been suggested 

to have roles as both a tumours suppressor and oncogene, so it is possible that the 

HCV Core protein interaction with DDX3 could alter DDX3's role in cell cycle 

regulation.  

In summary, the functional relevance of the HCV Core protein-DDX3 interaction 

and co-localisation is unclear. The requirement of DDX3 for HCV replication is 

potentially independent of its interaction with HCV Core, and the effect of HCV Core 

protein on the transcriptional and translation functions of DDX3 are unclear. 

Possibly some functions of DDX3 are required for HCV replication (for example its 

RNA helicase activity), and other functions, such as its role in the induction of type I 

IFNs are inhibited by HCV.  

5.1.3. Conclusion 

During innate immune signalling, signalling events occur within specific location 

in the cytoplasm and in the nucleus of the cell. DDX3 plays a critical role in innate 

immune signalling, with DDX3 potentially having roles in both cytoplasmic and 

nuclear innate immune signalling events (Schröder et al. 2008; Soulat et al. 2008). 

Mis-localisation of DDX3 could affect DDX3's role in innate immune signalling, and 

pathogens might have evolved the ability to alter DDX3's cellular localisation, 
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allowing the pathogen to evade the immune system and possibly utilise DDX3's RNA 

helicase activity to promote viral replication.  

5.2. Aims 

In this chapter I investigated the cellular localisation of DDX3 in response to 

immunological signalling pathways. I also wanted to investigate the interaction of 

DDX3 with viral proteins. Since DDX3 has been shown to be required for HIV and 

HCV replication, I decided to focus on viral proteins from HIV and HCV, and examine 

if DDX3 cellular localisation was altered by viral proteins.   
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5.3. Results 

5.3.1. High content analysis to investigate change in localisation after a range of 
stimuli 

Due to DDX3's role in innate immune signalling adn IFN induction, I was 

interested in whether stimulation of cells could cause a change in DDX3 localisation. 

High content analysis (HCA) microscopy is a useful tool for quantifying changes in 

the nuclear/cytoplasmic localisation of a protein in cells. Using HCA one can image 

hundreds of cells simultanously and objectively quantify the localisation of proteins 

of interest in these cells. 

To investigate whether stimulation of cells could change DDX3's cellular 

localisation, HeLa cells were plated in a 96-well plate and treated with various 

stimuli. I wanted to investigate whether stimulation of immunological signalling 

pathways changes DDX3's localisation, so I treated cells with Sendai virus (SeV), 

Interferon-α (IFN), Tumor Necrosis Factor (TNF) and Interleukin-1 (IL-1). As a 

positive control for a nuclear localisation of DDX3, cells were treated with LMB.  In 

Figure 5.6, I show that there was no significant increase in the level of nuclear 

localised DDX3 after the treatments. There was a possible slight increase at 1hr SeV 

stimulation, however other treatment did not seem to change the localisation of 

DDX3. 
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Figure 5.6: Endogenous DDX3 does not change localisation after treatment with various stimuli.  

HeLa cells were treated with 20mM LMB for 4 hrs, SeV for time points indicated, IFN- for 24 hrs, 

TNF- and IL-1.Cells were stained with -DDX3 antibody, followed by -rabbit Alexa Fluor-488,  
Rhodamine-Phalloidin and DAPI. High content analysis of the nuclear/cytoplasmic ratio was carried 
out using the GE IN Cell analyser as described in Chapter 2. 

 
 

5.3.2. Does DDX3 localisation change after overexpression of IKK ? 

Since DDX3 has been found to interact with IKKfollowing activation of the RIG-

I pathway, I decided to test if overexpression of IKKwould affect its cellular 

localisation. HeLa cells were transfected with an expression plasmid for flag-tagged 

IKKand treated with SeV for 24 hrs or left untreated. The cellular localisation of 

DDX3 did not change in response to overexpression of IKKnor treatment with SeV 

(Figure 5.7).  
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Figure 5.7: Overexpression of IKKdoes not change the cellular localisation of endogenous DDX3.  

HeLa cells were transfected with expression plasmid for flag-tagged IKK and then treated with SeV for 24 hrs. Cells were stained with -DDX3 (Bethyl) and 

secondary -rabbit Alexa Fluor-488 and -flag and secondary -mouse Alexa Fluor-594. Key: A (DAPI), B (DDX3), C (Flag-IKK), D (merge B and C ), E (merge A,B 
and C) and F (Contrast). 
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5.3.3. Investigating the relationship between HIV-Rev protein and DDX3 

5.3.3.1. HIV-Rev changes the localisation of DDX3 

DDX3 has been shown to be required for HIV-Rev mediated viral mRNA nuclear 

export. I decided to test if HIV-Rev and DDX3 co-localised in HeLa cells after 

overexpression of Ha-Rev. To this end, HeLa cells were transfected with expression 

plasmids for Ha-Rev, and stained for endogenous DDX3 and Ha-Rev. Interestingly, 

DDX3 co-localised with Ha-Rev in the nucleolus of the HeLa cells (Figure 5.8). DDX3 

usually has a predominantly cytoplasmic localisation. Here, DDX3 still had a 

predominantly cytoplasmic localisation, however a small amount of DDX3 co-

localised with Ha-Rev protein in the nucleolus. Z-stack analysis confirmed that Ha-

Rev and endogenous DDX3 co-localised in the nucleolus of HeLa cells after 

overexpression of Ha-Rev protein (Figure 5.9). Since overexpression of Ha-Rev 

resulted in endogenous DDX3  being enriched in the nucleolus, this suggests that 

HIV Rev protein required DDX3 in the nucleolus.    

          

Figure 5.8: Endogenous DDX3 co-localises with HIV-Rev protein in the nucleolus.  
Overexpression of HIV-Rev protein recruits DDX3 to the nucleolus, with endogenous DDX3 co-localising with 
HIV-Rev in the nucleolus. Co-localisation points highlight the positions of overlapping signals, generated using 
Olympus Fluoview Co-localisation Software.  Hela cells were transfected with expression plasmids for Ha-Rev. 

Cells were stained with -DDX3(Bethyl) and secondary -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Key: 
A (DAPI), B (DDX3), C (Ha-Rev), D (merge A,B and C), E (Contrast) and F (Co-localisation Points). 
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Figure 5.9: Endogenous DDX3 co-localises with HIV-Rev protein in the nucleus.  
(1): Z-stack image analysis of the effect overexpression of HIV-Rev protein has on DDX3's 
localisation, with endogenous DDX3 co-localising with HIV-Rev in the nucleolus. HeLa cells were 

transfected with expression plasmids for Ha-Rev. Cells were stained with -DDX3(Bethyl) and 

secondary -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Shown are X-Y projections and X-Z 
projections. Key:  X-Y projections: A (DAPI), B (DDX3), C (Ha-Rev), D (merge B and C) and X-Z 
projections: E (DDX3), G (Ha-Rev) and H (merge B and C).  
(2): Fluorescence intensity profile is presented also as a landscape plot. (A) Red line represents 
Region of Interest (ROI) analysed by (B) intensity profile. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) 

(2) 
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HIV-Rev has been shown to require DDX3 and the exportin CRM-1 to export 

unspliced and partially spliced viral RNAs from the nucleus. Since overexpression of 

HIV-Rev enriches endogenous DDX3 in the nucleolus, I speculated that endogenous 

CRM-1 might also be enriched in the nucleolus. As before, HeLa cells were 

transfected with expression plasmids for Ha-tagged Rev, and stained for 

endogenous CRM-1 and Ha-Rev. In Figure 5.10, in HeLa cells not expressing Ha-Rev, 

endogenous CRM-1 had a diffuse localisation in the nucleus. However, in cells 

expressing Ha-Rev protein, endogenous CRM-1 was enriched in the nucleolus and 

co-localised with Ha-Rev. Both DDX3 and CRM-1 have been shown to be required 

for efficient HIV-Rev mediated mRNA export, our results suggest that HIV-Rev 

draws proteins required for mRNA nuclear export into the nucleolus of cells.  

 
 

 
 

Figure 5.10: Endogenous CRM-1 co-localises with HIV-Rev protein in the nucleus.  
Overexpression of HIV-Rev protein recruits CRM-1 to the nucleus, with endogenous CRM-1 co-
localising with HIV-Rev in the nucleolus. Co-localisation points highlight the positions of overlapping 
signals, generated using Olympus Fluoview Co-localisation Software.  HeLa cells were transfected 

with expression plasmids for Ha-Rev. Cells were stained with -CRM1 (Novus Biologicals) and 

secondary -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Key: A (DAPI), B (CRM-1), C (Ha-Rev), 
D (merge B and C), E (Contrast) and F (Co-localisation Points). 
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5.3.3.2. DDX3 interacts with HIV-Rev protein 

Since overexpression of HIV-Rev protein caused endogenous DDX3 to change 

cellular localisation, I investigated if DDX3 and HIV-Rev protein directly interacted. I 

initially investigated if DDX3 interacted with HIV-Rev using co-immunoprecipitation. 

To this end, 293Ts were transfected with expression plasmids for Myc-tagged DDX3 

and Ha-tagged HIV-Rev protein. Cell lysates were prepared and immunoprecipitated 

using an anti-Ha antibody and probed for the presence of myc-tagged protein. Myc-

tagged DDX3 was detected in immunoprecipitates containing HA-Rev and not in control 

immunoprecipitates (Figure 5.11). Also, Ha-Rev was detected in the 

immunoprecipitates indicating that the immunoprecipitation process was successful. 

 

 

Figure 5.11: Myc-tagged DDX3 co-immunoprecipitates with Ha-tagged HIV-Rev. 
HEK 293ts were transfected with Ha-tagged HIV-Rev and myc-tagged WT-DDX3. Protein G sepharose 
beads (Sigma) were incubated with anti-Ha antibody, and blocked with 5% BSA in PBS-tween. Cell 
lysates were added to beads and washed three times in IP-lysis buffer. SDS-PAGE gel electrophoresis 

and semi-dry transfer was and blots were probed with -Myc (Sigma) and -Ha (Covance). 
Representative blot of three experiments.  
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I next carried out co-immunoprecipitations assays to map the interaction of Ha-

Rev with DDX3. To this end, HEK 293Ts were co-transfected with expression 

plasmids for Ha-Rev and Myc-tagged DDX3 or DDX3 truncation mutants. Full length 

DDX3, 1-139, 1-408 and 139-408 were expressed with or without Ha-Rev. Cell 

lysates were prepared and immunoprecipitated using an anti-Ha antibody and probed 

for the presence of myc-tagged protein. Myc-tagged DDX3, 139-408 and 1-408 were 

detected in immunoprecipitates containing HA-Rev and not in control 

immunoprecipitates (Figure 5.12). Also, Ha-Rev was detected in the 

immunoprecipitates, indicating that the immunoprecipitation process was successful.  

I also confirmed these results by carrying out GST-pulldown assays with 

recombinant His-tagged DDX3 and recombinant GST-YFP-tagged Rev. Briefly, 

recombinant GST-YFP-Rev and His-Tagged DDX3 1-408, 139-408 and 409-662 were 

expressed in E.coli. GST-YFP-Rev was then immobilised on glutathione-sepharose 

beads and His-tagged DDX3 proteins were eluated. Recombinant His-Tagged DDX3 

protein was incubated with GST-YFP-Rev beads or control empty glutathione-

sepharose beads.  Non-bound protein was washed off using lysis buffer, and 

subsequently the proteins bound were eluated into sample buffer. Recombinant 

HIV-Rev pulled down recombinant N-terminal domain (1-408) His-DDX3, confirming 

that this is a direct interaction (Figure 5.13). Interestingly, neither the 139-408 

truncation nor the 409-622 truncation did interact with Rev-GST-YFP.  
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Figure 5.12: DDX3 interacts with HIV-Rev through residues between aa 139-408.  
HEK 233ts were transfected with Myc-tagged WT DDX3, 1-408, 139-408 and 1-139; with or without 

Ha-Rev. Protein G sepharose beads (Sigma) were incubated with -Ha antibody, and blocked with 
5% BSA in PBS-tween. Cell lysates were added to beads and washed three times in PBS-tween. SDS-
PAGE gel electrophoresis and semi-dry transfer was carried out as per materials and methods. Blots 

were probed with -myc (Sigma) and --Ha (Covance). Representative blot of three experiments.  
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Figure 5.13: DDX3 interacts directly with HIV-Rev.  
Purified recombinant full-length His-DDX3 or the indicated His-DDX3 truncation mutants were 
incubated with recombinant GST-. Following pull-down with Glutathione beads, interacting proteins 

were subjected to SDS-PAGE and western blot  analysis with His and GST. Representative of 
three experiments.  

 
 

5.3.3.3. Overexpression of DDX3 does not affect HIV-Rev mediated expression of 
Gag protein 

Since DDX3 has been shown to be required for HIV-replication I decided to 

investigate the effects of DDX3 expression of HIV-Rev mediated protein expression. 

HIV-Rev is required for the nuclear export of RRE-containing mRNA. Here an 

expression plasmid pGag-RRE was used to monitor Rev-dependent expression, as 

the binding of Rev to the RRE is required for export of Gag mRNA and hence Gag 

protein expression. The expression plasmid pGag-CTE was used as a control, since 

Gag-CTE can export its mRNA independently of Rev. In Figure 5.14, Gag-RRE 

expression only occurred in the presence of Rev as expected. DDX3 over-expression 

did not change Rev mediated expression of Gag protein (Gag-RRE) nor Rev 

independent Gag protein (Gag-CTE ).  
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Figure 5.14: Overexpression of DDX3 does not change HIV-Rev mediated expression of Gag. 
HEK 233ts were transfected with expression plasmids for Gag-RRE, and/or Ha-tagged  WT DDX3 
and/or HIV-Rev. Cells were lysed and subjected to SDS-PAGE gel electrophoresis and semi-dry 

transfer was carried out as per materials and methods. Blots were probed with --Gag (Centre for 

Aids Research) and --Ha (Covance). Representative blot of three experiments.  
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5.3.4. Investigating the relationship of DDX3 and HCV Core protein 

5.3.4.1. HCV Core protein co-localises with endogenous DDX3 in distinct 
cytoplasmic speckles 

DDX3 has been suggested to interact with HCV Core protein. I decided to 

investigate whether HCV-Core protein affected the cellular localisation of DDX3.  

HeLa cells were transfected with expression plasmids for Ha-tagged Con1 genotype 

Core protein, and stained for Ha-Con1 and endogenous DDX3. In Figure 5.15, 

overexpression of Ha-Con1 caused a dramatic redistribution of DDX3, changing 

from a normally diffuse cytoplasmic localisation to a distinct cytoplasmic speckle 

localisation. Endogenous DDX3 co-localised with Ha-Con1 in these cytoplasmic 

speckles.  

 

Figure 5.15: HCV Core protein co-localises with endogenous DDX3 in cytoplasmic speckles in HeLa 
cells.  

HeLa cells were transfected with Ha-tagged Con1 and stained with -Ha (Covance) and secondary -

mouse Alexa Fluor-488, and -DDX3 (Bethyl) and secondary -rabbit Alexa Fluor-594. Key: A (DAPI), 
B (Ha-Con1), C (DDX3), D (merge B and C), E (merge A, B and C), and F (contrast). 
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5.3.4.2. HCV Core protein prevents the nucleocytoplasmic shuttling 

DDX3 interacted with HCV Core protein in cytoplasmic speckles in HeLa cells. I 

wondered if the recruitment of DDX3 to these cytoplasmic speckles by HCV Core 

protein could prevent DDX3 from shuttling as normal between the cytoplasm and 

the nucleus. To this end, I transfected HeLa cells with expression plasmid for Ha-

tagged Core protein from a range of HCV isolates, referred to as Con1-Ha, H77-Ha, 

and JFH1-Ha. Con1 is derived from genotype Ib, H77 is derived from genotype 1a 

and JC1 is derived from genotype 2a. Cells were subsequently treated with the 

CRM-1 inhibitor Leptomycin B (LMB), and stained for Ha-Core protein and 

endogenous DDX3. Ha-Core protein from all genotypes co-localised with 

endogenous DDX3 in the cytoplasm of cells, in cells left untreated and in cells 

treated with LMB (Figure 5.16, Figure 5.17, Figure 5.18). The expression of Ha-Core 

recruited endogenous DDX3 into distinct cytoplasmic speckles in both the treated 

and untreated cells, and the Core protein from all genotypes had the same effect. 

Importantly, endogenous DDX3 had a nuclear localisation in cells not expressing the 

HCV-Core protein after treatment with LMB, suggesting that HCV-Core protein is 

affecting the nuclear shuttling of DDX3.  
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Figure 5.16: HCV Core protein from different genotypes Con1 of HCV virus prevents shuttling of DDX3 into the nucleus.  
HeLa cells were transfected with expression plasmids for HCV Core protein from different genotype Ha-Con1 and treated with 20mM Leptomycin B (LMB) for 2 

hours or left untreated. Cells were stained with -DDX3 (Bethyl) and -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Arrows indicate cells not expressing 
Core protein with nuclear DDX3 after treatment with LMB. Key: A (DAPI), B (DDX3), C (Ha-tagged Core), D (merge A,B and C) and E (Contrast). 
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Figure 5.17: HCV Core protein from different genotypes H77 of HCV virus prevents shuttling of DDX3 into the nucleus.  
HeLa cells were transfected with expression plasmids for HCV Core protein from different genotypes, Ha-Con1, Ha-H77 or Ha-Jc1 and treated with 20mM 

Leptomycin B (LMB) for 2 hours or left untreated. Cells were stained with -DDX3 (Bethyl) and -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Arrows 
indicate cells not expressing Core protein with nuclear DDX3 after treatment with LMB. Key: A (DAPI), B (DDX3),C (Ha-tagged),D (merge A, B and C) and E 
(Contrast). 
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Figure 5.18: HCV Core protein from different genotypes JC1of HCV virus prevents shuttling of DDX3 into the nucleus.  
HeLa cells were transfected with expression plasmids for HCV Core protein from genotypes Ha-Jc1 and treated with 20mM Leptomycin B (LMB) for 2 hours or left 

untreated. Cells were stained with -DDX3 (Bethyl) and -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Arrows indicate cells not expressing Core protein 
with nuclear DDX3 after treatment with LMB. Key: A (DAPI), B (DDX3), C (Ha-tagged HCV Core), D (merge A, B and C) and E (Contrast). 
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As stated earlier, overexpressed HCV Core protein redistributed endogenous 

DDX3 protein in HeLa cells, changing DDX3 from a diffuse cytoplasmic localisation 

to a cytoplasmic speckle localisation. HCV Core protein has been previously been 

reported to localise to lipid droplets in hepatocytes during HCV infection. To this 

end,  I used HepG2 cells (a hepatocyte cell line) to test if DDX3  was recruited to 

lipid droplets by HCV Core protein. HepG2 cells were transfected with expression 

plasmids for Ha-tagged Con1 and treated with oleic acid (Sigma) overnight to 

induce lipid droplets. HepG2 cells were then stained for Ha-Con1 and endogenous 

DDX3 (Figure 5.19 A). I also stained lipid droplets using the lysochrome dye SUDAN 

III and stained for endogenous DDX3. Since overexpressed Con1 caused a strong 

redistribution of endogenous DDX3, I could identify the cells overexpressing HCV 

Core protein. In (Figure 5.19 B), Ha-Con1 overexpression caused endogenous DDX3 

to localise around lipid droplets.  
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Figure 5.19: HCV-Con1 and endogenous DDX3 co-localise around lipid droplets in HepG2 hepatocyte cells line. 

(1): HepG2 cells were transfected with Ha-Con1 and treated with oleic acid or left untreated. B: Cells were stained with -DDX3 (Bethyl) and -rabbit Alexa Fluor-

488 and -Ha Alexa Fluor-594. Key: A (DAPI), B (DDX3), C (Ha-tagged Core), D (merge B and C) and E (Contrast). (2): HepG2 cells were transfected with Ha-Con1 

and treated with oleic acid. Cells were stained with  -DDX3(Bethyl) and -rabbit Alexa Fluor-488 and lipid droplets were stained with Sudan III dye. Key: A 
(DAPI), B (DDX3), C (Lipid droplet), D (merge B and C) and E (Contrast). 

(1) 

(2) 
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5.3.4.3. Core protein inhibits DDX3 shuttling through a direct interaction.  

Since HCV Core protein causes a re-distribution of DDX3 to cytoplasmic granules 

we wondered if a HCV Core mutant lacking the ability to interact with DDX3 would 

also cause the re-distribution. A Con1 Y35A mutant has been reported to lack the 

ability to interact with DDX3 (Angus et al. 2010). Here, HepG2 cells were 

transfected with expression plasmids for Ha-tagged Con-1 and a Con-1 Y35A 

mutant. In Figure 5.20, overexpression of the Ha-Con1 caused endogenous DDX3 to 

localise to cytoplasmic granules, however the Con1 Y35A mutant did not change 

DDX3 localisation. The degree of co-localisation of the mutant HCV Core protein 

with DDX3 was significantly less than wild type HCV Core, suggesting that DDX3 is 

recruited to lipid droplets via a direct interaction with HCV Core.  

DDX3's interaction with HCV Con1 protein prevented DDX3 from shuttling between 

the cytoplasm and nucleus. Since HCV Con1 Y35A did not change DDX3 localisation, 

we wondered  if DDX3 shuttled as normal in cells overexpression HCV Con1 Y35A. 

To this end, we transfected HepG2 cells with expression plasmid for Ha-tagged 

Con1 Y35A protein and subsequently treated cells with the CRM-1 inhibitor 

Leptomycin B (LMB), and stained for Ha-Core protein and endogenous DDX3. Ha-

Con1 Y35A protein did not inhibit the nuclear import of DDX3, as DDX3 localised to 

the nucleus in cells expressing Ha-Con1 Y35A after treatment with LMB (Figure 

5.21). 
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Figure 5.20: Con1 Y35A mutant does not cause change in DDX3 localisation. 

(1): HepG2 cells were transfected with Ha-Con1 and Ha-Con1 Y35A mutant and stained with -Ha 

(Covance) secondary and -mouse Alexa Fluor-488, and -DDX3 (Bethyl) and -rabbit Alexa Fluor-
594. Co-localisation points highlight the positions of overlapping signals, generated using Olympus 
Fluoview Co-localisation Software. Key: A (DAPI), B (Ha-Core), C (DDX3), D (merge B and C), E 
(contrast) and F (Co-localisation points). (2): Pearson’s coefficient was calculated for the degree of 
co-localisation between HCV Core protein and DDX3. Results represent >10 cells from n=2 
independent experiments.  
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Figure 5.21:  HCV Con1 Y35A Core protein does not prevent shuttling of DDX3 into the nucleus.  
HeLa cells were transfected with expression plasmids for HCV Con1 Y35A Core protein and treated with 20mM Leptomycin B (LMB) for 2 hours or left untreated. 

Cells were stained with -DDX3 (Bethyl) and -rabbit Alexa Fluor-488, and -Ha Alexa Fluor-594. Arrows indicate cells not expressing Core protein with nuclear 
DDX3 after treatment with LMB. Key: A (DAPI), B (Ha-tagged Con Y35A), C (DDX3), D (merge A, B and C) and E (Contrast). 
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5.3.4.4. DDX3 nuclear shuttling is inhibited in Huh7 cells expressing non-
replicating full length HCV genome   

I was interested in investigating whether HCV Core protein changes the 

localisation of DDX3 in cells expressing all the viral proteins associated with HCV. 

The non-replicating pBRTM/HCV1-3011 DNA construct (Grakoui et al. 1993) 

contains the entire HCV H77 genotype 1a open reading frame under the control of 

the T7 promoter, but lacks the 3′ and 5′ untranslated regions. Huh7 cells expressing 

T7 polymerase were transfected for 12h using Lipofectamine2000 with the T7- 

driven pBRTM/HCV1-3011 DNA construct and control EV (Stevenson et al. 2011). I 

was also interested in confirming whether HCV Core protein prevented the 

shuttling of DDX3. Therefore, cells were treated with Leptomycin B (LMB) or left 

untreated, and stained for HCV Core protein (Abcam) and endogenous DDX3 

(Bethyl). As shown in Figure 5.22, Huh7 cells transfected with the pBRTM/HCV1-

3011 DNA construct expressed HCV Core protein, whereas cells transfected with EV 

did not. DDX3 protein co-localised with HCV Core in cytoplasmic speckles in cells 

expressing HCV Core protein, and treatment with LMB failed to cause DDX3 to 

localise to the nucleus. Treatment with LMB caused DDX3 to localise to the nucleus 

in control cells transfected with EV, confirming that LMB treatment worked in this 

experiment. These results confirm that expression of HCV Core protein causes 

DDX3 to localise to cytoplasmic speckles and also prevents the nuclear shuttling of 

DDX3. 
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Figure 5.22: HCV Core protein prevents shuttling of DDX3 into the nucleus.  
Huh7 cells were transfected with expression plasmids for pBRTM/HCV1-3011 construct and control 
EV, and treated with 20mM Leptomycin B (LMB) for 2 hours or left untreated. Cells were stained 

with -DDX3 (Bethyl) and -rabbit Alexa Fluor-488, and -HCV Core (Abcam) and -Alexa Fluor-594. 
Key: A (DAPI), B (DDX3), C (HCV Core), D (merge B and C), E (merge A,B and C) and F (contrast). n=1. 
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5.3.4.5. HCV infection causes cellular redistribution of endogenous DDX3 in a 
hepatocyte cell lines 

Using a HCV infection system, we confirmed whether DDX3's localisation 

changed during HCV infection. Huh7 cells (a hepatocyte cell line) were infected with 

HCV virus (J6/JFH genotype 2a) at MOI=0.5 (ie. one viral particle for every two cells 

seeded) for 72 hours (Lindenbach et al. 2005). I was also interested in confirming 

whether HCV infection prevented the shuttling of DDX3, therefore cells were also 

treated with LMB or left untreated, and subsequently stained for HCV Core protein 

(Abcam) and endogenous DDX3 (Bethyl). A shown in Figure 5.23 , in Huh7 cells 

infected with HCV DDX3 changed from a diffuse cytoplasmic localisation to a 

cytoplasmic speckle localisation, co-localising with the HCV-Core protein in these 

cytoplasmic speckles. LMB treatment failed to sequester DDX3 in the nucleus in 

cells infected with HCV and expressing HCV Core protein. Since DDX3 localised to 

the nucleus in cells treated with LMB and not infected with HCV (indicated by white 

arrow in Figure 5.23), this confirmed that LMB treatment worked. These results 

confirmed that HCV infection causes DDX3 to co-localise with HCV Core at 

cytoplasmic speckles,  and also that HCV infection prevents the nuclear shuttling of 

DDX3. 
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Figure 5.23: HCV infection causes DDX3 to co-localise with HCV Core protein in cytoplasmic 
speckles in Huh7 cells. 
Huh7 cells were infected with HCV virus at an MOI=0.5 for 72h and treated with 20mM Leptomycin 

B (LMB) for 2 hours or left untreated. Cells were stained with -HCV Core (Abcam) and secondary 

and -mouse Alexa Fluor-488 and -DDX3 (Bethyl) and -rabbit Alexa Fluor-594. Co-localisation 
points highlight the positions of overlapping signals, generated using Olympus Fluoview Co-
localisation Software. Key: A (DAPI), B (HCV Core),C (DDX3), D (merge B and C), E (merge A, B and C), 
F (contrast) and G (Co-localisation points). n=2. 
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5.3.4.6. Does HCV Core expression change protein expression of DDX3? 

Our previous results showed overexpression of HCV Core protein and HCV 

infection changed the localisation of endogenous DDX3. We also observed that the 

staining intensity for DDX3 was increased in cells overexpressing Core protein. This 

observation suggested that there might be an increase in DDX3 protein after 

overexpression of HCV Core protein and HCV infection. To investigate whether 

expression of HCV Core affects the amounts of DDX3 protein, we transfected 

HEK293Ts cells with varying amounts of a construct for Ha-tagged Con-1. As shown 

in Figure 5.24, endogenous DDX3 expression mirrored that of overexpressed Ha-

Con1. In general, there was more DDX3 protein in cells; overexpressing Ha-Con1 

compared to cells transfected with EV. There was less Ha-Con1 protein and less 

endogenous DDX3 in cells transfected with the highest amount of HCV Core 

protein, however this could be due to cell death.  

     

 
Figure 5.24: Expression of Ha-tagged Core protein increased endogenous DDX3 protein expression.  
HEK233ts were transfected with  varied amounts of an expression plasmid for Ha-tagged  HCV Core 
Con1. Cells were lysed and subjected to SDS-PAGE gel electrophoresis and semi-dry transfer. Blots 

were probed with -DDX3 (Bethyl),  -Ha (Covance) and -Tubulin (Abcam). Representative blot of 
three experiments.  
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5.3.4.7. HCV causes redistribution of eIF4E 

Since HCV Core protein caused DDX3 to localise to cytoplasmic speckles, we 

wondered if the localisation of other RNA associated proteins was sensitive to HCV 

Core expression. We decided to examine the localisation of the RNA helicase eIF4E 

after overexpression of HCV Core protein. DDX3 has been shown to repress cap-

dependent translation but to promote HCV IRES-mediated translation, through an 

interaction with eIF4E (Shih et al. 2008). HeLa cells were transfected with constructs 

Ha-tagged HCV Core protein and stained for endogenous eIF4E. As shown in Figure 

5.25, overexpression of Ha-tagged HCV Core protein resulted in a small amount of 

eIF4E co-localising with Ha-Con1 in cytoplasmic speckles. The majority of eIF4E had 

a predominantly cytoplasmic localisation, suggesting that only a small amount of 

eIF4E protein is recruited to cytoplasmic granules compared to DDX3.  

 

 
 
Figure 5.25: Overexpression of HCV Core protein Con1 causes some eIF4E to co-localise in 
cytoplasmic speckles with Core protein.  

HeLa cells were transfected with Ha-tagged HCV Core Con1. Cells were stained for eIF4E (Abcam) 

and rabbit alexa Fluor-594 and Ha (Covance) and mouse Alexa Fluor-488. Co-localisation 
points highlight the positions of overlapping signals, generated using Olympus Fluoview Co-
localisation Software. Key: A (DAPI), B (Ha-tagged Core), C (DDX3), D (merge B and C), E (merge A,B 
and C) and F (Co-localisation points). 



162 
 

5.3.4.7. Does DDX3 localise differently in primary cells compared to 
transformed cells? 

As stated earlier, DDX3 has been suggested to have a nuclear localisation in 

non-transformed cells, and a cytoplasmic localisation in transformed cells (Chao et 

al. 2006). I decided to test DDX3 localisation in primary hepatocytes versus a 

hepatocyte cell line. HepG2 cells and primary hepatocytes were grown on 

coverslips and prepared for immunofluorescence. DDX3 had a stronger nuclear 

localisation in primary hepatocytes compared to transformed HepG2 cells (Figure 

5.26).  
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Figure 5.26: DDX3 has a more nuclear localisation in primary cells compared to transformed cells. 

HepG2 cells and Primary Hepatocytes cells were grown on coverslips and stained with a primary -

DDX3 (Bethyl) and secondary -rabbit Alexa Fluor-488 as described in Chapter 2. Key: A (DAPI), B (-
DDX3), C (Merge A+B), D (Contrast). 
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5.4. Discussion 

Here I have investigated the cellular localisation of DDX3 in response to viral 

infection. Since DDX3 has been suggested to play a role in nuclear signalling events, 

for example DDX3 has been shown to bind to the IFNpromoter upon infection 

with Listeria monocytogenes (Soulat et al. 2008), I speculated that DDX3 would 

translocate to the nucleus in response to immunological stimulation. I found that 

DDX3 localisation did not change drastically in response to a range of stimuli, 

namely SeV, IFN, and Il-1/TNF-. A small portion of DDX3 could still be 

translocating to the nucleus in response to SeV, as it possible that only small 

amounts of DDX3 are needed in the nucleus for IFNinduction. Life cell imaging 

could be used to give further insight into the real time translocation of DDX3 in 

response to various stimuli. I also found no change in DDX3 cellular localisation in 

response to overexpression of IKKand after SeV stimulation. In the future, it 

would be interesting to examine the localisation of DDX3 in response to these 

stimuli in more immunologically relevant cells, such as primary macrophages and 

dendritic cells.  

Here I have also examined the relationship between viral proteins and DDX3. I 

have shown that overexpression of HIV-Rev protein can cause DDX3 to accumulate 

in the nucleolus of HeLa cells. I have also shown that the N-terminus (1-408) of 

DDX3 directly interacts with HIV-Rev protein. Interestingly, HIV-Rev also re-localised 

the exportin CRM-1 to the nucleolus, suggesting that HIV-Rev recruits proteins 

required for the nuclear export of HIV-mRNA into the nucleolus. The re-localisation 

of CRM-1 by overexpression of HIV-Rev had been described previously, however to 

my knowledge the re-localisation of DDX3 has not been reported before 
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(Zolotukhin & Felber 1999; Daelemans et al. 2002). DDX3 has been shown to be 

part of the T cell nucleolar proteome (Jarboui et al. 2011), and HIV Tat expression 

has been shown to enrich DDX3 in the nucleolus of Jurkat T cells also (Jarboui et al. 

2012). Many proteins from RNA viruses localise to the nucleolus, utilising the 

nucleolus to promote viral replication (Hiscox 2007). Studies have shown that HIV-

Tat and HIV transcripts must associate with the nucleolus for HIV replication 

(Michienzi et al. 2002; Michienzi et al. 2000), to maybe DDX3 plays a role in viral 

RNA processing in the nucleolus of HIV infected cells.  

Previous studies have shown that overexpression of DDX3 promoted Rev 

mediated gene expression through its role in HIV RNA nuclear export (Yedavalli et 

al. 2004), while other studies have shown that DDX3 promotes both Rev-dependent 

and independent HIV gene expression, by being involved in HIV-1 RNA translation 

(Liu et al. 2011). DDX3 has also been shown to be required for translation initiation 

of complex RNAs which contain secondary structures within 5'UTR, such as HIV 

RNAs which contain the TAR hairpin motif within its 5'UTR (Soto-Rifo et al. 2012). In 

our hands, overexpression of DDX3 did not affect Rev-dependent expression of HIV-

Gag protein. Since there was already endogenous DDX3 in these cells, it would be 

interesting to investigate whether knockdown of DDX3 affects Rev-mediated 

expression of HIV Gag protein. HIV-Rev is known to interact with CRM-1 via it's 

leucine rich NES, however recruitment of CRM-1 to the nucleolus does not 

necessarily occur due to this interaction. It would be interesting to examine the 

HIV-Rev protein recruitment of CRM-1 in the absence of DDX3, using knockdown 

cells. In Chapter Three, I have shown that DDX3 has a functional NES, which can 

interact with CRM-1. Since HIV-Rev protein and DDX3 both have functional NESs it 



166 
 

is difficult to see how both proteins would interact with CRM-1 at the same time to 

export RRE-containing RNA. Since DDX3 is a multifunctional protein, it is not 

surprising that HIV utilises the different functions of DDX3 to promote viral 

replication. Future work is needed to further characterise the various roles DDX3 

might play in HIV replication. 

Here I have also examined the relationship between DDX3 and HCV Core 

protein. We found that HCV Core protein changed the cellular localisation of DDX3, 

and that HCV Core protein prevented the nucleocytoplasmic shuttling of DDX3. HCV 

Core protein has been reported to recruit DDX3 to lipid droplets by various groups 

(Angus et al. 2010; Ariumi, Kuroki, Kushima, et al. 2011; Sato et al. 2006), however I 

am the first to show that HCV prevents the nucleocytoplasmic shuttling of DDX3. 

Angus et. al showed that DDX3 co-localised to lipid droplets in cells infected with 

HCV, however they suggested that DDX3's interaction with HCV was not required 

for HCV replication (Angus et al. 2010). HCV infection has also been shown to utilise 

Processing Body (PB) and Stress Granule (SG) components to promote HCV 

replication, shutting down translation of cellular mRNAs while promoting 

translation of viral RNA (Ariumi, Kuroki, Kushima, et al. 2011; Garaigorta et al. 2012; 

Ruggieri et al. 2012). Here I found that two SG components, DDX3 and to a lesser 

extent eIF4E, were recruited to cytoplasmic speckles by HCV Core protein. Since the 

interaction of DDX3 with Core has been suggested not to be required for HCV 

infection, it is possible that in the absence of a Core-DDX3 interaction other SG 

components can still be recruited to cytoplasmic granules. As earlier stated, mis-

localisation of DDX3 could potentially inhibit many of DDX3 nuclear and cytoplasmic 

functions. Mis-localisation of DDX3 has been found in some cancers, with DDX3 
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switching from a nuclear to cytoplasmic localisation to in transformed cells (Chang 

et al. 2006). It is appealing to think that the change from a nuclear to a cytoplasmic 

localisation in HCC is caused by DDX3's interaction with HCV Core protein. I have 

shown that in primary hepatocytes DDX3 has a nuclear and cytoplasmic localisation, 

and changes to a predominantly cytoplasmic localisation in transformed cells. Is it 

possible that mis-localisation of DDX3 by HCV Core protein might be a causative 

factor in HCV associated cancers? Several studies have implicated inactivation of 

p21waf1/cip1 in HCV associated cancers (Fukushima et al. 2001; Feitelson et al. 2002). 

Since DDX3 has been shown to promote induction of the tumour suppressor 

p21waf1/cip1, sequestering DDX3 in the cytoplasm would likely inhibit expression of 

this tumour suppressor.  

It is remarkable that two different viruses have the abilities to change the 

cellular localisation of DDX3 in distinct ways. The fact that it is advantageous for 

DDX3 to be nuclear for HIV and cytoplasmic for HCV shows that both the nuclear 

and cytoplasmic functions of DDX3 can be targeted by viruses to promote viral 

replication. 
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Chapter 6 : Regulation of DDX3 localisation by cellular stress  

During our initial investigations of DDX3's cellular localisation, we noticed that 

over-expressed DDX3, and even truncations lacking the NES, sometimes localised in 

distinct cytoplasmic speckles. We hypothesised that these cytoplasmic speckles 

were stress granules. During our investigations into HCV, we showed that DDX3 

could also to localise to distinct cytoplasmic speckles after HCV infection. HCV 

infection has been found to utilise SGs, both promoting and inhibiting the 

formation of SG to promote HCV replication (Ariumi, Kuroki, Kushima, et al. 2011; 

Ruggieri et al. 2012; Garaigorta et al. 2012). The following sections introduce RNA 

granules and the role DDX3 may play in SG formation.  

6.1. Introduction to RNA granules 

Gene expression can be controlled post-transcriptionally by regulating the level 

of protein synthesized from its mRNA. During the mRNA life cycle, nascent mRNA 

can be packaged into distinct granules which regulate the translation and decay of 

mRNA, including Processing Bodies (PBs) and Stress Granules (SGs). PBs are usually 

comprised of 5'-3' mRNA decay components and occur constitutively, increasing in 

size and number in response to cellular stresses (Anderson & Kedersha 2009). In 

general, PBs are involved in the decay of mRNAs, whereas SGs protect mRNA and 

allow re-initiation of translation as soon as cellular stress has been resolved. SGs are 

assembled after various cellular stresses, including oxidative, genotoxic or osmotic 

stress, heat shock or viral infection. Several different RNA-associated proteins are 

found in SGs and PBs, including RNA helicases, RNA binding proteins, transcription 

factors and translational regulators (Anderson & Kedersha 2008). Some known 

components of SGs are listed in Table 6.1. SGs are produced after phosphorylation 
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of translation initiation factor eIF2 by stress inducible kinases (such as PKR), 

resulting in accumulation of stalled pre-initiation complexes containing 40s 

ribosome subunits (Srivastava 1998). SGs can contain mRNA transcripts of various 

proteins, including housekeeping genes. Interestingly, the mRNA of stress-induced 

proteins, such as HSP70 and HSP90, are not recruited to SG suggesting that SGs 

allow cells to preferentially translate mRNA required to resolve the cellular stress 

while protecting stalled mRNA (Anderson & Kedersha 2008). SGs allow rapid 

reactivation of translation upon stress recovery since ribosome pre-initiation 

complexes are retained in an assembled state. They are also suggested to promote 

cell survival, since they sequester components of apoptotic signal transduction 

pathways such as RACK1 (Arimoto et al. 2008). 

Protein Name Protein function Ref 
TIA-1 and TIAR mRNA silencing (Kedersha et al. 2002) 
eIF4E Translation (Kedersha et al. 2005) 
eIF4G Translation (Kedersha et al. 2005) 
eIF3 Translation (Kedersha et al. 2005) 
Traf2 Signalling (Kim et al. 2005) 
G3BP Ras signalling (Tourrière et al. 2003) 
PABP1 Translation, stabilisation (Fraser et al. 1999) 

Rpb4 Transcription (Lotan et al. 2005) 

DDX3 Transcription, signalling (Shih et al. 2012) 

DDX6 Transcription (Nonhoff et al. 2007) 

Caprin Cell growth (Solomon et al. 2007) 

Table 6.1 : Known stress granule components and their protein function. 
  

Studies have shown that SGs are induced rapidly after stress and disassemble 

slowly. Time lapse microscopy has shown that SGs are typically large structures 

with a fixed position in the cytoplasm, however their shape is constantly changing 

with components of SGs rapidly moving in and out of these granules, whereas PBs 

are small and move throughout the cytoplasm (Kedersha et al. 2005). SGs and PBs 

share many components, and have been shown to interact closely with each other, 
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with studies suggesting that mRNPs can be transferred between PBs and SGs, 

targeting some mRNA for decay (PBs) and others for protection (SGs).  

Viruses have evolved a multitude mechanisms to interfere with cellular 

processes to facilitate the replication of viruses. Since SGs have been implicated in 

cell survival through sequestering of apoptotic mediators (Arimoto et al. 2008), it 

could be advantageous for viruses to induce SG to keep the host cell alive while 

allowing for viral replication. It can also be advantageous for viruses to induce the 

formation of SG, as shutting down of host protein translation prevents the 

production of pro-inflammatory mediators, and also promote IRES-dependent 

translation (Spriggs et al. 2008). Also many viruses have been suggested to both 

promote and inhibit SG formation throughout the viral life cycle (White & Lloyd 

2012). For example, mammalian orthoreovirus (MRV) infection induces SG in the 

early stages of infection while inhibiting SG during the mid-phase (Smith et al. 2006; 

Lin et al. 2007). 

Recently two groups have shown that during influenza virus A, the Non-

Structural protein 1 (NS1) prevents the induction of SGs by PKR in response to viral 

double stranded RNA, thereby promoting translation of host mRNA (Onomoto et al. 

2012; Khaperskyy et al. 2012). Virus induced SGs were shown to contain SG 

components, viral proteins, and RLRs namely MDA5, LGP2, and PKR. These SGs 

were suggested to be a distinct subset of anti-viral SG (avSGs), as they played a 

critical role in RIG-I mediated type I Interferon induction in response to virus 

(Onomoto et al. 2012). 

HCV has also been shown to regulate formation of RNA granules, both inhibiting 

and inducing SG during viral replication (Ruggieri et al. 2012). One study showed 
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that HCV Core protein promotes translation of viral RNA by hijacking components 

of SG around lipid droplets, while inhibiting SG induction in response to oxidative 

stress (Ariumi, Kuroki, Kushima, et al. 2011). Another study involving HCV infection 

showed that during HCV infection there is fluctuation in SG formation, resulting in 

phases of active and stalled translation (Ruggieri et al. 2012).  

6.1.1. DDX3's association with stress granules  

DDX3 could be placed at multiple stages of the mRNA life cycle, with DDX3 

potentially having roles in translation initiation, transcription, mRNP remodelling 

and stress-induced RNA granule formation (Figure 6.1). The S.cerevisiae DDX3 

homologue Ded1p has been shown to accumulate in PBs, with Ded1p playing a role 

in both translation and PB formation (Beckham et al. 2008). Human DDX3 has been 

shown to localise to cytoplasmic SGs in response to stress, interacting with SG 

components eIF4E, eIF4A and PABP1 (Lai et al. 2008). DDX3 has also been 

suggested to be a critical component of SG assembly, with knock-down of DDX3 

repressing the formation of sodium arsenite-induced SGs in one study (Shih et al. 

2012).  
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Figure 6.1: DDX3 can be placed at multiple levels of the mRNA life cycle.  
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 6.1.2.Conclusion 

The role of DDX3 in SG formation is unclear. Since viruses have evolved ways to 

subvert the mRNA life cycle to favour translation of viral mRNA, it is appealing to 

say that viruses might target DDX3's role in the mRNA life cycle for their benefit. It 

would be interesting to investigate whether DDX3 plays a role in assembly of avSG, 

since it has been shown that avSG assembly is required for IFN induction in 

response to viral infection (Onomoto et al. 2012).  

6.2. Aims 

I observed that over-expressed DDX3 and NES-deficient mutants localised to 

cytoplasmic granules on occasion. In this chapter I aimed to examine if these 

cytoplasmic granules were SG and whether DDX3 was recruited to SG in response 

to cellular stresses. I also aimed to determine if SG prevented the 

nucleocytoplasmic shuttling of DDX3 and also to identify the regions of DDX3 

required for recruitment to stress granules.  
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6.3. Results 

6.3.1. DDX3 localises to cytoplasmic granules in response to stress 

Occasionally, I observed a distinct cytoplasmic speckle appearance of Ha-tagged  

DDX3 and DDX3 truncation mutants that normally had a nuclear localisation in HeLa 

cells (Figure 6.2). I hypothesized that these speckles could be stress granules, 

induced by overexpression of DDX3.  

 
 
Figure 6.2: Overexpressed DDX3 has a distinct cytoplasmic speckle localisation.  
HeLa cells were transfected with expression plasmids for WT Ha-DDX3, and stained with α-Ha Alexa 
Fluor-594. Key: A (DAPI), B (Ha-DDX3), C (Merge A+B), D (Contrast). 

 

First, I tested whether endogenous DDX3 could localise to stress granules after 

being  treated  with a stress granule inducing chemical. HeLa cells were treated with 

1mM sodium arsenite (SA) for 20mins, and stained for endogenous DDX3 and 

endogenous eIF4E. SA causes oxidative stress, which results in formation of 

cytoplasmic SG. As shown in Figure 6.3, DDX3 and eIF4E had a diffuse cytoplasmic 

localisation in untreated cells, but in HeLa cells treated with 1 mM SA for 20 mins 

DDX3 and eIF4E co-localised in distinct cytoplasmic speckles. Co-localisation points 

show the position of overlapping signals between DDX3 and eIF4E staining 

generated using the Olympus Fluoview Co-localisation software, after treatment 

with SA there was a large increase in co-localisation. I also tested if overexpressed 

Ha-DDX3 behaved as endogenous. As shown Figure 6.3, Ha-DDX3 co-localised with 



175 
 

endogenous eIF4E in cytoplasmic speckles upon treatment with SA, suggesting that 

overexpressed DDX3 is also recruited to SG upon oxidative stress. 

Cycloheximide has been reported to inhibit formation of SG. Cycloheximide 

traps mRNAs in polysomes by blocking translational elongation preventing 

translation but also induction of SG (Dang et al. 2009). I investigated if cyloheximide 

would prevent DDX3 speckling following cellular stress. HeLa cells were treated 

with cycloheximide at 10g/ml for 4 hours followed by treatment with 1mM SA for 

20 min or left untreated. Cells were stained for endogenous DDX3 and endogenous 

eIF4E. As shown in Figure 6.4, cycloheximide prevented induction of eIF4E and 

DDX3 containing speckles in response to SA. This suggests that the DDX3/eIF4E 

containing granules we observed are bona fide SGs.  
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Figure 6.3: DDX3 co-localises with stress granules component eIF4E after Sodium Arsenite induced oxidative stress. 
HeLa cells were treated with 1mM SA for 20mins or left untreated. Co-localisation points highlight the positions of overlapping signals, generated using Olympus Fluoview 

Co-localisation Software. (1): HeLa cells were stained with -eIF4E (Abcam) and secondary -rabbit Alexa Fluor-488, and -DDX3 (Santa Cruz) and secondary -mouse 
Alexa Fluor-594. Key: A (DAPI), B (DDX3), C (Merge A,B and C), D (Contrast) and F (Co-localisation Points). (2): HeLa cells were transfected with expression plasmids for Ha-

DDX3. Cells were stained with - eIF4E (Abcam) and secondary -rabbit Alexa Fluor-488 and -Ha Alexa Fluor-594. Key: A (DAPI), B (eIF4E), C (DDX3), D (merge A,B and C), 
E (Contrast) and F (Co-localisation Points). 

 

(2) 

(1) 
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Figure 6.4: Cycloheximide inhibits formation of DDX3 and eIF4E-containing granules. 

HeLa were treated with 10g/ml CHX for 4h and treated with 1mM SA for 20mins or left untreated. HeLa cells were stained with  - eIF4E (Abcam) and secondary -rabbit 

Alexa Fluor-488 and secondary, and -DDX3 (Santa Cruz) and secondary -mouse Alexa Fluor-594. Key: A (DAPI), B (eIF4E), C (DDX3), D (merge B and C), E (merge A, B and 
C) and F (Contrast). 
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6.3.2. Helicase activity not required for DDX3 to be recruited to stress granules 

Stress granules can contain many RNA helicases, but whether helicase activity is 

required for recruitment of RNA helicases to SGs in unclear. The DDX3 K230E 

mutant lacks RNA helicase activity, therefore it could be used to test if helicase 

activity is required for recruitment to SGs. HeLa cells were transfected with an 

expression plasmid for a Myc-tagged K230E DDX3 mutant, and treated with 1mM 

SA for 20 minutes. As shown in Figure 6.5, Myc-K230E DDX3 had a diffuse 

cytoplasmic localisation in untreated cells, and co-localised in distinct cytoplasmic 

speckles with eIF4E upon treatment with SA. This suggests that helicase activity is 

not required for recruitment of DDX3 into stress granules. 
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Figure 6.5: DDX3 helicase mutant K230E co-localises with stress granule component eIF4E after 
Sodium Arsenite induced oxidative stress. 
HeLa cells were transfected with expression plasmids for myc-K230E DDX3 and treated with 1mM SA 

for 20 min. Cells were stained with -eIF4E (Abcam) and secondary -rabbit Alexa Fluor-488, and -

myc (Sigma) and -Alexa Fluor-594. Co-localisation points highlight the positions of overlapping 
signals, generated using Olympus Fluoview Co-localisation Software. Key: A (DAPI), B (eIF4E), C 
(Myc-DDX3), D (merge A,B and C), E (Contrast) and F (Co-localisation Points).  
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6.3.3. Stress granules inhibit the nuclear import of DDX3 

I had observed that DDX3 nuclear export defective mutants were sometimes 

found in cytoplasmic speckles in cells overexpressing DDX3 proteins. This suggested 

that stress granules might be affecting the nuclear shuttling of DDX3. To test if 

nuclear import was being affected, I transfected HeLa cells with expression 

plasmids for Ha-tagged DDX3, or the nuclear export defective mutants 22-662 and 

NES mutant. 14 hours after transfection, cells were treated with 1mM SA for 20 

min, and stained as previously described. In Figure 6.6, untreated HeLa cells Ha-22-

662 and the Ha-NES mutant had a nuclear localisation, and eIF4E had a 

predominately diffuse cytoplasmic localisation. After treatment with 1mM SA for 

20min,the Ha-22-662 and the Ha-NES mutant were recruited to cytoplasmic 

speckles, along with endogenous eIF4E. 
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Figure 6.6: Nuclear export deficient mutants are recruited to stress granules after Sodium Arsenite treatment.  
DDX3 truncation mutant and NES mutant interact with eIF4E upon treatment with 1mM Sodium Arsenite for 20 minutes. HeLa cells were transfected with a construct for 

Ha-22-662 DDX3 and Ha-NES DDX3 mutant, and stained with -Ha Alexa Fluor-594, and -eIF4E (Abcam) and secondary -rabbit Alexa Fluor-488. Co-localisation points 
highlight the positions of overlapping signals, generated using Olympus Fluoview Co-localisation Software. Key: A (DAPI), B (eIF4E), C (Ha-DDX3), D (merge B and C), E 
(merge A, B and C), F (Contrast), and G (Co-localisation points). 
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6.3.4. The eIF4E binding site is not required for recruitment of DDX3 to stress 
granules 

The translation initiation factor eIF4E is a known component of stress granules. 

DDX3 contains a described eIF4E binding site at amino acids 38-44 "YIPPHLR" (Shih 

et al. 2008). The N-terminal deletion mutant 44-662 is missing this eIF4E binding 

site. However, it is also missing the NES at amino acids 12-22, as described in 

section 3.2.4.3. In order to have an eIF4E binding site deletion mutant which had 

the ability to export from the nucleus, I created a 44-662 mutant which had the NES 

(1-22) reattached, referred to as NES-44-662. HeLa cells were transfected with 

expression plasmids for Ha-44-662 and Ha-NES-44-662 and treated with 1mM SA 

for 20 min or left untreated. Both eIF4E binding site deletion mutants co-localised 

with eIF4E after treatment with SA, a large amount of the 44-662 mutant remained 

nuclear after SA treatment, even though cytoplasmic 44-662 was localised to SGs. 

The NES-44-662 mutant was predominantly cytoplasmic in both untreated and 

treated cell as expected, and co-localised with eIF4E after SA treatment (Figure 6.7). 

Suggesting the described eIF4E binding domain in DDX3 is not required for 

recruitment into eIF4E-containing SGs. 
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Figure 6.7: The eIF4E binding site is not required for recruiting DDX3 to stress granules.   
(1): Schematic depicting the eIF4E binding site deletion mutant and the NES-eIF4E binding site 
deletion mutant which was constructed by adding the NES containing region (1-22) onto eIF4E 
binding site deletion mutant 44-662. (2): HeLa cells were transfected with Ha-44-662 or Ha-NES-44-

662 mutant, and treated with 1mM SA for 20 min or left untreated. Cells were  stained with -Ha 

Alexa Fluor-594, and -eIF4E (Abcam) and secondary -rabbit Alexa Fluor-488. Co-localisation points 
highlight the positions of overlapping signals, generated using Olympus Fluoview Co-localisation 
Software. Key: A (DAPI), B (eIF4E), C (Ha-DDX3), D (merge B and C), E (merge A, B and C), F (contrast) 
and G (Co-localisation points).

(2) 

(1) 
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6.3.5. The C-terminus and the N-terminus of DDX3 play a role in recruitment to 
SG 

Since the eIF4E binding site was not required for recruitment to SG, I decided to 

map the region of DDX3 required, using a series of N- and C-terminal truncation 

mutants.  The Ha-tagged NES-130-662 plasmid contains the main RNA-binding site 

and the central ATPase and helicase domains, whereas the 409-662 plasmid is 

missing the central ATPase and helicase domains while containing part of the RNA-

binding domain. HeLa cells were transfected with expression plasmids for Ha-NES-

130-662 or Ha-409-662 and treated with 1mM SA for 20 mins or left untreated. The 

Ha-409-662 mutant also lacks the NES, and localises predominately to the nucleus, 

with a small portion in the cytoplasmic. Both N-terminal deletion mutants co-

localised with the SG marker eIF4E after treatment with SA (Figure 6.8). 

Interestingly, not all of the 409-662 mutant is recruited to SGs, suggesting that the 

residues within the central 130-408 domain play a role in SG recruitment.  

I next tested if the C-terminus was required for recruitment to SGs, since it has 

an RNA binding domain. HeLa cells were transfected with expression plasmids for 

Ha-tagged 1-572 and 1-408 DDX3 mutant, and treated with 1mM SA for 20 min or 

left untreated. Both C-terminal truncation mutants (1-572 and 1-408) localised with 

eIF4E after SA treatment, however 1-408 was not recruited to SG to the same 

extent at 1-572 (Figure 6.9). Overall this suggests that the C-terminus is not 

absolutely required for DDX3's recruitment to SG.  

 

 
 
 
 
 

A 



185 
 

 

  
 
             

 
 
Figure 6.8: The N-terminus is not critical for recruiting DDX3 to stress granules.  
(1): Schematic depicting the N-terminal deletion mutant. (2): HeLa cells were transfected with Ha-
NES-130-662 and Ha-409-662 mutant, treated with 1mM SA for 20 min or left untreated. Cells were 

stained with -Ha (Covance) and secondary -mouse Alexa Fluor-488, and -eIF4E (Abcam) and 

secondary -rabbit Alexa Fluor-594. Co-localisation points highlight the positions of overlapping 
signals, generated using Olympus Fluoview Co-localisation Software. Key: A (DAPI), B (Ha-DDX3), C 
(eIF4E), D (merge B and C), E (merge A, B and C), F (contrast) and G (Co-localisation points). 

 
  

(2) 

(1) 
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Figure 6.9: The C-terminus is not critical for recruiting DDX3 to stress granules. 
(1): Schematic depicting the C-terminal deletion mutant. (2): HeLa cells were transfected with Ha-1-
572 and Ha-1-408 mutant, treated with 1mM SA for 20 min or left untreated. Cells were stained with 

-Ha and secondary -mouse Alexa Fluor-488., and -eIF4E (Abcam) and secondary -rabbit Alexa 
Fluor-594. Co-localisation points highlight the positions of overlapping signals, generated using 
Olympus Fluoview Co-localisation Software. Key: A (DAPI), B (Ha-DDX3),C (eIF4E),D (merge B and C), 
E (merge A, B and C), F (contrast) and G (Co-localisation points). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2) 

(1) 
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Since both the N- and C-terminal mutants localised as normal to SG, I decided to 

test mutants missing both the N- and C-terminus. HeLa cells were transfected with 

expression plasmids for Ha-tagged NES-100-408 or NES-110-408 and treated with 

1mM SA for 20 min or left untreated. Neither the NES-100-408 nor the NES-110-408 

co-localised with eIF4E after treatment with SA (Figure 6.10). The C-terminal 

mutant 1-408 was recruited to SG (Figure 6.9), as did the N-terminal mutants NES-

130-662 and 409-662 (Figure 6.8). Here, mutants missing both the N- terminus and 

C-terminus failed to be recruited to SGs, which suggests that in the absence of the 

RNA binding domain, the N-terminus (1-110) is required for SG recruitment.   
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Figure 6.10: Residues within the N-terminus are critical for recruitment of DDX3 to stress granules 
in the absence of the C-terminus.  
(1): Schematic depicting the N/C-terminal deletion mutants. (2): HeLa cells were transfected with 
Ha-NES-100-408 or Ha-NES-110-408 mutant, and treated with 1mM SA for 20 min or left untreated. 

Cells were  stained with -Ha and secondary -mouse Alexa Fluor-488, and -eIF4E (Abcam) and 

secondary -rabbit Alexa Fluor-594. Co-localisation points highlight the positions of overlapping 
signals, generated using Olympus Fluoview Co-localisation Software. Key: A (DAPI), B (Ha-DDX3), C 
(eIF4E), D (merge B and C), E (merge A, B and C), F (contrast) and G (Co-localisation points). 

 

 

 

 

 

 

 

(1) 
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6.4. Discussion 

Previously, there have been studies linking DDX3 to SGs. DDX3 has been 

suggested to localise to cytoplasmic SG in response to cellular stresses (Lai et al. 

2008) and, recently, to play a critical role in SG assemble (Shih et al. 2012). Here I 

have confirmed that overexpressed DDX3 can be recruited to SG spontaneously, 

and also that DDX3 localises to SG in response to cellular stress. Interestingly, SG 

recruitment prevented the nucleocytoplasmic shuttling of DDX3, as nuclear export 

deficient mutants had a cytoplasmic speckle localisation after SG assembly. DDX3's 

helicase activity was not required for SG recruitment, nor was the eIF4E binding 

site. A recent study found that DDX3 was a critical for SG induction, as knockdown 

of DDX3 inhibited SG assembly, and overexpression of DDX3 promoted SGs in 

independently of helicase activity (Shih et al. 2012). Shih et al. showed that DDX3 

interacted with SG components eIF4E and PABP1, and also that interaction with 

eIF4E was required for SG assembly as an eIF4E binding mutant (L42A) did not 

promote SG assembly. They also showed that PABP1 interaction was not required 

for SG assembly, but they did suggest a role for DDX3 in PABP1 nuclear export as 

knock-down of DDX3 resulted in nuclear accumulation of PABP1 (Shih et al. 2012). 

I found that both the N- and C-terminus of DDX3 contribute to SG recruitment, 

however truncation mutants NES-110-408 and NES-100-408 are not recruited. It is 

not surprising that the C-terminus can be recruited to SGs in the absence of the N-

terminus, as the C-terminal RNA binding domains can still interact with RNA (Linder 

& Jankowsky 2011). In the absence of the C-terminus, we found that residues in the 

N-terminus (1-110) can also mediate recruitment to SGs. Since PABP1 has been 

shown to interact with the C-terminus and eIF4E with the N-terminus of DDX3 (Shih 
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et al. 2012; Shih et al. 2008), maybe DDX3 needs to interact with either RNA, PABP1 

(C-terminus) or eIF4E (N-terminus) to be recruited to SGs. It would be interesting to 

investigate if a C-terminal and eIF4E binding site mutant 44-408 would be recruited 

to SG, to confirm if the eIF4E binding site is important for SG interaction. Also the 

results here suggest that there are subtle differences in the recruitment of some of 

the N- and C- terminal mutants to SGs, with the 1-408 and 409-662 mutant 

seemingly being recruited less to SGs compared to WT-DDX3. This is something that 

will need to be quantified in the future, possibly using a HCA setting.    

As previously described, DDX3 is targeted by a range of viruses to promote 

replication of the viral genome. Also viruses have been shown to interact with SG 

components and regulate SG assembly (White & Lloyd 2012). Recently, a role for 

specialised avSGs in induction of type I interferon in response to influenza A virus 

has been described (Onomoto et al. 2012). HCV infection has been shown to 

regulate SGs throughout its life cycle, with phases of stalled and active translation 

(Garaigorta et al. 2012; Ruggieri et al. 2012). HCV induction of SGs was also shown 

to be dependent on PKR, and increased in the presence of IFN- While one study 

suggested that HCV promoted SGs at early and late stages of infection (Garaigorta 

et al. 2012), another study showed that throughout HCV infection there was a 

highly dynamic oscillation of SGs (Ruggieri et al. 2012). HCV induction of SG was 

associated with reduced cell division and host protein translation (eg. anti-viral 

mediators), whereas disassembly of SGs promoted cell survival by preventing long 

phases of translational shut off (Ruggieri et al. 2012).  In Chapter 6, I showed that 

HCV Core protein confined DDX3 to cytoplasmic speckles after overexpression of 

HCV Core protein and also during HCV infection. I showed that the SG marker eIF4E 
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was also recruited into HCV-Core-containing cytoplasmic speckles, however the 

redistribution of eIF4E was not as noteworthy as DDX3's. Since I have shown here 

that DDX3 and eIF4E are recruited to SGs, there may be a link between these two 

observations. Other studies have shown that HCV Core protein hijacks P-bodies and 

SG components to promote viral RNA translation at lipid droplets (Ariumi, Kuroki, 

Kushima, et al. 2011). Maybe HCV RNA induces SGs to stall Cap-dependent 

translation, while HCV Core protein utilises DDX3's function in IRES-mediated 

translation at lipid droplets (Geissler et al. 2012). Lipid droplets play a critical role in 

HCV replication, and HCV Core proteins interaction with lipid droplets has been 

shown to be critical for efficient viral assembly (Miyanari et al. 2007). HCV virus has 

been suggested to utilise the endosomal sorting complex required for transport 

(ESCRT) components assembly and budding of viral particles (Ariumi, Kuroki, Maki, 

et al. 2011), and in the absence of HCV Core protein HCV RNA is not found at lipid 

droplets (Targett-Adams et al. 2008; Miyanari et al. 2007). Maybe HCV-Core uses 

DDX3 to recruit HCV RNA and translate the RNA at lipid droplets promoting efficient 

assembly of viral particles and infection.   

In conclusion, DDX3 is a component of eIF4E-containing SGs. Here I have found 

that both the N-terminus and C-terminus of DDX3 are recruited independently to 

SGs upon oxidative stress, however an N- and C-terminal truncation mutant (100-

408) DDX3 was not recruited to SGs.  
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Chapter 7 : Investigating the role of DDX3 in the cell cycle 

7.1. Introduction 

DDX3 has been implicated in various aspects of cell cycle and cell growth 

control. The cell cycle is a series of events which result in the replication of genomic 

DNA and the division of the cell. It consists of four distinct phases: G1 phase, S 

phase , G2 phase,  and M phase (Figure 7.1). The cell cycle is highly regulated in 

order to prevent uncontrolled cell division and to allow for the detection and repair 

of DNA damage in cells. Cell cycle progression of eukaryotic cells is controlled by 

Cyclin, Cyclin dependent kinases (cdk) and cdk inhibitors. One way in which the cell 

cycle is regulated is through regulation of transport across the nuclear membrane. 

The localisation of many proteins involved in regulation of the cell cycle changes 

during the stages of the cell cycle. For example, during mitosis Cyclin B is activated 

and  is rapidly imported into the nucleus just before the nuclear membrane 

disassembles (Pines & Hunter 1994; Hagting et al. 1999; Takizawa et al. 1999; Gavet 

& Pines 2010).  

DDX3's role in the cell cycle and cell growth control is unclear, as it has been 

suggested to be both a tumour suppressor (Chao et al. 2006; Chang et al. 2006) and 

an oncogene (Botlagunta et al. 2008). In the literature, DDX3 has frequently been 

reported to have a cytoplasmic localisation, however this has usually been observed 

in transformed cell lines (Yedavalli et al. 2004; Schröder et al. 2008; Owsianka & 

Patel 1999; Sekiguchi et al. 2004; Lai et al. 2008; Lee et al. 2008). One study 

reported that DDX3 expression and cellular localisation changed from nuclear to 

cytoplasmic in human hepatocellular carcinoma (HCC) cancers and squamous cell 

carcinoma (SCC) (Chao et al. 2006). It is appealing to think that mis-localisation of 

http://en.wikipedia.org/wiki/G1_phase
http://en.wikipedia.org/wiki/S_phase
http://en.wikipedia.org/wiki/S_phase
http://en.wikipedia.org/wiki/G2_phase
http://en.wikipedia.org/wiki/Mitosis
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DDX3 could contribute to cancer development, since it has been suggested to act as 

both a tumour suppressor and oncogene.  

DDX3’s role in cell cycle control and cell growth control will be briefly described 

in the following sections. 

 

 
Figure 7.1: Schematic of cell cycle.  
The cell cycle consists of five distinct phases: G1 phase, S phase, G2 phase ,M phase and G0 phase. 
Adapted from  http://www2.le.ac.uk/departments/genetics/vgec/diagrams/22-Cell-cycle.gif/image. 
 

7.1.1. DDX3's role in cycle control 

DDX3 has been suggested to have a role in cell cycle control. Hamster DDX3 has 

been shown to be required for cyclin A expression in the hamster tsET24 model 

(Fukumura 2003). Cyclin A is required for progression into the S-phase of the cell 

cycle. The hamster tsET24 model, which is a temperature-sensitive (ts) mutant cell 

http://en.wikipedia.org/wiki/G1_phase
http://en.wikipedia.org/wiki/S_phase
http://en.wikipedia.org/wiki/G2_phase
http://en.wikipedia.org/wiki/Mitosis
http://www2.le.ac.uk/departments/genetics/vgec/diagrams/22-Cell-cycle.gif/image
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line with a DDX3 gene mutation (P267S), exhibit normal cell growth at the 

permissive temperature of 33.5°C, but arrests in G1 at the non-permissive 

temperature of 39.5°C. Cells grown at the non-permissive temperature and 

arrested at G1 had a reduction in Cyclin A and Cyclin B expression levels. There was 

also a nuclear accumulation of poly-A mRNAs, suggesting a potential role for DDX3 

in nuclear export of  mRNA.  

A later study showed that DDX3 is phosphorylated by Cyclin B/cdc2 kinases 

during mitosis at residues Thr204 and Thr323, which are in the highly conserved Q 

and Ib motifs of the DEAD box family. Cyclin B/cdc2 kinases are key regulators of 

cell cycle progression in and out of mitosis. Transfection of hamster DDX3 mutant 

Glu204 (Thr→Glu) did not rescue the tsET24 cell line at the non-permissive 

temperature, whereas transfection of wild type DDX3, Ala204 and Leu204 did 

rescue the cell line (Sekiguchi et al. 2007). The Glu204 mutant mimics the 

phoshorylated Thr204, therefore suggesting that phosphorylation of hamster DDX3 

at Thr204 renders DDX3 inactive (Sekiguchi et al. 2007). Thr323 was shown to be 

critical to DDX3 function, with modification to either alanine or glutamine resulting 

in a loss of function (Sekiguchi et al. 2007). The authors suggested that 

phosphorylation of DDX3 at Thr204 by Cyclin B/cdc2 might have a role in repressing 

Cyclin A expression in early mitosis, when Cyclin A decreases just as Cyclin B 

increase (Sekiguchi et al. 2007). 

DDX3 has also been shown to regulate cell growth through translational control 

of Cyclin E1 (Lai et al. 2010). Cyclin D and E are specific for cell cycle progression 

from G1 to S phase. Deregulation of Cyclin E results in perturbed cell cycle 

progression but also genomic instability and centrosome amplification (Loeb et al. 
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2005; Spruck 1999). Knockdown of DDX3 in HeLa cells resulted in delayed G1/S 

transition, due to reduced translation initiation of Cyclin E1 mRNA. They also 

showed that in the DDX3 loss of function tsET24 cell line,  Cyclin E mRNA translation 

was reduced.  Cells grown at the non-permissive temperature has reduced Cyclin E 

protein but normal Cyclin E mRNA. This translational regulation of Cyclin E mRNA 

was dependent on DDX3’s RNA helicase activity (Lai et al. 2010). 

7.1.2. DDX3 as a tumour suppressor 

The tumour-suppressor role of DDX3 has been suggested to be mediated by its 

effects on the promoter of the tumour-suppressor p21waf1/cip1. p21waf1/cip1 is a critical 

cdk inhibitor: it interacts with cyclin/cdk complexes and modulates their kinase 

activity (Harper et al. 1993). p21waf1/cip1 has also been shown to interact with 

Proliferating Cell Nuclear Antigen (PCNA) to inhibit DNA synthesis and regulate DNA 

replication. Induction of p21waf1/cip1 can occur in a p53-dependent or -independent 

manner. DDX3 has been shown to transactivate the p21waf1/cap1 promoter through 

an interaction with Sp1; where Sp1 has previously been shown to activate the 

p21waf1/cap1 promoter (Gartel et al. 2000). 

DDX3 has been found to have a growth-suppressive effect in the context of 

human hepatocellular carcinoma  (HCC) and it has been suggested that this is due 

to its effects on p21waf1/cap1 promoter activity (Chao et al. 2006). Expression of DDX3 

was also shown to be down-regulated in human HCC samples, mainly in male 

patients with HBV infection (Chang et al. 2005), further supporting DDX3's role as a 

tumour suppressor. In contrast, DDX3 levels have also been reported to be elevated 

in HCC cancers (Huang et al. 2004). The discrepancies have been suggested to be 



196 
 

based on differences in regulation at protein and mRNA level (Chang et al. 2006), 

but it is unclear whether this is a satisfactory explanation for these results.  

Chao et al. also showed that DDX3 cellular localisation changed in transformed 

cells. In normal human squamous epithelial cells, DDX3 had a predominately 

nuclear localisation, while in transformed squamous epithelial cells the nuclear 

staining for DDX3 was lost or significantly decreased (Chao et al. 2006). DDX3 has 

also been implicated in Human Papillomavirus (HPV)-associated lung cancer, with 

reduced levels of DDX3 protein in lung tumours. HPV protein E6 was shown to 

affect DDX3 levels through inactivation of p53. p21waf1/cap1 transcription was also 

suppressed by the E6 alteration to the DDX3/p53 pathway (Wu, Liu, et al. 2011). 

Reduction in p21waf1/cap1 expression, caused by suppression of DDX3 and p53 in 

tumours correlated with poor relapse-free survival rates in lung cancer patients.  A 

recent study has also linked DDX3 to cancer, showing that aggressive Oral 

Squamous Cell Carcinoma (OSCC) in males has reduced DDX3 expression and also 

that DDX3 localisation became more cytoplasmic in transformed oral epithelium 

(Lee et al. 2013). 

7.1.3. DDX3 as an oncogene 

Studies on breast cancer have suggested a role for DDX3 as an oncogene 

(Botlagunta et al. 2008). Benzo[a]pyrene diol epoxide (BPDE), the active metabolite 

in tobacco smoke, was shown to induce DDX3 expression in mammary epithelial 

cells. In the MCF 10A cell line, over-expressed DDX3 induced epithelial-

mesenchymal-like transition (EMT) and promoted aggressive properties such as an 

increase in motility and invasion (Botlagunta et al. 2008). DDX3 also reduced E-

Cadherin promoter activity. Loss of E-Cadherin has been shown to result in (EMT), 
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increased migration and proliferation of cells leading to metastasis (Onder et al. 

2008). 

DDX3 has also been shown to regulate the transcription factor Snail (Sun et al. 

2011). Snail is a transcription factor that is an important regulator for the 

development and progression of cancer (Nieto 2002). Snail was shown to repress 

expression of cellular adhesion molecules such as E-Cadherin, resulting in an 

increase in EMT (Batlle et al. 2000). Sun et al. showed that DDX3 was required for 

HDAC inhibitor- and Topoisomerase inhibitor (Camptothecin)-induced expression of 

Snail. They also showed that knockdown of DDX3 resulted in decreased Snail 

protein, and consequently in increased expression of E-Cadherin, validating the 

results of Botlagunta et al. 2008. The authors also showed a significant correlation 

between Snail levels and DDX3 levels in samples from patients with Glioblastoma 

Multiforme (GBM). They suggested that DDX3 did not regulate Snail at a 

transcriptional level, but that DDX3 acted on Snail by promoting its retention in the 

nucleus (Sun et al. 2011). Interestingly, DDX3 was found in both the nuclear and 

cytoplasmic fractions of MCF-7 cells in this study, rather than its usual cytoplasmic 

localisation in transformed cell lines. 

DDX3 expression has also been shown to be regulated by Hypoxia Inducible 

Factors (HIFs) in a study in breast cancer cells (Botlagunta et al. 2011). Hypoxia is a 

major characteristic of solid tumours and causes genome wide changes in gene 

expression. HIFs regulate the expression of hypoxia responsive genes. HIF-1 has 

been shown to activate expression of DDX3 by binding to Hypoxia Responsive 

Elements (HREs) in the promoter region of DDX3 (Botlagunta et al. 2011). Whether 

DDX3 promotes cancer progression was not examined in this study.  
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A recent study on Gall Bladder cancer also supported the notion of DDX3 as an 

oncogene. This authors showed that increased DDX3 expression was associated 

with increased tumour size  and metastasis (Miao et al. 2013). They also showed 

that DDX3 was expressed predominantly in the cytoplasm of squamous 

cell/adenosquamous carcinoma  samples.   

5.1.4. Conclusion 

DDX3 role in cell cycle regulation is unclear and whether DDX3 acts primarily as 

a tumour suppressor or oncogene is controversial. Dis-regulation of cell cycle 

progression may lead to tumour formation, and since DDX3 has been shown to 

regulate and be regulated by components of the cell cycle it is possible that DDX3 

could play a role in tumorigenesis. The expression levels of DDX3 and  the cellular 

localisation of DDX3 might affect its functional roles. For example, nuclear DDX3 

might be required for the nuclear export of Cyclin A mRNA, but on the other hand 

DDX3 needs to be cytoplasmic to aid in the translation of Cyclin E mRNA. DDX3 

phosphorylation by Cyclin B seems to result in loss of function, probably due to a 

loss of enzymatic activity due to the proximity of the Thr323 to ATP-binding site. 

However, Cyclin B phosphorylation could affect the localisation of DDX3. 

 If DDX3 is required to promote induction of the p21waf1/cap1 tumour suppressor 

through binding to the promoter, inhibition of DDX3 import could potentially inhibit 

p21waf1/cap1 induction. Likewise, DDX3's role in oncogenesis could also be affected by 

mis-localisation. Nuclear DDX3 has also been suggested to regulate Snail's role in E-

Cadherin transcription (Sun et al. 2011), in addition to nuclear DDX3 being required 

for binding to the E-cadherin promoter (Botlagunta et al. 2008). Since viruses have 

been implicated in tumorigenesis (Carrillo-Infante et al. 2007), viral targeting of DD3 
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might influence its oncogenic or tumour suppressor effects, possibly also by 

affecting DDX3's cellular localisation.  

7.2. Aims 

DDX3 has been shown to have roles in cell cycle control and cell growth control. 

In this chapter I investigated whether DDX3's cellular localisation changed in 

response to DNA damage. I also investigated if its cellular localisation and 

expression levels changed during cell cycle progression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



200 
 

7.3. Results 

7.3.1. High content analysis to investigate change in localisation in response to 
DNA damage 

High content analysis (HCA) microscopy is a useful tool for determining the 

nuclear/cytoplasmic localisation of a protein in cells. Using HCA one can image 

hundreds of cells and objectively quantify the localisation of proteins of interest in 

cells. 

I was interested in whether DNA damage could change the cellular localisation 

of DDX3. HeLa cells were plated and treated with etoposide (ETO), a known inducer 

of strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of 

cleaved DNA molecules (Burden & Osheroff 1998). As a positive control for a 

nuclear localisation of DDX3, cells were treated with LMB.  

As shown in Figure 7.2, there was no increase in the level of nuclear DDX3 after 

the treatment with ETO.  
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Figure 7.2: Endogenous DDX3 does not change localisation after treatment with Etoposide.  
HeLa cells were treated with 20mM LMB for 4 hrs, or 50µM or 25 µM Etoposide for 24 hrs or left 
untreated. Cells were stained with α-DDX3 antibody, followed by α-rabbit Alexa Fluor-488, 
Rhodamine-Phalloidin and DAPI. High content analysis of the nuclear/cytoplasmic ratio was carried 
out using the GE IN Cell analyser as described in Chapter 2. 
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 7.3.2. Localisation of endogenous DDX3 changes during cell cycle 

During the high content analysis, I observed that wild type DDX3 clearly 

localised to the nucleus in a small percentage of cells, Figure 7.3. I hypothesised 

that human DDX3's localisation might change depending on different stages of the 

cell cycle. Changes in nuclear/cytoplasmic localisation could be the result of 

phosphorylation by cell cycle kinases, such as Cyclin B, as DDX3 has been described 

as a phosphorylation target of this kinase (Sekiguchi et al. 2007). 

 

Figure 7.3: WT DDX3 localised to the nucleus in a small percentage of untreated cells. 
Image taken from High Content analysis. HeLa cells overexpressing Ha-tagged DDX3. Cells were 

stained with primary -Ha and secondary -mouse Alexa Fluor-488. 
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Therefore, I decided to investigate the cellular localisation of DDX3 at different 

stages of the cell cycle. To this end, HeLa cells were grown on coverslips and 

prepared for immunofluorescence staining and confocal microscopy. Mitotic cells 

were identified based on the shape of the cell and chromatin condensation level, 

and by co-staining with α-Tubulin and phospho-Histone H3 antibody (Cell Signalling 

Technologies). Mitotic cells become rounded during mitosis and the nuclear 

envelope breaks down resulting in chromatin condensation. The phospho-Histone 

H3 (Ser28) antibody detects endogenous levels of histone H3 only when 

phosphorylated at Ser28. Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 

is tightly correlated with chromosome condensation during both mitosis and 

meiosis, and therefore can be used as a marker for mitotic cells (Preuss et al. 2003; 

Hendzel et al. 1997; Goto et al. 1999).  

DDX3 localisation and expression levels were examined in mitotic cells vs non-

mitotic cells. Levels of nuclear endogenous DDX3 seemed to increase slightly in 

seemingly mitotic cells, with an increase in nuclear DDX3 seen at prophase (Figure 

7.4).  

Hamster DDX3 has been shown to be phosphorylated by Cyclin B during mitosis 

at Thr204 and Thr323. I thus decided to investigate the localisation of 

phosphorylated human DDX3 using a phospho-Thr323 DDX3 antibody (Abcam) to 

stain HeLa cells. Phospho-Thr323 DDX3 localised predominantly in the nucleus of 

untreated HeLa cells. Interestingly, strong cytoplasmic staining occurred in cells in 

metaphase, with a marked overall reduction in levels of Phospho-Thr323 DDX3 

after cytokinesis (Figure 7.5). 
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Figure 7.4: There is no clear change in the localisation and expression of DDX3 during the cell 
cycle. 

(1): HeLa cells were stained for -DDX3 (Bethyl) and -tubulin (Abcam). Key: A (DAPI), B (-DDX3), C 

(-tubulin), D (Merge A, B and C), E (Contrast). (2): HeLa cells stained for  -DDX3 (Bethyl) and 

mitotic marker PhosphoHistone H3 (Cell signalling Technologies). Key: A (DAPI), B (-DDX3), C (-
PhosphoHistone H3), D (Merge A,B and C), E (Contrast).  

(1) 

(2) 
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Figure 7.5: Localisation and level of Phospho-Thr323 DDX3 changes throughout the cell cycle.  
Cells were grown on coverslips and stained with an antibody against Phospho-Thr 323 DDX3 
(Abcam). (1): HeLa cells stained for PhosThr323 DDX3 (Abcam) and mitotic marker PhosphoHistone 

H3 (Cell Signalling Technologies). Key: A (DAPI), B (-PhosThr323 DDX3), C (-Phospho Histone H3), 
D (Merge A, B and C), E (Contrast). (2): Cells were grown on coverslips and stained with an antibody 

against Phospho-Thr 323 DDX3 (Abcam) and -tubulin (Abcam). Key: A (DAPI), B (-PhosThr323 

DDX3), C (-tubulin), D (Merge A, B and C), E (Contrast).  
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To further investigate the localisation of endogenous DDX3 and phosphorylated 

DDX3 (Thr323) at different stages of the cell cycle, HeLa cells were treated with cell 

cycle inhibitors as described in Chapter 2. Cells blocked at G1/S, G2/M and G0/G1 

were stained for endogenous DDX3 and Phospho-Thr323.  

HeLa cells blocked at the G0/G1 boundary with serum starvation showed 

cytoplasmic DDX3 and nuclear phospho-Thr323 DDX3 (Figure 7.8). 

HeLa cells were blocked at the G1/S boundary with a double thymidine block. 

DDX3 had a predominantly cytoplasmic localisation and nuclear localisation of 

Phospho-Thr323 DDX3 in cells blocked at G1/S (Figure 7.6). 

HeLa cells blocked at the G2/M boundary with nocodazole showed increased 

nuclear endogenous DDX3, and phospho-Thr323 DDX3 also localised predominantly 

in the nucleus (Figure 7.7). Nocodazole causes cells to arrest in prometaphase, 

suggesting that DDX3 becomes more nuclear at prometaphase. 
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Figure 7.6: Endogenous DDX3 is predominantly cytoplasmic and Phospho-Thr323 DDX3 is 
predominantly nuclear at the G1/S block.  
A double thymidine block was used to block cells at the G1/S boundary. (1): Cells were stained with 
primary α- endogenous DDX3 (Bethyl) and secondary α-rabbit Alexa Fluor-488. (2): Cells were 
stained with primary α-Phospho-T323 DDX3 (Abcam) and secondary α-rabbit Alexa Fluor-488. Key: A 
(DAPI), B (α-DDX3/ α-Phospho-Thr323-DDX3), C (Merge A+B), D (Contrast). 

 
 
 
 

(2) 

(1) 
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Figure 7.7: Endogenous DDX3 becomes more nuclear and Phospho-Thr323 DDX3 remains nuclear 
at G2/M block.  
Cells were treated with thymidine for 24 hours followed by 3 hours release, and then treated with 
100ng/ml Nocodazole for 12 hours. Nocodazole blocks cells in prometaphase. (1): Cells were stained 

with primary -DDX3 (Bethyl) and secondary -rabbit Alexa Fluor-488. (2): Cells were stained with 

primary α-Phospho-T323 DDX3 (Abcam) and secondary -rabbit Alexa Fluor-488. Key: A (DAPI), B (-

DDX3/ -Phospho-Thr323-DDX3), C (Merge A+B), D (Contrast). 

 
 
 
 

(2) 

(1) 
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Figure 7.8: Endogenous DDX3 is predominantly cytoplasmic and Phospho-Thr323 DDX3 
predominantly nuclear at the G0/G1 block.  
A serum starvation block was used to block cells at the G0/G1 boundary. Cells were stained with 

primary -DDX3 (Bethyl), or with primary -Phospho-T323 DDX3 (Abcam), followed by secondary -

rabbit Alexa Fluor-488. Key: A (DAPI), B (-DDX3/-Phospho-Thr 323-DDX3), C (Merge A+B), D 
(Contrast). 
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7.3.3. Phospho-Thr 323 DDX3 antibody co-localised with nuclear speckle 
marker 

Since the Phospho-Thr 323 DDX3 antibody (Abcam) produced a speckled 

staining in the nucleus, I decided to test if it co-localised with nuclear speckle 

marker anti-splicing factor S35.  Nuclear speckles are nuclear structures enriched in 

pre-mRNA splicing factors, found within the interchromatin regions of the 

nucleoplasm of mammalian cells (Lamond & Spector 2003). HeLa cells were grown 

as normal and prepared for immunofluorescence staining with Phospho-Thr-323 

DDX3 (Abcam) and anti splicing factor SC35 (Sigma). As shown in Figure 7.9, Phos-

Thr-323 DDX3 co localised with the nuclear speckle marker anti splicing factor SC35, 

with an increase in the cytoplasmic localisation of both proteins during mitosis. 

 

 
 
Figure 7.9: Phospho-Thr 323 DDX3 co-localises with nuclear speckle marker anti splicing factor SC-
35. 
Untreated HeLa cells were stained with an antibody against Phospho-Thr 323 DDX3 (Abcam) and 
anti-splicing factor SC-35 (Sigma). HeLa cells stained for PhosThr323 DDX3 and mitotic marker 

PhosphoHistone H3(Cell Signalling Technologies). Key: A (DAPI), B (-Phos-Thr323-DDX3), C (-
PhosphoHistone H3), D (Merge B+C), E (Contrast). 
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 7.3.4. Investigating the role of Cyclin B phosphorylation of DDX3 

Staining of HeLa cells showed that endogenous Phospho-T323 DDX3 (Abcam) 

localised predominantly to the nucleus in interphase cells. As stated earlier, Cyclin B 

has been shown to phosphorylate Thr 204 and Thr 323 of DDX3 during mitosis 

(Sekiguchi et al. 2007). I wanted to investigate whether phosphorylation of Thr204 

and Thr323 caused nuclear accumulation of DDX3. Therefore, site mutants were 

created which substituted the threonines at positions 204 and 323 with alanine or 

phospho-mimetic aspartic acid. HeLa cells were transfected with these site mutants 

and stained as previously described. The T204A and T204D mutants localised 

predominantly to the cytoplasm, suggesting that phosphorylation of threonine 204 

does not change localisation of DDX3 (Figure 7.10). The TA2 (T204A,T323A) and TD2 

(T204D,T323D) double mutants also localised predominantly to the cytoplasm 

(Figure 7.11). To make sure that nuclear import of these site mutants was not 

affected, HeLa cells were transfected with expression plasmids for these mutants 

and treated with LMB to block nuclear export. As shown in Figure 7.11 and Figure 

7.10, mutating the residues 204 and 323 to alanine or aspartic acid did not affect 

nuclear import. Therefore phosphorylation of DDX3 at residues 204 and 323 by 

Cyclin B does not seem to affect the nuclear import nor export of DDX3. 

Endogenous Phospho-T323 DDX3 localised predominantly in the nucleus in 

interphase cells, with a cytoplasmic localisation only during mitosis, so it is unclear 

why our phospho-mimetic double mutant T204D/T323D remained in the 

cytoplasm.  
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Figure 7.10: The site mutants T204A and T204D have a predominantly cytoplasmic localisation and 
are exported from the nucleus in a CRM-1 dependent manner .   
HeLa cells were transfected with expression plasmids for Ha-tagged T204A and T204D mutants. Cells 

were treated with 20mM LMB for 2 hours or left untreated. Cells were stained with primary -Ha 

and secondary -mouse Alexa Fluor-488. Key: A(DAPI), B (Ha-DDX3), C (Merge A+B), D (Contrast). 
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Figure 7.11: The double site mutants TA2 and TD2 have a predominantly cytoplasmic localisation 
and are exported from the nucleus in a CRM-1 dependent manner.  
HeLa cells were transfected with expression plasmids for Ha-tagged TA2 and TD2 mutants. Cells 

were treated with 20mM LMB for 2 hours or left untreated. Cells were stained with primary -Ha 

and secondary -mouse Alexa Fluor-488. Key: A (DAPI), B (Ha-DDX3), C (Merge A+B), D (Contrast). 
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7.3.5. Investigating the expression of DDX3 during the cell cycle 

A change in the localisation and a slight change in the expression levels of DDX3 

and Phospho-Thr323 DDX3 (Abcam) was observed during the different stages of the 

cell cycle. I decided to investigate whether DDX3 expression levels altered in cells 

arrested at different stages of the cell cycle.   

I used chemical blockage to arrest HeLa cells at specific stages of the cell cycle, 

as described previously. HeLa cell blocked at S and G0/G1 boundary had reduced 

levels of DDX3 (Figure 7.12). Originally I found it difficult to detect the Phospho-Thr-

323 DDX3 antibody (Abcam) by western blotting. I was able to detect a band for 

Phospho-Thr-323 DDX3 in cells blocked at the G2/M boundary, however it did not 

correspond to the correct size, showing a band at 130kDa rather than 72kDa. This 

suggested that the Phospho-Thr-323 DDX3 antibody was not specific for p-DDX3.  

The results of the previous experiment suggested that DDX3 levels are regulated 

throughout the cell cycle, I therefore decided to monitor changes in DDX3 

expression during cell cycle progression.  

To this end, HeLa cells were blocked at early G2/M, using a 

thymidine/nocodazole block and released into untreated medium and samples 

collected at different time points following release. Cells blocked at prometaphase 

had increased levels of DDX3, which decreased as the cells progressed through 

mitosis (Figure 7.13).  

HeLa cells were also blocked at the G1/S boundary, using a double thymidine 

block. The double thymidine block was followed by a 21 hours release, showed that 

levels of DDX3 were decreased at the S and G1 phase compared to G2/M phase. 
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DDX3 levels increased as cells progressed through mitosis, increasing just as Cyclin 

B protein expression increased (Figure 7.14).  

 
 

Figure 7.12: Levels of DDX3 and Phos-Thr323-DDX3 changed during different stages of the cell 
cycle. 
HeLa cells were blocked in S phase, G2/M phase, G0/G1 phase as described in Chapter 2. Treated 
HeLa Cells and untreated control cells were lysed and immunoblotted as described in Chapter 2. 

Blots were probed with -DDX3 (Bethyl), -Phos-Thr323-DDX3 (Abcam), -Tubulin (Abcam) and -
Cyclin B (Santa Cruz). Representative blot of three experiments. 
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Figure 7.13: Levels of DDX3 are increased at prometaphase.   
HeLa cells were blocked in early G2/M phase, using a Thymidine block followed by Nocodazole 
block. Cells were released into from block and harvested after 30 minutes, 1 hr, 3 hr , 5 hr and 6 hrs. 

HeLa cells were then lysed and immunoblotted as described in Chapter 2.  Blots were probed with -

DDX3 (Bethyl)  and -Cyclin B (Santa Cruz).  

 
 

 

Figure 7.14: Expression of DDX3 increases during mitosis. 
HeLa Cells were blocked in S phase using the double thymidine block as described in Chapter 2. Cells 
were released from the block and harvested every 3 hrs for 18 hrs. Treated HeLa Cells and untreated 

control cells were lysed and immunoblotted as described in Chapter 2.  Blots were probed with -

DDX3 (Bethyl),-Tubulin (Abcam), -Cyclin B (Santa Cruz), -Cyclin A (Santa Cruz) and -Cyclin E 
(Santa Cruz). Representative blot of three experiments. 
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7.4. Discussion 

DDX3 localisation and expression seemed to change during the cell cycle. During 

progression through the cell cycle, I found that DDX3 protein expression was 

increased as cell entered mitosis and also that DDX3 became more nuclear at 

prometaphase. DDX3 has been shown to regulate cell cycle progression, as it is 

required for Cyclin A expression and translation of Cyclin E mRNA (Sekiguchi et al. 

2004; Lai et al. 2010). Cyclin B has been shown to phosphorylate DDX3 during 

mitosis, with the authors suggesting that phosphorylation inactivates DDX3 

(Sekiguchi et al. 2007). Loss of DDX3 has been shown to result in nuclear 

accumulation of Cyclin A mRNA, suggesting that DDX3 may play a role in export of 

Cyclin A mRNA (Sekiguchi et al. 2004). I had speculated that Cyclin B 

phosphorylation of DDX3 could lead to nuclear accumulation of DDX3, since I 

observed nuclear staining for the Phospho-Thr323 DDX3 antibody (Sekiguchi et al. 

2004; Lai et al. 2010). However, my phospho-deficient and phospho-mimetic 

mutants for Thr204 and Thr323 shuttled normally, so phosphorylation of these 

residues does not seem to affect localisation of DDX3 in the cell. Perhaps nuclear 

export of Cyclin A mRNA is affected by phosphorylation, since Thr323 is situated in 

motif 1b which is important for RNA substrate binding. Cyclin B phosphorylation 

could also affect the stability levels of DDX3 protein by post-translational 

modifications, thereby contributing to the observed increased DDX3 levels during 

mitosis. 

Recently, a study on phosphoproteome dynamics during the cell cycle  also 

found DDX3 to be phosphorylated during mitosis, with phosphorylation of residues 

61 and 323, and strong phosphorylation at serine 594 by Casein Kinase 1 (CK1) 
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during mitosis. The authors speculated that substrates of CK1 and other mitotic 

kinases are inactivated by phosphorylation during mitosis (Olsen et al. 2013). In 

another study, DDX3 has recently been shown to be a regulator of Wnt--Catenin 

signalling by interacting with CK1 to promote its kinase activity (Cruciat et al. 2013). 

The Wnt--Catenin pathway is highly conserved and plays an important role in 

development of multi-cellular organisms, and is often dis-regulated in cancer 

(Clevers & Nusse 2012). 

DDX3 phosphorylation during mitosis might also play a role in the down-

regulation of protein synthesis, since translation of cap-dependent mRNA is 

reduced during mitosis (Bonneaus & Sonenberg 1987). As earlier stated, loss of 

function DDX3 results in nuclear accumulation of Cyclin A mRNA (Fukumura 2003) 

and also loss of DDX3 has been associated with nuclear accumulation of PABP1 

(Shih et al. 2012). Interestingly PABP1 requires mRNA to export from the nucleus 

(Burgess et al. 2011; Afonina 1998). Perhaps phosphorylated DDX3 has reduced 

affinity for mRNA and therefore DDX3's role in mRNA processing and mRNA nuclear 

export is impaired during mitosis.  

Phosphorylation during G2/M phase of the cell cycle has been shown to 

regulate the interaction of DDX3 with DDX5 (Choi & Lee 2012). This DDX3/DDX5 

interaction was suggested to play a role in mRNP export, and that knockdown of 

DDX3 affected DDX5 nuclear export. They showed that DDX3 had reduced p-Ser 

during G2/M phase and unchanged p-Thr and p-Tyr levels, whereas DDX5 had 

increased p-Ser, p-Thr and p-Tyr levels during G2/M phase. They also showed that 

DDX3 has a nuclear localisation at G0 and also that DDX3 levels were decreased 

during G2/M (Choi & Lee 2012), which is the opposite of what we found. Previous 
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studies have shown DDX3 to be strongly phosphorylated at Thr 323 by Cyclin B 

during G2/M phase (Sekiguchi et al. 2007) and Ser 594 by Ck1 (Olsen et al. 2013), 

which is in conflict with the above study.  

DDX3 has also recently been suggested to play a role in mitotic chromosome 

segregation in somatic cells. The DDX3 homologue from Drosophila Belle and 

human DDX3 have both been shown to promote mitotic chromosome segregation 

alongside the RNA interference (RNAi) pathway (Pek & Kai 2011). The highly 

conserved RNAi pathway has been shown to play a role in various cellular 

processes, such as gene silencing and assembly of heterchromatin at centromeres 

(Hannon 2002), and the RNAi protein DICER is a key player in chromosomal 

segregation (Fukagawa et al. 2004; White & Allshire 2004). In this study DDX3 was 

shown to localise to chromosomes in a DICER dependent manner, and the authors 

suggested that DDX3 promoted chromosome segregation downstream of DICER 

(Pek & Kai 2011). Interestingly, they showed that DDX3 localised to condensing 

chromosomes in the nucleus during prophase/prometaphase, supporting our 

finding that DDX3 became nuclear during prometaphase.  

I strongly suspect that the Phospho-Thr 323 DDX3 antibody (Abcam) is not 

specific for a phosphorylated form of DDX3, with the protein band being detected 

in western blot analysis (130kDa) not being the correct size for DDX3 (72kDa). The 

Phospho-Thr 323 DDX3 antibody (Abcam) band was only visible by western blotting 

in mitotic cells, and co-localised with the nuclear speckle marker anti-splicing factor 

SC-35 in immunofluorescence. The antibody was raised from a synthetic 

phosphopeptide derived from human DDX3 around the phosphorylation site of 

threonine 322 (V-A-T-P-P-G). This region is quite conserved amongst DEAD-box 
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proteins, therefore the Phospho-Thr323 DDX3 antibody might recognise another 

phosphorylated DEAD-box protein. I speculated that the antibody recognises the 

DEAD-box protein DD36, as it contains the (V-A-T-P-P-G) region and is found in 

nuclear speckles and is approximately 130kDa (Iwamoto et al. 2008). Interestingly 

there was an increase in the Phospho-Thr 323 during mitosis, and also the Phospho-

Thr 323 antibody co-localised with the nuclear speckle marker anti splicing factor 

SC35.  

Since there seemed to be a change in DDX3 expression levels and localisation 

during the cell cycle, this suggests that DDX3 might indeed play a role in regulation 

of the cell cycle. Further investigation is needed to fully characterise the role DDX3 

plays in cell cycle regulation.  
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Chapter 8 : General Discussion 

DDX3 is a multifunctional protein which has been shown to play roles in various 

cellular processes. Recently, DDX3 has garnered a lot of interest as it has been 

found to be required for the replication of major viruses (Yedavalli et al. 2004; 

Ariumi et al. 2007),  and also to be a critical component of innate immune signalling 

(Schröder et al. 2008; Soulat et al. 2008). DDX3 has also been implicated in 

tumorigenesis, with DDX3 suggested to act as both a tumour suppressor (Chao et 

al. 2006; Chang et al. 2005; Shih et al. 2008) and oncogene (Botlagunta et al. 2008; 

Botlagunta et al. 2011; Sun et al. 2011). Even though there has been a lot of 

research into the various functions of DDX3, there are still many questions left 

unanswered. Since DDX3 has been suggested as potential drug target in the fight 

against HIV and HCV, a better understanding of DDX3's roles in cellular processes is 

required. 

Here I have shown that DDX3 is a nucleocytoplasmic shuttling protein which is 

exported from the nucleus in a CRM-1 dependent manner and that the highly 

conserved N-terminal NES is required and sufficient for nuclear export. I also 

investigated how DDX3 is imported into the nucleus, however I was unable to fully 

define DDX3's nuclear import. I have shown that the two rec-A like domains of 

DDX3 can be imported independently and that DDX3 is imported independently of 

Importin- and Calmodulin. I would hypothesise that DDX3 might import via 

Transportin in a PY-NLS independent manner, perhaps "piggy backing" into the 

nucleus with another protein or containing a non-classical Transportin NLS.    

Whether DDX3's nucleocytoplasmic shuttling was regulated during innate 

immune signalling and by viruses was also investigated. Here the HCA showed that 
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triggering of PRR and pro-inflammatory cytokines did not change the localisation of 

DDX3. However viral proteins were able to regulate the cellular localisation of 

DDX3. Interestingly, I found that both HIV and HCV re-localised DDX3 to different 

cellular compartments, with DDX3 being enriched in the nucleolus by HIV-Rev; and 

DDX3 being sequestered in cytoplasmic speckles by HCV. This suggests that HIV and 

HCV target different nuclear and cytoplasmic functions of DDX3 to promote viral 

replication.  

I showed that HIV-Rev caused both DDX3 and CRM-1 to accumulate in the 

nucleolus of cells. Yedavalli et al. showed that the C-terminus of DDX3 directly 

interacted with CRM-1, and also that HIV-Rev co-immunoprecipitated with DDX3. 

They suggested that the N-terminal NES of DDX3 was not required for CRM-1 

binding, and that DDX3 worked as a CRM-1 specific effector and interacted with 

CRM-1 and HIV-Rev in a ternary complex. Here I have shown that the N-terminal 

NES of DDX3 is required for DDX3's interaction with CRM-1, and also that DDX3 can 

directly interact with HIV-Rev. Maybe DDX3 does not play a direct role in regulation 

of CRM-1 dependent export of HIV RNAs, rather DDX3 might be involved in the 

steps prior to RNA export. During HIV replication, it has been shown that both HIV-

Tat and HIV RNA must associate with the nucleolus to mediate HIV replication 

(Michienzi et al. 2000; Michienzi et al. 2002). Also, DDX3 has been shown to be 

enriched in the nucleolus of HIV-Tat expressing cells (Jarboui et al. 2012), 

suggesting that DDX3 is recruited to the nucleolus by HIV-Rev and HIV-Tat. Since 

both DDX3 and CRM-1 are recruited to the nucleolus by HIV-Rev, maybe DDX3 plays 

a role in RNA processing in the nucleolus and then CRM-1 and HIV-Rev export the 

processed RNA from the nucleus. An insertion between motifs I and Ib of DDX3 has 
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been shown to interact with HIV-RNA and to be critical for HIV replication, as a 

peptide inhibitor for this region inhibited HIV replication (Garbelli et al. 2011). This 

suggests that DDX3 needs to directly interact with HIV RNA to promote replication. 

DDX3 has also been shown promote HIV RNA translation (Liu et al. 2011; Soto-Rifo 

et al. 2012; Geissler et al. 2012). Previously, DDX3 has been shown to be required 

for HIV IRES mediated translation (Liu et al. 2011), and was suggested to support 

assembly of the 80s ribosome (Geissler et al. 2012). Also DDX3 has also been shown 

to be required for cap-dependent translation of complex RNAs and interestingly 

Tar-containing HIV RNA (Soto-Rifo et al. 2012). Perhaps DDX3 is required for 

different functions during HIV replication, possibly having different roles depending 

on the stage of viral infection. Maybe DDX3 associates with HIV RNA from 

transcription to translation, and potentially plays a role in co-ordinating HIV RNA 

processes. 

In this study, I also found that HCV Core protein altered the cellular localisation 

of DDX3 and prevented the nucleocytoplasmic shuttling of DDX3. Mis-localisation of 

DDX3 could have many functional consequences, since DDX3 has been shown to 

have important roles in both the nucleus and the cytoplasm. Here I found that HCV 

Core protein recruited DDX3 and eIF4E to cytoplasmic granules, similar to the 

oxidative stress mediated localisation of DDX3 to eIF4E-containing SG. HCV 

infection has been shown to regulate SGs throughout the HCV life cycle (Garaigorta 

et al. 2012), and to promote translation of viral RNA by recruiting components of P-

bodies and SGs to lipid droplets (Ariumi, Kuroki, Kushima, et al. 2011). It is possible 

that the HCV Core protein might recruit DDX3 to cytoplasmic granules to promote 

translation of HCV RNA, while possibly inhibiting DDX3's association with "true" 
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SGs. It would be interesting to see if knockdown of DDX3 prevented recruitment of 

SG components to HCV-Core at lipid droplets, maybe DDX3 is critical for this 

recruitment.  

Also HCV Core protein may target DDX3's different functions throughout the 

viral life cycle. A successful virus will maintain cell survival while promoting 

replication of the viral genome, so it is possible the HCV Core protein utilises DDX3's 

role in SGs to promote cell survival. Also HCV Core protein might inhibit type I IFN  

expression by targeting avSGs (Onomoto et al. 2012). DDX3 has previously been 

suggested to play a role in initial RNA sensing by the RIG-I/MAVS complex (Oshiumi, 

Sakai, et al. 2010), and avSGs have been shown to contain RIG-I and PKR, and have 

been shown to be critical for type I IFN induction (Onomoto et al. 2012). Since DDX3 

has also been shown to be critical for type I IFN induction, it is a possibility that 

DDX3 is a component of avSGs. Perhaps HCV-Core protein interacts with DDX3 to 

prevent it from associating with IFN promoting RIG-I containing avSGs.  

I have found that DDX3 is sequestered in the cytoplasm by HCV infection, 

therefore DDX3's role as a tumour suppressor in the nucleus could be abrogated. 

HCV infection is a known contributor to Hepatocelluar Carcinoma (HCC) (Jahan et 

al. 2012). DDX3 localisation has been suggested to be cytoplasmic in transformed 

cells and nuclear normal primary cells (Shih et al. 2008; Miao et al. 2013; Lee et al. 

2013), therefore I investigated DDX3's cellular localisation in a range of transformed 

cell lines and also in primary hepatocytes. I found that DDX3 has a predominantly 

cytoplasmic localisation in all the transformed cell lines I tested, but had a distinctly 

more nuclear localisation in non-transformed primary hepatocytes. This could 

suggest that DDX3's nuclear localisation is indeed important for its tumour 
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suppressor functions. Mis-localisation of tumour suppressors and oncogenes has 

been implicated in a range of cancers (Kau et al. 2004). Nuclear DDX3 is required for 

DDX3's role as a tumour suppressor. DDX3's role in p21waf1/cap1 promoter activation 

could conceivably be affected by a loss of nuclear localisation, HBV infection has 

also been linked to reduced levels of DDX3 in HCC (Shih et al. 2008; Chang et al. 

2005). Future work could further examine the link between DDX3 mis-localisation in 

transformed cells and in HCV infection, and investigate if DDX3 mis-localisation by 

HCV Core protein prevents DDX3 from acting as a tumour suppressor. It would be 

interesting to investigate if HCV Core protein inhibited DDX3's role in induction of 

p21waf1/cap1 promoter activity.  

Viral infection could also affect DDX3's role during Cell Cycle progression. We 

found that DDX3 expression levels changed during the cell cycle, and also that DDX3 

became more nuclear during prometaphase. HCV infection has been shown to 

cause cell cycle arrest at G2/M, with a correlation between HCV Core protein 

expression and arrest at G2/M (Kannan et al. 2011). Since I found that DDX3 was 

sequestered in the cytoplasm during HCV infection, it would be interesting to see if 

HCV Core's prevention of DDX3's nucleocytoplasmic shuttling caused G2/M arrest 

during HCV.  

In conclusion, I have found DDX3 to be a nucleocytoplasmic shuttling protein 

which utilises CRM-1 to be exported from the nucleus, and also to be imported to 

the nucleus independently of Importin- and Calmodulin. Interestingly, I found that 

DDX3's cellular localisation was targeted by HIV and HCV, with both viruses re-

localising DDX3 to different cellular compartments. I also found DDX3 to associate 
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with SGs in response to cellular stress. I have also shown that DDX3's expression 

and cellular localisation changes throughout the cell cycle.    
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Appendix I 

 

 
Figure I: Map of pCMV-Ha vector. 
Adapted from 
http://www.clontech.com/IE/Products/Protein_Expression_and_Purification/Myc-
Tagged_Protein_Purification/Myc_and_HA_Vectors?sitex=10023:22372:US 
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Figure II: Map of pCMV-Myc vector. 
Adapted from 
http://www.clontech.com/IE/Products/Protein_Expression_and_Purification/Myc-
Tagged_Protein_Purification/Myc_and_HA_Vectors?sitex=10023:22372:US 
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Figure III: Map of pDendra2-c vector. 
Adapted from http://www.bioss.uni-freiburg.de/toolbox/products.php?PL-
47&osCsid=rrvmcoj3iotn80h0a2orgt36ofp918nc 
 
 
 
 
 
 
 

http://www.bioss.uni-freiburg.de/toolbox/products.php?PL-47&osCsid=rrvmcoj3iotn80h0a2orgt36ofp918nc
http://www.bioss.uni-freiburg.de/toolbox/products.php?PL-47&osCsid=rrvmcoj3iotn80h0a2orgt36ofp918nc
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Figure IV: Map of pEGFP-N1.  
Adapted from http://www.liv.ac.uk/physiology/ncs/catalogue/Cloning/pEGFP-N1.htm 
 

 
 
 
 
 
 
 
 

http://www.liv.ac.uk/physiology/ncs/catalogue/Cloning/pEGFP-N1.htm
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Figure V: Map of pHis-parallel 2. 
Adapted from 
https://www.lablife.org/g?a=seqa&id=vdb_g2.VpMokesmWHgT6U13nMsJHQywKhA-
_sequence_e14dbd80224e8db3bff633927c255c87e2f06104_10 
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DDX3 plasmids pDendra2- DDX3 

pCMV-Ha DDX3 1-662 NSL1 1-662 

pCMV-Ha DDX3 22-662 NLS1 1-408 

pCMV-Ha DDX3 44-662  NLS2-1 1-408 

pCMV-Ha DDX3 80-662  NLS2-2 139-408 

pCMV-Ha DDX3 110-662  T204D 

pCMV-Ha DDX3 120-662  T323D 

pCMV-Ha DDX3 130-662  T204A 

pCMV-Ha DDX3 1-408  T323A 

pCMV-Ha DDX3 1-139  TA2 

pCMV-Ha DDX3 139-408  TD2 

pCMV-Ha DDX3 139-662  HIV plasmids 

pCMV-Ha DDX3 409-662  pCMV-Ha-Rev 

pCMV-Myc 1-662 GAG-RRE 

pCMV-Myc DDX3 1-408  GAG-CTE 

pCMV-Myc 1-139 HIV rev- ha tagged 

pCMV-Myc 139-408  RRE promoter 

pCMV-Myc 139-662  HCV plasmids 

pCMV-Myc 409-662 pCMV-Ha HCV Core Con1  

pCMV-Myc K230E pCMV-Ha HCV Core Con1 Y35A  

DDX3 NES-44-662 Ha pCMV-Ha HCV Core JC1 

DDX3 NES-130-662 myc pCMV-Ha HCV Core H77 

DDX3 NES-80-662 myc pBRTM/HCV1-3011 DNA construct 

DDX3 NES-110-408 Ha Bimax Plasmids 

DDX3 NES-100-408 Ha pCMV-GRX-flag Bimax 1 

DDX3 NES-100-662 Ha pCMV-GRX-flag Bimax 2 

 SV40 NLS GFP 

 pCMV-GRX-flag  
 
Table I: Expression constructs used for the project. 
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Appendix II 

One-dimensional SDS PAGE buffers 
Solution Reagent 

Resolving Gel Buffer (1.5M 
Tris,pH8.8) 

90.75g Tris 
Add 400ml dH20 
Adjust pH 8.8 with HCl 
Make up to 500ml 

Stacking Gel buffer(0.5M Tris,pH6.8) 15g Tris 
Add 150ml dH20 
Adjust to pH 6.8 with HCl 
Make up to 250ml 

10% Resolving Gel for 2 gels 4.1ml dH20 
3.3ml 30% acrylamide 
2.5ml 1.5Tris (pH 8.8) 
100 µl 10% SDS 
50µl APS 
Temed 5 µl 

5% Stacking Gel for2 gels 3.4ml dH20 
1ml 30% acrylamide 
1.5ml 1.5Tris (pH 8.8) 
60 µl 10% SDS 
60µl APS 
Temed 6 µl 

10x Running buffer 
 

30.3g Trizma Base 
144g Glycine 
10g SDS 
Make up to1L with dH20 

10x Transfer Buffer 30.3 Tris 
144g Glycine 
Make up to 1L with dH20 

1x Transfer Buffer 50ml 10X Transfer Bufer 
75ml Methanol (15%) 
Make up to 500ml with dH20 

2x Laemmli sample buffer 2ml 0.5M Tris/Cl pH 6.8 
2% SDS (use 10% stock) 
10ml Glycerol 
200µl bromophenol blue (1% stock in ethanol) 
2ml 1M DTT 
Make up to 20ml with dH20 

PBS/Tween 1x PBS 
0.1 % Tween-20 (1ml in1L) 

ECL A 1 ml luminol solution 
0.44 ml coumaric acid solution 
10 ml Tris-HCl 1M, pH 8.5 
Distilled water up to a final volume of 100 ml 

ECL B 10 ml Tris-HCl 1M, pH 8.5 
Distilled water up to a final volume of 100 ml 
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Cell Lysis Buffers 
Buffers Reagent 

Subcellular fractionation buffer  250 mM Sucrose  
20 mM HEPES (7.4) 
10 mM KCl 
1.5 mM MgCl2 
1 mM EDTA 
1 mM EGTA 

IP Lysis Buffer 50mM HEPES pH 7.5 (or Tris/HCl pH 7.5) 
150mM NaCl 
1mM EDTA 
10% Glycerol 
0.5% NP-40 (or 1% NP-40) 
Store in fridge 

Protease and phosphatase inhibitors Aprotinin (20µl/ml) 
1 mM sodium orthovanadate (10µl/ml) 
1 mM PMSF (10µl/ml) 

  

 
 

Immunohistochemistry buffers 
Buffers Reagents 

Fixation solution 100ml PBS (1x) 
4g Paraformaldehyde 
Heat to 68°C on hotplate with constant stirring in 
a fume hood. 
Once cooled, filter sterilize. Aliquot and store at -
20°C 

Permeabilisation solution   0.5% Triton-X in PBS 
Blocking buffer 5% BSA in PBS-Tween (0.05%) 
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DNA technology Buffers 
Buffers Reagent 

50X TAE 242g Tris Base 
57.1ml glacial acetic acid 
100ml 0.5M EDTA (pH 8.0) 
Make up with dH20 to 1L 

0.8% Agarose gel 0.2g Agarose 
25ml 1X TAE 
10,000X GelRed or 10,000X Etidium Bromide 

6x Loading Dye 3ml glycerol (30%)                           
25mg bromophenol blue 0.25%)  
Make up to dH2O to 10mL 
 

 

DNA transfection Reagents 
Buffers Reagent 

2x HBS buffer: 
 

 42mM  HEPES               
10mM  KCL                   
12mM  dextrose              
1.5mM Na2HPO4.7H20  
280mM NaCl                    
 

2.5M CaCL2: 

 
36.75g CaCL2.2H20 
Make up with dH20 to 100ml 

 

Buffers for Preparing Competant cells 
Buffers Reagent 

Transformation Buffer 55 mM MnCl2·4H2O   

15 mM CaCl2·2H2O   

250 mM KCl  
10 mM PIPES (0.5M, pH 6.7)  
Chilled to 0ºC before use. 
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Buffers for His-tagged protein production 
Buffers Reagent 

Lysis Buffer (pH 8.0) 50mM Na2HPO4 

300mM NaCl 
10mM Imidazole 
20mM β-mercaptoethanol (added just before 
use) 
1 mM PMSF (added just before use) 

Lysis Buffer (pH 8.0) Protein greater then 
70kDa 

1x TBS 
500mM NaCl 
5mM MgCl2 
250mM Sucrose  
10% Glycerol 
1% Triton X 
10mM Imidazole 
20mM β-mercaptoethanol (added just before 
use) 
1 mM PMSF (added just before use) 

Wash buffer I Lysis buffer (pH 8.0) 
20mM Imidazole 

Wash buffer II Lysis buffer (pH 8.0) 
40mM Imidazole 

Elution buffer Lysis buffer (pH8.0) 
250mM Imidazole 
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Antibody information 
Antibody Company Western Blotting 

Dilution in 5% Milk 
Confocal Microcopy 
Dilution in 5% BSA 
 

α-Ha Cambridge Biosciences 1:1000 1:500 

α-Myc Sigma 1:1000 1:500 

α-CRM-1 Novus 1:1000 1:500 

α-DDX3 Santa Cruz 1:500 1:100 

α-DDX3 Bethyl Laboratories 1:1000 1:250 

α-PhosT323 DDX3 Abcam 1:200 1:250 

α-PhosHis H2A.2 Cell Signalling - 1:250 

α- eIF4E Abcam 1:500 1:250 

α- polyHistidine Sigma 1:1000 - 

α-Tubulin Abcam 1:1000 1:500 

α-PhosHis Ser H10 Cell signalling - 1:500 

α-Cyclin B Santa Cruz 1:250 1:100 

α-Cyclin E Santa Cruz 1:250 1:100 

α-Cyclin A Santa Cruz 1:250 1:100 

α-Cyclin D Santa Cruz 1:250 1:100 

α-Ha AlexaFluor 594 Invitrogen - 1:500 

α-HCV Core Abcam - 1:500 

 
Table II: Primary antibodies used for western blotting, immunofluorescent staining or 
immunoprecipitations. 
 
 

 

 

 


